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Abstract

We say that a theory T satisfies arithmetic-is-recursive if any X ′-computable model
of T has an X-computable copy; that is, the models of T satisfy a sort of jump inversion.
We give an example of a theory satisfying arithmetic-is-recursive non-trivially and prove
that the theories satisfying arithmetic-is-recursive on a cone are exactly those theories
with countably many ω-back-and-forth types.

1 Introduction

Vaught’s conjecture states that an elementary first-order theory has either countably-many
or continuum-many countable models. Conjectured by Vaught in 1961 [Vau61], it is one of
the oldest and most well-known open problems in logic. Morley showed that the number of
countable models is either ℵ0, ℵ1, or continuum. He used what has become known as the
Morley analysis, a variant of which is as follows. The Morley analysis introduces infinitary
formulas of Lω1ω. Throughout this paper, we will consider a theory to be an elementary
first-order theory, and whenever we talk about Σα or Πα formulas we mean formulas of Lω1ω.

Definition 1.1. Let A and B be L-structures and let ā ∈ A and b̄ ∈ B be tuples of length k.
Then (A, ā) and (B, b̄) are α-back-and-forth equivalent, and we write (A, ā) ≡α (B, b̄), if ā
and b̄ satisfy the same Σα formulas of the infinitary logic Lω1ω in A and B respectively.

Definition 1.2. The α-back-and-forth types (shortened as α-bftypes) of a theory T are the
equivalence classes of tuples modulo α-back-and-forth equivalence:

bfα(T ) =
{(A, ā) ∶ A ⊧ T, ā ∈ A}

≡α
.

Silver’s theorem that every coanalytic equivalence relation has either countably or perfectly
many equivalence classes [Sil80] implies that for each countable α there are either countably-
many or continuum-many α-back-and-forth types. So for a given structure, we have three
possibilities. First, it might be that there are continuum-many α-back-and-forth types for
some α, in which case there are continuum-many countable models of T . Second, it might

*Supported by NSF DMS-1600228.
�Supported by an NSERC Banting fellowship.

1



be that there are countably-many α-back-and-forth types for each α and countably many
countable models of T . Third, there might be countably-many α-back-and-forth types for
each α, but uncountably many countable models of T . Consider this third case. Scott [Sco65]
showed that each countable structure A has a Scott sentence, that is, an Lω1ω sentence ϕ
such that A is the only countable model of ϕ. Let α be a countable ordinal such that
the Scott sentence is Σα; then A is characterized by its α-back-and-forth type. Since there
are only ℵ1-many countable ordinals, and so ℵ1-many α-back-and-forth types among all
countable ordinals α, there are then at most ℵ1-many (and hence exactly ℵ1-many) models
of T . If ℵ1 < 2ℵ0 , then this third case consists of exactly the counterexamples to Vaught’s
conjecture. (Because it might be that ℵ1 = 2ℵ0 , Vaught’s conjecture is often stated in a way
that is absolute, namely that every elementary first-order theory has either countably many
countable models or a perfect set of countable models. Whatever the status of the continuum
hypothesis, the counterexamples to this formulation of the conjecture are exactly the theories
with countably many α-back-and-forth types for each countable α, but uncountably many
models.)

For a theory T with uncountably-many countable models, we can measure how close T
is to being a counterexample to Vaught’s conjecture by the least countable ordinal α such
that T has continuum-many α-back-and-forth types.

Definition 1.3 (Montalbán, see [Mon12, CK15]). Let T be a theory. The back-and-forth
ordinal of T is the least countable ordinal α such that there are continuum-many α-bftypes.
(If no such ordinal exists, the back-and-forth ordinal is ∞.)

Counterexamples to Vaught’s conjecture are exactly the theories with uncountably many
countable models but back-and-forth ordinal ∞.

Montalbán [Mon13] showed that a first-order theory T is a counter-example to Vaught’s
conjecture if and only if T has uncountably many models and satisfies “hyperarithmetic-
is-recursive on a cone”, that is, there is some set Z so that for any X ≥T Z, if there is a
model A ⊧ T which is hyperarithmetic relative to X, then there is an isomorphic copy of A
which is computable from X. Thus Vaught’s conjecture has a formulation purely in terms of
computable structure theory. At the 2015 Vaught’s Conjecture Workshop in Berkeley, the
third author asked for a first-order theory T non-trivially satisfying “arithmetic-is-recursive
on a cone”. The formal definition of this property is as follows:

Definition 1.4. Let T be a first-order theory.

� T satisfies arithmetic-is-recursive if for every set X, every X ′-computable model of T
has an X-computable copy.

� T satisfies arithmetic-is-recursive on a cone if there is a set Z such that for all X ≥T Z,
every X ′-computable model of T has an X-computable copy.

If T satisfies arithmetic-is-recursive, then every X(n)-computable model of T has an X(n−1)-
computable copy, and hence an X(n−2)-computable copy, and so on; so every X-arithmetic
model of T has an X-computable copy, hence the name.

The main result of this paper is a characterization of the structures satisfying arithmetic-
is-recursive on a cone:

2



Theorem 1.5. Let T be a first-order theory. The following are equivalent:

(1) T has countably many ω-bftypes.

(2) T satisfies arithmetic-is-recursive on a cone.

If T has countably many countable models, then T satisfies both properties in a trivial
way. It is immediate that such a T has back-and-forth ordinal ∞. Moreover since T has only
countably many countable models, there is a set X which can compute a copy of every model
of T ; then any X ′-computable model of T is isomorphic to an X-computable model, and T
satisfies arithmetic-is-recursive on the cone above X. So we say that T satisfies arithmetic-
is-recursive on a cone non-trivially if T satisfies arithmetic-is-recursive on a cone but has
uncountably many countable models.

One way of thinking of theories non-trivially satisfying arithmetic-is-recursive on a cone is
as theories which are on their way to being counter-examples to Vaught’s conjecture. Unlike
counterexamples to Vaught’s conjecture, we can give an example of a theory non-trivially
satisfying arithmetic-is-recursive on a cone. In particular, we show:

Theorem 1.6. There is a first-order theory T with uncountably many countable models such
that:

(1) T has back-and-forth ordinal ω + 1, and

(2) T satisfies arithmetic-is-recursive.

A natural line of inquiry is to try and build theories which are closer and closer to being
counterexamples to Vaught’s conjecture, in the sense that they have higher and higher back-
and-forth ordinals. The example we give above is the highest known back-and-forth ordinal
less than ∞; indeed this is related to the following unresolved conjecture of Martin:

Martin’s Conjecture. Let T be a first-order theory with fewer than continuum many count-
able models. Then T has countably many complete types. For each such type, add a new
relation symbol Ri which holds of the tuples which have that type. Then for A ⊧ T , the theory
of A in the expanded language with the symbols Ri is countably categorical.

Suppose ℵ1 < 2ℵ0 . Then Martin’s conjecture would imply that any first-order theory with
back-and-forth ordinal <∞ has back-and-forth ordinal ≤ ω+1. So Martin’s conjecture would
imply Vaught’s conjecture. In the language of back-and-forth ordinals, we ask:

Question 1.7. Is there a first-order theory with uncountably many countable models and
back-and-forth ordinal at least ω + 2?

2 Back-and-forth Types

Fix for this section a class K of structures for which we will develop the theory of back-
and-forth types. Throughout this paper, K will be the class of models of an elementary
first-order theory T . We recommend Section 15 of [AK00] for a good reference on back-and-
forth relations.
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Definition 2.1. We define the α-back-and-forth relations on K by induction on α. Let A
and B be structures in K and let ā ∈ A and b̄ ∈ B be tuples with length(ā) ≤ length(b̄). Then:

� (A, ā) ≤0 (B, b̄) if every atomic or negated atomic formula in the first length(ā) variables
and with Gödel number at most length(ā) true of ā is also true of b̄.

� (A, ā) ≤α (B, b̄) if for every c̄ ∈ B and β < α there is d̄ ∈ A such that (B, b̄c̄) ≤β (A, ād̄).

� (A, ā) ≡α (B, b̄) if (A, ā) ≤α (B, b̄) and (B, b̄) ≤α (A, ā).

The back-and-forth relations can also be expressed in terms of infinitary Lω1ω formulas.

Lemma 2.2. Let A and B be structures in K, α ≥ 1, and let ā ∈ A and b̄ ∈ B be tuples of the
same length.

� (A, ā) ≤α (B, b̄) if and only if every Πα formula true of ā in A is true of b̄ in B if and
only if every Σα formula true of b̄ in B is true of ā in A.

� (A, ā) ≡α (B, b̄) if and only if ā and b̄ satisfy the same Σα formulas in A and B
respectively.

When ∣ā∣ < ∣̄b∣, if we write b̄ = b̄′b̄′′ with ∣ā∣ = ∣̄b′∣ then ā ≤α b̄ if and only if ā ≤α b̄′.
The relations ≤α are partial pre-orders on {(A, ā) ∣ A ∈ K, ā ∈ A}. We can quotient out

by ≡α to get the partial ordering

bfα(K) =
{(A, ā) ∶ A ∈ K, ā ∈ A}

≡α
.

We call these equivalence classes the α-back-and-forth types (α-bftypes) of K. For β ≤ α,
this is partially ordered by ≤β in the obvious way. For ξ ∈ bfα(K), put ∣ξ∣ = k and say the
arity of ξ is k if ξ is the bftype of a k-tuple. Write bfα,k(K) for the set of α-bftypes of arity
k.

Using Lemma 2.2, we can identify each α-bftype ξ, α ≥ 1, with the set of Σα and Πα

formulas true of a representative for ξ as an ≡α-equivalence class; we use variables x1, . . . , x∣ξ∣,
and write ξ(x̄) when we want to be explicit. The α-bftypes of arity n are thus exactly the
complete sets of Σα and Πα formulas, in n variables, which are realized in some model of
K. For α = 0, we can identify an α-bftype of arity k with the complete sets of atomic and
negated atomic formulas with Gödel number at most k.

Note that since ≡α is a Borel equivalence relation, Silver’s theorem [Sil80] implies that if
K is a Borel class of structures, then bfα(K) is either countable or size continuum.

Given ξ, ζ ∈ bfα(K), with ∣ξ∣ ≤ ∣ζ ∣, we say ξ ⊆ ζ if for every (equivalently some) (A, b1, . . . , b∣ζ∣)
of α-bftype ζ, (A, b1, . . . , b∣ξ∣) has α-bftype ξ. Equivalently, ξ ⊆ ζ as sets of Σα and Πα for-
mulas.

Given ξ ∈ bfα(K) and β < α, we write ξ∣β for the restriction of ξ to a β-bftype, i.e. ξ∣β is
the β-bftype of a tuple with α-bftype ξ.

Given ξ ∈ bfα(K) and β < α, define extβ(ξ) ⊆ bfβ(K) to be the set of ζ such that for
every—equivalently some—(A, ā) of α-bftype ξ, there is some d̄ ∈ A such that (A, ād̄) has
β-bftype ≥β ζ. Note that ext(ξ) is closed downwards under ≤β. For ξ, ζ ∈ bfα(K), ξ ≤α ζ if
and only if for each β < α, extβ(ζ) ⊆ extβ(ξ).

4



The following useful lemma says that in a situation with countably many (α−1)-bftypes,
we can express the relation ≤α by a single Πα formula.

Lemma 2.3 (Montalbán, Lemma of 2.2 [Mon12]). If bfα−1(K) is countable, then for each
ξ ∈ bfα(K) there is a Πα formula ϕξ(x̄) with ∣x̄∣ = ∣ξ∣ such that, for all (B, b̄) ∈ K,

ξ ≤α (B, b̄)⇐⇒ B ⊧ ϕξ(b̄↾∣ξ∣).

3 True Stage Constructions

In our constructions we will need Ash’s α-systems. These were introduced in [Ash86a,
Ash86b, Ash90] but we follow Ash and Knight’s book [AK00]. For some of our constructions
we will need “special” ω-systems. We give the required definitions below, but we suggest
that the reader who is unfamiliar with α-systems read the relevant parts of [AK00] for more
details.

Given sets L and U , an alternating tree P on L and U is a tree consisting of non-empty
finite sequences `0u1`1u2⋯ with `i ∈ L and ui ∈ U . An instruction function for P is a function
q which assigns to each sequence σ ∈ P of odd length (i.e., a sequence whose last term is in
L) an element u ∈ U , such that σu ∈ P . A run of (P, q) is a path `0u1`1u2`2⋯ in P such that
for all n, un+1 = q(`0u1`1⋯`n).

An enumeration function is a c.e. set E ⊆ L×ω which assigns to each ` ∈ L the set E(`) =
{k ∈ ω ∣ (`, k) ∈ E}. Given a run π = `0u1`1u2`2⋯ of (P, q), we define E(π) = ⋃i∈ωE(`i).

An α-system is a structure of the form (L,U, ˆ̀, P,E, (≤β)β<α), where L and U are c.e.

sets, P is a c.e. alternating tree on L and U in which all of the sequences start with ˆ̀, E
is a partial computable enumeration function defined on L, and for each β < α, ≤β is a c.e.
binary relation on L such that the following conditions hold:

(1) ≤β is reflexive and transitive,

(2) for β < γ < α, if ` ≤γ `′ then ` ≤β `′,

(3) if ` ≤0 `′ then E(`) ⊆ E(`′),

(4) if σu ∈ P , where σ ends in `0 ∈ L, and

`0 ≤β0 `
1 ≤β1 ⋯ ≤βk−1 `

k

for α > β0 > ⋯ > βk, then there exists `∗ ∈ L such that σu`∗ ∈ P and `i ≤βi `
∗ for all

i ≤ k.

Ash’s metatheorem is:

Theorem 3.1 (Theorem 14.1 of [AK00]). Let (L,U, ˆ̀, P,E, (≤β)β<α) be an α-system. Then
for any ∆0

α instruction function q, there is a run π of (P, q) such that E(π) is c.e., while π
itself is ∆0

α.
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For limit ordinals, we will need a slightly weaker version of condition (4). If q is a ∆0
α

instruction function for α a limit ordinal, then every computation of q uses only finitely
many questions to ∆0

β for various β < α. Section 14.5 of [AK00] introduces a variant of the
α-systems described above which takes this into account. We will need only the case α = ω
and we give the definition only for this case (using 1,2,3, . . . as the increasing sequence of
ordinals with limit ω). A special ω-system is defined as above except that (4) is replaced by
(4′):

(4′) if σu ∈ P , where σ has length 2n + 1 and ends in `0 ∈ L, and

`0 ≤β0 `
1 ≤β1 ⋯ ≤βk−1 `

k

for n ≥ β0 > ⋯ > βk, then there exists `∗ ∈ L such that σu`∗ ∈ P and `i ≤βi `
∗ for all

i ≤ k.

A special ∆0
ω instruction function for P is an instruction function q whose restriction to

sequences in P of length 2n + 1 is ∆0
n+1 uniformly in n. Then the metatheorem is:

Theorem 3.2 (Special case of Theorem 14.4 of [AK00]). Let (L,U, ˆ̀, P,E, (≤β)β<α) be a
special ω-system. Then for any special ∆0

ω instruction function q, there is a run π of (P, q)
such that E(π) is c.e., while π itself is ∆0

ω.

4 Models Satisfying Arithmetic-Is-Recursive

In this section we prove the direction (2)⇒(1) of Theorem 1.5 by proving the contrapositive.
Suppose that T is a theory with uncountably many ω-bftypes. We will show that T does
not satisfy arithmetic-is-recursive on a cone. The proof splits into two cases depending
on whether there is α < ω such that T has countably many α-bftypes, or whether T has
uncountably many α-bftypes for each α < ω but countably many ω-bftypes. The former case
will be simplest, just using a degree-theoretic jump inversion argument, while the latter case
will use special ω-systems. We begin with the first case.

Theorem 4.1. Suppose that T has uncountably many α-bftypes for some α < ω. Then T
does not satisfy arithmetic-is-recursive on a cone.

Proof. Fix a set X. We will show by contradiction that T does not satisfy arithmetic-is-
recursive on the cone above X. So assume that T does satisfy arithmetic-is-recursive on the
cone above X, and assume without loss of generality that X ≥T T .

Since there are uncountably many α-bftypes, there is one, say ξ, which is not X-
arithmetic. Let M be a model of T realizing ξ. We use the following cone avoiding version
of Friedberg jump inversion; see Exercise 4.18 of [Ler17]:

Fact. Given sets A, B, and C >T A, there is G ≥T A such that G′ ≡T G⊕A′ ≡T B ⊕A′ and
G ≱T C.
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Begin with Y0 = M ⊕ X(α+1). Applying the jump inversion theorem with A = X(α),
B =M, and C = ξ ⊕X(α), we get Y1 ≥T X(α) with Y ′

1 ≡T Y1 ⊕X(α+1) ≡T M ⊕X(α+1) ≡T Y0,
and Y1 ≱T ξ. (This is where we use the fact that ξ is not X-hyperarithmetic, so that C >T A.)
Then, having defined Yi, we can define Yi+1 ≥ X(α+1−i) with Y ′

i+1 ≡T Yi and Yi+1 ≱T ξ. So we

get Yα+1 ≥X with Y
(α)
α+1 ≡ Y1 and Y

(α+1)
α+1 ≡T Y0 ≡T M⊕X(α+1).

Since T satisfies arithmetic-is-recursive on the cone above X, M has a Yα+1-computable
copy N . Let ā ∈ N realize ξ. Given a Σα formula ϕ, we can use Y1 ≡T Y

(α)
α+1 to decide whether

or not N ⊧ ϕ(ā); so Y1 can compute ξ. This yields a contradiction as Y1 was chosen using
the jump inversion theorem to have Y1 ≱T ξ.

Now consider the second case: there are countably many α-bftypes for each α < ω but
uncountably many ω-bftypes. We will show that T does not satisfy arithmetic-is-recursive
on a cone by constructing, for any set X ⊆ ω, a Y ≥T X and a Y ′′′-computable M ⊧ T with
no Y -computable copy. To build M, we use a Y ′′′-computable Henkin-style construction
while diagonalizing against Y -computable structures.

Informally, one should think of the idea of the construction as follows. As we build the
Y ′′′-computable M, we Y ′′′-computably guess at whether Ai satisfies some Σα sentence,
α < ω; since Ai is Y -computable but we are building M using Y ′′′, we have a couple extra
jumps of Y to take advantage of while building M. So we can ensure that M satisfies this
sentence if and only if Ai does not.

When we construct our model M by stages, at each stage s we will determine the αs-
bftype of an initial segment of M for an increasing sequence α0 < α1 < α2 < ⋯. In order to
diagonalize, we need the following lemma.

Lemma 4.2. Suppose that T has countably many n-bftypes for each n < ω but uncountably
many 0-ary ω-bftypes. There is a perfect binary tree S ⊆ 2<ω with no dead ends and a
collection {ησ ∶ σ ∈ S} of 0-ary bftypes such that ησ is a (∣σ∣ + 2)-bftype and:

� if σ ≺ τ ∈ S then ησ = ητ ∣∣σ∣+2 (ητ is an extension of the (∣σ∣+ 2)-bftype ησ to a (∣σ∣+ 3)-
bftype);

� if σ, τ ∈ S, σ ≠ τ , and ∣σ∣ = ∣τ ∣ then ησ ≠ ητ .

Proof. Choose a 2-bftype η∅ such that there are uncountably many ω-bftypes extending η∅.
Suppose that we have defined ησ for ∣σ∣ = i, and that there are uncountably many ω-bftypes
extending ησ. If there are (i + 3)-bftypes ζ0 ≠ ζ1 extending ησ, with uncountably many ω-
bftypes extending each of them, then put σ0, σ1 ∈ S and set ησ0 = ζ0 and ησ1 = ζ1. Since
there are countably many (i + 3)-bftypes, if we cannot find such ζ0 and ζ1 then there must
be a unique (i+3)-bftype ζ extending ησ with uncountably many extensions to an ω-bftype.
In this case, put σ0 ∈ S and σ1 ∉ S, and set ησ0 = ζ.

We just have to argue that S is perfect. If not, then for some σ ∈ S there is a unique path
σ0 ⊆ σ1 ⊆ ⋯ ⊆ σ = σi ⊆ σi+1 ⊆ ⋯ through S. Then ⋃j ησj is an ω-bftype. But then there are
only countably many ω-bftypes extending ησ not equal to ⋃j ησj , since for each j > i there
are only countably many ω-bftypes extending ησ but not extending ησj . This contradicts the
fact that σ = σi was constructed to have uncountably many extensions to an ω-bftype.
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Theorem 4.3. Suppose that T has uncountably many ω-bftypes but countably many n-bftypes
for each n < ω. Then T does not satisfy arithmetic-is-recursive on a cone.

In particular, there is a set X ⊆ ω such that for every Y ≥T X there is a Y ′′′-computable
model of T with no Y -computable copy.

Proof. Let k be such that there are uncountably many k-ary ω-bftypes. Adding to the
language of T a k-tuple of constants, we may assume that there are countably many n-
bftypes for each n < ω but uncountably many 0-ary ω-bftypes. Let S be a perfect binary
tree and let {ησ ∶ σ ∈ S} be as in Lemma 4.2.

Let C ⊆ ω be such that whenever ξ, ζ ∈ bfα(K), α < ω, there is a ΣC
α formula on which

they differ; moreover, choose C such that all of the formulas from Lemma 2.3 are ΠC
α . Let

X ⊆ ω be such that:

(1) X ≥T C.

(2) X computes an indexed list of the α-bftypes, of each arity, for α < ω, and the relations
on them.

(3) For each ξ ∈ bf<ω(K), X can decide which C-computable formulas are in ξ.

(4) X computes the tree S and the bftypes ησ.

To show that T does not satisfy arithmetic-is-recursive on any cone, given any Y ≥T X,
we will build a Y ′′′-computable structure M which is not isomorphic to any Y -computable
structure. (It is likely that three jumps is not optimal, and that one could prove the result
for two or even one jump, but allowing ourselves three jumps streamlines the proof.) Let
{Ai ∣ i ∈ ω} be a Y -computable list of the (possibly partial) Y -computable structure against
which we will diagonalize. We will build M using a true stage construction with a Y ′′′-
computable special ω-system. M will be built as a quotient structure of the variables modulo
equality.

Our special ω-system will be (L,U, ˆ̀, P,E, (≤n)n<ω), defined as follows:

� L is the set of pairs (n, ξ, ζ) where ξ is a 0-ary (n + 2)-bftype, n < ω, and ζ is a k-ary
n-bftype such that ξ ⊧ ∃x̄ζ(x̄), i.e.,

ξ ⊧ ∃x̄⩕
ϕ∈ζ

ϕ(x̄)

where ϕ ranges over ΣC
n and ΠC

n formulas.

� U = bf<ω,0(T ).

�
ˆ̀ is (0, η∅,∅).

� P is the set of paths `0u1`1u2`2⋯ where:

– `i = (i, ⋅, ⋅).

– ui = ησ where σ ∈ S has ∣σ∣ = i, so that ησ is an (i + 2)-bftype.
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– if `i = (i, ξ, ζ), ui+1 = ησ, and `i+1 = (i + 1, ξ∗, ζ∗), then:

* ζ ⊆ ζ∗∣i, i.e. ζ∗ is an extension of the i-bftype ζ to an (i + 1)-bftype of higher
arity;

* ξ∗ = ησ;

* ξ = ησ ∣i+2 = ξ∗∣i+2;

– if `i = (i, ξ, ζ) and `i+1 = (i + 1, ξ∗, ζ∗), then if ϕ ∈ ζ is among the first i-many ΣC
i

formulas, where ϕ =⩔j(∃x̄)ψj(x̄), then for some j and tuple ȳ, ζ∗ ⊧ ψj(ȳ),

– if `i = (i, ξ, ζ) and `i+1 = (i + 1, ξ∗, ζ∗), then if ϕ ∈ ζ is among the first i-many ΠC
i

formulas, where ϕ = ⩕j(∀x̄)ψi(x̄), then for all j < i and the first i appropriate
tuples ȳ, ζ∗ ⊧ ψj(ȳ),

– if `i = (i, ξ, ζ), then ∣ζ ∣ ≥ i.

� Let E(`) be the atomic diagram of ζ, where ` = (i, ξ, ζ).

� We define (i, ξ, ζ) ≤n (j, ξ∗, ζ∗), for α < ω, if i ≤ j and ζ ≤α ζ∗.

Each of these are Y ′′′-c.e. (in fact Y -c.e.) by choice of X ≤T Y . Conditions (1), (2), and (3)
of being a special ω-system are clear. We must check condition (4′).

Claim 1. (L,U, ˆ̀, P,E, (≤β)n<ω) satisfies the special extendability condition (4′).

Proof. Suppose that σu ∈ P , where σ has length 2n + 1 and ends in `0 ∈ L, and

`0 ≤β0 `
1 ≤β1 ⋯ ≤βk−1 `

k

for n ≥ β0 > ⋯ > βk. We must show that there exists `∗ ∈ L such that σu`∗ ∈ P and `i ≤βi `
∗

for all i ≤ k. Let `i = (ni, ξi, ζi). Note that n0 = n.
Since ζk−1 ≤βk−1 ζk, there is ζ ′k−1 ⊇ ζk−1 with ζk ≤βk ζ

′
k−1. Then ζk−2 ≤βk−2 ζk−1 ⊆ ζ

′
k−1, and

so there is ζ ′k−2 ⊇ ζk−2 such that ζ ′k−1 ≤βk−1 ζ
′
k−2. Note that as ζk ≤βk ζ

′
k−1 ≤βk−1 ζk−2, we have

ζk ≤βk ζ
′
k−2. Continuing in this way, we get ζ ′1 ⊇ ζ1 such that for each i ≥ 1 ζi ≤βi ζ

′
1.

Let ∣ζ0∣ =m and ∣ζ ′1∣ = n. Let ϕ(x1, . . . , xn) be a Πβ1 formula as in Lemma 2.3 for ζ ′1 and
β1: for all (B; b1, . . . , bn) ∈ K,

ζ ′1 ≤β1 (B; b1, . . . , bn)⇐⇒ B ⊧ ϕ(b1, . . . , bn).

Then
ζ ′1 ⊧ ϕ(x1, . . . , xn)

and so
ζ ′1 ⊧ (∃xm+1, . . . , xn)ϕ(x1, . . . , xn).

This is Σβ0 , so since ζ0 ≤β0 ζ1 ⊆ ζ
′
1,

ζ0 ⊧ (∃xm+1, . . . , xn)ϕ(x1, . . . , xn).

Now let u = η; this is an (n+ 3)-bftype, while ξ0 is an (n+ 2)-bftype. We have ξ0 = η∣n+2 and
ξ0 ⊧ ∃x̄ ζ0(x̄), so η ⊧ ∃x̄ ζ0(x̄). So there is an n-bftype ζ ′0 ⊇ ζ0 consistent with η with

ζ ′0 ⊧ ϕ(x1, . . . , xn).
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We can extend ζ ′0 to an (n + 1)-bftype ζ ′′0 consistent with η. We have ζ ′1 ≤β1 ζ
′′
0 . Since ζ ′′0 is

an (n + 1)-bftype consistent with the (n + 3)-bftype η, η ⊧ (∃x̄)ζ ′′0 (x̄).
Moreover, we can choose ζ ′0 and ζ ′′0 so that:

� ∣ζ ′′0 ∣ ≥ n + 1.

� For each ΣC
n formula ϕ ∈ ζ0 from among the first n formulas, where ϕ = ⩔i(∃x̄)ψi(x̄),

there are x̄ and i such that ζ ′′0 ⊧ ψi(x̄).

� For each ΠC
n formula ϕ ∈ ζ0 from among the first n formulas, where ϕ = ⩕i(∀x̄)ψi(x̄),

for each j < n and tuples ȳ among the first n appropriate tuples, ζ ′′0 ⊧ ψj(ȳ).

Let `∗ = (n + 1, η, ζ ′′0 ).

We now define the ∆0
ω(Y

′′′)-computable special instruction function q. Given `0u1`1u2`2⋯`m ∈
P , let `m = (m,ξ, ζ) and let um = ησ for σ ∈ S, ∣σ∣ = m. Since q must be a special instruc-
tion function, we must compute q(π) using ∆0

m+1(Y
′′′) = ∆0

m+4(Y ). First, we can decide
Y -computably whether there are one or two immediate extensions of σ on S.

� If σ0, σ1 ∈ S, choose a ΣC
m+3 or ΠC

m+3 sentence ϕ such that ϕ ∈ ησ0, ϕ ∉ ησ1. Let i be
least such that Ai ⊧ ησ; we will diagonalize against Ai. Using ∆0

m+4(Y ) we can decide
whether Ai ⊧ ϕ.

– If Ai ⊧ ϕ, then let q(π) = ησ1.

– If Ai ⊭ ϕ, then let q(π) = ησ0.

� If σ0 ∈ S, σ1 ∉ S, then let q(π) = ησ0.

Thus (L,U, ˆ̀, P,E, (≤β)β≤α) is a Y ′′′-computable special ω-system, and the instruction func-
tion q defined above is a special ∆0

ω(Y
′′′) instruction. By Ash’s metatheorem for special

ω-systems, Theorem 3.2, there is a run π of (P, q) such that E(π) is c.e. in Y ′′′. Let M
be the Y ′′′-computable structure with diagram E(π); the domain of M is the set of vari-
ables modulo the equivalence relation x ∼ y ⇐⇒ “x = y” ∈ E(π). Let π = `0u1`1u2 . . ., with
`i = (i, ξi, ζi).

Claim 2. If ψ ∈ ζi for some i, then M ⊧ ψ.

Proof. By induction on the complexity of ψ as in Theorem 4.1.

Claim 3. M is a model of T .

Proof. Since the ζi are bftypes for the theory T , for each ψ ∈ T , ψ ∈ ζi for sufficiently large
i. Then by the previous claim, M ⊧ ψ.

Claim 4. M is not isomorphic to any Y -computable structure.

Proof. Let ui = ησi . By construction, the ω-bftype of (M,∅) is ⋃ ησi . But this is not the
ω-bftype of any (Ai,∅), because at each split in S the instruction function q diagonalizes
against another Ai. (Recall that S is perfect.)

We have constructed a Y ′′′-computable structureM ⊧ T which is not isomorphic to any
Y -computable structure. This completes the proof.
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5 Models With Few Back-And-Forth Types

In this section we will prove the direction (1)⇒(2) of Theorem 1.5:

Theorem 5.1. Suppose that T has countably many ω-bftypes. Then T satisfies arithmetic-
is-recursive on a cone.

To prove the theorem we will use a notion of bftypes being isolated over other types. Fix
a set C ⊆ ω. Recall that since ω is a limit ordinal, the ω-bftypes can be identified with the
Σn formulas they contain, for n < ω; we will use the notation Σ<ω to denote the class of all
Σn formulas, n < ω.

Definition 5.2. Let ξ be an ω-bftype of arity m and ϕ(x1, . . . , xn) a formula with n > m.
We say that an ω-bftype ζ of arity n is C-isolated over ξ ∪ {ϕ} if there is a ΣC

<ω formula
ψ(x1, . . . , xn) such that ξ ∪ {ϕ,ψ} ⊧ ζ.

The following lemma says that for the right choice of C we can always extend such a ξ ∪{ϕ}
to a bftype which is C-isolated over it, given that there are countably many bftypes.

Lemma 5.3. Suppose that the class K has countably many ω-bftypes. Let C ⊆ ω be such
that each pair of distinct ω-bftypes disagrees on a ΣC

<ω formula. Given an ω-bftype ξ of
arity m, and a formula ϕ(x1, . . . , xn), n >m, which is consistent with ξ(x1, . . . , xm), there is
ζ ∈ bfω,n(K) which is C-isolated over ξ ∪ {ϕ}.

For the proof, we will use results about atomic models in fragments of Lω1ω. The book
[Mar16] is a good reference. Let A be a countable fragment of Lω1ω. Recall that a fragment
is a set A of Lω1ω-formulas satisfying the following closure properties:

(1) all atomic formulas are in A,

(2) all subformulas of formulas in A are also in A,

(3) all substitution instances of formulas in A are also in A,

(4) all formal negations1 of formulas in A are also in A, and

(5) A is closed under ¬, ∧, ∨, ∃v, and ∀v.

Let T ⊆ A be a satisfiable theory that is A-complete, by which we mean that T ⊧ ϕ or T ⊭ ϕ
for any A-sentence ϕ.

Definition 5.4 (Definition 4.12 of [Mar16]). A satisfiable formula θ(v) is A-complete if for
any A-formula ϕ(v) either T ⊧ θ(v)Ð→ ϕ(v) or T ⊧ θ(v)Ð→ ¬ϕ(v).

A formula ϕ(v) is A-completable if there is a complete θ(v) with T ⊧ θ(v)Ð→ ϕ(v).

Definition 5.5 (Definition 4.17 of [Mar16]). T is A-atomic if every satisfiable formula in A
is completable.

The following theorem is analogous to the case in elementary first-order logic.

1See Definition 1.16 of [Mar16] for the definition of the formal negation.
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Theorem 5.6 (Theorem 4.19 of [Mar16]). If for all n ∈ ω there are only countably many
n-ary A-types, then T is A-atomic.

We can now show how Lemma 5.3 follows from this theorem.

Proof of Lemma 5.3. Consider an expanded signature τ+ = τ∪{c1, . . . , cm} with new constant
symbols. Let A be the countable fragment of consisting of the ΣC

<ω formulas. Identifying ξ
with the ΣC

<ω formulas it contains, let T + = ξ(c1, . . . , cm). T + is a complete A-theory in the
signature τ+.

By choice of C, for each n there is a one-to-one identification of the n-ary ω-bftypes ζ
extending ξ with the complete (n −m)-ary A-types ζ(c1, . . . , cm, xm+1, . . . , xn) in T +. Thus
T + has countably many A-types. By Theorem 5.6, T + is A-atomic.

The formula ϕ(x1, . . . , xn) is consistent with ξ(x1, . . . , xm), and so it follows that the
formula ϕ(c1, . . . , cm, xm+1, . . . , xn) is consistent with T +. Thus ϕ(c1, . . . , cm, xm+1, . . . , xn) is
completable by a formula ψ(c1, . . . , cm, xm+1, . . . , xn). Then ξ∪{ϕ(x1, . . . , xm), ψ(x1, . . . , xn)}
extends to a unique ω-bftype ζ which is C-isolated over ξ ∪ {ϕ}.

In the proof of Theorem 5.1 we will also use embeddings between bftypes.

Definition 5.7. Given ξ, ζ ∈ bfω(T ), an embedding from ξ to ζ is a function f ∶{0,1, . . . , ∣ξ∣−
1}→ {0,1, . . . , ∣ζ ∣ − 1} such that ξ(x0, . . . , x∣ξ∣−1) = ζ(xf(0), . . . , xf(∣ξ∣−1)).

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Suppose that T has countably many ω-bftypes. We must show that
T satisfies arithmetic-is-recursive on a cone. First we must identify the base of the cone.

Let C ⊆ ω be such that each pair of distinct ω-bftypes disagrees on a ΣC
<ω formula. Let

X ⊆ ω be a set such that:

(1) X ≥T C.

(2) X computes an indexed list of bf≤ω(T ) and the relations (e.g., ≤β, ⊆, and so on) on
them, as well as the partial isomorphisms between them.

(3) For each ω-bftype ξ and finite set Φ of LCω1ω formulas, X can compute an ω-bftype ζ
which is C-isolated over the partial ω-bftype ξ ∪Φ; moreover, given ζ, X can compute
an isolating formula.

We claim that T satisfies arithmetic-is-recursive on the cone above X.

Let Y ≥T X and let B be a Y ′-computable model of T . We must build a Y -computable
copy of B. Non-uniformly, fix κ ∈ bfω,0(T ) the ω-bftype of (B,∅). We build an (ω+1)-system

(L,U, ˆ̀, P,E, (≤Lξ )ξ≤ω) as follows:

� L is the set of tuples (ξ, ζ, f) where ξ, ζ ∈ bfω(T ), f ∶ ζ → ξ is an embedding, and ξ is
C-isolated over f(ζ) ⊆ ξ.

� U is the set of pairs (ζ, g) where ζ ∈ bfω(T ) and g is an embedding of ω-bftypes.

�
ˆ̀ is (κ,κ,∅).
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� P is the set of paths `0u1`1u2`2 . . . where, if `i = (ξi, ζi, fi), then

– ui = (ζi, gi) for some embedding gi∶ ξi → ζi+1,

– ξi ⊆ ξi+1, ζi ⊆ ζi+1, and fi ⊆ fi+1, and

– the embeddings gi∶ ξi → ζi+1 and fi∶ ζi ⊆ ζi+1 → ξi are compatible, i.e., gi○fi∶ ζi → ζi+1
and fi+1 ○ gi∶ ξi → ξi+1 are the identity.

� (ξ, ζ, f) ≤α (ξ∗, ζ∗, g) if ξ ≤α ξ∗.

� if ` = (ξ, ζ, f), then E(`) is the atomic diagram of ξ.

These sets are all Y -c.e. as required. It is clear that this (ω+1)-system satisfies conditions
(1)-(3). It remains to show that it satisfies condition (4).

Claim 1. (L,U, ˆ̀, P,E, (≤β)β≤ω) satisfies the extendability condition.

Proof. Suppose that σu ∈ P , where σ ends in `0 ∈ L, and

`0 ≤β0 `
1 ≤β1 ⋯ ≤βk−1 `

k

for ω ≥ β0 > ⋯ > βk. We must show that there exists `∗ ∈ L such that σu`∗ ∈ P and `i ≤βi `
∗

for all i ≤ k. Let `i = (ξi, ζi, fi).

Subclaim. There is ξ∗ ⊇ ξ0 which is C-isolated over ξ0 and such that ξi ≤βi ξ
∗ for all i.

Proof. Since ξk−1 ≤βk−1 ξk, there is ξ′k−1 ⊇ ξk−1 with ξk ≤βk ξ
′
k−1. Then ξk−2 ≤βk−2 ξk−1 ⊆ ξ

′
k−1,

and so there is ξ′k−2 ⊇ ξk−2 such that ξ′k−1 ≤βk−1 ξ
′
k−2. Note that as ξk ≤βk ξ

′
k−1 ≤βk−1 ξk−2, we

have ξk ≤βk ξ
′
k−2. Continuing in this way, we get ξ′1 ⊇ ξ1 such that for each i ≥ 1, ξi ≤βi ξ

′
1.

We have ξ0 ≤β0 ξ1 ⊆ ξ
′
1. Let ∣ξ0∣ =m and ∣ξ′1∣ = n ≥m. Let ϕ(x1, . . . , xn) be a ΠC

β1
formula

as in Lemma 2.3 for ξ′1 and β1: for all (B; b1, . . . , bn) ∈ K,

ξ ≤β1 (B; b1, . . . , bn)⇐⇒ B ⊧ ϕ(b1, . . . , bn).

Then ξ′1 ⊧ (∃xm+1, . . . , xn)ϕ(x1, . . . , xn). This is a Σβ0 formula, and since ξ0 ≤β0 ξ
′
1, ξ0 ⊧

(∃xm+1, . . . , xn)ϕ(x1, . . . , xn).
Thus ξ0∪ϕ(x1, . . . , xn) is consistent. By Lemma 5.3, there is ξ∗ ⊇ ξ0∪ϕ(x1, . . . , xn) which

is C-isolated over ξ0 ∪ ϕ(x1, . . . , xn). Since ϕ is ΣC
<ω, ξ∗ is C-isolated over ξ0. Also, since

ξ∗ ⊧ ϕ(x1, . . . , xn), ξ′1 ≤β1 ξ
∗. Thus ξ∗ ⊇ ξ0 and ξi ≤βi ξ

∗ for all i.

We now return to the proof of Claim 1. Let ξ = ξ0, ζ = ζ0, f = f0, and let u = (ζ∗, g) where
g∶ ξ → ζ∗ is an embedding. Since ξ∗ is isolated over ξ, there is ξ∗∗ ⊇ ξ∗ and an embedding
f∗∶ ζ∗ → ξ∗∗ compatible with g. Then let `∗ = (ξ∗∗, ζ∗, f∗).

We now need to define the ∆0
ω+1(Y ) instruction function q. Given a finite run π =

`0u1`1u2 . . . `i ∈ P , we define q(π). We will define q such that if π is a run according to
q, then we have that ui = (ζi, gi) and ζi is the ω-bftype of an initial segment āi of B. Let
`i = (ξ, ζ, f). Recall that ξ is isolated over f(ζ) by a ΣC

α formula ϕ for some α < ω. Let
ζ = ζ(x1, . . . , xm). Let ξ = ξ(y1, . . . , ym, z1, . . . , zn) where yi = xf(i) and z1, . . . , zn list the other
variables. Then ξ ⊧ ϕ(y1, . . . , ym, z1, . . . , zn), and so ξ ⊧ ∃u1, . . . , unϕ(y1, . . . , ym, u1, . . . , un).
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So ζ ⊧ ∃u1, . . . , unϕ(x1, . . . , xm, u1, . . . , un). Now ζ is the ω-bftype of an initial segment ā
of B. Choose a longer initial segment ā′ = (ā, a′1, . . . , a

′
k) such that among ā′ are witnesses

a′j1 , . . . , a
′
jm

to B ⊧ ϕ(ā, a′j1 , . . . , a
′
jm
), and such that ā′ includes at least the first i+1 elements

of B. Since ϕ isolated ξ over f(ζ), (ā, a′j1 , . . . , a
′
jn
) has the same ω-bftype as ξ. Let q(π)

be the ω-bftype of ā′ with the unique embedding compatible with f . We can compute this
using ∆0

ω+1(Y ).
There is a run π of (P, q) such that E(π) is c.e. in Y . Let M = E(π). If π = `0u1`1u2 . . .

where `i = (ξi, ζi, fi), we claim that f = ⋃i fi induces an isomorphism B →M. We see from
the construction that fi contains the first i elements of M in its domain, and the first i
elements of B in its range. Since each fi is a partial isomorphism, f is thus an isomorphism
from B to M.

6 An Example

In this section we will show that there is a decidable theory satisfying arithmetic-is-recursive
(and with back-and-forth ordinal ω + 1). No cone is required.

Theorem 1.6. There is a theory T with uncountably many countable models such that:

(1) T has back-and-forth ordinal ω + 1, and

(2) T satisfies arithmetic-is-recursive.

The fact that T has 2ℵ0-many models means that T does not satisfy arithmetic-is-recursive
on a cone in a trivial way, e.g. by having the base of the cone compute all models of T .

Proof. The theory will not be too complicated but will require the use of Marker extensions.
First we will define a theory T in the language L = {Ui,Rn ∣ i, n ∈ ω} consisting entirely of
unary relations. The theory T will say that:

� the Ui are disjoint infinite sets,

� R1 ⊇ R2 ⊇ R3 ⊇ ⋯,

� there are infinitely many elements in Ui ∩ (Rn ∖Rn+1) for each i, n.

The principal types of T are isolated by being in Ui ∩ (Rn ∖Rn+1) for some i and n. There
is one non-principal type of an element not contained in any Ui, and for each i, there is the
non-principal type of an element contained in Ui ∩ ⋂n∈ωRn. Thus T has countably many
types. On the other hand, T has 2ℵ0-many models, because we can independently for each
i realise or omit the non-principal type in Ui.

Now let T ∗ be the theory obtained from T by taking the Σn Marker extension of each
Rn. This theory T ∗ will satisfy the conclusion of the theorem. The reader may already see
why this is the case, but for completeness we must be more formal.

To take our Marker extensions, we use the back-and-forth trees from [HW02] and the
facts proven about them in [CDHTM]. For each n, there are trees An and En such that:

Lemma 6.2 (See Lemma 3.3 of [CDHTM]). For 0 < n, the structures An and En satisfy:
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(1) Uniformly in n and an index for a Σn set S, there is a computable sequence of structures
Cx such that

x ∈ S ⇐⇒ Cx ≅ En

and
x ∉ S ⇐⇒ Cx ≅ An.

(2) For each n, there is an elementary first-order ∃n-sentence ϕn, computable uniformly in
n, such that En ⊧ ϕn and An ⊭ ϕn.

(3) An and En are prime models of their theories.

(4) The theories of An and En are finitely axiomatizable and countably categorical.

(4) is not proven in [CDHTM] but follows easily from the analysis there.
We will now define the theory T ∗. The language of T ∗ is L∗ = {Ui, fn, P ∶ i, n ∈ ω} where

the Ui are unary relations, the fn are unary functions, and P is the binary relation from the
signature of the trees An and En. The theory T ∗ will say that:

� the Ui are disjoint infinite sets,

� for each x ∈ Ui and n, there is an infinite set f−1n (x), and these sets are all disjoint and
not contained in any Uj;

� the relation P puts the structure of a tree on each infinite set f−1n (x), and this tree is
either An or En;

� if f−1n+1(x) ≅ En+1, then f−1n (x) ≅ En;

� there are infinitely many elements x in Ui with f−1n+1(x) ≅ An+1 and f−1n (x) ≅ En.

Note that we use the fact that the theories of An and En are finitely axiomatizable and
countably categorical in order to express these statements.

We introduce the definable relations Rn(x) ⇐⇒ f−1n (x) ≅ En. Then the last two state-
ments become

� R1 ⊇ R2 ⊇ R3 ⊇ ⋯,

� there are infinitely many elements in Ui ∩ (Rj ∖Rj+1) for each i, j.

One can thus see the relation to the theory T introduced earlier. Moreover, to a model of
T ∗ one can naturally associate a model of T , and vice versa, and this association respects
isomorphism.

To see that T ∗ satisfies arithmetic-is-recursive, suppose that A∗ is an X ′-computable
model of T ∗. Let A be the associated model of T obtained from A∗. Then we can X ′-
compute the relations Ui on A, and we can X ′-compute a Σn approximation to the relations
Rn on A; so we can X-compute a Σn+1 approximation to the relations Rn on A. Now will
build an isomorphic copy B of A such that we can X-compute the relations Ui on B, and we
can X-compute a Σn approximation to the relations Rn on B.
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We build B as follows. We can easily build in B infinitely many realizations of each
non-principal type. In addition, we B will realise some non-principal types. Let gi(a, s) be a
∆0

2(X) approximation to Ui(a) in A, so that A ⊧ Ui(a) if and only if lims→∞ gi(a, s) = 1. For
each triple (a, i, s) such that gi(a, s) = 1 and gi(a, s − 1) = 0 (or s = 0), we build an element
ba,i,s in B such that B ⊧ Ui(ba,i,s), B ⊧ R1(ba,i,s), and for n ≥ 1

� if for all s′ with s + n ≥ s′ ≥ s we have gi(a, s′) = 1, then

B ⊧ Rn+1(ba,i,s)⇐⇒ A ⊧ Rn(a),

� otherwise, if there is s′ with s + n ≥ s′ ≥ s and gi(a, s′) = 0,

B ⊧ ¬Rn+1(ba,i,s).

Essentially, when B copies A, if it is copying a principal type then B “shifts” the relation that
makes the type principal by one to gain an extra jump; so if the type of a is principal because
of ¬Rn(a), the type of ba,i,s will be principal because of ¬Rn+1(ba,i,s). We can X-compute a
Σn approximation to Rn in B using the X-computable Σn approximation to Rn−1 in A. If
a realises a principal type, then so will ba,i,s for every i, s. If a realises a non-principal type,
then there will be exactly one value of i, s such that ba,i,s realises that same non-principal
type, namely the i such that a ∈ Ui and the least s after which gi(a, s) has stabilised. Thus
B will be isomorphic to A.

Now we can build, using (1) of Lemma 6.2, an X-computable copy of the structure
B∗ ⊧ T ∗ associated to B. Then B∗ is an X-computable copy of A∗ as desired.

To see that T has back-and-forth ordinal ω + 1, we must show that there are countably
many ω-bftypes, and uncountably many ω + 1-bftypes. It is not hard to see that the models
of T ∗ are homogeneous, and so the ω-bftypes coincide with the model-theoretic types. There
are only countably many of these. But then the ω+1-bftypes determine which non-principal
types are realised, and so there are uncountably many of these.
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