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Abstract. We give a new and effective classification of all Borel Wadge classes
of subsets of Baire space N . This relies on the true stage machinery originally

developed by Montalbán. We use this machinery to give a new proof of Lou-

veau and Saint-Raymond’s separation theorem for Borel Wadge classes. This
gives a proof of Borel Wadge determinacy in the subsystem ATR0`Π1

1-IND of

second-order arithmetic.
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1. Introduction

Let N denote Baire space, ωω. A set A Ď N is Wadge reducible to a set B Ď N
if A is a continuous pre-image of B; we write A ďW B. The Wadge class of B is the
collection of all sets which are Wadge reducible to B. What are all Wadge classes
of Borel sets? This question was essentially answered by Wadge ([Wad84]), with a
full description appearing in [Lou83] and another one in [LSR88b]. This analysis
was then extended by Duparc [Dup01] to spaces κω, Selivanov [Sel07, Sel17] to
k-partitions rather than sets, and Kihara and Montalbán [KM19] to BQO-valued
functions.

Once a system of descriptions for Borel Wadge classes is suggested, how does one
prove that indeed every such class is described? The standard route, as suggested
by Wadge, relies on Borel Wadge determinacy. For any two sets A,B Ď N , players
in a game GLpA,Bq alternate choosing natural numbers, resulting in a real x P N
built by player I and another y P N built by player II; player II wins if and only if
x P A ðñ y P B. A winning strategy for player II gives A ďW B; for player I, it
gives B ďW AA. Borel Wadge determinacy is the statement that every such game,
for Borel sets A and B, is determined. Borel Wadge determinacy, thus, implies
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Wadge’s semi-linear ordering principle for Borel Wadge degrees: for all Borel A
and B, either A ďW B or B ďW AA.

Further, using Borel Wadge determinacy, Martin showed (see [KM78]) that the
Wadge ordering of Borel sets is well-founded. Thus, theorems about Borel Wadge
classes can be proved inductively. One such theorem is that every Borel Wadge
class has a description.

In [LSR87, LSR88b], Louveau and Saint-Raymond follow a different route. They
give two systems of descriptions (one is from [Lou83], based on work of Wadge’s).
They then give a new proof of Borel Wadge determinacy, but restricted to described
classes. Using this, and a detailed analysis from [Lou83] of the ambiguous classes
of described classes, they then show that all Borel Wadge degrees are described,
and so their determinacy result gives full Borel Wadge determinacy.

One motivation for taking this different route is that their argument gives a
proof of Borel Wadge determinacy within second-order arithmetic. This was quite
surprising, since the most straightforward proof relies on Borel determinacy, which
is known to require strong axioms [Fri71]; and since Π1

1 Wadge determinacy was
known to be equivalent to full Π1

1 determinacy (Harrington [Har78]). The argument
also gives an extension of Louveau’s separation theorem [Lou80] to all non-self-dual
Borel Wadge classes.

It is then natural to ask for the weakest subsystem of second-order arithmetic in
which Borel Wadge determinacy, or the semi-linear ordering principle, are provable.
Cordón-Franco, Lara-Mart́ın and Loureiro [Lou16, CFLML] established some lower
and upper bounds for lower levels of the Borel hierarchy.

In the current paper we give a new analysis of all Borel Wadge classes. The
main feature of our descriptions of Wadge classes is their dynamic nature. Rather
than a “static” description of sets in these classes, as constructed from simpler
sets by using a variety of Boolean operations on sets, we describe approximation
procedures that determine whether a given real is in the set described, based on its
(finite) initial segments.

To do this, we rely on the true stage machinery developed by Montalbán [Mon14]
to organise iterated priority arguments in computable structure theory. Applica-
tions of this technique to descriptive set theory were discovered by Day, Downey
and Westrick [DDW] and Day and Marks [DM]. Our previous paper [DGHTT] is
an expository paper, in which we give a description of the true stage machinery
(as re-developed in [GTa]), and showed how to use it to prove effective versions of
the Hausdorff-Kuratowski theorem, Wadge’s theorem on the structure of ∆0

λ for
limit λ, and Louveau’s separation theorem [Lou80]. In the current paper, we use
our descriptions of Borel Wadge classes to prove Louveau and Saint-Raymond’s sep-
aration theorem mentioned above, extending our argument from [DGHTT], where
it was restricted to the classes Σ0

ξ . This argument is more direct compared to the

original one from [LSR87, LSR88b], which relied on the ramification method of
unravelling games. We also provide the full details of the development of the true
stage machinery, which was delayed from [DGHTT].

Our reliance on the true stage method means that our analysis of the ambiguous
classes described classes is inherently effective: computability of class descriptions
and of names for sets in these classes are a necessary feature in this analysis, rather
than an afterthought.
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Finally, we will observe that our methods are sufficiently effective so that they
can be proved within the system ATR0 of second-order arithmetic, which is, in a
sense, the natural base system to use when analysing Borel sets. We can then
complete the argument sketched in [LSR88b] to prove Borel Wadge determinacy
within that system (with the added requirement of some induction).

2. Preliminaries

2.1. An informal description of class descriptions. In some sense, our de-
scriptions of Borel Wadge classes are a common generalisation of the two systems
of descriptions presented in [LSR88b]. A class description Γ will include a well-
founded tree TΓ, whose leaves will be labelled by 0’s and 1’s. For such a class
description Γ, a Γ-name N for a subset of N will determine functions fs for non-
leaf s P TΓ. Such a function fs will choose, for each real x P N , a child t of s on
TΓ. The subset of N named by such a name N is then defined as follows: for a
real x, we determine a path s0, s1, . . . , sk through the tree TΓ, starting at the root
s0 “ xy, and recursively choosing the child si`1 “ fsipxq. When we get to a leaf sk,
we decide that x is in the set or not, depending on the label (0 or 1) of sk given
by Γ. The class description Γ will provide information stating which functions fs
can be used by Γ-names. The class Γ will consist of all sets that are named by a
Γ-name.

More specifically, for a non-leaf s P TΓ, the class description Γ will specify two
ordinals ξs and ηs. A function fs used at the node s by a Γ-name will be the limit
of an approximation at level ξs, with bound ηs ` 1, and with a “default outcome”
being the leftmost child of s on TΓ. Set-theoretically, this means that for each
non-default child t of s, the collection of x mapped by fs to t form a DηspΣ

0
1`ξs

q

set.
By induction on the rank of TΓ, we can view our class descriptions as being built

recursively, starting with the very simplest class descriptions: those which consists
only of the root, which name the classes tHu and tN u (depending on the label 0
or 1 of the root). In the typical application, given class descriptions Γ0,Γ1, . . . , we
construct a more complicated class description Γ by combining the trees TΓi to a
single tree TΓ by adding a root below them all and specifying the ordinals ξ and η
for the new root. A Γ-name N will consist of a list N0, N1, . . . with Ni a Γi-name,
and a function f “ fxy which for each real x tells us which name Ni we should
apply to x, in order to determine whether x is in the set named by N . That is, if
Ai is the set named by Ni, then the set named by N is tx P N : x P Afpxqu.

There are a couple of comments we should make now. The first is that even
though Γ-names can be described “statically”, using DηspΣ

0
1`ξs

q sets rather than
functions fs, the way we will reason about these classes will be effective. Thus, it will
be important to view the functions fs as the results of approximation procedures
using true ξs-initial segments of a real x, as in our analysis of the classes DηpΣ

0
1`ξq

in [DGHTT]. Combining these approximation procedures, a Γ-name provides a
“dynamic” approximation procedure for membership in the set it names.

Further, the effective nature of our analysis, and our reliance on the true stage
machinery, mean that we need to say what it means for an oracle y to compute a de-
scription of a class, and we need to choose specific computable copies of computable
ordinals. For this reason, by “ordinals” we will mean well-orderings of subsets of N,
and we will specify what it means to compute such orderings.
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The second point is that the nature of our approximation procedures indicates
that the objects being approximated are functions F : N Ñ t0, 1u, the characteristic
functions of Borel sets. Our class descriptions can therefore be generalised to discuss
Wadge classes of functions with ranges other than t0, 1u, as was done by Selivanov
and Kihara-Montalbán. Our classification of these classes, though, is restricted to
t0, 1u-valued functions.

Throughout our classification, we will be decomposing functions into simpler
pieces. Proposition 4.13 is illustrative – here we begin with an F belonging to a
described class ∆pΓq, and we find Y Ď N such that F æY and F æN zY are from the
simpler classes ∆pΓ0q and Γ˚, respectively (the particulars of what this means are
not important now; the reader should just accept that these are simpler classes). In
the past, authors usually extended partial functions such as F æY to total functions
by using retraction maps. While these are not effective, there are other, effective
methods of extending partial functions to total functions. Thus, Proposition 4.13
could be stated as F æN zY being the restriction of some function from Γ˚. This,
however, masks the fact that we are really only interested in the partial functions
F æ Y and F æN zY . Our arguments indicate that the more natural approach is
to say that each description describes a class of partial functions from N to t0, 1u.
Then we can simply write F æN zY P Γ˚.

In particular, at each level ξ, we will need to consider the restrictions of functions
to both Σ0

1`ξ and Π0
1`ξ subsets of their domains. To do this, we will work with

functions defined on subsets of N in the second level of the Hausdorff hierarchy
starting with each Σ0

1`ξ: the intersections of Σ0
1`ξ and Π0

1`ξ sets. To be able to

properly discuss (and compute) names for such functions, we will represent their
domains using the true stage relations, via the notion of pz, αq-forests.

In this section we introduce the tools required for our definitions. We discuss
computable ordinals. We detail the properties of the true stage machinery that we
will use; but we relegate the development and verification of these properties to an
appendix-like Section 7. We then introduce pz, αq-forests and approximations of
functions on such forests, and state a corresponding “limit lemma”. We define our
class descriptions in Section 3.

2.2. Computable ordinals. Henceforth, by an ordinal we mean a well-ordering
of a subset of N. We will nonetheless use set-theoretic terminology, and for exam-
ple, talk about limit ordinals or successor ordinals; we will write 0 to denote the
empty ordinal. When we want to refer to the von-Neumann (set-theoretic) ordinal
isomorphic to a well-ordering α, we write otppαq.

We say that an oracle z computes an ordinal α if z computes the field of α, the
ordering relation, the successor function on α, and the set of limit points of α.

We also require z to convey the information of whether α is 0, a successor, or a
limit; if a successor, what its greatest element is; if nonzero, what its initial element
is. This means that when we say that z uniformly computes a sequence xαny of
ordinals, that tn P N : αn is limitu is z-computable, and similarly for the other
properties. Note that this information allows us to tell whether α is finite or not,
and if so, what its size is. If α is a limit ordinal, then it allows us to (uniformly)
compute an increasing and cofinal ω-sequence in α.

For two ordinals α and β, we write α ă β if α is a proper initial segment
of β (this is a much stricter requirement than otppαq ă otppβq). Continuing set-
theoretic notation, when α ă β, we often use α to denote nα, the element of the
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field of β which bounds α. For example, If f : N Ñ β is a function, we will often
write fpkq “ α instead of fpkq “ nα.

If an oracle z computes β then it computes all α ă β, and uniformly so, in
the sense that given nα in the field of β, z computes all the required information
about α.

2.3. True stages. For each computable ordinal α, the true stage machinery pro-
vides a binary relation ďα on ωďω, the collection of all finite and infinite sequences
of natural numbers (which we call strings or sequences). The relation σ ďα τ reads
“σ appears α-true to τ .” Intuitively, each finite σ makes a guess about Σ0

1`α facts
about infinite strings extending σ. For x P N , σ ăα x will mean that σ’s guesses
are correct about x. If τ is finite, then σ ďα τ will mean that τ agrees with all
of σ’s guesses. This will not be precisely true, but it serves as a useful intuition for
this machinery. As mentioned, the details are given in Section 7.

We list some properties of the true stage relations ďα that we will use.1 Fix a
computable ordinal α.

TSP(1): The relations are nested: If α ď β then σ ďβ τ implies σ ďα τ . We have
σ ď0 τ ðñ σ ď τ . Hence, for all α, σ ďα τ implies σ ď τ .

TSP(2): The relation ďα is a partial ordering of ωďω which is a tree (for all
τ P ωďω, tσ : σ ďα τu is linearly ordered). The root of the tree is xy
(the empty string).

TSP(3): For every x P N ,

tσ P ωăω : σ ăα xu

is the unique infinite path of the restriction of ďα to tσ P ωăω : σ ă xu.
TSP(4): The restriction of the relation ďα to pairs of finite strings is computable.
TSP(5): If λ is a limit, then for all σ, τ P ωďω,

σ ďλ τ ðñ p@α ă λqσ ďα τ.

Furthermore, there is a computable and increasing sequence xλky, cofi-
nal in λ, such that for all σ P ωăω, if k “ |σ|λ is the height of σ in the
tree pωăω,ďλq, then |σ|λk “ k, and for all τ P ωďω,

σ ďλ τ ðñ σ ďλk τ.

For TSP(5), note that in light of TSP(1), the condition |σ|λ “ |σ|λk says that
for all ρ ď σ, ρ ďλ σ ðñ ρ ďλk σ.

The next property deals with successor ordinals. For an ordinal α, we write α`1
to denote any ordinal β such that α ă β and otppβq “ otppαq ` 1.

TSP(6): There is a computable function pα`1 : ωăω Ñ NY t´1u such that for all
σ, τ P ωďω, σ ďα`1 τ if and only if σ ďα τ , and for all finite ρ with
σ ďα ρ ďα τ , pα`1pρq ě pα`1pσq.

We note that TSP(6) implies the following:

(♣) For all σ ďα ρ ďα τ P ω
ďω, if σ ďα`1 τ then σ ďα`1 ρ.

The connection with the (effective) Borel hierarchy is the following:

TSP(7): A set A Ď N is Σ0
1`α if and only if there is a c.e. set U Ď ωăω such that

A “ tx P N : pDσ ăα xq σ P Uu .

1The numbering of the properties differs from that in [DGHTT].
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Remark 2.1. We will not repeatedly state this, but every computable procedure in
this paper is uniform, in every conceivable way. This means that in each instance,
there is a single computable operator which takes the input and produces the desired
output. In particular, for example, if xαny is a uniformly computable sequence of
ordinals, then the relations ďαn are uniformly computable. Similarly, for each α
(uniformly in α) there are computable functions translating between c.e. indices of
sets U Ď ωăω and Σ0

1`α-indices of the related subsets of N as in TSP(7).

Relativised true stages. The machinery above was stated for computable ordinals α,
to keep notation simple. In fact, we can relativise this machinery to any oracle. For
any ordinal α, and for any oracle z that computes α, we obtain a relation ďz

α, which
satisfies all of the properties above, with the following changes: “computable” (in
TSP(4), TSP(5) and TSP(6)) is replaced by “z-computable”; and in TSP(7), “c.e.”
is replaced by “z-c.e.” and Σ0

1`α is replaced by Σ0
1`αpzq. Note that even when α

is computable, the relation ďz
α is not the same as ďα, though we can think of ďα

as ďHα .
As expected, this relativisation process is uniform. Suppose that α is a com-

putable ordinal. Then the relations ďz
α on pairs of finite strings are z-computable,

uniformly in z. In fact, they naturally turn out to be Lipschitz-computable (com-
putable with constant use): there is a ternary computable relation σ ďρ

α τ , defined

when |ρ| ě |τ |, such that for all z, σ ďz
α τ ðñ σ ď

zæ|τ |
α τ .

2.4. α-forests. Fix a computable ordinal α.

Definition 2.2. Let S Ď ωăω.

(a) A set R Ď S is α-open in S if for all σ P R and τ P S, if σ ďα τ then τ P R.
(b) A set R Ď S is α-closed in S if for all σ P R and τ P S, if τ ďα σ then

τ P R.

TSP(7) can be modified as follows.

Lemma 2.3. Let A Ď N .

(a) A is Σ0
1`α if and only if there is a computable W Ď ωăω, α-open in ωăω,

such that

A “ tx P N : pDσ ăα xq σ PW u “ tx P N : p@8σ ăα xq σ PW u .

(b) A is Π0
1`α if and only if there is a computable T Ď ωăω, α-closed in ωăω,

such that

A “ tx P N : p@σ ăα xq σ P T u .

Proof. (a): this is a standard trick. If xUsy is a computable enumeration of the
set U given by TSP(7), then we let σ P W if there is some ρ ďα σ in U|σ|α , where
recall that |σ|α is the height of σ in the tree pωăω,ďαq. (b) is obtained from (a)
by taking the complement. �

As mentioned above, we need to generalise these two notions.

Definition 2.4. An α-forest is a subset S of ωăω which is ďα-convex: if σ ďα

ρ ďα τ and σ, τ P S then ρ P S.
For an α-forest S we let

rSsα “ tx P N : pD8σ ăα xq σ P Su “ tx P N : p@8σ ăα xq σ P Su .
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We can visualise an α-forest as the disjoint union of trees: the collection of ďα-
minimal elements of S forms an antichain in pωăω,ďαq, and for each σ in that
antichain, the restriction of pS,ďαq to strings τ ěα σ is an α-tree with root σ.

Every α-open subset W of ωăω is an α-forest, as is every α-closed set T ; and
rW sα and rT sα coincide with the sets described in Lemma 2.3. Further:

Lemma 2.5. Let S be an α-forest. If R Ď S is either α-open in S or α-closed in S,
then R is an α-forest.

For the following lemma, let Σ0
β ^Π0

β denote the class of sets which are intersec-

tions A X B where A is Σ0
β and B is Π0

β (this is the class D2pΣ
0
βq in the effective

Hausdorff hierarchy).

Lemma 2.6. A set A Ď N is Σ0
1`α ^ Π0

1`α if and only if there is a computable
α-forest S such that A “ rSsα.

Proof. Suppose that A is Σ0
1`α ^ Π0

1`α. By Lemma 2.3, let U, T Ď ωăω be com-
putable with U α-open and T α-closed such that A “ rU sαXrT sα. Let S “ U XT ;
then S is an α-forest and A “ rSsα (note that the intersection of any number of
α-forests is an α-forest, though the class Σ0

1`α ^ Π0
1`α is not closed under taking

infinite intersections, even if effective).
In the other direction, suppose that S is a computable α-forest. Let W be the

upwards closure of S in ďα; let V “ W zS. Then both W and V are computable
and α-open, and A “ rU sαzrV sα, so is Σ0

1`α ^Π0
1`α. �

Suppose that X is Σ0
β ^ Π0

β . A set Y Ď X is Σ0
β within X if Y “ X X A for

some Σ0
β set; similarly define Π0

β within X. Both sets which are Σ0
β within X or

Π0
β within X are Σ0

β ^ Π0
β . A set Y Ď X is Σ0

β ^ Π0
β within X if and only if it is

Σ0
β ^Π0

β .

Lemma 2.7. Let S be a computable α-forest.

(a) A set Y Ď rSsα is Σ0
1`α within rSsα if and only if Y “ rW sα for some

computable W Ď S which is α-open in S.
(b) A set Y Ď rSsα is Π0

1`α within rSsα if and only if Y “ rT sα for some
computable T Ď S which is α-closed in S.

(c) A set Y Ď rSsα is Σ0
1`α^Π0

1`α if and only if Y “ rRsα for some computable
α-forest R Ď S.

Remark 2.8. TSP(1) implies that if α ă β and S is an α-forest, then S is also a
β-forest, and rSsα “ rSsβ . Thus, when α is clear, we will just write rSs.

Remark 2.9. As above, all notions can be relativised to an oracle z, giving the
notion of a pz, αq-forest. We write rSszα for the set of “infinite paths” through S.

Orthogonal forests.

Definition 2.10. Two sets A,B Ď ωăω are α-orthogonal if every σ P A and τ P B
are ďα-incomparable.

If A and B are α-orthogonal α-forests then rAsα and rBsα are disjoint, indeed
they are contained in disjoint Σ0

1`α sets (take the ďα-upward closures of A and B).
On the other hand it is possible that U and W are α-open and not orthogonal,
and so not disjoint, while rU sα and rW sα are disjoint. The reason is that when
α ą 0, there are σ P ωăω such that rσsα is empty, that is, the tree pωăω,ďαq is
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well-founded above σ. The set of such σ is Π1
1-complete, in particular, we cannot

identify such σ computably and exclude them from α-forests. However, if we know
that rU sα X rW sα “ H but σ P U XW , this gives us a proof that rσsα “ H, and
so we can ignore such σ.

Lemma 2.11. Let S be an α-forest. Suppose that Z0, Z1, . . . are pairwise disjoint
sets which are uniformly Σ0

1`α in rSsα. Then there are pairwise orthogonal, uni-
formly computable α-forests W0,W1, . . . , each α-open in S, such that Zi “ rWisα

for all i, and such that
Ť

iWi also is computable.

Proof. There are uniformly computable Ui, α-open in S, with Zi “ rUisα. To make
them pairwise orthogonal, we may first assume that |σ|α ą i for all σ P Ui. Then
define Wi Ď Ui as follows. For each σ and i, we determine if σ P Wi by induction
on |σ|α; we declare that σ P Wi if σ P Ui, and there is no ρ ňα σ in Wj for any
j ‰ i with j ă |σ|α. �

2.5. Approximations and translations.

α-approximations. Some of the following was discussed in [DGHTT]. We include it
in this paper for completeness. The main difference is that we work with α-forests
rather than all of ωăω.

Definition 2.12. Let S be an α-forest. An α-approximation of a function F : rSs Ñ
N is a function f : S Ñ N such that for all x P rSs, for all but finitely many σ ăα x,
fpσq “ F pxq.

Remark 2.13. Continuing Remark 2.8, if α ă β, S is an α-forest and f : S Ñ N is
an α-approximation of some function on rSs, then f is also a β-approximation of
the same function on rSs.

Let X be Σ0
β ^ Π0

β . A function F : X Ñ N is Σ0
β-measurable if the sets F´1tnu

for n P N are uniformly Σ0
β within X.

Proposition 2.14. Let S be an α-forest. A function F : rSs Ñ N is Σ0
1`α`1-

measurable if and only if it has a computable α-approximation f : S Ñ N.

We prove this proposition, and the rest of the results of this section, in Section 7.

Definition 2.15. Let S be an α-forest and let f : S Ñ N be an α-approximation
of a function F . An ordinal witness for the convergence of f is a function σ ÞÑ βpσq
from S to some ordinal γ satisfying:

(i) For all σ ďα τ from S, βpτq ď βpσq;
(ii) If σ ďα τ are from S and fpσq ‰ fpτq then βpτq ă βpσq.

Thus, the well-foundedness of γ “proves” that for all x P rSs, the sequence
xfpσqyσăαx

stabilises to the value F pxq.

Lemma 2.16. For every computable α-approximation f : S Ñ N there is a com-
putable ordinal γ and a computable witness β : S Ñ γ for the convergence of f .

The proof of Lemma 2.16 will use the following, which we will also need on its
own.

Lemma 2.17. If T is a well-founded tree, then there is a T -computable ordinal η
and a T -computable rank function r : T Ñ η.
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Translating between oracles, ordinals, and spaces. We will use four “translation
propositions”. For the first, let α be an ordinal and suppose that an oracle z
computes α. Every w ěT z also computes α, and every Σ0

1`αpzq set is also Σ0
1`αpwq,

uniformly in the indices by a w-computable function (as usual for functions on
indices, it can be made computable rather than just w-computable, but that is not
important). This can be translated to true stage relations.

Proposition 2.18. Suppose that w ěT z and that α is a z-computable ordinal.
Then there is a w-computable function h : ωăω Ñ ωăω such that:

(i) if σ ďw
α τ then hpσq ďz

α hpτq;
(ii) for all x P N , thpσq : σ ăw

α xu “ tρ : ρ ăz
α xu.

We can also pull back true stage relations by computable functions.

Proposition 2.19. Let α be a computable ordinal; let Φ: N Ñ N be a computable
function. Then there is a computable function h : ωăω Ñ ωăω such that:

(i) if σ ďα τ then hpσq ďα hpτq;
(ii) for all x P N , thpσq : σ ăα xu “ tρ : ρ ăα Φpxqu.

Computably isomorphic ordinals give rise to equivalent true stage relations.

Proposition 2.20. Suppose that α and β are two computably isomorphic ordinals.
Then there is a computable function h : ωăω Ñ ωăω such that:

(i) if σ ďβ τ then hpσq ďα hpτq;
(ii) for all x P N , thpσq : σ ăβ xu “ tρ : ρ ăα xu.

We can “unpair” true stage relations. Suppose that pz, xq ÞÑ xz, xy is a com-
putable bijection between N 2 and N (a computable “pairing function” for Baire
space). Let σ ÞÑ ppσq0, pσq1q be a corresponding computable “unpairing” of finite
strings (so for all px0, x1q P N 2, xi “

Ť

σăxx0,x1y
pσqi). Recall that for a computable

ordinal α, the relation σ ďρ
α τ is defined when |ρ| ě |τ |.

Proposition 2.21. For any computable ordinal α, there is a computable function
h : ωăω Ñ ωăω such that:

(i) For all σ, |hpσq| ď |pσq0|;

(ii) if σ ďα τ then hpσq ď
pτq0
α hpτq ď0 pτq1;

(iii) for all pz, xq P N 2, thpσq : σ ăα xz, xyu “ tρ : ρ ăz
α xu.

Propositions 2.19 to 2.21 relativise to any oracle.

3. Described classes

We introduce our class descriptions. We will start with very general descriptions.
These are sufficiently general to include all classes described by Wadge [Wad84],
Louveau [Lou83] and by Louveau and Saint-Raymond [LSR88b]. We will then
consider a restricted collection of descriptions, the acceptable ones. In Section 4
we will be able to classify all acceptable classes in terms of an analysis of their
ambiguous class.
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3.1. General class descriptions. As in [Lou83] and [LSR88b], we think of classes
as defined recursively. The simplest classes contain the constant partial functions.
Suppose that tΥi : i P Iu is a finite or countable collection of class descriptions.
Among these, we choose a special “initial” class Υi˚ . We then combine these classes
to a more complicated class Γ by specifying two ordinals ξ and η. The ordinal ξ
(which we will also denote by opΓq) denotes the level of Γ: Γ-functions will be
defined on Σ0

1`ξ ^ Π0
1`ξ sets. A Γ-function F on such a set X “ rSsξ will be

defined by choosing a function f : X Ñ I and a function Fi on X in the class Υi

for each i P I. We will then set F pxq “ Ffpxqpxq. Thus f ’s role is to decide, for each
x P X, which Fi to apply to x. The function f will be approximated on S in the
sense of Definition 2.12. The ordinal η ` 1 bounds the “mind-changes” permitted
along this approximation, in the sense of Definition 2.15. An approximation of the
function f is supplied with a witness β : S Ñ η ` 1. We require that the chosen
class Υi˚ is the initial value, meaning: if βpσq “ η then fpσq “ i˚. This requirement
to have an initial choice is what makes the class Γ non-self-dual.

Definition 3.1. A class description consists of an oracle y, and a labelled tree Γ
satisfying:

(i) The domain TΓ of Γ is a well-founded subtree of ωăω;
(ii) If s P TΓ is not a leaf, then Γpsq is a pair of ordinals pξ, ηq, with η nonzero,

which we denote by pξs, ηsq “ pξΓ
s , η

Γ
s q;

(iii) If s is a leaf of TΓ then Γpsq P t0, 1u;
(iv) If s, t P TΓ are not leaves and s ď t then ξs ď ξt;
(v) y computes Γ.

We use Γ to denote the pair pΓ, yq. If TΓ consists only of the root xy, we declare
opΓq “ ω1. Otherwise, we set opΓq “ ξxy. We write ηΓ for ηΓ

xy
. We write yΓ for y.

Here computing Γ means computing TΓ, the set of leaves of TΓ, the function
s ÞÑ Γpsq for leaves s of TΓ, and the ordinals ξs and ηs, uniformly in non-leaf
s P TΓ. There is a Turing-least oracle computing Γ, but at times we will want to
choose yΓ which is strictly Turing above that real. This will restrict the class of
oracles that are allowed to compute a name of a Γ-function.

As our ordinals are well-orderings of N (and thus countable), the definition
opΓq “ ω1 when the tree is trivial requires some discussion. We consider ω1 as
a symbol and declare that α ă ω1 for every ordinal α. Since ω1 is a limit, if, hypo-
thetically, TSP(5) were to extend to ω1, it would imply (via a regularity argument)
that any ω1-forest is an α-forest for some countable α (and the converse would
hold by TSP(1)). So we will take this as our definition: for any oracle z, S is a
pz, ω1q-forest if it is a pz, αq-forest for some z-computable ordinal α.

Definition 3.2. Suppose that Γ is a class description. A Γ-name consists of an
oracle z ěT yΓ, a pz, opΓqq-forest S, and a z-computable labelled tree N , whose
domain TN is the collection of s P TΓ which are not leaves of TΓ, and such that for
any s P TN , Npsq is a pair pfs, βsq “ pfNs , β

N
s q, satisfying:

(i) fs is a pz, ξsq-approximation on S (where ξs “ ξΓ
s ) of a function on rSs,

which we also denote by fs;
(ii) βs : S Ñ ηs ` 1 is a witness for the convergence of fs (where ηs “ ηΓ

s );
(iii) For all σ P S, fspσq is a child of s on TΓ;
(iv) For all σ P S, if βspσq “ ηs then fspσq is the leftmost child of s on TΓ.
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We use N to denote the name. We write zN for z and SN for S; we write fN for
fN
xy

and βN for βN
xy

.

As with class description, N being z-computable requires that S be z-computable,
and that fs æS and βs are z-computable functions, uniformly in s P TN . Note that
since z ěT yΓ, the ordinals ξs for s P TN are uniformly z-computable, so TSP(4)
implies that the relations ďz

ξs
are uniformly z-computable. The fact that ξs ě opΓq

for all s P TN implies that S “ SN is a pz, ξsq-forest (Remark 2.8), so the notion of
a pz, ξsq-approximation on S makes sense.

As we don’t use the ordinals ηs for true stage relations, only as bounds, we do
not require Γ to choose a particular version of ηs ` 1. Rather, we can think of a
function into ηs ` 1 as a function into ηs which also takes an extra special value
“8”, which we also denote by ηs.

Definition 3.3. Suppose that Γ is a class description, N is a Γ-name, and w P

SN Y rSN s. We define a leaf `pwq “ `N pwq of TΓ by recursion as follows: xy is a
predecessor of `pwq; if s P TN has been decided to be a predecessor of `pwq, then
we declare that fspwq is also a predecessor of `pwq. (Recall that for w P SN , fspwq
refers to the approximation function, and for w P rSN s, fspwq refers to the function
being approximated.)

We define FN pwq “ Γp`pwqq. (Recall that for a leaf s, Γpsq P t0, 1u).

When we refer to the function FN we mean FN ærSN s (that is, the function on
infinite sequences, excluding the finite ones), unless we mention otherwise.

Note that if TΓ consists of only the root (opΓq “ ω1), then TN is empty. So
a Γ-name is determined by only a z and an S; in this case FN is the constant
Γpxyq-value function on rSs.

Definition 3.4. Let Γ be a class description. For any z ěT yΓ, we let

Γpzq “
 

FN : N is a Γ-name & zN “ z
(

.

We let

Γ “
ď

tΓpzq : z ěT yΓu .

Informally, a Γpzq-name is a Γ-name N with zN “ z. Proposition 2.18 implies:

Lemma 3.5. Let Γ be a class description. If w ěT z ěT yΓ then Γpzq Ď Γpwq.
Indeed, we can w-effectively translate a Γpzq-name N to a Γpwq-name N 1 such that

FN “ FN
1

, uniformly in w and z.

Remark 3.6. The class Γ depends only on the order-types of the ordinals mentioned
by Γ, not their realisation as well-orderings of a subset of N. This follows from
Proposition 2.20

Sub-descriptions. Suppose that P is a labelled tree and s P P . The subtree Ps
issuing from s is defined to be the labelled tree defined on TP,s “ tt : ŝ t P TP u by
setting Psptq “ P pŝ tq.

Lemma 3.7. Suppose that Γ is a class description and s P TΓ. Then:

(a) Γs (equipped with yΓs “ yΓ) is a class description;
(b) if N is a Γ-name, then Ns is a Γs-name (we set SNs “ SN and zNs “ zN ).
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The classes Γs are those that are used in the inductive construction of Γ from
simpler classes. Note that consideration of sub-descriptions is why in Definition 3.1
we asked for ξs ď ξt whenever s ď t, rather than just ξxy ď ξt, which would have
sufficed up until now.

The subclasses Γpnq (for n such that pnq P TΓ) are the classes that were used
in the last step of the construction of Γ; so I “ tn : pnq P TΓu, and i˚ “ min I,
to use the notation of the discussion at the beginning of this section. If N is a
Γ-name, then for all x P rSs “ rSN s, FN pxq “ FNpnqpxq, where pnq “ fN pxq. That
is, the function fN “ fN

xy
is the function that chooses, for each x P rSs, which of

the functions FNpnq to apply to x in order to calculate FN pxq. For finite σ ăopΓq x

in S, fN pσq is the “stage |σ|opΓq-guess” of this choice fN pxq.

Duals.

Definition 3.8. Let Γ be a class description. We let Γ̌ be the result of switching
all the labels of the leaves of Γ (i.e., 0s become 1s and 1s become 0s).

If N is a Γ-name, then in the technical sense, it is also a Γ̌-name, but when we

interpret it as such, we write Ň . Then domFN “ domF Ň “ rSN s, and

F Ň “ 1´ FN .

3.2. Some examples. We show how our class descriptions include a variety of
classes from the literature. We use the following terminology.

Definition 3.9. Let Γ be a class description. A Γ-name N is total if SN “ ωăω.
A function F P Γ is total if F “ FN for some total Γ-name N .

For the following examples, if Λ is a collection of subsets of N , we say that
Γ “ Λ if the total functions in Γ are the characteristic functions of the sets in Λ.

a. Constants: Let TΓ consist only of a root. Let i P t0, 1u be the label of the root.
Then Γ is the collection of all constant functions with value i, defined on any Borel
set. Using the notation just introduced, Γ “ tHu when i “ 0 and Γ “ tN u when
i “ 1.

b. Σ0
α: let TΓ consist of the root, and two children p0q and p1q. Let the labels of

the leaves be 0 and 1, respectively. Set opΓq to be some ordinal ξ, and let ηΓ “ 1.
Then TSP(7) says that Γ consists of all functions 1A : X Ñ t0, 1u where X is
Σ0

1`ξ ^Π0
1`ξ, and A Ď X is Σ0

1`ξ within X. In terms of sets, Γ “ Σ0
1`ξ.

c. Hausdorff difference hierarchy : More generally, let TΓ be as in the previous
example, but allow η “ ηΓ to be larger than 1. Then Γ “ DηpΣ

0
1`ξq of the

Hausdorff difference hierarchy. This is proved in [DGHTT, Prop.3.8]. The main
takeaway is the dynamic characterisation of a set C in the class DηpΣ

0
1`ξq as one

for which membership x P C is the result of a guessing process which starts at
level η with “no”, and then allows mind-changes as the ordinal decreases.

d. One-sided separated unions: Generalising the previous example, let Υ be a
class description. Let Γ be the class description consisting of a root, and two
children p0q and p1q, such that the immediate sub-descriptions are Γp0q “ Υ̌ and

Γp1q “ Υ. Choose ξ “ opΓq ď opΥq and any η “ ηΓ. Then Γ “ SeppDηpΣ
0
1`ξq,Υq

is the collection of all sets of the form pC XA0q Y pC
AXA1q, where C P DηpΣ

0
1`ξq,

A0 P Υ and A1 P Υ̌.
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e. Two-sided separated unions: Let Υ and Λ be two class descriptions. Let Γ
be the class description consisting of a root, and three children p0q, p1q, and p2q,
such that the immediate sub-descriptions are Γp0q “ Λ, Γp1q “ Υ and Γp2q “ Υ̌.

Choose ξ “ opΓq ď opΛq, opΥq, and ηΓ “ 1. Then Γ “ BiSeppΣ0
1`ξ,Υ,Λq is the

collection of all sets of the form pC1XA1qYpC2XA2qYppC1YC2q
AXBq, where C1

and C2 are disjoint Σ0
1`ξ sets, A1 P Υ, A2 P Υ̌, and B P Λ. For a Γ-name N , the

corresponding sets are Ci “
 

x : fN pxq “ i
(

for i “ 1, 2, and the characteristic

functions of the sets Ai are FNpiq .

Below we extend this example to separated unions. More general two-sided sep-
arated unions, of the form BiSeppDηpΣ

0
1`ξq,Υ,Λq, as well as more complicated

separated unions and separated differences, can also be described, but their de-
scriptions are a little more complicated; a direct construction is given in [GTb].

3.3. Pointclasses. Each described class is a pointclass.

Proposition 3.10. Let Γ be a class description. Then Γ is closed under taking
continuous pre-images.

Proof. Follows from Proposition 2.19 (and Proposition 2.18). Let N be a total
Γ-name; let Φ: N Ñ N be continuous. By Lemma 3.5, we may assume that Φ
is zN -computable. For each s P TN let hs be given by Proposition 2.19 for ďzN

ξs
;

define a Γ-name M by letting fMs pσq “ fNs phspσqq and βMs pσq “ βNs phspσqq. Then
FM “ FN ˝ Φ. �

Next, we build a universal set. The following lemma implies that we can effec-
tively list all pz, ξq-approximations with convergence witnesses of the appropriate
form. The key is the existence of the default value at the beginning of the approx-
imation.

Lemma 3.11. Uniformly, given an oracle z, z-computable ordinals ξ and η, and an
index for partial z-computable functions f : ωăω Ñ N and β : ωăω Ñ η ` 1, and a
“default value” n˚ P N, we can compute an index for total z-computable functions
g : ωăω Ñ N and γ : ωăω Ñ η ` 1 satisfying:

(i) g is a pz, ξq-approximation of a function G : N Ñ N;
(ii) γ is a witness for the convergence of g;
(iii) For all σ, if γpσq “ η then gpσq “ n˚;
(iv) If f and β are total, f is a pz, ξq-approximation of a function F : N Ñ N,

β is a witness for the convergence of f , and for all σ, if βpσq “ η then
fpσq “ n˚, then G “ F .

Proof. This is fairly standard. We proceed recursively. Define fpxyq “ n˚ and
γpxyq “ η.

Given σ P ωăω with σ ‰ xy, let k “ |σ|zξ , and let τ be σ’s ďz
ξ-predecessor

(i.e., τ ďz
ξ σ and |τ |zξ “ k ´ 1.) Let ρ ďz

ξ σ be longest with fpρq and βpρq both

converging within k steps, and βpρq ă γpτq. If there is no such ρ, define gpσq “ gpτq
and γpσq “ γpτq. Otherwise, define gpσq “ fpσq and γpσq “ βpσq. �

As a result, for a class description Γ, we can list all total Γ-names. For simplicity,
suppose that Γ is computable. Then there are, for each oracle z, a list Nz

0 , N
z
1 , . . .

of total Γpzq-names such that Nz
e is z-computable, uniformly in e and z, and such

that Γpzq “
 

FN
z
e : e ă ω

(

. Using Proposition 2.18 for w “ ê z we get:
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Lemma 3.12. Let Γ be a computable class description. There is, for each oracle z,
a total Γpzq-name Nz, uniformly z-computable, such that

 

FN
z

: z P N
(

lists all
the total functions in Γ.

The join of these is a universal set for Γ. Fix a pairing function xz, xy as discussed
before Proposition 2.21.

Lemma 3.13. Let Γ be a computable class description and let xNzy be as in
Lemma 3.12. Then F pxz, xyq “ FN

z

pxq is in Γ.

Proof. For each non-leaf s P TΓ, let hs be given by Proposition 2.21 for the or-
dinal ξs. By slowing approximations (as in the proof of Lemma 3.11), we may
assume that for all s, σ and z, the values fzs pσq “ fN

z

s pσq and βzs pσq “ βN
z

s pσq
can be determined by consulting only z æ |σ|; we write fρs pσq and βρs pσq when

|ρ| ě |σ|. Now define a computable Γ-name M by letting fMs pσq “ f
pσq0
s phspσqq

and βMs pσq “ β
pσq0
s phspσqq; F

M is as required. �

Relativising to yΓ we get:

Proposition 3.14. For any class description Γ, there is a function in ΓpyΓq which
is universal for total Γ functions. Hence, Γ is a non-self-dual Wadge class.

Proof. The relativisation of Lemmas 3.12 and 3.13 is that there is a total ΓpxyΓ, zyq-

name N xy
Γ,zy, uniformly xyΓ, zy-computable, such that tFN

xyΓ,zy

: z P N u lists all

the total functions in Γ, and further that F pxz, xyq “ FN
xyΓ,zy

pxq is in Γ. This is
the universal function.

Now suppose towards a contradiction that 1 ´ F P Γ. By Proposition 3.10,

x ÞÑ 1´ F pxx, xyq P Γ, so fix z with FN
xyΓ,zy

pxq “ 1´ F pxx, xyq. Then

F pxz, zyq “ FN
xyΓ,zy

pzq “ 1´ F pxz, zyq,

a contradiction. �

3.4. Some closure properties. Let Γ be a class description, and let z ěT yΓ.

Proposition 3.15. If F is in Γpzq and X Ď domF is Σ0
1`opΓqpzq ^ Π0

1`opΓqpxq,

then F æX P Γpzq.

Proof. Let N be a Γpzq-name of F . By Lemma 2.7(c), there is a pz, opΓqq-forest
T Ď SN with rT s “ X. Define the required Γpzq-name M by restricting each
approximation pfNs , β

N
s q to σ P T . �

Proposition 3.16. Every F P Γpzq can be extended to a total function in Γpzq.

Proof. Let N be a Γpzq-name; let S “ SN . For s P TΓ a non-leaf, extend pfs, βsq “
pfNs , β

N
s q to functions pfs, βsq on all of ωăω as follows: for σ R S,

‚ If σ has no ăz
ξs

-predecessor in S, let fspσq be the leftmost child of s on TΓ,

and let βspσq “ ηs.
‚ If σ has a ăz

ξs
-predecessor in S, let τ be the longest such; set fspσq “ fspτq

and βspσq “ βspτq. �

Proposition 3.17. Let X be Σ0
1`opΓqpzq ^ Π0

1`opΓqpxq. Suppose that pXnq is a

partition of X into sets which are Σ0
1`opΓqpzq within X, uniformly in n. Let F : X Ñ

t0, 1u and suppose that for all n, F æXn P Γpzq, uniformly in n. Then F P Γpzq.
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Proof. Let S be a z-computable pz, opΓqq-forest such that rSszα “ X. By Lemma 2.11,
let pSnq be a uniformly z-computable sequence of sets, opΓq-open in S, pairwise
pz, opΓqq-orthogonal, such thatXn “ rSns

z
α, and such that

Ť

n Sn is also z-computable.
Let Nn be uniformly z-computable Γpzq-names such that F æXn “ FNn . Define

a Γpzq-name N by taking the “disjoint union” of the Nn’s: set SN “ S. For non-leaf
s P TΓ we define pfs, βsq “ pf

N
s , β

N
s q as follows: for σ P S,

‚ If there is a ρ ďz
opΓq σ and an n with σ P Sn X SNn , fix the longest such ρ

and define fspσq “ fNns pρq and βspσq “ βNns pρq.
‚ If there is no such ρ, define fspσq to be the leftmost child of s in TΓ, and
βspσq “ ηs. �

We state a corollary, that will be used in conjunction with Proposition 2.14. It
implies that Γpzq is closed under taking approximations at levels lower than opΓq.

Corollary 3.18. Let ξ ă opΓq. Suppose that X is Σ0
1`ξpzq ^ Π0

1`ξpzq, and that

g : X Ñ N is ∆0
1`ξ`1pzq-measurable. Suppose that Fn : X Ñ t0, 1u are uniformly

in Γpzq. Define G : X Ñ t0, 1u by Gpxq “ Fgpxqpxq. Then G P Γpzq.

Proof. For n P N let Xn “ g´1tnu. Since ξ ` 1 ď opΓq, the sets Xn are uniformly
Σ0

1`opΓq within X. By Proposition 3.15, the functions G æ Xn “ Fn æ Xn are

uniformly in Γpzq. By Proposition 3.17, G is in Γpzq. �

The propositions above were stated for functions on reals. As usual, their proofs
reveal uniformity in terms of manipulating names, and this uniformity will be used.
For example, in Proposition 3.17, observe that from the sequence xNny of names
for F æXn, we can z-computably construct the name N for F .

3.5. Effective containment.

Definition 3.19. Let Γ and Λ be two class descriptions; let N be a Γ-name and
let M be a Λ-name. We say that N and M are equivalent (and write N ” M) if
zN “ zM , SN “ SM , and FN “ FM .

In that definition, we implicitly assume that S “ SN “ SM is a pz, ξq-forest for
some ξ ď opΓq, opΛq.

Definition 3.20. Let Λ and Γ be class descriptions.

(a) We write

Λ Ď Γ

if yΛ ěT yΓ, and Λ Ď Γ, uniformly above yΛ: there is a yΛ-computable
function which, given a total Λ-name N , outputs a total Γ-name M equiv-
alent to N .

(b) We write

Λ ” Γ

if Λ Ď Γ and Γ Ď Λ.
(c) We write

Λ ă Γ

if Λ Ď Γ and Λ̌ Ď Γ.

Note that Λ ă Γ iff Λ̌ ă Γ iff Λ ă Γ̌.
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Lemma 3.21. The relations Ď and ă on class descriptions are transitive. The
relation ” is an equivalence relation.

The requirement in Definition 3.20 that the names be total comes from the fact
that if opΛq ‰ opΓq then the partial Λ-functions and the Γ-functions are not defined
on the same domains. However, this is not a serious restriction. If Λ Ď Γ and
ξ ď opΛq, opΓq then every F P Λ whose domain is Σ0

1`ξ ^ Π0
1`ξ is also in Γ,

effectively; this follows from Propositions 3.15 and 3.16.
In practice, we will always have opΓq and opΛq comparable (but both opΛq ą opΓq

and opΓq ă opΛq will occur in nature). So we can take ξ “ mintopΛq, opΓqu. How-
ever, incorporating this requirement into the definition would make the relation Ď
not transitive.

Definition 3.22. A sequence Θ̄ “ Θ0,Θ1, . . . of class descriptions is uniform if
yΘ0 , yΘ1 , . . . is constant y, and the class descriptions are uniformly y-computable.
We write yΘ̄ for y.

Note that if Γ is a class description and for all n, pnq P TΓ, then the sequence
Γp0q,Γp1q, . . . is uniform.

Definition 3.23. Let Γ be a class description and let Θ̄ “ Θ0,Θ1, . . . be a uniform
sequence of class descriptions. We write

Θ̄ Ď Γ

if Θn Ď Γ for all n, uniformly in n. Similarly, we write Θ̄ ă Γ if Θn ă Γ, uniformly.

3.6. Notation for constructed classes.

Notation 3.24. If Θ̄ is a uniform sequence of class descriptions and ξ is an ordinal,
then we write ξ ď opΘ̄q if for all n, ξ ď opΘnq.

Note that we are not requiring that opΘnq is the same for all n. Also note that
if ξ ď opΘ̄q then as opΘnq is yΘ̄-computable, so is ξ.

Definition 3.25. Suppose that:

(i) Θ̄ “ Θ0,Θ1, . . . is a uniform sequence of class descriptions;
(ii) ξ is an ordinal and ξ ď opΘ̄q; and

(iii) η is a nonzero yΘ̄-computable ordinal.

Then we let
SUη

ξ pΘ0,Θ1, . . . q

be the class description Γ determined by setting:

‚ yΓ “ yΘ̄;
‚ opΓq “ ξ;
‚ ηΓ “ η; and
‚ for all n, Γpnq “ Θn.

If η “ 1 then we write SUξpΘ0,Θ1, . . . q.

The notation is derived from the notion of separated unions. If Θ0 “ tHu and
η “ 1, then the sets in Γ are the ones of the form

Ť

ně1pCnXAnq, where An P Θn,

and C1, C2, . . . are pairwise disjoint Σ0
1`ξ sets. In the more general case, we add

Bz
Ť

n Cn, where B P Θ0. When η ą 1, under some restrictions, Γ is the class of
separated unions based on DηpΣ

0
1`ξq sets; see [GTb]. We observe that if Γ is a class
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description and for all n, pnq P TΓ, then Γ “ SUη
ξ pΓp0q,Γp1q, . . . q, where ξ “ opΓq

and η “ ηΓ.
For the following lemma and below, we write  SUη

ξ pΘ̄q for the dual of the class.

Lemma 3.26. Suppose that Θ̄ is a uniform sequence, ξ ď opΘ̄q, and η ą 0 is
yΘ̄-computable.

(a)  SUη
ξ pΘ̄q ” SUη

ξ pΘ̌0, Θ̌1, . . . q.

(b) Θ̄ Ď SUη
ξ pΘ̄q.

(c) If Λn Ď Θn, uniformly, and ξ ď opΛ̄q, then SUη
ξ pΛ̄q Ď SUη

ξ pΘ̄q.

Lemma 3.27. Suppose that opΓq ą ξ, Θ̄ ă Γ, ξ ď opΘ̄q, and η is yΘ̄-computable.
Then SUη

ξ pΘ̄q ă Γ.

Proof. Let N be a total SUη
ξ pΘ̄q-name; let z “ zN . Let F “ FN and Fn “ FNpnq .

So Fn P Θnpzq, uniformly, and so, as Θ̄ ă Γ, Fn P Γpzq and Fn P Γ̌pzq, uniformly.
By Proposition 2.14 and Corollary 3.18, as ξ ă opΓq, F P Γpzq and F P Γ̌pzq. This
is uniform in everything. �

3.7. The case η “ 1. Let Γ be a class description and let N be a Γ-name. For
s P TΓ let XN

s be the collection of x P rSN s such that s ď `pxq, where we use
the notation from Definition 3.3. That is, XN

s consists of those x for which the
procedure computing FN pxq “passes through” the node s.

In general, XN
s may be complicated. Suppose, however, that for all non-leaf s P

TΓ, ηs “ 1. In this case, if t is a child of s on TΓ then XN
t is Σ0

1`ξs
pzq ^ Π0

1`ξs
pzq

(where z “ zN ). In fact, XN
t is either Σ0

1`ξs
pzq or Π0

1`ξs
pzq within XN

s ; the latter

holds for the default (leftmost) child.

Definition 3.28. Let Γ be a class description satisfying ηs “ 1 for all non-leaf
s P TΓ; let N be a Γ-name. By induction on |s|, for s P TΓ we define SNs Ď SN as
follows:

‚ SN
xy
“ SN ;

‚ If t is a child of s on TΓ, then SNt “
 

σ P SNs : fNs pσq “ t
(

.

If t is the default child of s then SNt is pz, ξsq-closed in SNs ; otherwise, it is
pz, ξsq-open in SNs . Since ξs ď ξt, by induction on |s| we see that for non-leaf s, SNs
is a pz, ξsq-forest; and XN

s “ rSNs s
z
ξs

.
Thus, in the case that each ηs is 1, for each s, we do not need to define the

approximation fNs on all of SN , but rather, only on SNs . In the general case,
since XN

s may fail to be Σ0
1`ξs

pzq^Π0
1`ξs

pzq, we need to define our approximations

on all of SN at each node s.

3.8. Montone sequences.

Definition 3.29. A uniform sequence Θ0,Θ1, . . . is monotone if Θn Ď Θ̌n`1,
uniformly in n.

There are two main cases: either Θn`1 “ Θ̌n for all n, or Θn ă Θn`1 for all n.
It will be a consequence of our analysis that by passing to infinite subsequences,
these are the only two possibilities.

Proposition 3.30. Suppose that Θ̄ “ xΘ0,Θ1, . . .y is monotone, ξ ď opΘ̄q, and η
is yΘ̄-computable.
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(a) Θ̄ ă SUη
ξ pΘ̄q.

(b) SUη
ξ pΘ0,Θ1, . . . q Ď  SUη

ξ pΘ1,Θ2, . . . q.

(c) If Θ0 ă Θ1 then SUη
ξ pΘ0,Θ1, . . . q ă SUη

ξ pΘ1,Θ2, . . . q.

(d) If η1 ă η then SUη1

ξ pΘ̄q ă SUη
ξ pΘ̄q.

(e) If ξ1 ă ξ then SUξ1pΘ̄q ă SUξpΘ̄q.

Proof. (a) follows from Lemma 3.26(b) and Θ̄ being monotone.
(b) follows from Lemma 3.26(a),(c).
For (c), in light of (b), it suffices to show that SUη

ξ pΘ0,Θ1, . . . q Ď SUη
ξ pΘ1,Θ2, . . . q.

Let N be a SUη
ξ pΘ0,Θ1, . . . q-name. Define a SUη

ξ pΘ1,Θ2, . . . q-name M equivalent
to N by letting Mp0q be a Θ1-name equivalent to Np0q, and for n ě 2, let Mpnq be a
Θn`1-name equivalent to Npn´1q. It doesn’t matter how we define Mp1q. We define

βM “ βN and fM pσq “ 0 if fN pσq “ 0, otherwise fM pσq “ fN pσq ` 1.

For (d), SUη1

ξ pΘ̄q Ď SUη
ξ pΘ̄q is clear, as every SUη1

ξ pΘ̄q-name is also a SUη
ξ pΘ̄q-

name, and has the same interpretation. To see that SUη1

ξ pΘ̄q Ď  SUη
ξ pΘ̄q, let N be

a SUη1

ξ pΘ̄q-name. We define a SUη
ξ pΘ0,Θ1, . . . q name M equivalent to N by letting

Mpn`1q ” Ňpnq and setting βM “ βN and fM “ fN ` 1. The point is that η ą η1

so even if βN pσq “ η1, in M , we are allowed to take a non-default outcome.
(e) follows from (a) and Lemma 3.27. �

Notice that for any class description Γ and any ξ ă opΓq, SUη
ξ pΓ,Γ, . . . q ” Γ

(one direction relies on Corollary 3.18). So the ordinal opΓq may vary between
descriptions Γ of the same class. However, we can identify a largest ordinal among
all such descriptions.

Lemma 3.31. If Θ̄ is monotone, ξ ď opΘ̄q, and Γ is a description with Γ “

SUη
ξ pΘ̄q, then otppopΓqq ď otppξq.

Recall that when we write equality of boldface classes, we mean that they contain
the same total functions.

Proof. For a contradiction, suppose otppopΓqq ą otppξq, and fix F P SUη
ξ pΘ̄q uni-

versal, by Proposition 3.14. It suffices to show that 1´ F P Γ.
Fix z “ yΓ‘yΘ̄ and N an SUη

ξ pΘ̄q-name of F . Then Xn “ tx P N : fN
xy
pxq “ nu

is ∆0
1`ξ`1pzq. By Proposition 3.30(a) and monotonicity, 1´ FNpnq P SUη

ξ pΘ̄q “ Γ,
and so by Corollary 3.18, 1´ F P Γ. �

3.9. Acceptable descriptions.

Definition 3.32.

(a) A class description Γ is acceptable if for all non-leaf s P TΓ,
(i) ηΓ

s “ 1; and
(ii) for all n, ŝ n P TΓ, and the sequence Γŝ 0,Γŝ 1, . . . is monotone, uni-

formly in s.
(b) A uniform sequence Θ0,Θ1, . . . of class descriptions is acceptable if it is

monotone, and the class descriptions Θn are uniformly acceptable.

Uniform acceptability implies that for all n and non-leaf s P TΘn , the sequence
pΘnqŝ 0, pΘnqŝ 1, . . . is monotone, uniformly in s and n.
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Note that some of the class descriptions given in Section 3.2 are not acceptable.
Nevertheless, we can give acceptable descriptions for these classes.

b1. Σ0
α: let TΓ consist of the root, and children p0q, p1q, p2q, and so on. Let the

labels of the leaves alternate between 0 and 1, with even leaves labeled 0 and odd
leaves labeled 1. Set opΓq to be some ordinal ξ, and let ηΓ “ 1. Then Γ “ Σ0

1`ξ.

c1. Hausdorff difference hierarchy : The class DηpΣ
0
1`ξq has an acceptable descrip-

tion defined inductively on η as follows. First, suppose that η is a successor ordinal,
η “ γ ` 1. Set opΓq to be ξ, and let ηΓ “ 1. Let Γp0q be a leaf labeled 0, and let

Γpiq be an acceptable description for either DγpΣ
0
1`ξq (if i is even) or its dual (if

i is odd). If η is a limit ordinal, let xηky be a computable increasing and cofinal
sequence in η. We still set opΓq to be ξ, and let ηΓ “ 1. Let Γp0q be a leaf labeled

0, and let Γpiq be an acceptable description for DηipΣ
0
1`ξq.

Lemma 3.33.

(a) If Γ is acceptable, then the sequence Γp0q,Γp1q, . . . is acceptable,

(b) If Θ̄ is acceptable and ξ ď opΘ̄q then SUξpΘ̄q is acceptable.

Proposition 3.34. Suppose that Θ̄ is acceptable; ξ ď opΘ̄q, and η is yΘ̄-computable.
Then there is some acceptable Γ ” SUη

ξ pΘ̄q with opΓq “ ξ.

Proof. This is done by induction on η. Since everything has to be uniformly com-
putable, this is, in fact, yΘ̄-effective transfinite recursion on η.

Suppose that η ą 1 is a successor ordinal. By induction, for each n, let Λn ”
SUη´1

ξ pΘn,Θn`1, . . . q be acceptable. Then Θ0,Λ0,Λ1,Λ2, . . . is monotone: Θ0 Ď

Λ̌1 follows from Proposition 3.30(a); Λn Ď Λ̌n`1 follows from Proposition 3.30(b).
By Lemma 3.33, Γ “ SUξpΘ0,Λ0,Λ1,Λ2, . . . q is acceptable.

We check that Γ ” SUη
ξ pΘ̄q. In one direction, suppose that N is a SUη

ξ pΘ̄q-name;

we build a Γ-name M equivalent to N . Let z “ zN and S “ SN . To define M ,
we use the notation of Definition 3.28. We let SM

p0q “
 

σ P S : βN pσq “ η
(

; we let

Mp0q be the restriction of Np0q to SM
p0q (Proposition 3.15).

For simplicity, we may assume that for all σ P S, if βN pσq ă η then βN pτq “
η ´ 1 for some τ ďz

ξ σ in S. For all n we let Wn be the pz, ξq-open subset of S

generated by the strings σ with βN pσq “ η ´ 1 and fN pσq “ n. We will define

a SUη´1
ξ pΘn,Θn`1, . . . q-name Gn with SGn “ Wn; then, we let SM

pn`1q “ Wn and

let Mpn`1q be a Λn-name equivalent to Gn. To define Gn, we let βGn “ βN æWn.

We let pGnqp0q “ Npnq. Since Θ̄ is monotone, we can find a computable function
g : NÑ N and for each m, let pGnqpmq be a Θn`m-name, so that:

‚ gpnq “ 0; and
‚ for all k, pGnqgpkq is equivalent to Npkq.

For σ PWn we let fGnpσq “ gpfN pσqq.

In the other direction, suppose that N is a Γ-name. We define an SUη
ξ pΘ̄q-

name M equivalent to N . Again let z “ zN and S “ SN . For each n, let Kn be an
SUη´1

ξ pΘn,Θn`1, . . . q-name equivalent to Npn`1q (so SKn “ SN
pn`1q). Now, as Θ̄ is

monotone, find a computable function g and for each m, let Mpmq be a Θm-name
such that:

‚ Mp0q “ Np0q; and
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‚ for all n and k, pKnqpkq is equivalent to Mpgpn,kqq.

For σ P SN
p0q let fM pσq “ 0 and βN pσq “ η. For each n ě 1, for each σ P SN

pnq let

βM pσq “ βKnpσq and fM pσq “ gpn, fKnpσqq.

Suppose that η is a limit ordinal. Fix a computable increasing and cofinal se-
quence xηny in η. By induction, find acceptable Λn ” SUηn

ξ pΘ̄q. The sequence

Θ0,Λ1,Λ2,Λ3, . . . is monotone: Θ0 Ď Λ̌1 follows from Proposition 3.30(a); Λn Ď
Λ̌n`1 follows from Proposition 3.30(d). Hence Γ “ SUξpΘ0,Λ1,Λ2, . . . q is accept-
able.

The argument that Γ ” SUη
ξ pΘ̄q is a little simpler than the successor case. To

translate a SUη
ξ pΘ̄q-name N to a Γ-name M , we of course keep the default outcome

Mp0q “ Np0q. Suppose that σ P S is minimal with βN pσq ă η. Then βN pσq ă ηn
for some n ě 1. Take least such, and set σ P SM

pnq (putting all of its successors in

pS,ďz
ξq into SM

pnq as well). We then let Mpnq be a Λn-name equivalent to a SUηn
ξ pΘ̄q-

name Gn defined by βGn “ βN æSM
pnq, f

Gn “ βN æSM
pnq, and pGnqpkq “ Npkq. The

point is that we don’t have to worry about the default outcome of Gn, since we
already have βN pσq ă ηn.

The other direction is exactly as in the successor case. �

By Lemma 3.31, it follows that amongst the class descriptions of a given class Λ,
the acceptable descriptions have the largest von-Neumann ordinal (and we will
eventually show that every Borel Wadge class has an acceptable description). We
can take this to be the ordinal of the class. For equivalent definitions of the ordinal
level of a Borel Wadge class see [LSR88a].

In light of Proposition 3.34, one might ask why we allow η ą 1 in our general class
descriptions in the first place. The answer is that classes SUη

ξ pΘ̄q with η ą 1 show up
naturally in our classification of simpler class descriptions, in particular, in the proof
of Proposition 4.9; so we have designed our descriptions to easily accommodate
them. Another reason is that natural descriptions of more complicated classes,
such as BiSeppDηpΣ

0
1`ξq,Γq, and separated differences require η ą 1. Descriptions

with η ą 1 are also used in [GTb] to characterise the effective reduction property.

4. Classification of acceptable classes

We now give our classification of acceptable classes, by analysing their ambiguous
classes. This resembles the work in [Lou83], but is much simplified; it also relies on
our effective methods.

Definition 4.1. For a class description Γ and z ěT yΓ, we let

∆pΓpzqq “ Γpzq X Γ̌pzq

and

∆pΓq “ ΓX Γ̌.

Note that the first includes partial functions, while for the second we will usually
only consider total functions.

Definition 4.2. Let Γ be an acceptable class description.

(1) Γ has zero type if opΓq “ ω1, i.e., if TΓ “ txyu.
(2) Γ has countable type if there is an acceptable sequence Θ̄ such that:
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‚ Θ̄ ă Γ;
‚ yΘ̄ “ yΓ;
‚ opΘnq ě opΓq for all n; and
‚ For any z ěT yΓ, for any F P ∆pΓpzqq, there is a partition of X “

domF into sets Yn that are Σ0
1`opΓqpzq within X (uniformly), such

that F æYn P Θnpzq, uniformly.
(3) Γ has uncountable type if for every z ěT yΓ, for every F P ∆pΓpzqq whose

domain is Π0
1`opΓqpzq, there is some acceptable Λ such that:

‚ Λ ă Γ;
‚ yΛ “ z;
‚ opΛq ě opΓq; and
‚ F P Λpzq.

Remark 4.3. Suppose that Γ has countable type, witnessed by Θ̄. Let z ěT yΓ,
X be Σ0

1`opΓqpzq ^ Π0
1`opΓqpzq, xYny a partition of X into sets that are uniformly

Σ0
1`opΓqpzq within X, and F : X Ñ t0, 1u be such that F æYn P Θnpzq, uniformly.

Then by Proposition 3.17, F P ∆pΓpzqq.
Hence, for both the countable and uncountable type, the condition described is

actually a characterisation of ∆pΓpzqq.

We say that an acceptable class description is classified if it has one of the three
types. The main theorem of this section is:

Theorem 4.4. Every acceptable class description is classified.

Let us provide some examples. Fix Θ̄ the sequence 0, 1, 0, 1, . . . . For any ξ, let
Γ “ SUξpΘ̄q, so that Γ “ BiSeppΣ0

1`ξ, 1, 0q “ Σ0
1`ξ. Then Γ has countable type,

where the witnessing sequence is this same Θ̄. This is immediate: let F P ∆pΓpzqq;
for i ă 2, let Xi “ F´1ris. Then pX0, X1q partition domF into sets that are
relatively ∆0

1`ξpzq, and F is constant on both these sets.

For a slightly more complicated example, consider Λ “ D2pΣ
0
1`ξq, which is

described by an acceptable Λ constructed in example c1 after Definition 3.32: if Γ
is the standard acceptable description for Σ0

ξ then Γ “ SUξp0,Γ, Γ̌,Γ, Γ̌, . . . q. In

this case we let Θn “ Γ and Θn`1 “ Γ̌. To see that this satisfies the definition,
let F P ∆pΛpzqq. We can partition X “ domF into four sets, each Σ0

1`ξpzq within
X: those z P X for which the Λ-name for F moves off the default outcome before
the Λ̌-name does, and it moves to an even outcome pnq; those z P X for which the
Λ-name moves off the default outcome first and moves to and odd outcome; and
two similar sets for when the Λ̌-name is first to move. On each of these four sets,
F is either in Γpzq or in Γ̌pzq, depending on the parity of the outcome chosen.

On the other hand, let Γ “ SU1p0, 1, 0, . . . q be the standard acceptable name
for Σ0

2; and let Υ “ SU0pΓ, Γ̌,Γ, Γ̌, . . . q, so that Υ “ BiSeppΣ0
1,Π

0
2,Σ

0
2q. It will be a

consequence of Theorem 4.7 that Υ has uncountable type. Indeed, by examining the
proofs of Proposition 4.8 and Proposition 4.9, we can see that for any F P ∆pΥq,
F P BiSeppΣ0

1,Π
0
2, DηpΣ

0
1qq for some sufficiently large η ă ω1, and all of these

classes are ă Υ; and so are as required for uncountable type.

4.1. How classification helps. The purpose of the notion of type is to tell us
about the ambiguous classes, and the cofinality of the class in the Wadge degrees.
If Γ is an acceptable description, there will be three cases:
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(i) opΓq “ ω1;
(ii) ∆pΓq is a principal pointclass, the least upper bound in the Wadge degrees

of a countable sequence of degrees;
(iii) ∆pΓq is the (necessarily uncountable) union of those Λ Ă ∆pΓq.

These three cases will not exactly correspond to the three sorts of types we have
just defined. It will turn out that case (b) happens only when Γ has countable type
and opΓq “ 0; if Γ has uncountable type or 0 ă opΓq ă ω1, then case (c) will hold.
We summarise this in the following two propositions.

Proposition 4.5. Let Γ be an acceptable class description. If Γ has countable type,
witnessed by Θ̄, and opΓq “ 0, then ∆pΓq is principal, and is the least principal
pointclass containing

Ť

n Θn.

Proposition 4.6. Let Γ be an acceptable class description. If Γ has uncountable
type, or 0 ă opΓq ă ω1, then ∆pΓq “

Ť

tΛ : Λ is acceptable and Λ ă Γu, and is
non-principal.

One can think of Proposition 4.5 as covering two cases depending on the character
of the sequence Θ̄. As mentioned above, the separation theorem will imply the
semi-linear-ordering property for described classes: for any two class descriptions Γ
and Λ, either Λ Ď Γ or Γ Ď Λ̌. This will imply that if Θ̄ is monotone then it has a
subsequence which is ă-increasing, or it eventually alternates between a class and
its dual. In the first case, ∆pΓq above will have cofinality ω in the Wadge degrees;
in the latter, it will be a successor of the two dual classes which form a tail of Θ̄.

The discrepancy between the type of a class and its cofinality in the Wadge de-
grees would lead one to ask why we have chosen to define countable and uncountable
type as we have. What is countable about a class of uncountable cofinality? The
heart of the matter is in our general plan for proving Theorem 4.4 (and in partic-
ular, the proof of Proposition 4.9 below). Indeed, given an acceptable description,
we can easily tell its type.

Theorem 4.7. Let Γ be an acceptable class description, and suppose that opΓq ă
ω1. Let s˚ be the leftmost leaf of TΓ (necessarily of the form 0n for some n).

(a) If for all s ă s˚, ξΓ
s “ opΓq, then Γ has countable type.

(b) Otherwise, Γ has uncountable type.

That is, Γ has countable type if climbing from the root to the leftmost leaf s˚,
the ordinal labels are constant; it has uncountable type if the ordinal labels increase
at some point. The class Γ has countable cofinality (among non-self dual pairs) if
the ordinal labels along s˚ are all 0.

The real answer to the question “what is countable about a countable type with
uncountable cofinality” relies on an alternative understanding of the ordinal level
of a class. Let Γ be a class description. Ignoring computability issues, we can
define a class description Λ “ Γ´opΓq by subtracting opΓq from all ξ-ordinal labels:
opΓq ` ξΛ

s “ ξΓ
s for all non-leaf s P TΓ. The class Λ is the “opΓq-jump inversion”

of Γ: F P Γ if and only if F “ H ˝ g where H P Λ and g is Σ0
1`opΓq-measurable.

Equivaletly, g can be taken to be the opΓq-iterated jump function, relative to some
oracle (see Lemma 7.11 below). Indeed, opΓq can be characterised as the greatest
ordinal α such that Γ is the “α-jump” of a class Λ ([LSR88a]). We remark that
taking the α-jumps of classes is one of the main staples of all analyses in print of
Borel Wadge classes, from Wadge’s [Wad84] to [KM19]. The true stage relations
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allow us to argue about classes directly, without needing to transform them using
iterated jumps.

For our matter, Theorem 4.7 implies that jump and jump inversion preserve
the type of a class. An acceptable Γ has countable type if and only if its opΓq-
jump inversion Λ has countable cofinality in the Wadge degrees. Equivalently, if
it has countable cofinality among all classes of level ě opΓq. For example, Σ0

1`ξ

has countable type because among classes of level ě ξ, it is the successor of the
pair tHu, tN u; and D2pΣ

0
1`ξq is the successor of the pair Σ0

1`ξ,Π
0
1`ξ among such

classes.

4.2. Proving the classification theorem. We turn to the proof of Theorem 4.7,
which clearly implies Theorem 4.4. As one would guess, the proof is by induction
on the length of the leftmost leaf s˚ of Γ. Note that this is traditional induction
on N, not transfinite induction on the rank of TΓ. The induction has three parts,
depending on the type and ordinal level of the default sub-class Γp0q:

Proposition 4.8. Let Γ be an acceptable class description, and suppose that opΓq ă
ω1.

(a) If opΓp0qq “ ω1 then Γ has countable type.
(b) If opΓq ă opΓp0qq ă ω1, or if Γp0q has uncountable type, then Γ has uncount-

able type.
(c) If opΓp0qq “ opΓq and Γp0q has countable type then Γ has countable type.

To prove Proposition 4.8 we will use:

Proposition 4.9. Suppose that Γ is classified and that opΓq ă ω1. Then for all
ξ ă opΓq, for all z ěT yΓ, if F P ∆pΓpzqq and domF is Π0

1`ξpzq, then there is some
acceptable Λ such that:

‚ Λ ă Γ;
‚ yΛ “ z;
‚ opΛq ě ξ; and
‚ F P Λpzq.

We note that for any Γ, if the conclusion holds for some ξ ď opΓq then it holds
for all ξ1 ď ξ. Hence the proposition holds for all Γ which have uncountable
type. Indeed, what it says, in some sense, is that if opΓq ą 0 then Γ has “weak
uncountable type”, even if it has countable type. This will imply Proposition 4.6
(apart from being used for Proposition 4.8). Due to its length, we delay the proof
of Proposition 4.9 to the end of this section.

The starred class. Toward proving Proposition 4.8, we define a sub-class Γ˚ of Γ,
consisting of functions that never take the default outcome at the root. This is a
subclass of ∆pΓq which behaves nicely. For example, it will always have countable
type (Proposition 4.12). The main step of the argument is Proposition 4.13, which
says that we can understand a set in ∆pΓq by separating into two parts: on a
relative closed set, we stay on the default outcome, and so in ∆pΓp0qq; on the rest,
we’re in Γ˚.

Definition 4.10. Let Γ be a class description. A Γ˚-name is a Γ-name N for
which for all σ P SN , βN pσq ă ηΓ.
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In particular, if ηΓ “ 1 this means that fN “ fN
xy

never changes: for all σ ďz
opΓq τ

in SN , fN pτq “ fN pσq.
We let Γ˚pzq denote the collection of all functions FN , where N is a Γ˚-name

and zN “ z. We extend the relations of Definition 3.20 to Γ˚ as expected.

Lemma 4.11. If Γ is acceptable, then for all z ěT yΓ, Γ̌˚pzq ” Γ˚pzq.

As usual, everything is as uniform as possible. Since Γ˚pzq Ď Γpzq, it follows
that Γ˚pzq Ď ∆pΓpzqq.

Proof. Suppose that N is a Γ̌˚-name. For each n let Mn`1 be a Γpn`1q-name

equivalent to Npnq; set fM pσq “ fN pσq`1 and βM pσq “ βN pσq, which is permitted

since βN pσq ă ηΓ. �

As a result, when Γ is acceptable, Λ Ď Γ˚ implies Λ ă Γ˚. Informally, the
following proposition says that Γ˚ has countable type.

Proposition 4.12. For any acceptable Γ with opΓq ă ω1 there is an acceptable
sequence Θ̄ satisfying:

‚ Θ̄ ă Γ˚;
‚ yΘ̄ “ yΓ;
‚ opΘnq ě opΓq for all n; and
‚ For any z ěT yΓ, for any F P Γ˚pzq, there is a partition of X “ domF into

sets Yn that are Σ0
1`opΓqpzq within X (uniformly), such that F æYn P Θnpzq,

uniformly.

Proof. Let Θn “ Γpnq. Lemma 3.33 says that Θ̄ is acceptable. The (easy) proof

of Lemma 3.26(b) shows that Θ̄ ă Γ˚. Let N be a Γ˚-name; recall that SN
pnq “

 

σ P SN : fN pσq “ n
(

. The sets SN
pnq are pairwise pz, opΓqq-orthogonal, and FN æ

rSns P Θnpzq. �

Proposition 4.13. Suppose that Γ is acceptable, z ěT yΓ, and F P ∆pΓpzqq. Then
there is partition of X “ domF into a set Y , Π0

1`opΓqpzq within X, and a set Z,

Σ0
1`opΓqpzq within X, such that:

‚ F æY P ∆pΓp0qpzqq; and
‚ F æZ P Γ˚pzq.

Proof. This is a “stage comparison” argument. Let N be a Γpzq-name and M be a
Γ̌pzq-name such that F “ FN “ FM . We may assume that SN “ SM , call it S.

Define
T “

 

σ P S : βN pσq “ βM pσq “ 1
(

;

then T is pz, opΓqq-closed in S, so Y “ rT s is Π0
1`opΓqpzq within X. Let W “ SzT ,

which is pz, opΓqq-open in S; we let Z “ rW s. We decompose W into two parts:

W` “

!

σ PW : pDτ ďz
opΓq σq βN pτq “ 0 & βM pτq “ 1

)

,

and W´ “ W zW`. Let Z` “ rW`s and Z´ “ rW´s. The sets Z´ and Z`

partition Z, and are both Σ0
1`opΓqpzq in Z, and so in X. Note that W` and W´

are pz, opΓqq-orthogonal.
Since fN pσq “ fM pσq “ 0 for all σ P T , Np0q and Mp0q with SNp0q “ SMp0q “ T

are Γp0q- and Γ̌p0q-names for F æY .
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The restriction of N to W` shows that F æZ` P Γ˚pzq. Similarly, the restriction
of M to W´ shows that F æZ´ P Γ̌˚pzq; by Lemma 4.11, F æZ´ P Γ˚pzq. Since W`

and W´ are orthogonal, the proof of Proposition 3.17 shows that F æZ P Γ˚pzq. �

Ignoring our major debt (Proposition 4.9), we can now finish the proof.

Proof of Proposition 4.8. (a): The main point in this case is that for any z, ∆pΓp0qpzqq
contains only the empty partial function, whence by Proposition 4.13, ∆pΓpzqq “
Γ˚pzq. Let Θ̄ be as provided by Proposition 4.12 for Γ; it is as required.

(b): Let z ěT yΓ and let F P ∆pΓpzqq, with X “ domF being Π0
1`opΓqpzq.

Obtain a decomposition X “ Y Y Z from Proposition 4.13; then Y is also
Π0

1`opΓqpzq.

In either case, we can find some acceptable Λ ă Γp0q with yΛ “ z, opΛq ě opΓq
and F æ Y P Λpzq. If Γp0q has uncountable type this is by definition; if opΓq ă
opΓp0qq ă ω1 this is by Proposition 4.9.

Now let

Υ “ SUopΓqpΛ,Γp0q,Γp1q,Γp2q, . . . q;

except that we update the oracle of all classes to be z (as yΛ “ z). This is a class
description since opΛq ě opΓq. The sequence Λ,Γp0q,Γp1q,Γp2q, . . . is acceptable
since Λ ă Γp0q. By Lemma 3.33, Υ is acceptable. By Proposition 3.30(c), Υ ă Γ.

The fact that F æY P Λpzq and F æZ P Γ˚pzq implies F P Υpzq.

(c): Let Θ̄ witness that Γp0q has countable type. Let

Λn “ SUopΓqpΘn,Γp0q,Γp1q,Γp2q, . . . q.

Note that opΘnq ě opΓp0qq “ opΓq. Since Θn ă Γp0q, each Λn is acceptable. By

Proposition 3.30(c), Λ̄ ă Γ. Monotonicity of Θ̄ implies that of Λ̄: the argument is
similar to that of Proposition 3.30(c).

Let z ěT yΓ and F P ∆pΓpzqq. Obtain a partition domF “ Y Y Z given
by Proposition 4.13; say Y “ rT s and Z “ rW s where T is pz, opΓqq-closed in S
and W is pz, opΓqq-open in S (where domF “ rSs). By assumption (and because
opΓp0qq “ opΓq), there are pairwise pz, opΓqq-orthogonal Tn Ď T , pz, opΓqq-open in T ,
such that Yn “ rTns partition Y and F æYn P Θnpzq. Let Sn be the pz, opΓqq-open
subset of S generated by Tn. Add to S0 those σ PW with no ďz

opΓq-predecessor in T .

Then the Sn are pairwise pz, opΓqq-orthogonal and Xn “ rSns partition domF . It
is not difficult to see that F ærSns P Λnpzq. �

This completes the proof of Theorem 4.7, and thus of Theorem 4.4.

4.3. Consequences of classification. Before we prove Proposition 4.9, we verify
the desired consequences of classification.

Proof of Proposition 4.5. That ∆pΓq contains
Ť

n Θn follows from Remark 4.3.

∆pΓq is closed under continuous pre-images because both Γ and Γ̌ are.

Suppose Λ Ě
Ť

n Θn is a principal Wadge pointclass, i.e., there is some total
G P 2N with

Λ “ tG ˝ f : f continuousu.

(Again, we are identifying subsets of N with their characteristic functions.)
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Fix F P ∆pΓq total. By countable type for opΓq “ 0, and because F is total,
there is actually a clopen partition of N into sets Yn such that F æ Yn P Θn. By
Proposition 3.16, we may extend each F æYn to a total Fn P Θn.

For each n, fix a continuous gn such that Fn “ G˝gn. Then define g “
Ť

n gn æYn;
g is continuous, with F “ G ˝ g, and so ∆pΓq Ď Λ.

It remains to show that ∆pΓq is principal. For each n, fix Hn a universal Θn

function. Define H by Hpnˆxq “ Hnpxq. H P ∆pΓq by Remark 4.3. Every total
function in Θn is continuously reducible to Hn, and so to H by preppending n. By
the previous argument, the continuous pre-images of H contains ∆pΓq. Thus ∆pΓq
is principal. �

Proposition 4.5 allows us to identify the successor of a dual pair of classes, or of
an increasing ω-sequence of classes.

Proposition 4.14. Let Θ̄ be an acceptable sequence. The least principal pointclass
containing

Ť

n Θn is ∆pΓq, where Γ “ SU0p0, Θ̄q.

Here again 0 is the standard description of tHu. In particular, when Θ̄ is an
alternating sequence Θ, Θ̌,Θ, . . . , the next non-self-dual pair above the pair Θ, Θ̌
is Γ “ BiSeppΣ0

1,Θ, tHuq and its dual.

Proof. By the proof of Proposition 4.12, Θ̄ witnesses that Γ˚ has countable type.
Since Γ0 “ tHu, Θ̄ witnesses that Γ has countable type (see the proof of Proposi-
tion 4.8(a)). The result now follows from Proposition 4.5. �

Next, to the uncountable case.

Proof of Proposition 4.6. The equality ∆pΓq “
Ť

tΛ : Λ is acceptable and Λ ă Γu
follows from the definition of uncountable type, if Γ has uncountable type, and from
Proposition 4.9, if opΓq ą 0. Since each acceptably described Λ is non-self-dual,
and ∆pΓq is self-dual, it follows that ∆pΓq is non-principal. �

Remark 4.15. Proposition 4.6 did not actually state that in these cases, the co-
finality of ∆pΓq is uncountable (under the Wadge ordering). This is because
this fact requires Wadge’s semi-linear-ordering principle, at least for acceptably
described classes, which we will only be able to deduce later (it follows from
Lemma 6.2 below; for a simpler proof, see [GTb]). Using this principle, suppose,
for a contradiction, that there is a countable set Y of acceptable Λ ă Γ such
that ∆pΓq “

Ť

tΛ : Λ P Y u. We can then produce a sequence Θ0,Θ1, . . . with
Θn Ď Θ̌n`1 such that ∆pΓq “

Ť

n Θn. By Lemma 6.4 below, if we update to a suffi-
ciently strong oracle, Θ̄ is an acceptable sequence. By Proposition 4.5, the sequence
Θ̄ has a least upper bound ∆pΛq, which is principal. Then ∆pΓq “

Ť

n Θn Ĺ ∆pΛq.
But the minimality of ∆pΛq implies that ∆pΛq Ď Γ, and since ∆pΛq is self-dual, it
follows that ∆pΛq Ď ∆pΓq.

The following is not needed at any point in our analysis, but it is included for
the sake of aesthetics.

Proposition 4.16. There is no acceptable description Γ which has both countable
and uncountable type.

Proof. Note that Propositions 4.5 and 4.6 together imply that no acceptable Γ with
opΓq “ 0 can have both countable and uncountable type. We can then use jump
inversion to conclude the general case. Alternatively, we argue directly as follows.
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Suppose that Γ has both countable and uncountable type. Let Θ̄ witness that Γ
has countable type. By Proposition 4.14, let Υ be acceptable such that ∆pΥq is the
least principal pointclass continaing

Ť

n Θn. By minimality, ∆pΥq Ď ∆pΓq. Since
∆pΥq is principal and Γ has uncountable type, there is some acceptable Λ ă Γ with
opΛq ě opΓq and ∆pΥq Ď Λ, whence

Ť

n Θn Ď ∆pΛq. Since opΛq ě opΓq, the fact
that Θ̄ witnesses that Γ has countable type, together with Proposition 3.17, shows
that ∆pΓq Ď ∆pΛq. This contradicts Λ ă Γ. �

It follows that Theorem 4.7 gives an exact characterization of when an acceptable
description has countable or uncountable type.

4.4. Paying our debts. It remains to give the proof of Proposition 4.9.

Proof of Proposition 4.9. We remark that the stipulation opΓq ă ω1 is necessary,
because if opΓq “ ω1, then ∆pΓpzqq “ tF u where F is the empty partial function,
and there can be no Λ ă Γ.

Now as noted above, if the conclusion holds for some ξ ď opΓq then it holds for
all ξ1 ď ξ. Hence the proposition holds for all Γ which have uncountable type. So
it remains to show that the proposition holds for classes Γ which have countable
type. Let Γ have countable type, witnessed by Θ̄; and let ξ ă opΓq.

There are two main cases, depending on whether opΓq is a successor or a limit.

The successor case generalises the Hausdorff-Kuratowski theorem. Suppose that
opΓq is a successor; by our observation above, we may assume that opΓq “ ξ ` 1.

Fix some z ěT yΓ, and let F : X Ñ t0, 1u be in ∆pΓpzqq, where X “ rSs and S
is a pz, ξq-forest (in this case of the proof, we do not need to assume that S is
pz, ξq-closed in ωăω). Let pYnq be a partition of X into uniformly Σ0

1`opΓqpzq sets,

such that F æYn P Θnpzq, uniformly.
As X is Σ0

1`ξpzq ^ Π0
1`ξpzq, and ξ ă opΓq, X is ∆0

1`opΓqpzq. Thus the Yn

are uniformly ∆0
1`opΓqpzq sets, and the function x ÞÑ n if x P Yn is ∆0

1`opΓqpzq-

measurable. By the “limit lemma” Proposition 2.14, since opΓq “ ξ ` 1, f has a
z-computable pz, ξq-approximation on S, which we also denote by f . Note that
here we use that S is a pz, ξq-forest rather than only a pz, opΓqq-forest.

By Lemma 2.16, there is a z-computable ordinal η and a z-computable witness
β : S Ñ η for the convergence of f .

Let
Υ “ SUη

ξ pΘ̄q,

except that we set yΥ “ z rather than yΘ̄ “ yΓ (this is necessary since η is only
z-computable). This class is well-defined since ξ ď opΘ̄q (as opΓq ď opΘ̄q). By
Lemma 3.27, Υ ă Γ. By Proposition 3.34, Υ is equivalent to some acceptable Λ
with opΛq “ ξ. So it remains to show that F P Υpzq.

Define an Υpzq-name N with SN “ S, and at the root let pfN , βN q “ pf, βq.
For each n, let Npnq be a Θnpzq-name for an extension of F æ Yn to all of X

(Propositions 3.15 and 3.16). Then FN “ F , as required.

Next, we consider the case that opΓq “ λ is a limit ordinal. We perform an
analysis similar to Wadge’s analysis of ∆0

γ sets. Before we consider a particular
F P ∆pΓq, we first describe the possible classes we will be using for Λ. Fix some
z ěT yΓ, and recall that we fixed some ξ ă λ. By TSP(5), let

ξ ă λ0 ă λ1 ă λ2 ă . . . ,
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be increasing, yΓ-computable and cofinal in λ, such that for every σ P ωăω, if
k “ |σ|zλ is the height of σ in the tree pωăω,ďz

λq, then k “ |σ|zλk and rσszλ is

∆0
1`λk

pzq, as for all τ , σ ďz
λ τ ðñ σ ďz

λk
τ .

Fix a z-computable ordinal δ. By recursion on α ď δ we define sequences Λ̄α “
Λα,0,Λα,1 ¨ ¨ ¨ of classes, with yΛ̄α “ z and opΛα,kq “ λk, as follows:

‚ We let
Λ0,k “ SUλkpΘ̄q

(except that as mentioned, we set the oracle to be z); this is well-defined
since λk ď λ ď opΘ̄q.

‚ For any α ă δ, we let

Λα`1,k “ SUλkpΛα,k,Λα,k`1,Λα,k`2, . . . q

and again note that this is well-defined since opΛα,nq “ λn ě λk when
n ě k.

‚ For limit α ď δ, let α0, α1, . . . be a z-computable, cofinal increasing se-
quence in α; we let

Λα,k “ SUλkpΛαk,k,Λαk`1,k`1,Λαk`1,k`2, . . . q

(As usual, technically, these class descriptions are defined by z-effective transfinite
recursion.) We verify that:

(a) For all α ď δ, Λ̄α is acceptable and strictly increasing: Λα,k ă Λα,k`1 for
all k; and

(b) For all β ă α ď δ, Λ̄β ă Λα,0.

(And again as usual, to make this work, everything is uniform; so for example,
the computable functions that witness the monotonicity of Λ̄α are constructed by
z-effective transfinite recursion.)

Both (a) and (b) are proved simultaneously by induction on α ď δ. We start with
α “ 0, where the classes Λ0,k are acceptable since Θ̄ is acceptable (Lemma 3.33).
We have Λ0,k ă Λ0,k`1 by Proposition 3.30(e).

For the successor case, let α ă δ. Each Λα`1,k is acceptable by (a) and
Lemma 3.33. To see that Λα`1,k ă Λα`1,k`1 use Proposition 3.30(b),(e). For (b),
Λ̄α ă Λα`1,0 follows from Proposition 3.30(a).

For limit α ď δ, the argument for (a) is the same as the successor case, noting
that by induction, Λα0,0 ă Λα1,1 ă Λα2,2 ă ¨ ¨ ¨ . For (b), we again note that
Λαk,k ă Λα,0 and use induction: for any β ă α, for sufficiently large k, Λβ,m ă

Λαk,k.
Next, by induction on α, we show:

(c) For all α ď k, Λ̄α ă Γ.

To see this, we repeatedly use Lemma 3.27, using the fact that opΓq ą λk.

Now again fix some z ěT yΓ, and let F : X Ñ t0, 1u be in ∆pΓpzqq, where
X “ rSs and S is a pz, ξq-tree, i.e., is pz, ξq-closed in ωăω. Let pYnq be a partition
of X into sets which are uniformly Σ0

1`λpzq, such that F æYn P Θnpzq, uniformly.
By Lemma 2.11, let Sn be pairwise pz, λq-orthogonal subsets of S, pz, λq-open

in S, such that Yn “ rSns
z
λ, and such that the sets Sn are uniformly z-computable,

and
Ť

n Sn also z-computable.
Let T “ Sz

Ť

n Sn. Then T is pz, λq-closed in ωăω, and is well-founded, as X
is covered by the Yn’s. By Lemma 2.17, let δ be a z-computable ordinal and let
r : T Ñ δ be a rank function for pT,ďz

λq. We make the following modification: we



EFFECTIVE WADGE DETERMINACY 29

assume that rpσq ą 0 for all σ P T ; we then extend r to all of S by letting rpσq “ 0
for all σ P SzT .

We will show that F P Λδ,1pzq. For each n, let Kn be a Θnpzq-name for F æYn,
with SKn “ Sn.

For brevity, for σ P S let kpσq “ |σ|zλ; let Sσ “ tτ P S : τ ěz
λ σu and Xσ “

rSσs “ rSs X rσszλ. Note that Sσ is pz, λkpσqq-open in S (recalling that S is a
pz, ξq-tree and ξ ă λ0). Let

Λσ “ Λrpσq,kpσq`1.

We will show that for all σ P S, Fσ “ F æXσ P Λσpzq. Which means that uniformly
in σ P S we z-compute a Λσpzq-name Nσ for Fσ, with SNσ “ Sσ.

For σ P SzT , i.e., when rpσq “ 0, this is easy, since for such σ we can compute
the n such that σ P Sn; from Kn, we can obtain a Θnpzq-name for Fσ (i.e., we
restrict Kn to Sσ); since Θ̄ ă Λ0,kpσq`1, we obtain a name Nσ as required.

For σ P T , we compute Nσ by effective transfinite recursion. For such σ, we have
rpσq ą 0 and for every τ P Sσztσu, rpτq ă rpσq. So by recursion, for each such τ
we have already computed Nτ .

We define Nσ by (using the notation of Definition 3.28) defining pSNσ qpnq for
each n, and defining pNσqpnq for all n.

Let Rpσq be the collection of immediate successors of σ on S: those τ P Sσ such
that kpτq “ kpσq ` 1.

With oracle z, compute an injective f : Rpσq Ñ Nzt0u such that:

(i) For all τ P Rpσq, Λτ Ď pΛσqpfpτqq; and
(ii) The range of f is z-computable.

(i) can be achieved since rpτq ă rpσq; (ii) can be done by padding. The point is
that Rpσq is merely z-c.e., and we cannot even tell if it is empty or not. But in all
cases, we will ensure that Nσ is a well-defined Λσ-name.

Now for each m ą 0, if m “ fpτq then let pSNσ qpmq “ Sτ and let pNσqpmq be a

pΛσqpmq-name equivalent toNτ . Ifm R range f let pSNσ qpmq “ H; we set pSNσ qp0q “
tσu. In either case, pNσqpmq is trivial. This defines Nσ. What’s important to note
is that each pNσqpmq is indeed pz, opΛσqq-open in Sσ, as opΛσq “ λkpσq`1 “ λkpτq
for τ P Rpσq. Since Xσ “

Ť

τPRpσqXτ , we have FNσ “ F æXσ.

Since S is pz, ξq-closed, we have xy P S. Since rpxyq ď δ and kpxyq “ 0 we
conclude, as promised, that F “ Fxy P Λδ,1pzq. �

5. The separation theorem(s)

In this section we give a new, simplified proof of the separation theorem of
Louveau and Saint-Raymond [LSR87, LSR88b], which will be essential for Borel
Wadge determinacy.

Theorem 5.1 (Louveau & Saint-Raymond). Let r be an oracle. Let Γ be an r-
computable, acceptable class description; let F P Γprq be total. Let B0, B1 P Σ1

1prq
be disjoint. Then at least one of the following holds:

‚ There is a Lipschitz1 function g : N Ñ N such that for all x P N , gpxq P
BF pxq.

‚ There is a G P Γp∆1
1prqq such that for both j ă 2, for all x P Bj, Gpxq “

1´ j.
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Here Lipschitz1 means that gpxq æ n is determined by x æ n. Recall that
Γp∆1

1prqq “
Ť
 

Γpwq : w P ∆1
1prq

(

. In terms of sets, if F “ 1A, the first option

says that g reduces the pair pAA, Aq to pB0, B1q. The second option, if G “ 1C ,
says that C separates B0 from B1: B0 Ď C and B1 Ď CA.

As in [DGHTT], and as mentioned in [LSR88b], this theorem implies a strong
version of Louveau’s separation theorem ([Lou80]), which was proved by different
means in [Lou83].

Theorem 5.2 (Louveau). Let r be an oracle; let Γ be an r-computable acceptable
class description. Let B0 and B1 be disjoint Σ1

1prq sets. If there is a Γ separator
between B0 and B1, then there is a Γp∆1

1prqq separator between B0 and B1.

Proof. Apply Theorem 5.1 to F , a univeral Γ-function (see Lemma 3.13). There
cannot be a continuous reduction g of F to pB0, B1q: if G P Γ is a separator be-
tween B0 and B1, then 1´F “ G˝g would be in Γ (Proposition 3.10), contradicting
Proposition 3.14. �

Corollary 5.3 (Louveau). Let r be an oracle, and let Γ be an r-computable, accept-
able description. Suppose that F P 2N is in Γ and is ∆1

1prq. Then F P Γp∆1
1prqq.

We now prove Theorem 5.1. We assume that opΓq ă ω1, as otherwise the result
is immediate. The argument generalises the proof we gave in [DGHTT], where
Γ “ Σ0

ξ . Hence, we mainly give the details of how to adapt that argument to this
more general setting.

Fix a Γprq-name N for F and r-computable trees T0 and T1 such that for j “ 0, 1,
Bj “ ty : py, zq P rTjsu. For simplicity of notation, we assume that r “ H.

Remark 5.4. Without loss of generality we may make the following assumptions
about N by modifying the functions fNt . Recall the notation of Definition 3.3: the
leaf `N pσq of TΓ is defined for finite strings σ as well as infinite ones.

(i) If |σ| ď 1 then `N pσq is the leftmost leaf of TΓ, reached by always taking
the default outcome 0.

(ii) For any non-leaf t P TΓ, m ą 0, and σ P ωăω, if `N pσq ě t̂ m and σ is
ďξt-minimal such that fNt pσq “ t̂ m, then `N pσq is the leftmost leaf of TΓ

extending t̂ m.

Making such changes to the functions fNt does not change the leaf `N pxq for infi-
nite x, and so does not change the function F “ FN on N .

5.1. The game. The game GΓpN,B0, B1q is essentially the same as the one used
in [DGHTT]. Two players take turns; at each step, player I plays a single natural
number, and player II plays a pair of natural numbers. As in [DGHTT], the idea is
that player I plays a real x P N , and player II plays y, z P N ; y is player II’s proposed
value for gpxq, and a subsequence of z should witnesses that y is in the correct Bj ,
depending on the value F pxq. The appropriate subsequence is determined by the
true stage machinery.

As in [DGHTT], the game is open for player I. We index the plays so that after n
steps, player I has played px0, . . . , xn´1q and player II has played py1, z1q, py2, z2q,
. . . , pyn, znq. We write x̄ “ px0, . . . , xn´1q. We need to determine whether player I
has already won the game. We do this by using N and x̄ to approximate F pxq; we
choose a subsequence of the zi’s and check whether player II is still on the tree Tj
corresponding to the guess about F pxq. The new aspect of this calculation is that
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the level δ which we use to choose the zi’s is determined by our approximation
of F pxq.

Specifically, recall that FN px̄q is defined to be the label Γpsq that Γ gives to the
leaf s “ `N px̄q, and is defined for finite sequences x̄, as well as elements of Baire
space. Our assumption that opΓq ă ω1 means that s is not the root of TΓ, so has a
parent (immediate predecessor) s´ on TΓ; we let δ “ δpx̄q “ ξΓ

s´
, the ordinal level

at which the last choice fNs´px̄q “ s was made.
We then let

D “
 

i P t1, . . . , nu : x̄æ i ďδpx̄q x̄ & `N px̄æ iq “ `N px̄q
(

;

note that n P D, but that 0 R D. Enumerate D as D “ ta0 ă a1 ă ¨ ¨ ¨ ă ak´1u, so
k ě 1; let ȳ “ py1, . . . , ykq and z̄ “ pza0

, za1
, . . . , zak´1

q. We declare that player II

has not yet lost the game if pȳ, z̄q P Tj , where j “ FN px̄q.
As this is an open game for player I, it is determined. Note that the game is

computable.

5.2. If player II has a winning strategy. Suppose that player II has a winning
strategy. For x P N , let py, zq be the sequences generated by player II playing
according to this strategy when player I plays x; we set gpxq “ y. Certainly g is
continuous, indeed Lipschitz1. We need to show that g reduces F to pB0, B1q, i.e.,
that for all x, gpxq P BF pxq.

To do this, fix x P N ; let s “ `N pxq and j “ Γpsq “ F pxq; let δ “ δpxq “ ξΓ
s´

for s´ the parent of s on TΓ.

Lemma 5.5. For all but finitely many ρ ăδ x, `N pρq “ s.

Proof. By induction on the length of t ď s (on TΓ) we show that for all but finitely
many ρ ăδ x, `N pρq ě t. This is immediate for t “ xy. Suppose this holds for
t ă s, and let t` ď s be the child of t on TΓ in the direction of s. Since t ď s´,
ξt “ ξΓ

t ď δ. For all but finitely many ρ ăξt x we have ftpρq “ ftpxq “ t`; and
ρ ăδ x implies ρ ăξt x (TSP(1)). �

As there are infinitely many δ-true initial segments of x (TSP(3)), let a0 ă

a1 ă ¨ ¨ ¨ enumerate those i ą 0 for which x æ i ăδ x and `px æ iq “ s. Let
v “ pza0 , za1 , . . . q. For each k ă ω, observe the step at the end of which player
player I has played x̄ “ x æ ak. Since x̄ ăδ x, the set D computed at this step is
ta0, . . . , aku (essentially, TSP(2)). Since player II did not lose, py æ k, v æ kq P Tj .
Hence, py, vq P rTjs, so y P Bj , as required.

5.3. If player I has a winning strategy. Suppose now that player I has a
winning strategy Q. Since the game is effectively open for player I, we may take
Q P ∆1

1. We use Q to compute a Γ-name M for a separator between B0 and B1.
For each y P N , we need to find a leaf `M pyq which will of course determine FM pyq.
As in [DGHTT], the idea is to examine possible second-coordinate sequences σ for
player II to play along y. We use Q to pull back the true stage relations among
such strings σ, and so identify “correct” strings that will indicate where we should
go on TΓ.

In [DGHTT], we used ξ-correct strings to put y inside a Σ0
1`ξpQq separator.

In the current proof, we need to apply the same idea at every non-leaf t P TΓ;
correct strings will guide us towards non-default outcomes t̂ m for m ą 0. This
is an inductive process (on the length of t). The key difficulty is that as we go
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up the tree, the ordinals ξt may increase; but to define fMt , we are only allowed
to check correctness up to level ξt, and not higher ordinals. That is, we cannot
require a string ρ, that guides us to a non-default outcome t̂ m, to be more than
ξt-correct. But if ξt̂ m ą ξt, such a string ρ may fail to be ξt̂ m-correct, and the
inducive procedure of producing longer and longer correct extensions may stall. For
this reason, once we get to t̂ m, we may need to ignore ρ and its predecessors, and
use the more elaborate notion of ξ-correctness above ρ.

To the details. For y P N and σ P ωăω, let Qpy, σq be the sequence xx0, . . . , xny
which results from player I playing according to Q and player II playing pyæ|σ|, σq.
Note that |Qpy, σq| “ |σ| ` 1.2

Definition 5.6. Let α be a computable ordinal, and let y P N . For σ, τ P ωăω, we
write σ Ĳyα τ when σ ď τ and Qpy, σq ďα Qpy, τq.

Observe that Ĳyα is Q-computable, uniformly in y and α.

Definition 5.7. Let y P N . A string σ P ωăω is legal for y if in the play of the
game in which player I played Qpy, σqæ |σ| and player II played pyæ|σ|, σq, player I
has not yet won.3

Note that if σ is legal for y then every η ď σ is also legal for y.

Definition 5.8. For y P N , a computable ordinal α, and ρ ă σ P ωăω, we define
what it means for σ to be α-correct or strongly α-correct for y above ρ.

‚ σ is 0-correct for y above ρ if it is legal for y.
‚ σ is pα ` 1q-correct for y above ρ if it is strongly α-correct for y above ρ,

and for every τ İyα σ which is strongly α-correct for y above ρ, we have
τ İyα`1 σ.

‚ For λ a limit, σ is λ-correct for y above ρ if it is strongly β-correct for y
above ρ for all β ă λ.

‚ σ is strongly α-correct for y above ρ if for every τ with ρ ă τ Ĳyα σ, τ is
α-correct for y above ρ.

Note that only the definition of strong correctness involves ρ; the first three items
are identical to [DGHTT, Def. 4.2.3]. In the definition of strong correctness, note
that the extension ρ ă τ is proper. Indeed, we do not define the notion of a string
being correct above itself.

This definition of correctness may seem odd. Let us outline the plan of the
construction, so that we may give a bit of motivation for it. After establishing
some results about how correctness behaves, we will use this definition to construct
a set G, which is our intended separator. If G fails to be a separator, witnessed by
some y, then we will use y to construct a series of plays for player II which defeats
Q, contrary to assumption. Fix v with py, vq P rTjs for the appropriate j.

Suppose δpQpy, σqq “ α, meaning that α is the largest ordinal used by N to
send Qpy, σq to `N pQpy, σqq. If player II has played py æ |σ|, σq, and as their next

2In [DGHTT], we used a “string” π of length ´1 so that Qpy, πq “ xy. This was needed as a

base case for generating a sequence of ξ-correct strings; the string π was ξ-correct, whereas the

string xy was not necessarily ξ-correct. In the current construction, as we use the more elaborate
notion of correctness above a string ρ, the extension Lemma 5.12 below does not require such a

base case, so we do not need the “string” π.
3Note that it is still possible that after player I plays the last entry of Qpy, σq, player II has no

response that would prevent I from winning; we still consider σ to be legal for y.



EFFECTIVE WADGE DETERMINACY 33

move they play pyp|σ|q, bq, then the sequence z̄ which is constructed to determine if
they have lost the game is precisely pσp|ρ0|q, σp|ρ1|q, . . . , bq, where pρiq enumerates
those ρ Ÿyα σ, in increasing order. We would like to arrange that z̄ ă v, so b
should be vpnq for the correct n. Then, by some sequence of legal plays, we would
hope to return to `N pQpy, σqq. That is, we would like to find a τ Ě σpvpnq with
`N pQpy, τqq “ `N pQpy, σqq.
α-correctness turns out to be sufficient to ensure this. If σ is α-correct above

some ρ, there will be a τ Ě σpvpnq with σ Ĳyα τ and τ is strongly α-correct above
σ. So we may have player II play according to py, τq, and then play pyp|τ |q, vpn`1qq
after that. Then we can repeat. In this fashion we build an infinite sequence of
plays such that player II never loses, always playing elements of v at the appropriate
moment.

One concern is that if we have just found τ as described above, there may be ν
with σŸyα νŸ

y
α τ . Then when we play vpn`1q, the sequence z̄ which is constructed

to check if our position is legal will contain more than just the elements of v; it
will also contain the extraneous element τp|ν|q. This is why it is important that τ
is strongly α-correct above σ: this implies that ν is α-correct above σ, and so we
could have taken ν instead of τ .

We now continue with the details.

Lemma 5.9. Let y P N , α a computable ordinal, and ρ ă σ P ωăω.

(a) If σ is strongly α-correct for y above ρ then it is α-correct for y above ρ.
(b) σ is strongly 0-correct for y above ρ if and only if it is legal for y.
(c) If σ is α-correct for y above ρ, then it is strongly β-correct for y above ρ,

for every β ă α.
(d) If σ is strongly α-correct for y above ρ, then any ν with ρ ă ν Ĳyα σ is also

strongly α-correct for y above ρ.
(e) If σ ď τ and both σ and τ are α-correct for y above ρ, then σ Ĳyα τ .

Proof. The same as [DGHTT, Claim 4.2.4]. �

The following claim has the same proof as [DGHTT, Claim 4.2.5].

Lemma 5.10. Let α be a computable ordinal. The relations “σ is α-correct for y
above ρ” and “σ is strongly α-correct for y above ρ” are:

(i) ∆0
1pQq if α “ 0;

(ii) Π0
αpQq if α ‰ 0 is finite;

(iii) ∆0
αpQq for limit α; and

(iv) Π0
α´1pQq if α is a successor and infinite.

The following is new.

Lemma 5.11. Let α be a computable ordinal and let y P N . Let ρ0 ă ρ1 and sup-
pose that ρ1 is strongly α-correct for y above ρ0. Then the following are equivalent
for all σ ą ρ1:

(1) σ is strongly α-correct for y above ρ0.
(2) σ is strongly α-correct for y above ρ1.

Proof. We prove the claim by induction on α. For α “ 0 the claim is immediate
(see Lemma 5.9(b)). Suppose that α ą 0 and that the claim holds for all β ă α;
and suppose that ρ1 is strongly α-correct for y above ρ0.
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First, we observe that any σ ą ρ1 is α-correct for y above ρ0 if and only if
it is α-correct for y above ρ1. This is not difficult to check using Definition 5.8,
whether α is limit or a successor.

Given this equivalence, (1)ùñ (2) follows easily. For (2)ùñ (1), we need to
consider strings ν such that ρ0 ă ν ď ρ1 and ν Ĳyα σ; we need to show that
such ν are α-correct for y above ρ0. We have just observed that σ is α-correct for y
above ρ0; and we are assuming that ρ1 is (strongly) α-correct for y above ρ0. By
Lemma 5.9(e), ρ1 Ĳ

y
α σ. By TSP(2), ν Ĳyα ρ1. Since ρ1 is strongly α-correct for y

above ρ0, ν is α-correct for y above ρ0, as required. �

Lemma 5.12. Let y P N and ρ P ωăω. If σ is a one element extension of ρ that
is legal for y, then for all computable α there is a τ ě σ that is strongly α-correct
for y above ρ.

Proof. The proof of [DGHTT, Claim 4.2.6] gives this lemma, and in fact, is slightly
simplified, since we do not need to consider ν ď ρ. In the limit case, since we
may have ρ đyα τ , we take k “ |ρ| ` 2; this (and the minimality of τ) ensures that
|Qpy, τq|α ď k. �

We now work towards defining the Γ-name M . By induction on the length of
t P TΓ we define a set Ut Ď N ˆωăω. We start by letting, for t “ xy the root of TΓ,

‚ Uxy “ tpy, xyq : y P N u.
Suppose that Ut has been defined, and that t is not a leaf of TΓ. We let

‚ Ut̂ 0 “ Ut;
‚ For m ą 0, py, τq P Ut̂ m if there is some σ ă τ such that:

(i) py, σq P Ut;
(ii) τ is strongly ξt-correct for y above σ;

(iii) `N pQpy, τqq ě t̂ m; and
(iv) τ is Ĳyξt-minimal with respect to (ii)&(iii).

By induction on the length of t, using Lemma 5.10, we observe that for non-leaf t,
for all m ą 0, the set

Yt̂ m “ ty P N : pDσq py, σq P Ut̂ mu

is Σ0
1`ξt

pQq. By the effective reduction property for the class Σ0
1`ξt

pQq, we can

find, for m ą 0, Σ0
1`ξt

pQq sets Xt̂ m that reduce the sets Yt̂ m: Xt̂ m Ď Yt̂ m for

all m,
Ť

mą0Xt̂ m “
Ť

mą0 Yt̂ m, but the sets Xt̂ m are pairwise disjoint.
Since ηt “ 1 for all t (as the class description Γ is acceptable), we can use the

sets Xt̂ m to define a Γ-name M so that for all t, y and m ą 0,

`M pyq ą t ùñ ry P Xt̂ m ðñ `M pyq ě t̂ ms.

See Section 3.7. Technically, to define M (with zM “ Q and SM “ ωăω), for each
non-leaf t, by Lemma 2.11, we find, for m ą 0, pairwise pQ, ξtq-orthogonal sets
Wt̂ m Ď ωăω, uniformly Q-computable, such that

Ť

mą0Wt̂ m is Q-computable

as well (and all of this is uniform in t), and such that rWt̂ ms
Q
ξt
“ Xt̂ m; and we

define fMt by letting fMt pνq “ m if ν P Wt̂ m, fMt pνq “ 0 if ν R
Ť

mą0Wt̂ m. This
defines M .4

4Note that N is a computable name, and so the game, the relations Ĳyα, and the notions

of α-correctness, all used the unrelativised true stage relations ďξt . In contrast, M is only Q-

computable, and so needs to use the relativised relations ď
Q
ξt

.
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We let G “ FM , so G P ΓpQq. The following lemma concludes the proof of
Theorem 5.1.

Lemma 5.13. G defines a separator between B0 and B1: For both j “ 0, 1, for all
y P Bj , Gpyq “ 1´ j.

Proof. Suppose not; fix j P t0, 1u and y P Bj such that Gpyq “ j. Let s “ `M pyq
(so j “ Γpsq). Also, fix v P N such that py, vq P rTjs; we write v “ pv0, v1, . . . q.
Let δ “ ξs´ , where s´ is the parent of s on TΓ.

Since y is fixed, for simplicity of notation:

‚ We omit “for y” when we talk about α-correctness and legality;
‚ We write Ĳα for Ĳyα;
‚ For σ P ωăω, we let `pσq “ `N pQpy, σqq.

For legal σ P ωăω let

E “ ti ă |σ| : pσæ iq Ÿδ σ & `pσæ iq “ `pσqu ,

and let z̄pσq “ pσpa0q, σpa1q, . . . , σpak´1qq where E “ ta0 ă a1 ă ¨ ¨ ¨ ă ak´1u; we
can have E “ H, in which case z̄pσq is the empty string. Let

K “ tσ P ωăω : σ is legal, `pσq “ s, & z̄pσq ă vu .

The point is that ti ` 1 : i P Eu Y t|σ| ` 1u is the set D of lengths which is
used to determine whether I has won the game after I plays Qpy, σq and II plays
py æ p|σ| ` 1q, σ b̂q for any b P ω. So if σ is legal and Γp`pσqq “ j (in particular, if
`pσq “ s), then for any b P ω, σ b̂ is legal if and only if py æ pk ` 1q, z̄pσq̂ bq P Tj .
Hence:

Claim 5.13.1. Let σ P K; let k “ |z̄pσq|. Then σ v̂k is legal. Further, if τ ě σ v̂k is
legal, σ Ÿδ τ , `pτq “ s, and there is no ν with σ Ÿδ ν Ÿδ τ , then τ P K.

The plan is to find some “nice” string in K from which we can keep extending to
longer strings in K, as described by the claim, and thus build a winning play for II
against Q, contradicting Q being a winning strategy for I. Indeed, we will show:

Claim 5.13.2. There are σ ă θ such that:

(i) θ P K;
(ii) θ is strongly δ-correct over σ; and
(iii) for every η ą σ that is strongly δ-correct over σ, `pηq “ s.

Claim 5.13.2 suffices to complete the proof of Lemma 5.13. Indeed, starting with
θ0 “ θ and σ given by the claim, we define an increasing sequence θ0 ă θ1 ă θ2 ă ¨ ¨ ¨

of strings θe P K that are each strongly δ-correct over θ. Given θe, let k “ |z̄pθeq|.
As θe v̂k is legal (Claim 5.13.1), Lemma 5.12 gives us some θe`1, an extension of
θe v̂k, that is strongly δ-correct over θe; we choose a ď-minimal such string. By
Lemma 5.11, θe`1 is strongly δ-correct above σ, and so by choice of θ, `pθe`1q “ s.
By Lemma 5.9(e), θe Ÿδ θe`1. By minimality of θe`1 (and Lemma 5.9(d)), there is
no ν with θe Ÿδ ν Ÿδ θe`1. Hence, by Claim 5.13.1, θe`1 P K.

It suffices, then, to prove Claim 5.13.2.
Let t1 ă t2 ă ¨ ¨ ¨ ă tn list those nodes t ă s at which s takes a non-default

outcome: t̂ m ď s for some m ą 0. Let t`i denote the child of ti extended by s.
Note that n “ 0 is possible: when s is the leftmost node on TΓ.
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If n ą 0, then for all i P t1, . . . , nu, y P Yt`i
, and so, starting at tn and working

our way down, we can choose strings σi such that py, σiq P Ut`i
and such that σi´1

witnesses this fact; here σ0 “ xy. We let ξi “ ξti . If n “ 0 then we just choose
σ0 “ xy.

Claim 5.13.3. For all 1 ď i ď j ď n, σi Ĳξi σj .

Proof. We may assume that i ă j. Repeated applications of Lemma 5.11 give
that σj is ξi-correct above σi´1. The claim then follows from Lemma 5.9(e). �

Claim 5.13.4. For all i “ 1, . . . , n, for all τ Ÿξi σi, `pτq ğ t`i .

Proof. We prove the claim by induction on i. Suppose that it has been proved
for all j ă i. Let τ Ÿξi σi. Let j ď i be least such that τ ă σj (so j ě 1). By
Claim 5.13.3 and TSP(2), τŸξj σj . Since t`i ě t`j , it suffices to show that `pτq ğ t`j .

Suppose that τ “ σj´1. If j “ 1, then by (i) of Remark 5.4, `pτq is the leftmost
leaf of TΓ and so does not extend t`1 . If j ą 1 then by the induction assumption
for j ´ 1, and by (ii) of Remark 5.4, `pτq is the leftmost leaf of TΓ extending t`j´1,

and so does not extend t`j .

Suppose that σj´1 ă τ . Then by Lemma 5.9(d), τ is ξj-correct above σj´1. If
`pτq ě t`j then τ would contradict the minimality of σj (part (iv) of the definition

of Ut`j
). �

Claim 5.13.5. For all η ą σn that is strongly δ-correct above σn, `pηq “ s.

Proof. Let η ą σn be strongly δ-correct above σn. By induction on the length of
r ď s we show that r ď `pηq. Suppose that r ď s and r ď `pηq. There are two
cases.

First, suppose that r “ ti for some i ě 1. By Lemma 5.11, η is strongly ξi-correct
above σi´1. By Lemma 5.9(e), σi Ÿξi η. Since fNti pQpy, σiqq “ t`i is not the default

outcome of ti and Qpy, σiq ăξi Qpy, ηq, we must have fNti pQpy, ηqq “ t`i as well, i.e.,

t`i ď `pηq.
Otherwise, r 0̂ ď s. Let i P t1, . . . , nu be greatest such that ti ă r; let i “ 0

if there is no such i. As δ ě ξr, by Lemma 5.11, η is ξr-correct above σi. If
`pηq ě rˆm for some m ą 0, then η would show that there is some τ ą σi such that
py, τq P Urˆm, so y P Yrˆm, in which case, we would not have r 0̂ ď `M pyq “ s. �

Claim 5.13.4 and Remark 5.4 imply that `pσnq “ s, and further, that z̄pσnq “ xy.
By Claim 5.13.1, σn v̂0 is legal. By Lemma 5.12, let θ ě σn v̂0 be strongly δ-correct
above σn, and choose minimal such.

Claim 5.13.6. σn Ÿξn θ.

Proof. Same as the proof of Claim 5.13.3. �

Claim 5.13.7. If τ Ÿδ θ and `pτq “ s then τ “ σn.

Proof. Let τ Ÿδ θ. By minimality of θ, we have τ ď σn. Suppose that τ ă σn (and
in particular, σn ‰ xy, so n ą 0). By Claim 5.13.6 and TSP(2), τ Ÿξn σn, so the
claim follows by Claim 5.13.4. �

By Claim 5.13.5, `pθq “ s. Now there are two possibilities. If σnŸδ θ then z̄pθq “
xv0y. If not, then z̄pθq “ xy. In either case, z̄pθq ă v. Hence θ P K. This completes
the proof of Claim 5.13.2, and so of Lemma 5.13, and so of Theorem 5.1. �
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Remark 5.14. The proof of Theorem 4.4 relied heavily on the acceptability of the
class description Γ. In contrast, the proof of Theorem 5.1 did not at all use the
fact that sequences xΓt̂ my are monotone. In the construction of the Γ-name M and
its analysis, we used the fact that ηΓ

t “ 1 for all non-leaf t P TΓ. This was mostly
for convenience. We could have proved the theorem for all class descriptions Γ;
in defining M , we would need to define level sets Yt̂ m,β for all β ă ηΓ

t , and then
use the reduction property for the classes DηtpΣ

0
1`ξt

q. The current formulation of
Theorem 5.1 suffices, as we will use both it and Theorem 4.4 in the next section to
show that every non-self-dual Borel Wadge class has an acceptable description.

6. Borel Wadge determinacy

As mentioned in the introduction, Louveau and Saint-Raymond [LSR88b] used
Theorem 5.1 and Louveau’s version of Theorem 4.4 from [Lou83] to give a proof
of Borel Wadge determinacy in second-order arithmetic. In this section we use our
work above to give a proof in ATR0`Π1

1-IND, the subsystem of second-order arith-
metic consisting, in addition to the base system RCA0 of computable mathematics,
both the principle of arithmetic transfinite recursion, and induction on Π1

1 subsets
of N.

Working in the restricted setting of ATR0, we need to be careful about how
exactly we formalise set-theoretic notions in the language second-order arithmetic.
In this setting, it is also important to fill in the details of some steps that are missing
in [LSR88b].

6.1. Formalisation. So far in this paper, all of our reasoning has occurred within
ATR0, including the construction in Section 7. In particular, the true stage relations
are constructed via arithmetic transfinite recursion, and their various properties are
provable in ATR0. As a result, for a Γ-name N (for some class description Γ) and
x P N , the value FN pxq is well-defined in ATR0 (without the need for evaluation
maps). ATR0 implies open determinacy, and so Theorem 5.1 is provable in ATR0.
For the rest of this section, unless otherwise stated, we work in ATR0.

For a Borel code B and a class description Γ, we write B P Γ to mean that
there is some Γ-name N with FN “ 1B . So that we can use familiar notation,
we henceforth identify sets and their characteristic functions. We also use “Borel
set” to mean a Borel code. For class descriptions Γ and Λ, we write Γ Ď Λ if
B P Γ ùñ B P Λ for all Borel B; we write Γ ă Λ if Γ Ď Λ and Γ Ď Λ̌.

TSP(7), together with effective transfinite recursion, shows that we can effec-
tively pass from an acceptable class description Γ and a Γ-name N to a Borel code
of FN .

Note that the construction of a name NΓ of a universal function FΓ for a class
description Γ is effective (given Γ).

Lemma 6.1. Let B be a Borel set, and let Γ be an acceptable class description.
Then B P Γ if and only if player I has a winning strategy in the gameGΓpNΓ, B,B

Aq.

Proof. If player I has a winning strategy then B P Γ. If player II has a winning
strategy then we get a Wadge reduction of FΓ to BA; by Proposition 3.14 (and
Proposition 3.10), B R Γ. �

For a Borel set B, we let
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‚ rBsW be the Wadge class of B: the collection of pullbacks 1B ˝ g for con-
tinuous functions g;

‚ rBsL be the Lipschitz class of B: the collection of pullbacks 1B ˝ g for
Lipschitz1 functions g.

An immediate corollary of Theorem 5.1 and Lemma 6.1 is:

Lemma 6.2. Let B be a Borel set, and let Γ be an acceptable class description.
If B R Γ then Γ̌ Ď rBsL.

6.2. Well-foundedness. Our next goal is to show that every Borel Wadge class
either has an acceptable description, or is the ambiguous class of a class with an
acceptable description. The plan is to find a minimal acceptable Γ such that B P Γ,
and then argue that rBsW is either Γ or ∆pΓq. Thus, we need the relation ă on
acceptably-described Wadge classes to be well-founded.

Proposition 6.3 (Martin). There is no infinite sequence xΓny of acceptable class
descriptions such that for all n, Γn`1 ă Γn.

We can follow the standard argument (see for example [Kec95, (21.15)] or [LSR88b,
Thm. 3.5]). Since the map Γ ÞÑ NΓ is computable, the sequence xNΓny exists. Let
Fn “ FΓn . The arguments in print use the determinacy of the games GLpFn, Fn`1q

and GLpF
A
n, Fn`1q. This determinacy shows that there are Lipschitz1{2 reductions

of Fn`1 to Fn and to F An. Here a function g : N Ñ N being Lipschitz1{2 means that
gpxqæk ` 1 is determined by xæk; such reductions are precisely winning strategies
for player I in GLpFn, Fn`1q.

We can show the existence of such reductions, indeed that the sequence of these
reductions exists, without proving Wadge determinacy in general. We use our
construction of the universal functions FΓ. We note that Γ Ď Λ does not imply
Γ Ď Λ (as defined in Definition 3.20). However, this can be obtained by relativising
to a not-too-complicated oracle. For a class description Γ and an oracle z ěT yΓ,
let Γz be the class description which is exactly the same as Γ, except that we let
yΓz “ z.

Lemma 6.4. For two acceptable class descriptions Γ and Λ, Γ Ď Λ if and only if
for some oracle w ěT yΓ, yΛ with w P ∆1

1pxy
Γ, yΛyq, Γw Ď Λw.

Proof. We apply Theorem 5.1 with the game GΛpNΛ, FΓ, F
A
Γq. Player II cannot have

a winning strategy since Λ Ę Γ̌, (since Γ Ę Γ̌). Hence, there is some w P ∆1
1py

Γ, yΛq

(which we may assume computes both yΓ and yΛ) such that FΓ P Λpwq. Now, given
some Γpzq-name M , where z ěT w, we can effectively find a ďT z such that FM

is the a-section of FΓ; using a Λpwq-name of FΓ, we find a Λpzq-name equivalent
to M (we use the effectivity of Proposition 3.10). �

Recall that the complete function FΓ was defined using an effective pairing
function px, yq ÞÑ xx, yy from N 2 to N . The standard pairing function px, yq ÞÑ
x0y0x1y1 . . . has the property that for all a, y ÞÑ xa, yy is Lipschitz1{2. Using this
pairing function, we get:

Lemma 6.5. Let Γ be a class description. For all B P Γ, there is a Lipschitz1{2

reduction of B to FΓ.

Lemma 6.4 holds for infinite sequences. In particular, if xΓny is a sequence of
acceptable class descriptions with Γ0 ą Γ1 ą ¨ ¨ ¨ , then there is a single oracle w such
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that Γw0 ą Γw1 ą ¨ ¨ ¨ , uniformly. This is because ATR0 implies open determinacy for
infinite sequences of open games.5 Thus, after relativising to an oracle, in the proof
of Proposition 6.3, we may assume that Γn`1 ă Γn, uniformly. By Lemma 6.5,
then, we get the desired Lipschitz1{2 reductions of Fn`1 to Fn and F An. The last
step of the proof is the fact that Borel sets have the property of Baire; this is
provable in ATR0 (the standard construction can be carried out in ATR0; see, for
example, [DFSW21]). Hence, Proposition 6.3 is provable in ATR0.

Minimal elements. The relation tpΓ,Λq : Γ ă Λu is a relation on reals. Thus, from
Proposition 6.3 we cannot immediately deduce stronger formulations of this relation
being well-founded. Indeed, very strong forms of dependent choice on reals are not
even provable in second-order arithmetic. To find minimal elements, we restrict to
a countable set.

Lemma 6.6 (ATR0 ` Π1
1-IND). Let r be an oracle, and let B be a Borel set with

an r-computable code. There is an acceptable description Γ P ∆1
1prq with B P Γ,

such that for any acceptable description Λ P ∆1
1prq, if Λ ă Γ then B R Λ.

We will shortly see, though, that the class description Γ is actually minimal
among all acceptable class descriptions: the condition Λ P ∆1

1prq can be omitted.
We need the following complexity calculations.

Lemma 6.7. The following relations and sets are all Π1
1:

(i) The collection of acceptable class descriptions;
(ii) The relation B P Γ between a Borel code B and an acceptable class de-

scription Γ;
(iii) The relation Γ ă Λ between acceptable class descriptions Γ and Λ.

Proof. First, we observe that the relation FN pxq “ FM pxq for a real x P N and
Γ- and Λ-names N and M (for any class descriptions Γ and Λ, not necessarily
acceptable), is Π1

1. Hence, the relation N ”M (Definition 3.19) is also Π1
1. Hence,

the relation Γ Ď Λ (Definition 3.20) is Π1
1. This implies that being a monotone

sequence of class descriptions (Definition 3.29) is Π1
1. This gives (i). Throughout,

we used that the class Π1
1 is closed under number quantifiers (effective countable

unions and intersections); this is provable in ATR0, as ATR0 implies Σ1
1-choice (see

[Sim99, VIII.3.21]).
(ii) follows from Lemma 6.1 and open determinacy: B P Γ if and only if player II

does not have a winning strategy in the game GpNΓ, B,B
Aq. (Since player II’s

side of the game is closed, a given strategy being a winning strategy for them is
arithmetic.)

(iii) follows from the map Γ ÞÑ NΓ being computable. Γ Ď Λ if and only if
FΓ P Λ (and recall that we effectively obtain a Borel name for FΓ). �

Proof of Lemma 6.6. For simplicity, assume that r is computable. Let C be the
collection of all e P N which are ∆1

1-codes of an acceptable class descriptions Γ such
that B P Γ.

C is not empty: for some computable ordinal ξ, we have B P Σ0
ξ , and there is a

computable acceptable description of this class.

5Specifically, a winning strategy for I in an open game is (uniformly) computed from the rank
function on the well-founded tree of positions at which I has not yet won; we can join infinitely

many well-founded trees to get ranking functions for all.
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C is Π1
1. This follows from Lemma 6.7, and the fact that being a ∆1

1-code is Π1
1.

Note that we are not assuming that C exists; it is merely definable.
For a P C, let Γa be the class description coded by a. For a, b P C, let a ă b if

Γa ă Γb. By Lemma 6.7, this relation is Π1
1.

The principle of Π1
1-dependent choice for relations on numbers is provable in

ATR0`Π1
1-IND ([Sim99, VIII.4.10]). Hence, if C does not have a ă-minimal element,

then Proposition 6.3 fails. �

6.3. All classes are described; SLO; determinacy. We can now obtain all the
results we are after.

Theorem 6.8 (ATR0`Π1
1-IND). Every Borel Wadge class is either Γ or ∆pΓq for

some accptable Γ.

Proof. Let B be a Borel set. Let r be an oracle that computes a Borel code for B.
Let Γ be supplied by Lemma 6.6. We show that rBsW “ Γ or rBsW “ ∆pΓq. For
simplicity, assume that r is computable.

If B R Γ̌ then rBsW “ Γ follows from Lemma 6.2. Indeed, in this case, we get
Γ “ rBsW “ rBsL.

Suppose, then, that B P ∆pΓq. We now use Theorem 4.4. As ∆pΓq ‰ H, Γ does
not have zero type. By Corollary 5.3, B P ∆pΓp∆1

1qq. If Γ has uncountable type,
or opΓq ą 0, then by definition, or by Proposition 4.9, B P Λ for some acceptable
Λ P ∆1

1 with Λ ă Γ, contrary to the minimality of Γ. Hence, opΓq “ 0 and Γ has
countable type; let xΘny witness this fact. Since Θn P ∆1

1 and Θn ă Γ for all n, the
minimality of Γ implies that B R

Ť

n Θn. By Lemma 6.2, and since the sequence
xΘny is monotone,

Ť

n Θn Ď rBsW . By Proposition 4.5, ∆pΓq Ď rBsW . �

We can deduce the semi-linear ordering property for Borel Wadge classes:

Theorem 6.9 (ATR0 ` Π1
1-IND). For any two Borel sets A and B, A ďW B or

BA ďW A.

Proof. If rBsW is non-self-dual, then the result follows from Lemma 6.2.
Suppose that rBsW “ ∆pΓq for some non-self-dual Γ. If A ęW B then either

A R Γ or A R Γ̌; in either case, the result again follows from Lemma 6.2. �

Finally, for Borel Wadge determinacy. The proof in the non-self-dual case is
simplified by our construction of complete sets.

Theorem 6.10. For any two Borel sets A and B, the game GLpA,Bq is deter-
mined.

Proof. Recall that this means: either A ďW B by a Lipschitz1 reduction, or BA ďW
A by a Lipshitz1{2 reduction.

If rBsW “ Γ is non-self dual, then we have already observed that Γ “ rBsL.
Hence, if A ďW B then A ďW B by a Lipschitz1 reduction. Otherwise, by
Lemma 6.2, F AΓ ďW A by a Lipschitz1 reduction. By Lemma 6.5, B ďW FΓ via a
Lipschitz1{2 reduction. Composing, we get BA ďW A via a Lipschitz1{2 reduction.

Suppose that rBsW “ ∆pΓq. Hence, Γ has countable type and opΓq “ 0; let Θ̄
witness this. If A P

Ť

n Θn then as observed above, as Θ̄ is monotone,
Ť

n Θn Ď

rBsL. Thus, the last case we need to consider is rAsW “ rBsW “ ∆pΓq.
Let TA be the collection of σ P ωăω such that A X rσs R

Ť

n Θn; similarly
define TB . By Proposition 3.15, TA and TB are trees. Since there is a clopen
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partition of Baire space into sets C with AXC P
Ť

n Θn, the tree TA is well-founded;
similarly, so is TB . By assumption, the empty string is on both TA and TB . The
trees exist by ∆1

1-comprehension.
Now players I and II play an auxiliary game, taking turns choosing natural

numbers, and trying to stay on their respective tree: player II wins if there is a
step of the game at which player I played τ R TA and player II played σ P TB . This
is a clopen game and so one of the players has a winning strategy. We claim that
the same player has a winning strategy in GLpA,Bq.

Suppose, for example, that II has a winning strategy in the auxiliary game. At
the winning step of the auxiliary game, say player I has played τ R TA and player II
has played σ P TB ; note that |τ | “ |σ|`1. There is some n such that AXrτ s P Θn.
By Proposition 3.17, there is some m such that B X rσˆms R Θ̌n. Player II chooses
this m. Now by Lemma 6.2, A X rτ s P rB X rσˆmssL, so player II can use this
reduction to win the rest of GLpA,Bq. The same argument works when player I
wins the auxiliary game. �

7. Developing the true stage machinery

In this section we define the true stage relations and prove they have the various
desirable properties we have been using. Our development closely follows the one in
[GTa]. In that paper, however, we did not use the machinery to construct subsets
of Baire space; rather, we used it to build a computable countable structure. We
therefore defined relations s ďα t for s, t ď ω; in the notation of the current paper,
we used the restriction of ďα to the initial segments of x “ 08. The first step to
extending that machinery to all of Baire space is uniform relativisation: s ďα,x t
means that s appears α-true to t relative to x. However, it is soon observed that
this is a “Lipschitz” relation: the x-use is the identity, i.e., s ďα,x t only depends
on xæ t. We can therefore dispense with the oracle and write xæ s ďα xæ t, giving
the notation that we used in [DGHTT] and here.

7.1. Definition and properties of the true stages relations. We fix a com-
putable ordinal δ (see Section 2.2). To define the relation ďδ, we will need to define
all relations ďα for all α ď δ. For α ă δ, we let nα be the element in the field of δ
which is the least upper bound of α in δ. When we write nα ă nβ we mean the
natural ordering pN,ăq, so this is different from α ă β.

Jumps of strings. For a string σ P ωďω, let σ1 denote the collection of inputs on
which a universal Turing machine with oracle sequence σ halts in fewer than |σ|
many steps. Thus the jump of the empty string is empty. If σ ď τ then σ1 Ď τ 1. We
assume that if σ is a one-entry extension of τ , then σ1 contains at most one more
element than τ 1. Thus, for every string σ we get an enumeration of the elements
of σ1 in order of which converged earlier (i.e. with shorter oracle). For σ P ωăω we
let ppσq be the last element enumerated into σ1 according to this ordering. In other
words, σ1 “ τ 1Ytppσqu for some τ ă σ. If σ1 “ H then we let ppσq “ ´1. If x P ωω

is infinite then we let ppxq “ 8.

Definition. By induction on α ď δ we define the relation σ ďα τ . Simultaneously,
for α ă δ we also define strings τ pαq. Suppose that ďα is already defined. We
will show shortly that σ ďα τ implies σ ď τ , so that for each τ , tσ : σ ăα τu is
naturally linearly ordered.
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‚ The string τ pαq is defined to be the increasing enumeration of all strings
σ ăα τ , excluding the first nα many such strings.

We will see that this exclusion is what makes the machinery work at limit levels.
If τ has at most nα-many ăα-predecessors, then τ pαq is the empty sequence. Note
that σ ďα τ implying σ ď τ also ensures that τ pαq is finite whenever τ is finite; we
will work to show that xpαq is infinite when x is infinite.

Each τ pαq is a sequence of finite sequences, i.e., an element of pωăωqďω. How-
ever, after using some computable coding of finite sequences by natural numbers
(a computable bijection between ωăω and ω), we can consider each τ pαq as a string
in ωďω, and so use it as an oracle in computations.

For infinite x P N , xpαq will be Turing equivalent to the iteration of the Turing
jump of length α, starting with x. For finite τ P ωăω, τ pαq is τ ’s guess about xpαq

for x extending α. The guess will be correct when τ ăα x.
The definition of ďα is as follows. Let σ, τ P ωďω.

‚ σ ď0 τ ðñ σ ď τ .
‚ If α is a limit ordinal, then σ ďα τ if for all β ă α, σ ďβ τ .

‚ If α ă δ then σ ďα`1 τ if σ ďα τ , and there is no e ă ppσpαqq in
pτ pαqq1zpσpαqq1.

In the successor case, α`1 denotes the ordinal β ď δ with order-type otppαq`1.
The motivation for the successor step was discussed in [DGHTT]. In brief, the
definition says that when trying to compute pσpαqq1 (which for infinite σ will be
Turing equivalent to σpα`1q), the string σ only commits to numbers below ppσpαqq,
the last number enumerated into the jump of σpαq. If σ ęα τ then τ thinks that σ
was likely wrong about the oracle σpαq, and so there is no meaningful comparison
between their jumps pσpαqq1 and pτ pαqq1. Suppose, however, that σ ďα τ . We will
shortly show that σpαq ď τ pαq, and so pσpαqq1 Ď pτ pαqq1. So σ’s commitment about
pσpαqq1 is discovered to be false by τ exactly when some number e ă ppσpαqq, which σ
claims is not in pσpαqq1, is enumerated into pτ pαqq1.

Basic properties. We gradually verify the properties of the relations ďα as listed
in Section 2. First, we remark that for each α ă δ, ďα as defined above does not
depend on δ, only on α. In other words, if we only started with α and performed
the same construction, we would arrive with the same relation ďα. (Note though
that σpαq depends on α ` 1, not just α, because its definition involves nα.) Now,
a simple induction shows that α ď β and σ ďβ τ implies σ ďα τ . This, together
with the definition of ď0, establishes TSP(1).

The following lemma includes the property (♣). In Section 2 we derived this
property from TSP(6), but in fact, we need it to establish all the other properties.

Lemma 7.1. For all α ď δ,

(a) The relation ďα is a partial ordering.
(♦) For all σ ď ρ ď τ P ωďω, if σ, ρ ďα τ , then σ ďα ρ.
(♣) For all σ ďα ρ ďα τ P ω

ďω, if σ ďα`1 τ then σ ďα`1 ρ.
(b) If σ ďα τ then σpαq ď τ pαq.
(c) If σ ďα`1 τ then ppσpαqq ď ppτ pαqq.

The converse of (b) may fail because of the exclusion of the first nα many ăα-
predecessors in the definition of τ pαq. Nonetheless, this converse is “close” to the
truth, and this gives an informal motivation for two of the properties illustrated in
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Figure 1. From left to right: the transitivity of ďα, the property
p♦qα, and the property p♣qα (given p♦qα).

Fig. 1. The relation ďα is transitive because if σ ďα ρ ďα τ then σpαq ď ρpαq ď τ pαq,
and so σpαq ď τ pαq. The property p♦q is similar: if σpαq, ρpαq ď τ pαq then σpαq and
ρpαq are comparable.

Proof. First, we observe that (a)α and p♦qα imply (b)α, (c)α, and p♣qα.
By the definition of τ pαq, to show (b)α we need to show that if ρ ă σ ďα τ then

ρ ďα σ Ø ρ ďα τ . One direction follows from (a)α, the other from p♦qα.
For (c)α, suppose that σ ďα`1 τ . Then σ ďα τ , which by (b)α implies that

σpαq ď τ pαq, and so pσpαqq1 Ď pτ pαqq1. Suppose that ppτ pαqq ă ppσpαqq. Then τ pαq is
finite, and ppτ pαqq R pσpαqq1, so e “ ppτ pαqq violates the definition of σ ďα`1 τ .

For p♣qα, suppose that σ ďα ρ ďα τ and σ ďα`1 τ . By (b)α, σpαq ď ρpαq ď

τ pαq, and so pσpαqq1 Ď pρpαqq1 Ď pτ pαqq1. Suppose that e P pρpαqq1zpσpαqq1. Then
e P pτ pαqq1zpσpαqq1; since σ ďα`1 τ , e ą ppσpαqq, so σ ďα`1 ρ.

By induction on α ď δ we prove that both (a)α and p♦qα hold.

For α “ 0 this is easy. For limit α, both (a)α and p♦qα follow from the inductive
assumption and the fact that the relation ďα is the intersection of the relations ďβ

for β ă α.

It remains to check the successor case. Let α ă δ, and suppose that (a)α and
p♦qα hold (and so also (b)α, (c)α and p♣qα). We verify that (a)α`1 and p♦qα`1

hold as well.

For (a)α`1, first observe that τ ďα`1 τ follows from τ ďα τ and pτ pαqq1 “
pτ pαqq1. We check transitivity of ďα`1. Suppose that σ ďα`1 ρ ďα`1 τ . Then
σ ďα ρ ďα τ , and so by (a)α, σ ďα τ . By (b)α, σpαq ď ρpαq ď τ pαq, and so
pσpαqq1 Ď pρpαqq1 Ď pτ pαqq1. Suppose that e P pτ pαqq1zpσpαqq1; we need to show that
e ą ppσpαqq. There are two cases. If e P pρpαqq1 then e ą ppσpαqq by the assumption
σ ďα`1 ρ. Otherwise, e P pτ pαqq1zpρpαqq1 and so e ą ppρpαqq by the assumption
ρ ďα`1 τ . By (c)α and the assumption σ ďα`1 ρ we get ppρpαqq ě ppσpαqq.

p♦qα`1 follows from p♦qα and p♣qα. Suppose that σ ď ρ ď τ and that σ, ρ ďα`1

τ . By p♦qα, σ ďα ρ. By p♣qα, σ ďα`1 ρ. �

We can conclude:

Lemma 7.2. For all α ă δ, if σ ďα τ then σ ďα`1 τ if and only if ppρpαqq ě ppσpαqq
for all finite ρ with σ ďα ρ ďα τ .

Note that this almost gives us TSP(6), by letting pα`1pσq “ ppσpαqq; what
remains is showing that σ ÞÑ σpαq is computable.

Proof. We have required that convergence of the universal machine is delayed so
that when we extend an oracle by one entry, at most one halting computation is
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added to the jump. If ρ0 is an immediate ăα-predecessor of ρ1, then |ρ
pαq
1 | ď

|ρ
pαq
0 | ` 1. Hence,

pτ pαqq1zpσpαqq1 “
 

ppρpαqq : σ ăα ρ ďα τ, ρ is finite, and ppρpαqq ‰ ppσpαqq
(

. �

Structurally, the transitivity of ďα and the property p♦qα together say that
pωďω,ďαq is a forest; every σ has height at most |σ| in that forest. We shall soon
verify that this forest is in fact a tree (it has a single root), and that each infinite x
has height ω in this tree.

When we say nothing. For a string σ and α ď δ we let |σ|α be the number of
(proper) ăα-predecessors of σ, in other words, its height in the forest pωďω,ďαq.

Lemma 7.3. Suppose that α ă δ, σ ďα τ , and |σ|α ď nα. Then σ ďα`1 τ .

Proof. The assumption implies that σpαq is the empty string, and so that ppσpαqq “
´1. �

By induction on α ď δ, we see that for all τ P ωďω, xy ďα τ , where again xy
denotes the empty string. Together with p♦qα of Lemma 7.1, this gives TSP(2).
We can also deal with the limit case:

Proof of TSP(5). Let λ ď δ be a limit ordinal. The first part is by definition of
ďλ. We verify the rest. Starting with any λ0 ă λ, recursively define λk by letting

λk “ maxtλk´1 ` 1, α : α ă λ & nα ď ku.

The definition ensures that xλky is cofinal in λ and computable. Now we show:

p˚q for all σ P ωăω, if |σ|λk ď k, then for all τ , σ ďλ τ ðñ σ ďλk τ .

To see this, let k ă ω and suppose that |σ|λk ď k and σ ďλk τ . By induction
on α P rλk, λs, we show that σ ďα τ . If α is limit we use the definition of ďα.
Suppose that λk ď α ă λ and σ ďα τ . By choice of λk, nα ě k. Since α ě λk,
|σ|α ď |σ|λk ď k. Hence, by Lemma 7.3, σ ďα`1 τ . This establishes p˚q.

To prove TSP(5), let k ă ω; we show that if |σ|λk ą k then |σ|λ ą k. For
suppose that |σ|λk ą k. Then there are k ` 1 distinct ρ ăλk σ with |ρ|λk ď k. For
each such ρ, by p˚q, we have ρ ăλ σ. Hence |σ|λ ą k. �

Computability. Restricted to finite strings, the true stage relations are computable.
As discussed above, this is uniform in α.

Proof of TSP(4). The relations σ ďα τ for α ď δ and the functions τ ÞÑ τ pαq for
α ă δ are computed by simultaneous recursion on |τ | (note, this is not effective
transfinite recursion on α). If we have decided, for all σ ď τ , whether σ ďα τ , then
we can compute τ pαq. The definition of the relation ďα`1 shows that we can then
decide whether σ ďα`1 τ or not.

Now given σ ď τ , the algorithm for computing whether σ ďα τ is given with the
aid of Lemma 7.3. Enumerate the set tβ ă δ : nβ ď |σ|u Y t0, δu as 0 “ β0 ă β1 ă

¨ ¨ ¨ ă βk “ δ. Then σ ďβ0
τ . If i ă k and we have decided that σ ďβi τ , then we

check if σ ďβi`1 τ . If so, then we can conclude that σ ďβi`1
τ : this uses |σ| ě |σ|β

for all β, so for all β P pβi, βi`1q we have |σ|β ď nβ . �

As mentioned above (after Lemma 7.2), TSP(6) follows as well.
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Remark 7.4. The continuity of the relations ďα implies that for all σ ď τ P ωďω,
maxtγ ď δ : σ ďγ τu must exist. The function pσ, τq ÞÑ maxtγ ď δ : σ ďγ τu is
computable for finite σ and τ (by a search over α, or by following the algorithm
described in the proof above).

True stages. For x P N and α ď δ let

Dα
x “ tσ : σ ăα xu .

So xpαq is the increasing enumeration of Dα
x after removing the first nα many

strings. If α is a limit ordinal then Dα
x “

Ş

βăαD
β
x . If Dα

x is infinite, then xpαq “
Ť

σPDαx
σpαq.

Lemma 7.5. Suppose that Dα
x is infinite, and let σ P Dα

x . The following are
equivalent:

(1) σ P Dα`1
x ;

(2) for all τ ěα σ in Dα
x , σ ďα`1 τ ;

(3) for infinitely many τ ěα σ in Dα
x , σ ďα`1 τ .

Proof. The implication (1) Ñ (2), follows from the property (♣). For (2) Ñ (3),
note that if τ P Dα

x and σ ď τ then σ ďα τ (TSP(2)). For (3) Ñ (1), we use the fact
that pxpαqq1 “

Ť

τPDαx
pτ pαqq1. So if σ ćα`1 x then there is some e P pxpαqq1zpσpαqq1

with e ă ppσpαqq; for large enough τ in Dα
x , e P pτ pαqq1 and so σ ęα`1 τ . �

Proposition 7.6. For every x P N and α ď δ, Dα
x is infinite.

Proof. By induction on α. D0
x is the set of all finite initial segments of x. At

successor levels we use non-deficiency stages (following Dekker in [Dek54]). Namely,
let m P N; let σ in Dα

x be such that |σ| ě m and ppσpαqq is minimal among ppτ pαqq
for all τ P Dα

x with |τ | ě m. By Lemma 7.2, σ P Dα`1
x .

Suppose that α is a limit ordinal, and suppose that for all β ă α, Dβ
x is infinite.

Given m P N, we find some γ ă α such that nγ ě m and for all β P pγ, αq,
nβ ą nγ . This can be done since α is a limit ordinal (and N is well-founded). We
then let σ ă x be the string in Dγ

x with |σ|γ “ nγ . Then |σ| ě m (as |σ| ě |σ|γ).
For all β P rγ, αq, |σ|β ď nβ (as |σ|β ď |σ|γ and nγ ď nβ). So by induction on
such β, aided by Lemma 7.3, we see that σ P Dβ

x . �

We obtain:

Proof of TSP(3). This is proved by induction on α. At the successor step, if σ P
Dα
x zD

α`1
x , then any infinite path above σ in ptρ : ρ ă xu,ďα`1q must also induce

an infinite path in ptσ : σ ă xu,ďαq, and thus must be a subset of Dα
x ; but by

Lemma 7.5, σ ďα`1 τ for only finitely many τ P Dα
x . �

Remark 7.7. Proposition 7.6 implies that for all x P N and α ă δ xpαq, is an infinite
sequence, and so ppxpαqq “ 8. As a result, in TSP(6), we do not need to restrict
to finite ρ.
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The effective Borel hierarchy. Recall that the Σ0
α sets, for 1 ď α ď δ, are defined

by induction on α. The Σ0
1 sets are the effectively open sets. For α ą 1, the Σ0

α

sets are those which are effective unions of sets which are Π0
β for some β ă α.6

We can now verify the last of the properties listed in Section 2. We use the
notation of that section regarding α-forests and the subsets of Baire space they
define. For σ P ωăω we let rσsα “ tx P N : σ ăα xu; this is rW sα, where W
consists of the ďα-extensions of σ.

Proof of TSP(7). We prove TSP(7) by effective transfinite induction on α. Thus,
it will be important that we work uniformly: by recursion on α, we show how to
effectively translate between indices of Σ0

1`α sets and c.e. indices of subsets of ωăω.

For α “ 0, TSP(7) is immediate, as ď0 is ď, and the Σ0
1 sets are the effectively

open ones.

Suppose that α ď δ is a limit ordinal.
In one direction, since Σ0

1`α is closed under effective unions, it suffices to show
that for all σ P ωăω, rσsα is Σ0

1`α. TSP(5) implies that it is in fact Σ0
ăα.

In the other direction, since 1 ` α “ α, and since c.e. sets are closed under
effective unions, it suffices to show that every Σ0

ăα set is rU sα for some c.e., ďα-
upwards closed U . Let A be Σ0

1`β for some β ă α. By induction, there is a c.e.

set U , upwards closed in ďβ , such that A “ rU sβ . Then U is also ďα-upwards
closed, and rU sα “ rU sβ “ A (see Remark 2.8).

For the successor case, suppose that α ă δ. In one direction, it suffices to show
that for all σ P ωăω, rσsα`1 is Σ0

1`α`1. In fact, it is Π0
1`α. To see this, let T be the

collection of τ P ωăω such that either τ ďα σ or σ ďα`1 τ . Then T is computable;
(♣) implies that T is ďα-downwards closed (it is a subtree of pωăω,ďαq), so rT sα
is Π0

1`α. Lemma 7.5 implies that rσsα`1 “ rT sα.
In the other direction, it suffices to show that every Π0

1`α set A is rU săα`1 for
some c.e. U , upwards closed in ďα`1. Given such A, by induction, let T be a
computable subtree of pωăω,ďαq with A “ rT sα. Note that for all x P N , x P A
if and only if for all σ listed in xpαq, σ P T . This is a Π0

1 property of xpαq, so
there is some e P N such that for all x P N , x P A ðñ e R pxpαqq1. Let
W “

 

σ P ωăω : e R pσpαqq1 & ppσpαqq ą e
(

. Then W is computable, and is ďα`1-
upwards closed. We claim that A “ rW sα`1. For all σ P W , for all x P rσsα`1,
e R pxpαqq1 by definition of ďα`1. On the other hand, if e R pxpαqq1, find σ ăα`1 x
sufficiently long so that ppσpαqq ą e; then σ PW . �

Relativising true stages. Given an oracle z and a z-computable ordinal α, we define
the relation ďz

α precisely as above; however, the universal machine which calculates
the jumps of strings is given an extra oracle tape, containing z. Write pz, σqpαq

instead of σpαq.
For finite σ, the universal machine computing pz, σqpαq is stopped after |σ| many

steps, and so consults only z æ |σ|. If α is computable (rather than z-computable),

6To make the notion of an effective union of Π0
ăα sets precise, we need to define an effective

indexing of each class. For each α ď δ with α ą 0, let xWe,αy be an effective enumeration of the
c.e. subsets of ωăω ˆ α. We let Ape,1q “ tx P N : pDσ ă xq pσ, n0q PWe,1u. For α ą 1 we let

Ape,αq “
Ť

 

N zApi,βq : pi, nβq PWpe,αq

(

. The sets Ae,α form an effective enumeration of the Σ0
α

sets.
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this shows that for finite τ , determining whether σ ďz
α τ depends only on z æ|τ |, as

promised in Section 2.
Further, the easier directions in the proof of TSP(7) give:

Lemma 7.8. Let α be a computable ordinal. For any τ P ωăω, the set
 

pz, xq P N 2 : τ ăz
α x

(

is Σ0
1`α.

As usual, this is uniform in α, z and τ .

7.2. Interlude: the Kuratowski-Sierpiński theorem. We still need to prove
Propositions 2.14 and 2.18 to 2.21 and Lemma 2.16. Before we do so, we briefly
comment on iterated Turing jumps and the Kuratowski-Sierpiński characterisation
of the classes Σ0

ξ .

In [DGHTT], we justified TSP(7) as follows. We started with the aforesaid
characterisation.

Theorem 7.9 (Kuratowski [Kur33], Sierpiński [Sie33]). Let ξ ě 1 be a countable
ordinal. A set A Ď N is Σ0

ξ if and only if there is a closed set K Ď N , a bijection
h : N Ñ K, and an open set O Ď N , such that:

(i) h is Σ0
ξ-measurable;

(ii) h´1 is continuous; and
(iii) A “ h´1rOs.

This theorem allows us to prove facts about Σ0
ξ sets by changing the topol-

ogy using a “generalised homeomorphism” such as h. For example, this allowed
Kuratowski to extend Hausdorff’s analysis of the ∆0

2 sets to the classes ∆0
ξ`1.

In [DGHTT], we stated that Theorem 7.9 can be effectivised; we can take h to
be an iteration of the Turing jump of length α, where ξ “ 1 ` α. We then argue
that Dα

x , as defined above, is (uniformly) Turing equivalent to this iteration of the
jump starting with x. We can then pull back the open set O to obtain a c.e. set U
satisfying A “ rU sα.

Here, rather, we directly derived TSP(7) from the other basic properties of the
true stage relations, and the definition of the classes Σ0

1`α. We can now argue in
the other direction, deriving an effective version of Theorem 7.9, which in turn, by
relativisation, implies Theorem 7.9.

For a computable ordinal α and x P N , let xtαu be the increasing enumeration
of Dα

x “ tσ : σ ăα xu.
7

Lemma 7.10. Let α be a computable ordinal. A set A Ď N is Σ0
1`α if and only if

there is an effectively open setO Ď pωăωqω such that for all x, x P A ðñ xtαu P O.

Proof. We of course use TSP(7). Suppose that A “ rU sα for some c.e., ďα-upwards-
closed U . Let O “ ty P pωăωqω : range y X U ‰ 0u. Then x P A ðñ xtαu P O.

In the other direction, let O be an effectively open subset of pωăωqω; so the
set of µ P pωăωqăω such that rµs Ď O is c.e. Let U be the set of σ P ωăω

7The reason we use xtαu rather than xpαq is that the latter does not depend solely on α, as it

requires nα. That is, it also depends on the upper bound of α in an ordinal α` 1 ą α. Observe,
though, that once such α` 1 is chosen, we get xpαq ”T xtαu, uniformly: given the least element

of xpαq we can computably list its nα-many ďα-predecessors.
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such that the increasing enumeration µ of tρ : ρ ďα σu satisfies rµs Ď O. Then
xtαu P O ðñ x P rU sα. �

Lemma 7.11. Let α be a computable ordinal. The map x ÞÑ xtαu:

(a) has Π0
1 graph and Π0

1 image;
(b) has computable (effectively continuous) inverse;
(c) is Σ0

1`α-measurable.

Indeed, the map x ÞÑ xtαu is universal for Σ0
1`α-measurable functions: for any

computable Polish space X and any Σ0
1`α-measurable function h : N Ñ X, there

is a partial computable map g : pωăωqω Ñ X such that hpxq “ gpxtαuq.

Proof. (a) follows from TSP(3): Let K “
 

xtαu : x P N
(

. Then y P K if and only

if y is an infinite path in pωăω,ďαq; y “ xtαu if and only if y P K and x “
Ť

n ypnq.
8

(b) is immediate. (c) follows from Lemma 7.10.
For universality, let h : N Ñ X be Σ0

1`α-measurable. Let W0,W1, . . . be an
effective listing of the effectively open subsets of X; so h´1rWes are uniformly Σ0

1`α;
by Lemma 7.10, there are uniformly effectively open sets Oe with hpxq P We ðñ

xtαu P Oe. For y P pωăωqω, let gpyq be the unique element of
Ş

tWe : y P Oeu if
there is such an element, undefined otherwise. �

Theorem 7.9 now follows by relativising to an oracle.

The line of argument just given does not mention the concept of an iteration of
the Turing jump, but of course, this concept was the original motivation for the
entire machinery. For a computable ordinal δ and x P N , define Hαpxq in Cantor
space by induction on α ď δ: H0pxq is the set of (codes of) the finite initial segments
of x; Hα`1pxq “ pHαpxqq

1; for limit α ď δ, Hαpxq “
À

βăαHβpxq.
9

Proposition 7.12. For all computable α and all x P N , Hαpxq ”T xtαu.

This is of course uniform in α and x.

Proof. We use effective transfinite recursion on α. Since xtαu ”T Dα
x , we show that

Dα
x ”T Hαpxq.
If α is a limit, we need to show that Dα

x is Turing equivalent to
À

βăαD
β
x . If

β ă α then Dβ
x ďT Dα

x : σ ăβ x if σ ăβ τ for some or all τ ě σ in Dα
x . On the

other hand, given Dβ
x for all β ă α, we can tell whether a given σ is in Dα

x by using
Lemma 7.3: we let β “ maxtγ ă α : nγ ď |σ|u, and ask whether σ P Dβ

x .
For the successor case, we need to check that Dα`1

x ”T pDα
x q
1. Note that

pxpαqq1 ”T pDα
x q
1 (as xpαq ”T Dα

x ). Given pxpαqq1 we first compute Dα
x . For

σ P Dα
x we can check if there is some e ă ppσpαqq in pxpαqq1zpσpαqq1 and so tell

if σ ăα`1 x. In the other direction, given Dα`1
x , we can compute pxpαqq1 by observ-

ing pσpαqq1 æppσpαqq for σ P Dα`1
x . �

7.3. Final debts. We give proofs of the remaining propositions of Section 2.

Proof of Proposition 2.14. In one direction, suppose that f : S Ñ N is a computable
α-approximation of F . For each n and k, let

An,k “
ď

trσsα : σ P S, fpσq “ n & |σ|α “ ku .

8Note that y “ Dαx is Π0
2: we need to say that it is infinite.

9To be precise, Hαpxq “
 

pnβ ,mq : β ă α & m P Hβpxq
(

.
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By TSP(7), and since f and S are computable, the sets An,k are uniformly ∆0
1`α.

For x P rSsα, F pxq “ n if and only if x P An,k for almost all k, hence F´1tnu is
Σ0

1`α`1 within rSsα.
In the other direction, let F : rSs Ñ N be Σ0

1`α`1-measurable. By TSP(7) and
Lemma 2.11, let V0, V1, . . . be uniformly computable subsets of S, ďα`1-upwards
closed in S, such that F´1tnu “ rVnsα`1 and

Ť

n Vn computable.
Define f : S Ñ N by letting fpσq “ n if σ P Vn, fpσq “ 0 if σ R

Ť

n Vn. Then f
is computable. Let x P rSs; let n “ F pxq. There is some σ ăα`1 x with σ P Vn.
Let τ be such that σ ăα τ ăα x. By (♣), σ ďα`1 τ . Since Vn is ďα`1-upwards
closed, τ P Vn, so fpτq “ n. �

Proof of Lemma 2.17. Let ăKB denote the Kleene-Brouwer ordering on ωăω. If T
is a well-founded tree, then the restriction of ăKB to T is a T -computable well-
ordering, and the identity function on T is a rank function. This well-ordering may
fail to be a T -computable ordinal, as T may fail to compute the collection of limit
points and the successor relation. This is overcome by multiplying on the left by ω,
that is, replacing every point by a copy of ω. �

Proof of Lemma 2.16. For nonempty σ P ωăω, let σ´ denote the immediate prede-
cessor of σ on the tree pωăω,ďαq. Let R be the collection of all σ P S such that
either:

‚ σ “ xy or σ´ R S; or
‚ σ´ P S and fpσ´q ‰ fpσq.

Then pR,ďαq is a computable well-founded tree. By Lemma 2.17, let η be a com-
putable ordinal and r : R Ñ η be a computable rank function. For σ P S, let
βpσq “ rpτq for the longest τ ďα σ in R. �

Proof of Proposition 2.18. Since w ěT z, every z-c.e. set is w-c.e., uniformly in
their indices. This, together with effective transfinite recursion on α, shows that
every Σ0

1`αpzq set is Σ0
1`αpwq, again uniformly in the indices. Using TSP(7), we see

that we can obtain uniformly computable, ďw
α -upwards closed sets Uσ for σ P ωăω,

such that rUσs
w
α “ rσs

z
α for all σ. We may assume that Uxy “ ωăω.

We define the function hpσq by recursion on ďw
α . Of course we set hpxyq “ xy.

Suppose that σ ‰ xy; let σ´ be σ’s immediate ďw
α -predecessor, and suppose that

hpσ´q has already been defined.
If there is some ρ ď σ such that σ P Uρ and ρ is a ďz

α-immediate successor
of hpσ´q then we let hpσq “ ρ for some such ρ (if there is more than one such ρ
then rσswα “ H, so it doesn’t matter which one we choose). If there is no such ρ we
let hpσq “ hpσ´q.

Note that by our construction, hpσq ď σ and σ P Uhpσq for all σ, i.e., rσswα Ď
rhpσqszα. Let x P N . We need to argue that for all τ ăz

α x there is some σ ăw
α x

such that τ “ hpσq. This is done by induction on τ . Let τ´ be τ ’s ďz
α-immedate

predecessor, and let ρ ăw
α x such that hpρq “ τ´. Since x P rτ szα, there is some

σ ăw
α x with σ P Uτ . If we take σ minimal such that ρ ăw

α σ ăw
α x and σ P Uτ ,

then hpσq “ τ . �

Propositions 2.19 and 2.20 are proved in exactly the same way. For the former,
we use the fact that the pull-back of a Σ0

1`α set by a computable function is Σ0
1`α,

uniformly. For the latter, we use the fact that if α and β are computably isomorphic,
then Σ0

1`α “ Σ0
1`β , uniformly in the indices. (We know that if α and β are
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isomorphic, then Σ0
1`α “ Σ0

1`β ; but if the isomorphism is not computable, then

this will not be uniform.) Proposition 2.21 is proved similarly, using Lemma 7.8.
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