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Abstract. We prove that if G and H are α-back-and-forth equivalent groups
(in the sense of computable structure theory) for some ordinal α ≥ ω, then
their group von Neumann algebras L(G) and L(H) are also α-back-and-forth
equivalent. In particular, if G and H are ω-back-and-forth-equivalent groups,
then L(G) and L(H) are elementarily equivalent; this is known to fail under the
weaker hypothesis thatG andH aremerely elementarily equivalent. We extend
this result to crossed product von Neumann algebras associated to Bernoulli
actions of back-and-forth equivalent groups.

1. Introduction

This paper is a contribution to the recent study of the elementary equivalence
problem for tracial vonNeumann algebras; see, for example, [5, 6, 11, 13, 15, 28].
In particular, we focus on the following question, which has been asked bymany
researchers in the model theory of operator algebras:
Question 1.1. IfG andH are elementarily equivalent (countable, discrete) groups,
are the group von Neumann algebras L(G) and L(H) elementarily equivalent?

For the definition of group von Neumann algebra, see Section 3 below. In the
recent preprint [13], a negative answer to this question was given by the first
author by showing that there exist elementarily equivalent ICC groups G and
H such that G is amenable and H is not inner amenable (whence L(G) ≅ R, the
hyperfinite II1 factor, while L(H) does not have property Gamma). It was also
observed in [15] that one can have non-elementarily equivalent groups whose
group von Neumann algebras are in fact isomorphic. Consequently, there is no
general connection between groups being elementarily equivalent and their von
Neumann algebras being elementarily equivalent.
In this paper, we show how, by strengthening the hypothesis in Question 1.1,
one can indeed enforce that the group von Neumann algebras are elementarily
equivalent. Our main result is the following:

The first author was partially supported by NSF grant DMS-2054477. The second author was
partially supported by NSF grant DMS-2153823.
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Theorem 1.2. If G and H are ω-back-and-forth-equivalent groups, then L(G) and
L(H) are elementarily equivalent tracial von Neumann algebras.

Here,ω-back-and-forth equivalence, denoted ≡bfω , is the back-and-forth equiva-
lence often called the standard symmetric back-and-forth equivalence in computable
structure theory. It is defined using Ehrenfeucht-Fraïsse (EF) games but dif-
fers from the standard model-theoretic EF games in that the first player, named
Spoiler, is allowed to play tuples of arbitrary size from one of the structures, and
the second player, named Duplicator, must respond with a tuple of the same
size from the other structure. For structures M and N in the same language,
one then defines M ≡bfω N to mean Duplicator can win any finite-length such
game betweenM andN. (The ordinalω here refers to the fact that we consider
games of any length n <ω.)
In contrast, in the EF games standardly used in model theory, Spoiler plays a
single element from one of the structures, and then Duplicator responds with
a single element from the other structure, and so on. These games capture el-
ementary equivalence: M is elementarily equivalent to N (denotedM ≡ N) if
and only if Duplicator can win any finite-length EF game betweenM and N.
Both of these games show up in Ehrenfeucht’s paper where, based on work of
Fraïsse, he introduces the two games [9]. He shows that the game where play-
ers play single elements characterizes elementary equivalence, while the ver-
sion where players play tuples characterizes elementary equivalence in what
one might call “hereditarily finite model theory”. To distinguish between these
two games, we will reserve the term EF game for the original game with sin-
gle elements and will call the games with tuples back-and-forth games. We
note that the back-and-forth games are harder for Duplicator to win than the EF
games; thus, ifM ≡bfω N, thenM ≡N.
While the EF games characterize elementary equivalence, the back-and-forth
games with tuples find more use with the infinitary logic Lω1,ω. In the realm of
discrete logic, back-and-forth equivalence is the right notion of equivalence that
transfers across certain constructions,1 like the construction from a ring R of the
polynomial ring R[x]: if R ≡bfω S, then R[x] ≡bfω S[x]. Knowing a strategy for the
back-and-forth game between R and S, Duplicator can produce a strategy for the
back-and-forth game between R[x] and S[x]. When Spoiler plays a polynomial
anxn+⋯+a1x+a0 in R[x], Duplicator imagines that Spoiler has played the tuple
an, . . . , a0 in R, to which (following their strategy for the game between R and S)

1These constructions are Lω1,ω-interpretations. The right notion of Lω1,ω-interpretation
of M in N uses, as the domain of M interpreted in N, a set N<ω/E of equivalence classes of
tuples from N of arbitrary size modulo a definable equivalence relation E. Thus, for example, a
polynomial ring R[x] is Lω1,ω-interpretable in R. See [17, 18].
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they respond with bn, . . . , b0. Then Duplicator responds in the game between
R[x] and S[x] with bnxn + ⋯ + b1x + b0. On the other hand, it is not necessarily
true that if R ≡ S, then R[x] ≡ S[x], e.g., in characteristic zero if R and S are
algebraically closed fields of different transcendence degrees, then R[x] ≢ S[x].
(See Chapter 3 of [23].)
Something similar is atwork here, though the construction of L(G) fromG is not
a construction of one discrete structure from another, but of a metric structure
from a discrete structure. Nevertheless, suppose one tries to show that L(G)
and L(H) are elementarily equivalent by showing that player II can win any EF
game between the two algebras. Since L(G) and L(H) contain the group rings
C[G] andC[H] as dense ∗-subalgebras respectively, one can always assume that
player I plays elements from these subalgebras. However, like a polynomial, an
element ofC[G] orC[H]mentions finitelymany elements ofG orH respectively
with no a priori bound on the number of group elements involved in the finite
sums. Thus, to simulate the EF game between L(G) and L(H), we must play the
back-and-forth game between G and Hwith tuples.
By considering transfinite versions of the back-and-forth games, one can con-
sider the notion of ≡bfα between classical structures for any ordinal α. Modifying
the approach to Scott analysis in continuous logic presented in [3], we intro-
duce the relation ≡bf,Ωα betweenmetric structures in Subsection 2.3 below, which
involves the notion of a weak modulus Ω as part of its data. All that being said,
what we actually show is the following:

Theorem 4.1. For any ordinal α, if G and H are groups such that G ≡bfα H, then for
any weak modulusΩ, we have that L(G) ≡bf,Ωα L(H).

The above theorem would not be of much interest if there were no examples
of nonisomorphic back-and-forth equivalent groups. By Borel complexity con-
siderations, we show that there are uncountably many pairs of countable ICC
groups G and H such that G and H are not isomorphic but are back-and-forth
equivalent; moreover, we can find such pairs where G and H are both inner
amenable and nonamenable, and we can also find such pairs where G and H
are both non-inner amenable (whence the corresponding group von Neumann
algebras do not have property Gamma).
One slightly unsatisfactory point is that we are unable to show that the group
von Neumann algebras associated to the groups from the previous paragraph
are nonisomorphic. In fact, it is a priori possible that there is some countably
infinite ordinal α such that whenever G ≡bfα H, then L(G) ≅ L(H). Nevertheless,
there is an alternate construction of back-and-forth equivalent groups that are
actually special linear groups over back-and-forth equivalent rings forwhichwe
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suspect the associated group vonNeumann algebras should be nonisomorphic.
A detailed discussion of these matters occurs after the main theorem.
We now outline the contents of the paper. In Section 2, we give some back-
ground on both the standard EF games as well as the back-and-forth games
described above. This section also contains the aforementioned results on back-
and-forth equivalent groups as well as some preservation properties of back-
and-forth equivalence for groups. The section concludes with a discussion of
the back-and-forth relations in continuous logic. Section 3 presents the basic
facts needed about group von Neumann algebras and establishes some key
lemmas about how back-and-forth equivalence in groups leads to some con-
sequences about elements in group von Neumann algebras. Section 4 contains
the proof of themain preservation result and includes a discussion of the conse-
quences of the result; the section also contains an analogous preservation result
for reduced group C∗-algebras. Section 5 contains some open questions that
arose during this project.
In Section 6, we sketch an extension of the main result to crossed product alge-
bras associated to Bernoulli actions:

Theorem 6.2. For any groupsG andH such thatG ≡α H and any tracial vonNeumann
algebraM, we have thatM⊗G ⋊G ≡αM⊗H ⋊H.

Unlike the group von Neumann algebra case, under certain circumstances, uti-
lizing some deformation rigidity results of Popa (see Fact 6.3 below), one can
definitively say that the back-and-forth equivalent von Neumann algebras are
in fact nonisomorphic.
We assume that the reader is familiar with basic first-order logic, both classical
and continuous, and some von Neumann algebra basics. The reader looking
for background in continuous logic (as it pertains to operator algebras) or basic
vonNeumann algebra theory can consult the introductory articles [19] and [22]
respectively. Another useful reference is the longmanuscript [10] on the model
theory of C∗-algebras.
We thankDavid Jekel and Jennifer Pi formanyuseful comments on earlier drafts
of this paper.

2. Games

2.1. Ehrenfeucht-Fraïsse games. Throughout this subsection, wefix a language
L and L-structures M and N. We begin by assuming that L is a classical lan-
guage. We then move on to the case of a continuous language.
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Definition 2.1. Given a finite set Φ ∶= {φ1(x⃗), . . . ,φm(x⃗)} of atomic L-formulae
in the variables x⃗ = (x1, . . . , xn), theEhrenfeucht-Fraïsse (EF) gameGEF(M,N,Φ)
is the two player game of n rounds such that, in round i, player I plays either
ai ∈ M or bi ∈ N and then player II responds with either bi ∈ N (if player I
chose ai ∈ M) or ai ∈ M (if player I chose bi ∈ N). At the end of the game,
the players have created tuples a⃗ = (a1, . . . , an) and b⃗ = (b1, . . . , bn) from M
and N respectively. Player II wins this play of GEF(M,N,Φ) if and only if:
M ⊧ φj(a⃗)⇔N ⊧ φj(b⃗) for all j = 1, . . . ,m.

Recall that M and N are elementarily equivalent, denoted M ≡ N, if, for all
L-sentences σ, we have: M ⊧ σ if and only if N ⊧ σ.

Fact 2.2. M and N are elementarily equivalent if and only if player II has a winning
strategy in GEF(M,N,Φ) for all finite sets Φ of atomic L-formulae.2

In the case of continuous logic, one has a similar definition of Ehrenfeucht-
Fraïsse game, the only difference being that the game carries an extra param-
eter, namely some ϵ > 0, and then the winning condition for player II becomes
∣φMj (a⃗) −φNj (b⃗)∣ < ϵ for all j = 1, . . . ,m. With this definition, the analogous fact
becomes:M andN are elementarily equivalent if and only if player II has a win-
ning strategy in GEF(M,N,Φ,ϵ) for all finite sets Φ of atomic L-formulae and
all ϵ > 0; see [19, Exercise 5.13].
In either the classical or continuous versions of the game, it is implicit that if
the structures involved are many-sorted, then the play of the ith round, which
corresponds to the variable xi, must belong to the sort to which xi is associated.
This is relevant when we play games between tracial von Neumann algebras,
which are usually viewed as many-sorted structures with sorts corresponding
to operator norm balls of various radii.
There is also an infinite version of the classical EF game, as used to show that
the theory of dense linear orders is countably categorical. Rather than playing
for n rounds, the players play for infinitely many rounds. If the players play
(a1, a2, . . .) and (b1, b2, . . .) fromM and N respectively, then the second player
Duplicatorwins this play of the game ifM ⊧ φ(a1, . . . , an)⇔N ⊧ φ(a1, . . . , an)
for all n and all atomic L-formulas φ(x1, . . . , xn). If Duplicator has a winning
strategy for the infinite version of the EF game betweenM andN, then wewrite
M ≡∞,ω N. For countable structures, the standard back-and-forth argument im-
plies thatM ≡∞,ω N if and only ifM ≅N. The definition of ≡∞,ω for continuous
logic will be given at the end of Section 4.

2For a proof in the case of a finite relational language, see [31, Lemma 2.4.9]. The general
case easily reduces to the finite relational case.
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2.2. Back-and-forth games.

2.2.1. Standard back-and-forth equivalence in classical logic. There are a number of
variants of the back-and-forth games used in computable structure theory, but
the twomost important definewhat are often called the standard symmetric and
standard asymmetric back-and-forth relations. We will generally work with the
standard symmetric back-and-forth relations because they are most similar to
the standard model-theoretic EF games.
To motivate these relations, recall that the relationM ≡∞,ω N holds if the back-
and-forth game can be played betweenM and N for infinitely many rounds. If
Duplicator cannot keepplaying for infinitelymany rounds, it is still possible that
they can play for several rounds without losing. The back-and-forth relations
measure the ordinal length of time that Duplicator can avoid losing the back-
and-forth game.
It is standard in model theory to have players play single elements at a time.
For the back-and-forth game of infinite length used to define ≡∞,ω, there is no
difference whether we allow players to play tuples or restrict them to single ele-
ments. It is convenient for many purposes in infinitary logic and in computable
structure theory to have the players play tuples, and as described in the Intro-
duction, it is the fact that the back-and-forth relations use tuples that allows our
main theorem to go through.

Definition 2.3. Given L-structuresM and N, finite tuples a⃗ and b⃗ fromM and
N respectively of the same length, and an ordinal α, we define the standard
symmetric back-and-forth relations (M, a⃗) ≡bfα (N, b⃗) by recursion on α:

● (M, a⃗) ≡bf0 (N, b⃗) if and only if, whenever φ(x⃗) is a quantifier-free L-
formula, we have M ⊧ φ(a⃗) ⇔ N ⊧ φ(b⃗) (or, in other words, the
quantifier-free types of a⃗ inM and b⃗ in N are the same).
● If α > 0, we have that (M, a⃗) ≡bfα (N, b⃗) if and only if:

– for every ordinal β < α and every finite tuple c⃗ fromM, there is a
finite tuple d⃗ from N such that (M, a⃗, c⃗) ≡β (N, b⃗, d⃗).

– for every ordinal β < α and every finite tuple d⃗ from N, there is a
finite tuple c⃗ fromM such that (M, a⃗, c⃗) ≡β (N, b⃗, d⃗).

We writeM ≡bfα N if (M,∅) ≡bfα (N,∅).

Remark 2.4. We define (M, a⃗) ≡∞,ω (N, b⃗) if and only if (M, a⃗) ≡bfα (N, b⃗) for all
ordinals α. Then one can prove that (M, a⃗) ≡∞,ω (N, b⃗) if and only if Duplicator
wins the infinitely long back-and-forth game (with tuples) betweenM and N
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starting with the partial isomorphism ā ↦ b̄.3 For countable structuresM and
N, this means that (M, a⃗) ≡∞,ω (N, b⃗) if and only if there is an isomorphism
taking a⃗ to b⃗.

Remark 2.5. In themany-sorted setting, in defining the relation (M, a⃗) ≡bfα (N, b⃗),
in addition to assuming that a⃗ and b⃗ are tuples of the same length, we also as-
sume that the corresponding entries in each tuple belong to the same sort.

It is clear that ifM is isomorphic to N, thenM ≡bfα N for all ordinals α. These
relations were first introduced by Scott [40], whose showed that ifM andN are
countable, then the converse is true:
Theorem2.6 (Scott [40]). IfM andN are countable, then the following are equivalent:

(1) M ≡bfα N for all ordinals α <ω1.
(2) M ≡∞,ω N.
(3) M ≅N.

Scott’s theorem essentially says that if the second player Duplicator in the back-
and-forth game can survive without losing for an arbitrary (ordinal) amount of
time, then in fact they can win.
Sincewe are discussing several different version of the EF/back-and-forth games,
we would be remiss to not include the standard asymmetric back-and-forth re-
lations for comparison.

Definition 2.7. Given L-structuresM and N, finite tuples a⃗ and b⃗ fromM and
N respectively of the same length, and an ordinal α ≥ 1, we define the standard
asymmetric back-and-forth relations (M, a⃗) ≤α (N, b⃗) by recursion on α:

● (M, a⃗) ≤1 (N, b⃗) if and only if, wheneverφ(x⃗) is an existential L-formula
for which N ⊧ φ(b⃗), we also have M ⊧ φ(a⃗) (or, in other words, the
existential type of b⃗ in N is contained in the existential type of a⃗ inM).
● If α > 1, we have that (M, a⃗) ≤α (N, b⃗) if and only if, for every ordinal
1 ≤ β < α and every finite tuple d⃗ from N, there is a finite tuple c⃗ from
M such that (N, b⃗, d⃗) ≤β (M, a⃗, c⃗).

3For each tuple a⃗ ∈M and b⃗ ∈N, there is atmost oneα such that (M, a⃗) ≡bfγ (N, b⃗) for all γ < α
but (M, a⃗) ≢bfα (N, b⃗). Thus, by counting, there is some α such that, for any tuples a⃗ ∈ M and
b⃗ ∈ N, (M, a⃗) ≡bfα (N, b⃗) if and only if (M, a⃗) ≡bfα+1 (N, b⃗) if and only if (M, a⃗) ≡bf∞ (N, b⃗). Then
we can argue that the second player Duplicator can win the back-and-forth game by always
ensuring that the tuples a⃗ ∈M and b⃗ ∈N being played satisfy (M, a⃗) ≡bf∞ (N, b⃗) or equivalently
(M, a⃗) ≡bfα (N, b⃗) . Given such a⃗ and b⃗ played so far, we actually have that (M, a⃗) ≡bfα+1 (N, b⃗).
If the first player Spoiler plays c⃗ ∈ M, then there is d⃗ ∈ N with (M, a⃗v⃗) ≡bfα (N, b⃗d⃗). But then
(M, a⃗v⃗) ≡bfα+1 (N, b⃗d⃗), and so on.
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We also set M ≤α N to mean (M,∅) ≤α (N,∅). If one is working solely with
the asymmetric back-and-forth relations, one defines (M, a⃗) ≡bfα (N, b⃗) to mean
(M, a⃗) ≤α (N, b⃗) and (N, b⃗) ≤α (M, a⃗); since we are primarily working with the
symmetric relations, we will not do this.

These asymmetric relations are the most popular back-and-forth relations in
computable structure theory today, mostly related to their connection with the
truth ofLω1,ω formulae. To explain this, we recall the hierarchy ofLω1,ω-formulae
in normal form.

Definition 2.8. For countable ordinals α, we define the classes of Σα and Πα
L-formulae by recursion on α:

● TheΣ0 andΠ0 L-formulae are just the finitary quantifier-free L-formulae.
● For α > 0, a formula is Σα if it is a countable disjunction of formulae of
the form ∃vψ with ψ a Πβ formula for some β = β(ψ) < α, and with
finitely many free variables in total, while a Πα formula is a countable
conjunction of formulae of the form ∀vψ with ψ a Σβ formula for some
β = β(ψ) < α, again with finitely many free variables in total.

The following is a theorem of Karp [24]:

Theorem 2.9. For a countable ordinal α ≥ 1, the following are equivalent:

(1) (M, a⃗) ≤α (N, b⃗).
(2) The Σα formulae true of b⃗ in N are also true of a⃗ inM.
(3) The Πα formulae true of a⃗ inM are true of b⃗ in N.

As stated above, for the purposes of this paper, we will use the symmetric back-
and-forth relations because they most resemble the model-theoretic EF games.
In any case, the symmetric and asymmetric relations are not too different from
each other. In fact:

Remark 2.10. The following relationships hold between the different back-and-
forth relations:

● IfM ≡bfω N, thenM ≡N.
● IfM ≡bfα N, thenM ≤α N and N ≤αM.
● IfM ≤1+2⋅α N, thenM ≡bfα N.
● If λ is a limit ordinal, thenM ≡bfλ N if and only ifM ≤λ N if and only if
N ≤λM.
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These facts are all straightforward to prove by showing that one game can be
simulated within another.4 For example, to show thatM ≤1+2⋅α N implies that
M ≡bfα N, one must simulate the symmetric game of length α using the asym-
metric game of length 1 + 2 ⋅ α. In one round of the symmetric game, Spoiler
plays a tuple a⃗ in either M or N. This can be simulated in two rounds of the
asymmetric game by having Spoiler either (if a⃗ ∈M) play the empty tuple inN
followed by a⃗ inM or (if a⃗ ∈N) play a⃗ in N followed by the empty tuple inM.
We need one extra round to match up the base cases.

In particular,M ≡bfω N if and only ifM ≤ω N if and only if N ≤ω M, and all of
these imply thatM ≡N. The converse of this latter statement is false in general,
as we will see in Proposition 2.20 in a form relevant to this paper (though there
are many other examples).
We note also that there are infinite versions of each game, for example, as used to
show that any two countable dense linear orders are isomorphic. These infinite
games are all essentially the same, whether one chooses to play symmetrically
or asymmetrically, and with single elements or tuples.
While the asymmetric relations are required to match up exactly with infinitary
logic, combining Theorem 2.9 and Remark 2.10 we get a one-way implication:

Theorem 2.11. If (M, a⃗) ≡bfα (N, b⃗), then any Σα orΠα formula true of a⃗ inM is true
of b⃗ in N, and vice versa.

We conclude our discussion of general properties of ≡bfα with the following two
results, whose proofs are routine and left to the reader.5 Recall that Meq de-
notes the expansion ofM by adding imaginary sorts; see [31, Chapter 1] for the
definition in classical logic and [10, Section 3] for the definition in continuous
logic.

Lemma 2.12. IfM ≡bfα N, thenMeq ≡bfα Neq.

Our next lemma concerns the behaviour of the back-and-forth relations under
interpretations. For the purposes of this paper, the reader need only consider
quantifier-free model-theoretic interpretations, as in [21]. However the follow-
ing statement is also true for ∆1-interpretations in infinitary logic using tuples

4We are not aware of a reference that explicitly proves all of these facts, as generally any
particular work fixes one definition of the back-and-forth relations. Nevertheless they are well-
known among computable structure theorists and nearly trivial to prove.

5As far as we are aware these statements do not appear directly in print but they are well-
known and straightforward. For example, they can both be viewed as applications of the Pull-
back Theorem of Knight, Miller, and vanden Boom [26]which covers amuchmore general case.
This application is more explicitly stated in Theorem 4.5 of [34].
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of arbitrary size for the domain, as in [18, 17, 33]. In this expanded sense, the
polynomial ring R[x] is interpretable in R.

Lemma 2.13. Suppose thatM and N are L0-structures that are each ∆1-interpretable
in L1-structures A and B without parameters and via the same interpreting formulae.
If A ≡bfα B, thenM ≡bfα N.

A particular consequence of the previous lemma is the following:

Corollary 2.14. For any integral domains R and S, any integer n ≥ 1, and any ordinal
α, if R ≡bfα S (as rings), thenGLn(R) ≡bfα GLn(S) and SLn(R) ≡bfα SLn(S) (as groups).

2.2.2. Equivalent but non-isomorphic structures. Recall from Theorem 2.6 that if
M and N are countable structures, then M ≅ N if and only if M ≡bfα N for all
α < ω1. This statement is in fact sharp in the sense that, for any α < ω1, there
are (uncountably many) structuresM and NwithM ≡bfα N butM ≇N.
This fact is reasonably well-known among computability theorists and descrip-
tive set theorists, but we are not aware of a reference that states it explicitly. We
will obtain it from the fact that isomorphism for torsion-free abelian groups is
complete analytic [7]. (We could also use the recent preprints [29, 37] which
show that torsion-free abelian groups are Borel complete in the sense of Friedman-
Stanley [12].) In particular, we will want examples of such groups of various
types (for example, ICC non-inner amenable groups), so that ourmain theorem
is not vacuous; this is, as far as we are aware, not well-known though it can be
obtained without too much difficulty.
We will rely on the fact that the back-and-forth relations are Borel. To state this
result precisely, fix a countable language L. We let Mod(L) denote the Polish
space of countably infinite L-structures whose universe is N; see [25, II.16.C.]
for more details. The following proposition is routine and left to the reader.
One only has to write out the definition of ≡bfα and see that it is Borel; see, for
example, [33, Chapter II].

Proposition 2.15. For each α <ω1 and n <ω, the set

{(M, a⃗,N, b⃗) ∈Mod(L) ×Nn ×Mod(L) ×Nn ∶ (M, a⃗) ≡bfα (N, b⃗)}
is a Borel subset of the space Mod(L) × Nn ×Mod(L) × Nn. In particular, the set of
pairs (M,N) for whichM ≡bfα N is a Borel subset of Mod(L) ×Mod(L).

Corollary 2.16. Suppose that B ⊆Mod(L) is a Borel set and that the set of pairs
{(M,N) ∈Mod(L) ×Mod(L) ∶M,N ∈ B andM ≅N}

is not a Borel subset ofMod(L)×Mod(L). Then for any α <ω1, there are uncountably
many pairs (M,N) of L-structures in B such thatM ≡bfα N butM /≅N.
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Downey and Montalbán [7] showed that the isomorphism relation on the set
of torsion-free abelian groups is complete analytic, and thus, not Borel. We can
leverage this result to obtain the following, which is perhaps well-known but
for which we could find no reference:
Corollary 2.17. The isomorphism relation between countable, ICC, non-inner amenable6
groups is complete analytic, as is the isomorphism relation between countable, ICC, in-
ner amenable, nonamenable groups. Consequently, for any α < ω1, there are uncount-
ably many pairs (G,H) of countable ICC non-inner amenable (resp. inner amenable,
nonamenable) groups such that G ≡bfα H but G /≅ H.

Proof. First note that the class of inner amenable groups is Borel, whence so is
the class of non-inner amenable groups; this follows from the fact that being in-
ner amenable is expressible as an Lω1,ω-sentence (see [13] as described in more
detail before Proposition 2.20 below) and thus define Borel sets. Now it is a
consequence of the Kurosh subgroup theorem that if G and H are freely inde-
composable, nontrivial, noncyclic groups for which G ∗ Z ≅ H ∗ Z, then G ≅ H.
As a result, the map G ↦ G ∗ Z yields a Borel reduction from isomorphism
for torsion-free abelian groups to isomorphism for ICC, non-inner amenable
groups, whence the latter is also complete analytic. (That G ∗ Z is not inner
amenable when G is abelian can be deduced from [22, Exercise 6.21].) Finally,
note that the map G ↦ G × (F2 × Z) is a Borel reduction from isomorphism be-
tween ICC non-inner amenable groups to ICC inner amenable, nonamenable
groups. □

Since isomorphism between countable fields of characteristic 0 is also complete
analytic (see [12] and later [32]), we immediately obtain:
Corollary 2.18. For any α <ω1, there are uncountably many pairs (K,L) of countable
fields of characteristic 0 such that K ≡bfα L but K /≅ L.

For fields (and even certain integral domains), if GLn(K) ≅ GLn(L) or SLn(K) ≅
SLn(L) (n ≥ 3), then K ≅ L (see [36]). Combinedwith Corollary 2.14, we obtain:
Corollary 2.19. For any α <ω1, there are uncountably many pairs (K,L) of countable
fields of characteristic 0 such that, for all n ≥ 3, we have GLn(K) ≡bfα GLn(L) (resp.
SLn(K) ≡bfα SLn(L)) but GLn(K) /≅ GLn(L) (resp. SLn(K) /≅ SLn(L)).

2.2.3. Back-and-forth equivalent groups. We now collect some facts about back-
and-forth equivalent groups. First we recall that the Følner set characteriza-
tion of amenability can be described by Π2-sentences (see [16, Theorem 3.4.1]).

6A groupG is inner amenable ifG∖{e} admits a finitely additive, conjugacy-invariant prob-
ability measure. The relevance for us is that, by a result of Effros [8], if a group von Neumann
algebra L(G) has property Gamma, then G is inner amenable.
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Using an appropriate notion of Følner set for inner amenable groups, inner
amenability can also be described by Π2-sentences (see [13, Section 4]). Conse-
quently, we have the following:

Proposition 2.20. IfG andH are groups for whichG ≡bf2 H, thenG is (inner) amenable
if and only if H is. In particular, if G is an amenable group for which there is a nona-
menable group H satisfying G ≡ H (for example, G = S∞), then G /≡bf2 H.

This proposition confirms our statement from earlier that elementarily equiva-
lent structures need not be back-and-forth equivalent, since, as described in the
introduction and shown in [13], there are elementarily equivalence groups one
of which is amenable and the other of which is not inner amenable.
We next record the fact that ≡bfω-equivalence for groups is really only interesting
for groups that are not finitely generated.
Fact 2.21 (Knight and Saraph [27]). Suppose that G and H are groups such that H
is finitely generated. If G ≡bf3 H, then G ≅ H. In particular, if G and H are groups such
that G ≡bfω H but G /≅ H, then neither G nor H are finitely generated.

Remark 2.22. For distinct m,n ≥ 2, the previous lemma shows that Fm /≡bf3 Fn,
whence the techniques developed in this paper cannot help determine if L(Fm)
and L(Fn) are elementarily equivalent for distinctm,n ≥ 2.

The following lemma is clear:
Lemma 2.23. For any ordinal α and any two pairs of groups (Gi,Hi), i = 1, 2, such
that Gi ≡bfα Hi for i = 1, 2, we have G1 ×G2 ≡bfα H1 ×H2.

We wish to prove an analogous result for free products. First, some notation:
given tuples g⃗ = (g1, . . . , gn) and g⃗ ′ = (g ′1, . . . , g ′n) from groups G1 and G2 re-
spectively such that the only possible entries of g⃗ and g⃗ ′ that are the identity
are g1 and g ′n, we obtain the element g⃗⊞ g⃗ ′ ∶=∏ni=1 gig ′i ofG1 ∗G2. By the normal
form theorem for free products, every element ofG1∗G2 is uniquely of this form.
Thus, given an element g of a free productG1∗G2, we can uniquely define tuples
g⃗(1) and g⃗(2) fromG1 andG2 such that g = g⃗(1)⊞ g⃗(2). We extend this notation
to finite tuples g⃗ = (g1, . . . , gn) from G1 ∗G2 by setting g⃗(1) = (g⃗1(1), . . . , g⃗n(1))
and g⃗(2) = (g⃗1(2), . . . , g⃗n(2)) for the corresponding finite tuples from G1 and
G2. The following lemma is clear:
Lemma 2.24. For finite tuples g⃗1 and g⃗2 from G1 ∗ G2 and H1 ∗H2 respectively, we
have that g⃗1 and g⃗2 have the same quantifier-free types if and only if g⃗1(i) and g⃗2(i)
have the same quantifier-free types in Gi and Hi respectively for i = 1, 2.

Using the preceding lemma, we immediately obtain:
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Lemma 2.25. If Gi ≡bfα Hi for i = 1, 2, then G1 ∗G2 ≡bfα H1 ∗H2.

Remark 2.26. The version of the previous lemma for elementary equivalence is
due to Sela (see [41, Theorem 7.1]).

Recall that if Γ is a finite graph and Gv is a group for each vertex v of Γ , then
the graph product of the groups Gv with respect to the graph Γ is the group
generated by theGv’s subject to the relations thatGv andGw commutewhenever
(v,w) is an edge of Γ . An argument analogous to that given in Lemma 2.25
yields:

Lemma 2.27. Suppose that Γ is a finite graph and, for each vertex v ∈ Γ , Gv and Hv
are groups such that Gv ≡bfα Hv. Let G and H denote the corresponding graph products
with respect to Γ . Then G ≡bfα H.

2.3. ContinuousBack-and-ForthRelations. Wenowexplain how todefine ver-
sions of the back-and-forth relations appropriate for metric structures. Our ap-
proach follows closely the approach to Scott analysis for metric structures pre-
sented in [3], the only difference being that we define back-and-forth relations
where at each stage players play tuples, whereas in [3] players play single ele-
ments. We cite theorems from that paper without giving new proofs where the
proofs would be exactly the same except for this difference.7

There are two major differences between the back-and-forth relations in contin-
uous logic and in discrete logic. The first is that in continuous logic, the back-
and-forth relations are only approximate. The second difference is that, in order
to make things work out properly, there are moduli of continuity involved. We
begin by introducing these.

Definition 2.28. A modulus of arity n is a function ∆∶ [0,∞)n → [0,∞) that is:

(1) non-decreasing, subadditive, and vanishing at zero, and
(2) continuous.

Let ∆ be an n-ary modulus, X =∏ni=1Xi a product of metric spaces, and f∶X→ Y
a function into another metric space. We say that f obeys ∆ if, for all a⃗, b⃗ ∈ X,
we have

d(f(a⃗), f(b⃗)) ≤ ∆(d(a1, b1), . . . , d(an, bn)).
In this case, f is uniformly continuous as “witnessed” by the modulus ∆.

7Indeed our relations are stronger than the relations of [3], so if the reader prefers, they can
consider the metric back-and-forth relations to be as defined in that paper and all of the results
will still hold.
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For each continuous function f ∶ K → R with K a product of compact intervals,
there is a least modulus obeyed by f given by

∆f(δ1, . . . , δn) = sup{∣f(x⃗) − f(y⃗)∣ ∶ ∣xi − yi∣ ≤ δi}.

Definition 2.29. A weak modulus is a functionΩ ∶ [0,∞)N → [0,∞] that is

(1) non-decreasing, subadditive, and vanishing at zero,
(2) lower semicontinuous with respect to the product topology, and
(3) continuous in each argument.

IfΩ ∶ [0,∞)N → [0,∞] is a weak modulus, define its truncations to be the func-
tions Ω ↾n∶ [0,∞)n → [0,∞) given by Ω ↾n (δ1, . . . , δn) ∶= Ω(δ1, . . . , δn, 0, 0, . . .).
The truncations of Ω are readily verified to be moduli and Ω can be recovered
from its truncations via the formula

Ω(δ1, δ2, . . .) = sup
n

Ω ↾n (δ1, . . . , δn).

We say that an n-ary function f respectsΩ if it respectsΩ ↾n.
Before defining the syntax of infinitary continuous logic, it will behoove us to
recall how the syntax works in the (usual) finitary case. Recall that each pred-
icate symbol P in a metric language comes equipped with a modulus ∆P and a
bound IP, the latter of which is an interval in which P takes its values, and each
function symbol F of the language comes equipped with a modulus ∆F. The
terms and formulae are built up as usual and we can keep track of the moduli
which they respect. (Whenwe say that a formula respects a particularmodulus,
one should think of this as meaning that the evaluation map respects the mod-
ulus in a formal way not dependent on the structure in which the evaluation is
taking place.)
More precisely, we now construct the terms and basic formulas in the variables
{xi ∶ i < ω}. Consequently, we view our moduli as N-ary moduli. Throughout,
we fix a language L and omit the prefix “L-” in front of terms and formulae.

Definition 2.30. The terms are defined as follows:

(1) Each variable xi is a term that respects the N-ary modulus ∆xi(δ) = δi.
(2) If (τi)i<n are terms and F is a function of arity n, then σ = F(τ) is an

L-term that respects ∆σ = ∆F ○ (∆τi ∶ i < n).

Definition 2.31. The basic formulas are defined as follows:

(1) If P is a predicate symbol of arity n and (τi)i<n are terms, then ϕ = P(τ)
is an atomic formula that respects the modulus ∆ϕ = ∆P ○ (∆τi ∶ i < n)
and the bound IP.
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(2) If (ϕi)i<n are atomic formulaswithmodulus of continuity∆ϕi
andbounds

Iϕi
, and f∶∏i<n Iϕi

→ R is continuous, then ψ = f(ϕi) is a basic for-
mula that respects the modulus ∆ψ = ∆f ○ (∆ϕi

∶ i < n) and the bound
Iϕ = f(∏i<n Iϕi

).

All basic formulas ϕ(x1, . . . , xn) that only depend on the first n variables and
respectΩ are (basic)Ω-formulas. (We leave until Definition 2.35what itmeans
for an arbitrary formula to be anΩ-formula.)
The basic formulas are the formulas we check at the base case of the inductive
definition of the back-and-forth relations, which we can now define.

Definition 2.32. Let α be an ordinal, n ∈ N,M and N L-structures, a⃗ ∈Mn, and
b⃗ ∈ Nn. Fix also a weak modulus Ω. The back-and-forth pseudo-distance of
rank α and arity nwith respect toΩ, denoted by r(M,N,Ω)α,n (or simply r(M,N)α ifΩ
and n are understood), is defined as follows:

● For α = 0,
rM,N0 (a⃗, b⃗) = sup

ϕ

∣ϕM(a⃗) −ϕN(b⃗)∣,

where the supremum is taken over all basicΩ-formulas ϕ.
● For α > 0,

rM,Nα (a⃗, b⃗) = [sup
β<α

sup
c⃗∈M

inf
d⃗∈N
rM,Nβ (a⃗c⃗, b⃗d⃗)] ∨ [sup

β<α

sup
d⃗∈N

inf
c⃗∈M
rM,Nβ (a⃗c⃗, b⃗d⃗)] .

We can also allow M and N to vary, setting rα(Ma⃗,Nb⃗) ∶= rM,Nα (a⃗, b⃗). The
pseudo-distances naturally define equivalence relations ≡bfα :

(M, a⃗) ≡bfα (N, b⃗)⇐⇒ rα(Ma⃗,Nb⃗) = rM,Nα (a⃗, b⃗) = 0.
If we want to keep track of the weak modulusΩ, we write ≡bf,Ωα .

We will need several properties of the functions rα. Recall, as described above,
that in our definitions of the back-and-forth relations, we allow players to play
tuples (that is, c⃗ and d⃗ are tuples in the definition above) whereas in [3] they
are single elements. Thus the facts cited below do not literally appear in that
paper, but the proofs are exactly the same.

Fact 2.33.

(1) For fixed Ω, α, and n, rα is a pseudo-distance on the class of all pairs (M, a⃗)
with a⃗ ∈Mn.

(2) For fixed α, n, M, and N, rM,Nα ∶ Mn × Nn → R is uniformly continuous,
obeying the modulusΩ ↾n on each side.

(3) If β < α, then rβ,n ≤ rα,n for all n. In particular,M ≡bfα N impliesM ≡bfβ N.



16 ISAAC GOLDBRING ANDMATTHEWHARRISON-TRAINOR

Given that the back and forth relations depend on the choice of a weak modu-
lus, a natural question arises: Which weak modulus should we use? For each
language L, there is a universal modulus is defined by

ΩU(δ⃗) =
∞

∑
i=1

i ⋅ sup
k≤i

∆ϕk
(δi, . . . , δi),

where (ϕi)i∈N lists all of the atomic formulas. The importance of the universal
weak modulus is that with it one can do Scott analysis:

Theorem 2.34 (Theorem 5.5 of [3]). Given separableM,N,M ≅ N if and only if
M ≡bf,ΩU

α N for all α <ω1.

If the language is 1-Lipschitz, then in the previous theorem one can use a par-
ticular universal modulusΩU(Lip) for Liptschitz languages instead, which has
some nice properties that universalmodulimay lack in general. See [3] formore
details, including some discussion of what equivalence relations other than iso-
morphism are characterised by other weak moduli.
Finally, to end this section, we want to know (for appropriate weak moduliΩ)
thatM ≡bf,Ωω N implies thatM and N are elementarily equivalent. More gener-
ally,M ≡bf,ΩU

α N should say something about the structures satisfying the same
infinitary sentences of the appropriate complexity.
First, wemust build up generalLω1,ω formulas. Wedo so in a strictway allowing
only 1-Lipschitz connectives and quantification over only the last variable in a
subformula.

Definition 2.35. Given a weak modulusΩ and a compact interval I, the infini-
tary n-ary (Ω,I)-formulae are defined as follows:

(1) All basic formulasϕ(x1, . . . , xn) that only depend on the firstn variables
and respectΩ and I are n-ary (Ω,I)-formulas.

(2) If {ϕi ∶ i ∈ N} are n-ary (Ω,I)-formulas, then ⩔iϕi and ⩕iϕi are n-ary
(Ω,I)-formulas.

(3) If ϕ is an (n + 1)-ary (Ω,I)-formula, then infxn+1 ϕ and sup
xn+1

ϕ are n-
ary (Ω,I)-formula.

(4) If ϕ1, . . . ,ϕk are n-ary (Ω,I)-formulas and f ∶ Rk → R is a 1-Lipschitz
function (with respect to the max distance on Rk), then f(ϕ1, . . . ,ϕk) is
an n-ary (Ω,f(Ik))-formula.

An n-ary Ω-formula is an n-ary (Ω,I)-formula for some I, and an Ω-formula
is an n-aryΩ-formula for some n. An Ω-sentence is a 0-aryΩ-formula.
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Note that this definition is quite strict. For example, we are only allowed to
quantify over the variable with the largest index. The universal modulus is so-
called because of the following fact (see [3, Corollary 6.5]):

Fact 2.36. In a countable language, with respect to the universal weak modulus ΩU,
every Lω1,ω-sentence is equivalent to anΩU-sentence.

Unfortunately in the proof of this fact, the quantifier rank might increase. (Per-
haps this can be rescued with the right notion of quantifier rank but, in general,
prenex normal forms for infinitary continuous logic seem underdeveloped.)
For finitary formulas, the formulas in prenex normal form formed using Lips-
chitz connectives are dense [2, Section 6]. Any such formula is equivalent, after
a change of a variables, to a (finitary)ΩU-formula.8 Thus each finitary formula
is a limit ofΩU-formulas of quantifier rank <ω.
We take our notion of quantifier rank from [3], though as far aswe are aware the
definition of Σα or Πα formulas does not yet appear in the literature. The best
version of the continuous equivalent of Theorem 2.11 is the following, which is
[3, Theorem 3.5]:

Fact 2.37. Let α be an ordinal. Then

rM,Nα (a⃗, b⃗) ≥ sup ∣ϕM(a⃗) −ϕN(b⃗)∣,

where ϕ varies over all n-aryΩ-formulas of quantifier rank at most α.9

In particular, if (M, a⃗) ≡bfα (N, b⃗), then ϕM(a⃗) = ϕN(b⃗) for all n-ary Ω-formulas ϕ
of quantifier rank at most α.

Corollary 2.38. IfM ≡bf,ΩU
ω N forΩU the universal modulus thenM ≡N.

Proof. As described above, given any finitary sentence ϕ, it is a limit of ΩU-
sentences ψn of quantifier rank < ω. ThenM ≡bf,ΩU

ω N and so for each n, ψMn =
ψNn . It follows that ϕM = ϕN for all sentences ϕ. □

8First, one makes a change of variables to ensure that the quantifiers in the prefix satisfy (3)
of Definition 2.35. Then, by another change of variables—replacing the variables x1, . . . , xℓ by
later variables x1+k, . . . , xℓ+k for k sufficiently large—and using the fact that the connectives are
Lipschitz, we can ensure that thematrix of the formula obeysΩU and thus is a basicΩU-formula
(see [3, Proposition 5.2] for a similar argument). This procedure makes the entire formula an
ΩU-formula.

9In [3], the theorem was stated as rM,N
α (a⃗, b⃗) = sup ∣ϕM(a⃗) − ϕN(b⃗)∣ since their back-and-

forth relation, where players only play single elements rather than tuples, match exactly with
their notion of quantifier-complexity.
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3. Group operator algebras

In this section, we recall the10 C∗-algebra and the tracial von Neumann algebra
associated to a group; afterwards, we prove an important lemma connecting
back-and-forth equivalence of groups and elements of the corresponding group
von Neumann algebras to be used in the proof of the main theorem in the next
section.
Suppose thatG is a group. Let ℓ2(G) be the Hilbert space formally generated by
an orthonormal basis δh for all h ∈ G. For any g ∈ G, define ug to be the linear
operator on ℓ2(G) determined by ug(δh) = δgh for all h ∈ G. Notice that ug is
unitary for all g ∈ G (since u∗g = u−1g = ug−1) and so λ ∶ G → U(ℓ2(G)) given by
λ(g) ∶= ug is a unitary representation ofG, called the left regular representation
of G.
Recall that the group algebraC[G] consists of formal linear combinations∑g∈G cgg
with only finitely many nonzero coefficients. There is a natural ∗-algebra struc-
ture on C[G], the addition and multiplication being the obvious ones and the
∗-operation being given by (∑g∈G cgg)∗ = ∑g∈G cgg−1. C[G] is in fact a unital
∗-algebra with unit e, where e denotes the identity of the group.
The left regular representation λ of G extends by linearity to a unital ∗-algebra
homomorphism π ∶ C[G] → B(ℓ2(G)). We often conflate C[G] with its image
under π.
The reduced group C∗-algebra of G, denoted C∗r (G), is the closure of π(C[G])
in the operator norm topology on B(ℓ2(G)). The group von Neumann algebra
of G, denoted L(G), is the strong operator topology (SOT) closure of π(C[G])
in B(ℓ2(G)).
L(G) becomes a tracial von Neumann algebra when equipped with the trace
tr(x) ∶= ⟨xδe, δe⟩. In particular, for x = ∑g∈G cgug ∈ C[G], we have tr(x) = ce. As
in any tracial von Neumann algebra, the trace induces a norm on L(G) given
by ∥x∥2 ∶=

√
tr(x∗x). By the Kaplansky Density Theorem and the Bicommutant

Theorem, one then has that the set of elements ofC[G] of operator norm atmost
1 is ∥ ⋅ ∥2-dense in the unit ball of L(G).
We view tracial von Neumann algebrasM as metric structures in the following
way. First, we have sorts for each of the operator norm balls of M of integer
radius, and the restrictions to these norm balls of the algebraic operations of
addition, multiplication, scalar multiplication, and adjoint. We have constants

10“The” is not really accurate; there are two (usually nonisomorphic) C∗-algebras associated
to a (countable, discrete) group, the reduced and the universal. In this paper, we will only
prove something about reduced group C∗-algebras, which is why we only mention them here.
We define the universal group C∗-algebra in Section 5 in connection with an open question.
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0 and 1 in the operator norm unit ball, and the inclusion maps between these
balls. The distinguished metric on each sort ofM is that induced by the ∥ ⋅ ∥2-
norm. By the Kaplansky Density Theorem, this metric induces the strong op-
erator topology on each of the operator norm balls. See [14] for more details
about this presentation of a tracial von Neumann algebras as metric structures.
We now move on to a lemma connecting back-and-forth equivalence and ele-
ments in group von Neumann algebras.

Notation 3.1. Whenpresentedwith a ∗-monomialp(x1, . . . , xm), wemay rewrite
any factor of the form (x∗i )k as x−ki . The rationale for this notation is that when
plugging in a canonical unitary ug in for the variable xi, we have that (u∗g)k =
ug−k“ = ”u−kg .

Lemma 3.2. Suppose that g⃗ and h⃗ are n-tuples from the groups G and H such that
(G, g⃗) ≡0 (H, h⃗). For each l = 1, . . . ,m, fix a sequence b1,l, . . . , bpl,l from C. For each
l = 1, . . . ,m and s = 1, . . . , p(l), fix i(s, l) ∈ {1, . . . , n}. Let y⃗ = (y1, . . . , ym) and
z⃗ = (z1, . . . , zm) be the tuples from C[G] and C[H] defined by

yℓ =
pℓ

∑
s=1

bs,ℓugi(s,ℓ)

and

zℓ =
pℓ

∑
s=1

bs,ℓuhi(s,ℓ) .

Then for any ∗-polynomial p(x1, . . . , xm), we have trp(y⃗) = trp(z⃗).

Proof. Without loss of generality, wemay assume that p is a ∗-monomial. Recall-
ing Notation 3.1, we write p(x1, . . . , xm) = a∏rj=1(xℓj)kj . Then, expanding using
the binomial theorem, we have

p(y⃗) = a
r

∏
j=1

⎛
⎝

pℓj

∑
s=1

bs,ℓjugi(s,ℓj)
⎞
⎠

kj

= a ∑
(sj,k)

1≤j≤r, 1≤k≤kj

r

∏
j=1

∣kj∣

∏
k=1

bϵlsj,k,ℓju
ϵj
gi(sj,k,ℓj)

,

where ϵj = + if kj ≥ 0, ϵj = − if kj < 0, b+ ∶= b, b− ∶= b̄, u+ ∶= u, and u− ∶= u∗.
Setting g+ ∶= g and g− ∶= g−1, the trace of p(y⃗) is clearly determined by which
products∏rj=1∏

∣kj∣

k=1 g
ϵj
i(sj,k,ℓj)

are the identity or not. The analogous computations
and remarks hold for p(z⃗) as well.

Since (G, g⃗) ≡0 (H, h⃗), we have that ∏rj=1∏
∣kj∣

k=1 g
ϵj
i(sj,k,ℓj)

is the identity if and only
if∏rj=1∏

∣kj∣

k=1 h
ϵj
i(sj,k,ℓj)

is the identity. It follows that trp(y⃗) = trp(z⃗). □
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4. The main result

Theorem 4.1. For any ordinal α, if G and H are groups such that G ≡bfα H, then for
any weak modulusΩ, we have that L(G) ≡bf,Ωα L(H).

Theorem 4.1 follows from the following more general statement:

Lemma 4.2. Working in the context of Lemma 3.2 but assuming that (G, g⃗) ≡bfα (H, h⃗),
we have that (L(G), y⃗) ≡bf,Ωα (L(H), z⃗) for any weak modulusΩ.

Proof. First, recall that, for any element x of any tracial von Neumann algebra
(M, tr), we hve ∥x∥ = limk→∞ tr((x∗x)k)1/2k.11 Consequently, by the hypothesis of
the current lemma and Lemma 3.2, we have ∥yℓ∥ = ∥zℓ∥ and so yℓ and zℓ always
come from the same sort.
Fix a weak modulusΩ; in the rest of the proof, we suppress mention ofΩ in all
notation in connection with the back-and-forth relations.
We prove the lemma by induction on α. The base case is α = 0, so that (G, g⃗) ≡bf0
(H, h⃗). We must verify that (L(G), y⃗) ≡bf0 (L(H), z⃗), that is, that r

L(G),L(H)

0 (y⃗, z⃗) =
0. This fact follows immediately from Lemma 3.2.
Now suppose that we know the lemma holds for all β < α; we shall prove it for
α. Fix ϵ > 0; we will show that rL(G),L(H)α (y⃗, z⃗) < ϵ. By symmetry, it suffices to
show that

sup
β<α

sup
c⃗∈L(G)

inf
d⃗∈L(H)

r
L(G),L(H)

β (y⃗c⃗, z⃗d⃗) < ϵ.

Towards that end, it suffices to show that, given β < α and u⃗ ∈ L(G), there is
v⃗ ∈ L(H) such that rL(G),L(H)β (y⃗u⃗, z⃗v⃗) < ϵ/2. Choose δ > 0 such that

Ω ↾ℓ(y⃗)+ℓ(u⃗) (0, . . . , 0´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
ℓ(y⃗)times

, δ, . . . , δ´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
ℓ(u⃗)times

) < ϵ/2.

Fix a contraction u⃗ ′ ∈ C[G] such that ∥u⃗ − u⃗ ′∥2 < δ. For each ℓ = 1, . . . ,m, write
u ′ℓ = ∑

qℓ
s=1 cs,ℓug ′j(s,ℓ) with g⃗ ′ being a tuple of elements of G containing the sup-

port of all of the u ′ℓ. Then, since (G, g⃗) ≡bf1+α (H, h⃗), there is h⃗ ′ ∈ H such that
(G, g⃗g⃗ ′) ≡bf1+β (H, h⃗h⃗ ′). Define v⃗ ′ from h⃗ ′ in the same way that u⃗ ′ was defined
from g⃗ ′, that is, for each ℓ, v ′ℓ = ∑

qℓ
s=1 cs,ℓuh ′j(s,ℓ) . (Again, by Lemma 4.4, each v⃗ ′l

belongs to the right sort.)

11This fact is well-known amongst experts but we were unable to find a precise reference in
the literature. Here is the proof: set µ to be the spectral measure of x∗x and set f ∶ R → R to
be the identity function f(t) = t. Then tr((x∗x)k) = ∫ f(t)kdµ(t), hence limk→∞ tr((x∗x)k)1/k =
limk→∞(∫ tkdµ(t))1/k = limk→∞ ∥f∥k = ∥f∥∞ = ∥x∗x∥ = ∥x∥2.
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By the induction hypothesis, we have that

r
L(G),L(H)

β (y⃗u⃗ ′, z⃗v⃗ ′) = 0.

Since ∥uℓ − u ′ℓ∥2 < δ for each ℓ and r
L(G),L(H)

β respects the modulus Ω ↾ℓ(y⃗)+ℓ(x⃗) on
each side, by the choice of δ, we have

∣rL(G),L(H)β (y⃗u⃗, z⃗v⃗ ′) − rL(G),L(H)β (y⃗u⃗ ′, z⃗v⃗ ′)∣ < ϵ/2.

Thus we conclude that rL(G),L(H)β (y⃗u⃗, z⃗v⃗ ′) < ϵ/2, as desired. This concludes the
proof. □

In particular, we get as a corollary the first theorem of the introduction.

Corollary 4.3. Suppose that G and H are groups such that G ≡bfω H. Then L(G) ≡
L(H).

Proof. This is just Theorem 4.1Ω =ΩU, which says that L(G) ≡bf,ΩU L(H), com-
bined with Corollary 2.38, which then implies that L(G) ≡ L(H). □

Combining Corollary 4.3 with all of the examples of nonisomorphic groups
that are back-and-forth equivalent gives a plethora of examples of elementar-
ily equivalent group von Neumann algebras L(G1) ≡ L(G2) with G1 /≅ G2. In
particular, we have uncountably many pairs (K,L) of countable fields of char-
acteristic 0 for which K /≅ L but L(SLn(K)) ≡ L(SLn(L)) for all n. Since K and
L are infinitely generated fields, SLn(K) and SLn(L) do not have property (T),
but are inductive limits of countable chains of property (T) subfactors. Thus,
even though these groups do not fall under the domain of Connes’ rigidity con-
jecture, it still seems reasonable to conjecture that if L(SLn(K)) ≅ L(SLn(L)),
then SLn(K) ≅ SLn(L), and thus K ≅ L, which we know is not the case. Con-
sequently, it seems that these pairs of group von Neumann algebras L(SLn(K))
and L(SLn(L)) are elementarily equivalent but not isomorphic.
In general, we are unable to show that the group von Neumann algebras ap-
pearing in Theorem 4.1 above are nonisomorphic. It is known that the relation
∼vN on countable groups given by G ∼vN H if and only if L(G) ≅ L(H) is com-
plete analytic while the equivalence relations given by G ∼vN,α H if and only
if L(G) ≡bfα L(H) (α < ω1) are Borel. (The former statement follows from [39]
while the latter follows from [3] and the fact that the functorG↦ L(G) is Borel.)
It follows that, for any countable ordinal α, there are uncountably many pairs
of groups (G,H) such that L(G) ≡bfα L(H) (and thus L(G) ≡ L(H) if α ≥ω andΩ
is chosen appropriately) but L(G) /≅ L(H). However, we cannot conclude that
these algebras arise from pairs satisfying G ≡bfα H. In fact, it is a priori possible
that there is some α <ω1 such that whenever G ≡bfα H, then L(G) ≅ L(H).
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In the final section, we will extend our results to certain crossed product alge-
bras and point out that, using some results of Popa, we can achieve that these
algebras, which will be ≡bfω-equivalent, are actually nonisomorphic.
The techniques in the proof of Theorem 4.1 can be used to establish a similar
result for reduced group C∗-algebras. However, unlike in the case of tracial von
Neumann algebras, where the operator norm is determined by the traces of ∗-
polynomials, we will need an extra argument to ensure that the operator norms
of player II’s response agree with the operator norms of the elements played by
player I.

Lemma 4.4. Suppose that g⃗ and h⃗ are n-tuples from the groups G and H such that
(G, g⃗) ≡bf1 (H, h⃗). Fix a sequence b1, . . . , bp from C. For each s = 1, . . . , p, fix is ∈
{1, . . . , n}. Let y and z be the elements from C[G] and C[H] defined by

y =
p

∑
s=1

bsugis

and
z =

pℓ

∑
s=1

bsuhis .

Then ∥y∥ = ∥z∥.

Proof. Suppose ∥y∥ > r; we show that ∥z∥ > r. Take an element ξ ∈ ℓ2(G) with
∥ξ∥ ≤ 1 such that ∥yξ∥ > r. Without loss of generality, we may suppose that ξ
has finite support g⃗∗ ⊆ G, that is, ξ = ∑t∈g⃗∗ ctδt. Recall that

yξ = (
p

∑
s=1

bsugis)(∑
t∈g⃗∗
ctδt) =∑

s,t

bsctδgis t.

The norm ∥yξ∥ > r of this vector is completely determined by which products
gist coincide.
Since (G, g⃗) ≡bf1 (H, h⃗), there is h⃗∗ ∈ H such that (G, g⃗g⃗∗) ≡bf0 (H, h⃗h⃗∗). Set ζ =
∑t∈h⃗∗ ctδt ∈ ℓ2(H). Then

zζ = (
p1

∑
s=1

bsuhis)(∑
t∈h⃗∗

ctδt) =∑
s,t

bsctδhist.

Since (G, g⃗g⃗∗) ≡bf0 (H, h⃗h⃗∗), two products gist and gis ′ t ′ coincide if and only if
hist and his ′ t ′ coincide. Thus ∥zζ∥ > r.
This argument is symmetric, so that we have shown that for any r, ∥y∥ > r if and
only if ∥z∥ > r. Hence ∥y∥ = ∥z∥. □

Combining the arguments from Lemmas 3.2 and 4.4, have:
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Lemma 4.5. Working in the context of Lemma 3.2 but assuming that (G, g⃗) ≡bf1 (H, h⃗),
we have ∥p(y⃗)∥ = ∥p(z⃗)∥ for any ∗-polynomial p(x1, . . . , xm).

Using Lemma 4.5 in the proof of Lemma 4.2, we then have:

Theorem 4.6. For any ordinal α, if G and H are groups such that G ≡bf1+α H, then for
any weak modulusΩ, we have that C∗r (G) ≡bf,Ωα C∗r (H).

Note that ifα is infinite, then 1+α = α, whencewe get the symmetric implication
G ≡bfα H implies C∗r (G) ≡bf,Ωα C∗r (H) for infinite ordinals α.
Combining Theorems 4.1 and 4.6 with Lemmas 2.23 and 2.25 above, we have:

Corollary 4.7. Suppose that G1,G2,H1, and H2 are groups such that Gi ≡bfα Hi for
i = 1, 2. Then we have:

● L(G1)⊗ L(G2) ≡bfα L(H1)⊗ L(H2).
● L(G1) ∗ L(G2) ≡bfα L(H1) ∗ L(H2).

Corollary 4.8. Suppose that G1,G2,H1, and H2 are groups such that Gi ≡bf1+α Hi for
i = 1, 2. Then we have:

● C∗r (G1)⊗min C∗r (G2) ≡bfα C∗r (H1)⊗min C∗r (H2).
● C∗r (G1) ∗C∗r (G2) ≡bfα C∗r (H1) ∗C∗r (H2) (reduced free product).

For example, we can find nonisomorphic countable fields K and L of character-
istic 0 such that L(SLn(K)) ⊗R ≡ L(SLn(L)) ⊗R, where R is the hyperfinite II1
factor.

Remark 4.9. Corollaries 4.7 and 4.8 stand in contrast with the fact that, in gen-
eral, the effect of tensor product and free product on elementary equivalence of
tracial von Neumann algebras or C∗-algebras is not well-understood.

While finitely generated free groups are never back-and-forth equivalent, an
easy back-and-forth argument shows that Fκ ≡∞,ω Fλ for any infinite cardinals
κ and λ.
Following [3], in continuous logicwe candefine rM,N,Ω∞ (a⃗, b⃗) ∶= sup

α
rM,N,Ωα (a⃗, b⃗)

and thus defineM ≡Ω∞,ω N to mean that, for all α < ω1, we haveM ≡bf,Ωα N.12
Consequently, Theorems 4.1 and 4.6 hold for ≡Ω∞,ω as well:

Corollary 4.10. IfG andH are groups such thatG ≡∞,ω H, then for any weak modulus
Ω, we have that L(G) ≡Ω∞,ω L(H) and C∗r (G) ≡Ω∞,ω C∗r (H).

12We are not aware of an equivalent definition, using games of infinite length, of r∞ or ≡∞,ω

in the literature.
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The previous corollary is only interesting for uncountable groups G and H; for
countable groups, it states the trivial fact that if G ≅ H, then L(G) ≅ L(H) and
C∗r (G) ≅ C∗r (H).
However, applying the previous corollary to the case of infinitely generated free
groups, we have:

Corollary 4.11. For all infinite cardinals κ and λ, we have L(Fκ) ≡∞,ω L(Fλ) and
C∗r (Fκ) ≡∞,ω C∗r (Fλ).

5. Some open questions

In this section, we list some open problems that arise naturally from the above
considerations. Our first question arose during our discussion after the proof
of Theorem 4.1:

Question 5.1. Is there α < ω1 such that, whenever G ≡bfα H, we have L(G) ≅
L(H)?

In connection with this first question, recall that a group G is W∗-superrigid
if, for all groups H such that L(G) ≅ L(H), we have G ≅ H (that is, G is com-
pletely recoverable from L(G)). If the previous question has a positive answer
as witnessed by some countable ordinal α andG is aW∗-superrigid group, then
wheneverG ≡bfα H, one hasG ≅ H, that is, α is an upper bound on the Scott ranks
of allW∗-superrigid groups. This line of reasoning might present an approach
for establishing a negative solution to the previous question.
Recall that the universal group C∗-algebra ofG, denoted C∗(G), is the comple-
tion of C[G]with respect to the norm ∥ ⋅ ∥u given by

∥x∥u ∶= sup{∥π(x)∥ ∶ π ∶ G→ U(H) a unitary representation}.13

Question 5.2. If G ≡bfω H, do we have C∗(G) ≡ C∗(H)? More generally, if α is
infinite and G ≡bfα H, do we have C∗(G) ≡bfα C∗(H)?

Recall that if G ≡∞,ω H, then G ≡bfω H, whence L(G) ≡ L(H) by Theorem 4.1.
Recall also from [20, Section 5.3] that a group G is ω-existentially saturated
if G realizes all existential types over finite parameter sets. It is known that
if G and H are two ω-existentially saturated groups, then G ≡∞,ω H (see [20,
Theorem 5.3.3]). Consequently, we have:

Corollary 5.3. If G and H areω-existentially saturated groups, then L(G) ≡ L(H).

13Here we are abusing notation and referring to the canonical extension of π ∶ G→ U(H) to a
∗-algebra homormophism C[G]→ B(H) also by π.
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Anω-existentially saturated group can never be countable. An elementary sub-
group of anω-existentially saturated group is called infinitely generic (see [20,
subsection 5.3]). Consequently, there are countable infinitely generic groups,
and in fact, any countable group embeds in a countable infinitely generic group
(see [20, Exercise 5.3(1)]). The following questions becomes natural:

Question 5.4. IfG andH are infinitely generic groups, dowe have L(G) ≡ L(H)?
Are there nonisomorphic countable infinitely generic groupsG andH such that
L(G) ≡ L(H)?

Since infinitely generic groups are in particular existentially closed, the follow-
ing more basic question also arises:

Question 5.5. Are there countable nonisomorphic existentially closed groups
G and H such that L(G) ≡ L(H)?

Unfortunately, the techniques from this paper are not going to be of any use in
regards to the previous question due to the following:

Proposition 5.6. IfG is existentially closed andG ≡bf2 H, thenG ≡∞,ω H. In particular,
if, moreover, G and H are both countable, then G ≅ H.

Proof. Suppose that G is existentially closed and G ≡bf2 H. We first show that H
is also existentially closed. To see this, fix a tuple b⃗ from H. Since G ≡bf2 H, there
is a finite tuple a⃗ from G such that (G, a⃗) ≡bf1 (H, b⃗). In particular, a⃗ and b⃗ have
the same existential types. Since G is existentially closed, the existential type of
a⃗ is maximal, whence the same is true of the existential type of b⃗. Since b⃗ was
an arbitrary tuple from H, we see that the existential type of any tuple of H is
maximal, whence H is existentially closed by [20, Exercise 4.1(1)].
Since G and H are both existentially closed, by [30, Theorem 1(a)], in order to
show that G ≡∞,ω H, it suffices to show that they have the same two-generated
subgroups. To see this, fix a⃗ = (a1, a2) from G; since G ≡bf2 H, there is b⃗ =
(b1, b2) from H such that (G, a⃗) ≡1 (H, b⃗). In particular, a⃗ and b⃗ have the same
quantifier-free types, whence the subgroup of G generated by a1 and a2 is iso-
morphic to the subgroup of H generated by b1 and b2. □

6. An extension to crossed products by Bernoulli actions

In this section, we sketch an extension of ourmain preservation result to crossed
products by Bernoulli actions. We begin by recalling the relevant background
material from von Neumann algebra theory.
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Suppose thatM is a tracial von Neumann algebra andG is a (countable) group.
Suppose further that G↷σM is an action of G onM, by which we mean that σ
is a group homomorphism fromG to the group of all trace preserving automor-
phisms ofM. Analogous to the case thatM = C, one introduces the setM[G]
to be the set of finitely supported formal sums ∑g∈G bgug with each bg ∈ M.
One uses the action σ to make M[G] into a ∗-algebra, the key difference be-
ing that multiplication and the involution are now “twisted” in the sense that
(b1ug)(b2uh) = b1σg(b2)ugh and (bug)∗ = σg−1(b∗)ug−1 . (These definitions are
inspired by the desire to have σg(b) = ugbu∗g inM[G].)
In order to obtain a tracial von Neumann algebra from this action, one first
needs to representM[G] concretely on an appropriate Hilbert space. To accom-
plish this, one first notes that any trace-preserving automorphism ofM extends
uniquely to a unitary operator on L2(M). One then obtains a ∗-homormorphism
from M[G] → B(L2(M) ⊗ ℓ2(G)) by defining (bug)(ξ ⊗ δh) ∶= (bσg(ξ)) ⊗ δgh.
(Here, we abuse notation and let σg denote its extension to a unitary operator
on L2(M).) One then defines the crossed product algebraM⋊σG to be the SOT-
closure ofM[G] in B(L2(M)⊗ ℓ2(G)). M⋊σG is a tracial von Neumann algebra
when equipped with the trace τ(x) = ⟨ue, xue⟩; when x = ∑g∈G bgug ∈M[G], we
have τ(x) = τ(be).
Note thatM ⋊σ G naturally contains bothM and L(G) as tracial von Neumann
subalgebras. Note also that when M = C (whence G acts trivially) this con-
struction is simply the construction of L(G). Another case of interest is the case
thatM = L∞(X,µ) for a probability space (X,µ) and the action G ↷σ M is that
induced from a probability measure preserving (pmp) action of G on (X,µ);
in this case, the crossed product algebra L∞(X,µ) ⋊σ G is known as the group
measure space construction and is denoted (X,µ) ⋊σ G.
We now restrict attention to a particular class of actions. We first remind the
reader about tensor products of tracial von Neumann algebras. Given two tra-
cial von Neumann algebrasM and N, we can first form their algebraic tensor
productM ⊙N, that is, their tensor product when viewed merely as complex
vector spaces. M ⊙ N has a natural ∗-algebra structure and a trace given on
elementary tensors by setting τ(x ⊗ y) ∶= τM(x)τM(y). One then obtains the
tracial von Neumann algebra M ⊗ N by taking the SOT-closure of M ⊙ N in
the GNS representation. (Equivalently, one can view M and N as concretely
represented on L2(M) and L2(N) respectively, whenceM ⊙N is naturally a ∗-
subalgebra of B(L2(M)⊗L2(N)). M⊗N is then the SOT-closure ofM⊙N inside
of B(L2(M)⊗ L2(N)).)
The tensor product of two tracial von Neumann algebras extends naturally to
a tensor product operation on any finite number of tracial von Neumann alge-
bras. To take an infinite tensor product, say of the tracial vonNeumann algebras
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(Mi)i∈N, one first considers the chain of tracial von Neumann algebras
M1 ⊆M1 ⊗M2 ⊆M1 ⊗M2 ⊗M3 ⊆ ⋯

and then defines the infinite tensor product⊗i∈NMi to be the inductive limit of
this chain in the category of tracial vonNeumann algebras. (More explicitly, the
set-theoretic union of the chain carries a natural trace given from the coherent
sequence of traces on the constituents of the chain; one takes the GNS construc-
tion associated to this trace and then takes the SOT-closure of the set-theoretic
union in the associatedGNS representation.) If I is an arbitrary countable index
set, one defines ⊗i∈IMi by enumerating I of order type ω in an arbitrary way.
If F ⊆Mi is finite, then we view the finite tensor product⊗i∈FMi as a von Neu-
mann subalgebra of⊗i∈IMi in the obvious way. If eachMi =M for some fixed
tracial von Neumann algebra M, then we write M⊗I for the associated tensor
power ofM.
Now given a group G and a tracial von Neumann algebra M, the Bernoulli
action of G onM⊗G is given by setting (σg(x))h ∶= xgh for the elementary tensor
x = ⊗g∈F xg ∈ M⊗F ⊆ M⊗G. The terminology is motivated by the fact that when
G acts on the product probability space (X,µ)G by permutation of coordinates
(called the Bernoulli action of G on (X,µ)G), then this induces the Bernoulli
action of G on L∞(X,µ)⊗G. In the remainder of this paper, when a group G acts
on a tensor powerM⊗G, it is always assumed to do so via the Bernoulli action.
In what follows, if G is a group, M is a tracial von Neumann algebra, g⃗ =
(g1, . . . , gn) is a tuple from G, and F ⊆ G denotes the set of coordinates of g⃗,
we letM⊙g⃗ ∶= ⊙h∈FMh denote the corresponding algebraic tensor product, an
SOT dense ∗-subalgebra ofM⊗F. (The subscripts are just for indices; recall that
eachMh is just a copy ofM.)
The proof of the following lemma is straightforward (following Lemma 3.2)
and is left to the reader.

Lemma 6.1. Suppose that g⃗ and h⃗ are n-tuples from the groups G and H such that
(G, g⃗) ≡0 (H, h⃗). Fix also a tracial von Neumann algebraM and for each l = 1, . . . ,m,
fix a sequence b1,l, . . . , bpl,l from M. For each l = 1, . . . ,m and s = 1, . . . , p(l), fix
i(s, l) ∈ {1, . . . , n}. Let y⃗ = (y1, . . . , ym) and z⃗ = (z1, . . . , zm) be the tuples from
M[G] andM[H] defined by

yℓ =
pℓ

∑
s=1

bs,ℓugi(s,ℓ)

and

zℓ =
pℓ

∑
s=1

bs,ℓuhi(s,ℓ) .

Then for any ∗-polynomial p(x1, . . . , xm), we have trp(y⃗) = trp(z⃗).
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We can now generalize our main result as follows:

Theorem 6.2. For any groupsG andH such thatG ≡α H and any tracial vonNeumann
algebraM, we have thatM⊗G ⋊G ≡αM⊗H ⋊H.

Proof. The proof follows the same structure as the proof of Theorem 4.1, which
in the context of the current theorem is the case that M = C. Just as C[G] is
dense in L(G), M⊗G[G] is dense inM⊗G ⋊ G and the union of theM⊙g⃗’s, as g⃗
ranges over finite tuples from G, is an SOT dense ∗-subalgebra ofM⊗G. □

In certain circumstances, we can ensure that the above crossed products will not
be isomorphic.

Fact 6.3 (Popa [38]). Suppose thatM and N are the group measure space von Neu-
mann algebras corresponding to the Bernoulli actions of countable ICC groupsG andH
on [0, 1]G and [0, 1]H respectively. Further suppose thatG andH have relative property
(T) over an infinite subgroup. ThenM ≅N implies G ≅ H.

Corollary 6.4. For any ordinal α ≥ ω, there are countable ICC groups G and H such
that, setting M and N to be the group measure space von Neumann algebras corre-
sponding to the Bernoulli actions of G and H on [0, 1]G and [0, 1]H respectively, we
have G ≡bfα H, whenceM ≡bfα N, butM /≅N.

Proof. Set G = (G ′ ∗ Z) × SL3(Z) and H = (H ′ ∗ Z) × SL3(Z), where G ′ and H ′
are torsion-free abelian groups satisfying G ′ ≡bfα H ′ but G ′ /≅ H ′. By Lemmas
2.23 and 2.25, we have that G ≡bfα H. IfM ≅ N, then by Fact 6.3, we have G ≅ H,
whence, by two applications of the Kurosh subgroup theorem, we haveG ′ ∗Z ≅
H ′ ∗Z and thus G ′ ≅ H ′, a contradiction. □

Let us now return to the more general context of an actionG↷σM of a groupG
on a tracial von Neumann algebraM and the crossed product algebraM ⋊σ G.
We view an action G ↷σ M as a two-sorted structure with sorts for G and for
M. We equip the first sort with the language for (discrete) groups and the sec-
ond sort for the language for tracial vonNeumann algebras as above. Moreover,
there is a function symbol from G ×M toM for the action. (The above descrip-
tion is a slight abuse of terminology as the usual language forM is itself many
sorted with infinitely many sorts, as described above, whence there need to be
many function symbols for the action as well.)
Based on Theorem 6.2, it becomes natural to ask:

Question 6.5. For a weak modulus Ω, suppose that G ↷σ M ≡bf,Ωα H ↷ρ N. Do
we haveM ⋊σ G ≡bf,Ωα N ⋊ρ H?
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On the one hand, this seems like it should be true by analogy with the dis-
crete case: such nicely behaved transformations always preserve back-and-forth
equivalence in the discrete case. But to actually prove this, we would need to
prove an approximate analog of Lemma 6.1 relative to someweakmodulus, and
we do not see how to do this. This suggests that one should study Borel functors
and infinitary interpretations in the continuous setting (in the style of [17, 18])
and figure out what the role of weak moduli are there.
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