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Abstract. We investigate the complexity of isomorphisms of computable structures on
cones in the Turing degrees. We show that, on a cone, every structure has a strong degree
of categoricity, and that degree of categoricity is ∆0

α-complete for some α. To prove this,
we extend Montalbán’s η-system framework to deal with limit ordinals in a more general
way. We also show that, for any fixed computable structure, there is an ordinal α and a
cone in the Turing degrees such that the exact complexity of computing an isomorphism
between the given structure and another copy B in the cone is a c.e. degree in ∆0

α(B).
In each of our theorems the cone in question is clearly described in the beginning of the
proof, so it is easy to see how the theorems can be viewed as general theorems with certain
effectiveness conditions.

1. Introduction

In this paper, we will consider the complexity of computing isomorphisms between com-
putable copies of a structure after relativizing to a cone. By relativizing to a cone, we are
able to consider natural structures, that is, those structures which one might expect to
encounter in normal mathematical practice. The main result of this paper is a complete
classification of the natural degrees of categoricity: the degrees of categoricity of natural
computable structures. Unless otherwise stated, all notation and conventions will be as
in the book by Ash and Knight [AK00]. We consider countable structures over at most
countable languages.

Recall that a computable structure is said to be computably categorical if any two com-
putable copies of the structure are computably isomorphic. As an example, consider the
rationals as a linear order; the standard back-and-forth argument shows that the rationals
are computably categorical. It is easy to see, however, that not all computable structures
are computably categorical. The natural numbers as a linear order is one example.

There has been much work in computable structure theory dedicated to characterizing
computable categoricity for various classes of structures (e.g., a linear order is computably
categorical if and only if it has at most finitely many successivities [GD80], [Rem81]).
For those structures that are not computably categorical, what can we say about the iso-
morphisms between computable copies, or more generally, about the complexities of the
isomorphisms relative to that of the structure?

We can extend the definition of computable categoricity as follows.
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Definition 1.1. A computable structure A is d-computably categorical if for all computable
B ≅ A there exists a d-computable isomorphism between A and B.

It is easy to see, for example, that the natural numbers as a linear order, N , is 0′-computably
categorical. Indeed, it is also easy to construct a computable copy A of N such that every
isomorphism between A and N computes 0′. Thus 0′ is the least degree d such that N is
d-computably categorical. This motivates the following definitions.

Definition 1.2. We say a computable structure A has degree of categoricity d if
(1) A is d-computably categorical.
(2) If A is c-computably categorical, then c ≥ d.

Definition 1.3. We say that a Turing degree d is a degree of categoricity if there exists a
computable structure A with degree of categoricity d.

The notion of a degree of categoricity was first introduced by Fokina, Kalimullin and R.
Miller [FKM10]. They showed that if d is d.c.e. (difference of c.e.) in and above 0(n), then

d is a degree of categoricity. They also showed that 0(ω) is a degree of categoricity. For
the degrees c.e. in and above 0(n), they exhibited rigid structures capturing the degrees of
categoricity. In fact, all their examples had the following, stronger property.

Definition 1.4. A degree of categoricity d is a strong degree of categoricity if there is a
structure A with computable copies A0 and A1 such that d is the degree of categoricity for
A, and every isomorphism f ∶ A0 → A1 satisfies deg(f) ≥ d.

In [CFS13], Csima, Franklin and Shore showed that for every computable ordinal α, 0(α)

is a strong degree of categoricity. They also showed that if α is a computable successor
ordinal and d is d.c.e. in and above 0(α), then d is a strong degree of categoricity.

In [FKM10] it was shown that all strong degrees of categoricity are hyperarithmetical,
and in [CFS13] it was shown that all degrees of categoricity are hyperarithmetical. There are
currently no examples of degrees of categoricity that are not strong degrees of categoricity.
Indeed, we do not even have an example of a structure that has a degree of categoricity but
not strongly.

All known degrees of categoricity satisfy 0(α) ≤ d ≤ 0(α+1) for some computable ordinal
α. So in particular, all known non-computable degrees of categoricity are hyperimmune.
In [AC], Anderson and Csima showed that no non-computable hyperimmunefree degree is
a degree of categoricity. They also showed that there is a Σ0

2 degree that is not a degree
of categoricity, and that if G is 2-generic (relative to a perfect tree), then deg(G) is not a
degree of categoricity. The question of whether there exist ∆0

2 degrees that are not degrees
of categoricity remains open.

Turning to look at the question of degree of categoricity for a given structure, R. Miller
showed that there exists a field that does not have a degree of categoricity [Mil09], and
Fokina, Frolov, and Kalimullin [FFK16] showed that there exists a rigid structure with no
degree of categoricity.

In this paper, we claim that the only natural degrees of categoricity are the ∆0
α-complete

degrees for some computable ordinal α. By a natural degree of categoricity, we mean the
degree of categoricity of a natural structure.
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What do we mean by natural? By a natural structure, we mean one which might show
up in the normal course of mathematics; we will not include a structure which has been
constructed, say via diagonalization, to have some computability-theoretic property as a
natural structure. So, for example, we will not consider a structure which is computably
categorical but not relatively computably categorical to be a natural structure. On the
other hand, the infinite-dimensional vector space is a natural structure. Of course, this is
not a rigorous definition. Instead, we note that arguments involving natural structures tend
to relativize, and so a natural structure will have property P if and only if it has property
P on a cone (i.e., there is a Turing degree d such that for all c ≥ d, P holds relative to
c). Thus by considering arbitrary structures on a cone, we can prove results about natural
structures.

The second author previously considered degree spectra of relations on a cone [HT].
McCoy [McC02] has also shown that on a cone, every structure has computable dimension
1 or ω. Here, we give an analysis of degrees of categoricity along similar lines.

Our main theorem is:

Theorem 1.5. Let A be a countable structure. Then, on a cone: A has a strong degree of
categoricity, and this degree of categoricity is ∆0

α-complete.

There are three important parts to this theorem: first, that every natural structure has a
degree of categoricity; second, that this degree of categoricity is a strong degree of cate-
goricity; and third, that the degree of categoricity is ∆0

α-complete.The ordinal α is the least
ordinal α such that A is ∆0

α categorical on a cone.This is related to the Scott rank of A
under an appropriate definition of Scott rank [Mon15]: α is the least ordinal α such that
A has a Σinf

α+2 Scott sentence if α. (While α may not be computable, every ordinal is com-
putable on some cone. The reader may be uncomfortable with talking about ∆0

α-complete
degrees on a cone when α is not computable; precisely what we mean will be clarified in
Section 2.)

The construction of a structure with degree of categoricity some d.c.e. (but not c.e.)
degree uses a computable approximation to the d.c.e. degree; this requires the choice of a
particular index for the approximation, and hence the argument that the resulting structure
has degree of categoricity d.c.e. but not c.e. does not relativize. By our theorem, there is no
possible construction which does relativize. Moreover, our theorem says something about
what kinds of constructions would be required to solve the open problems about degrees of
categoricity, for example whether there is a 3-c.e. but not d.c.e. degree of categoricity, or
whether there is a degree of categoricity which is not a strong degree of categoricity—the
proof must be by constructing a structure which is not natural, using a construction which
does not relativize.

The proof of Theorem 1.5 also gives an effectiveness condition which, if it holds of some
computable structure, means that the conclusion of the theorem is true of that structure
without relativizing to a cone. See, for example, the definition of the degree e in Theorem
6.2. If A is a computable structure, α is a computable ordinal and is least such that A is
∆0
α categorical, and one can take e = 0 (which, in particular, means that it is effectively

witnessed that α is the least ordinal such that A is ∆0
α categorical), then A has strong

degree of categoricity ∆0
α.
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Corollary 1.6. The degrees of categoricity on a cone are the ∆0
α-complete degrees for some

α.

Indeed, each ∆0
α-complete degree is a degree of categoricity on a cone. To see this,

examine the proof of Theorem 3.1 of [CFS13] showing that each ∆0
α-complete degree is a

degree of categoricity, and note that the proof relativizes.
In 2012, Csima, Kach, Kalimullin and Montalbán worked out a proof of Theorem 1.5

in the case where A is ∆0
2 categorical on a cone. That is, they showed that if A is ∆0

2

categorical on a cone, but not computably categorical on a cone, then A has ∆0
2-complete

strong degree of categoricity on a cone. They also conjectured the general result at that
time. The work was not written up. The result was later independently suggested by
the second author. The proof of the general result require not only the machinery of α-
systems but also some new ideas. The proof of the special case is quite similar to a result of
Harizanov [Har91, Theorem 2.5], who answered an analogous question for degree spectra of
relations; the corresponding general case for degree spectra of relations is still open (though
some more general results are proved in [HT]). On the other hand, our proof of the general
result for categoricity uses, in an integral way, certain facts about automorphisms (which
were not used in the case of a ∆0

2 categorical structure), and so our proof does not work for
degree spectra. We discuss in Section 6 the new difficulties which arise in the general case.

The second result of this paper concerns the difficulty of computing isomorphisms between
two given copies A and B of a structure. We show that, on a cone, there is an isomorphism
of least degree between A and B, and that it is of c.e. degree.

Theorem 1.7. Let A be a countable structure. Let α be such that A is ∆0
α categorical on

a cone. Then, on a cone: for every copy B of A, there is a degree d that is Σ0
α−1 in B if α

is a successor, or ∆0
α in B if α is a limit, such that d computes an isomorphism between A

and B and such that all isomorphisms between A and B compute d.

The degree d is the least degree of an isomorphism between A and B.
We begin in Section 2 by giving the technical definitions for what we mean by “on a

cone.” In Section 3 we prove Theorem 1.7. In Section 4 we prove a stronger version of
Theorem 1.5 in the restricted case of structures which are ∆0

2 categorical on a cone; it will
follow that the only possible degrees of categoricity on a cone for such structures are ∆0

1-
complete or ∆0

2-complete. In order to prove the general case of Theorem 1.5, we need to use
the method of α-systems. These were introduced by Ash, see [AK00]. Montalbán [Mon14]
introduced η-systems, which are similar to Ash’s α-systems but give more control. They
also deal with limit ordinals in a different way. We need the extra control of Montalbán’s
η-systems, but we need to deal with limit ordinals as in Ash’s α-systems. So in Section 5
we introduce a modified version of Montalbán’s η-systems. We conclude in Section 6 with
a complete proof of Theorem 1.5.

2. Relativizing to a Cone

A cone of Turing degrees is a set Cd = {c ∶ c ≥ d}. Martin [Mar68] showed that under
set-theoretic assumptions of determinacy, every set of Turing degrees either contains a cone
or is disjoint from a cone. Noting that every countable intersection of cones contains a cone,
we see that we can form a {0,1}-valued measure on sets of degrees by assigning measure
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one to those sets which contain a cone. In this paper, all of the sets of degrees which we will
consider arise from Borel sets, and by Borel determinacy [Mar75], such sets either contain
or are disjoint from a cone.

If P is a statement which relativizes to any degree, we say that P holds on a cone if there
is a degree d (the base of the cone) such that for all c ≥ d, P holds relative to c. Thus a
statement holds on a cone if and only if it holds almost everywhere relative to the Martin
measure. In the rest of this section, we will relativize the definitions we are interested in.

Definition 2.1. The structure A is computably categorical on the cone above d if for
all c ≥ d, whenever B and C are c-computable copies of A, there exists a c-computable
isomorphism between B and C. More generally, a structure is ∆0

α categorical on the cone
above d if for all c ≥ d whenever B and C are c-computable copies of A, there exists a
∆0
α(c)-computable isomorphism between B and C.

Note that even if α is not computable, there is a cone on which α is computable, and
for c on this cone, ∆0

α(c) makes sense. In a similar way, we do not have to assume that
the structure A is computable. If A is ∆0

α-categorical on a cone, there is a degree d which
computes A and α, and A is ∆0

α-categorical on the cone above d.
Recall that a computable structure A is relatively ∆0

α categorical if for all B ≅ A, some
isomorphism fromA onto B is ∆0

α(B), and that there exist structures that are ∆0
α categorical

but not relatively so [Gon77, GHK+05, DKL+15]. If we were to modify the definition of
relatively ∆0

α categorical to be on a cone, it would be equivalent to Definition 2.1. That is,
there is no difference between relatively ∆0

α categorical on a cone and ∆0
α categorical on a

cone.
The notion of relatively ∆0

α categoricity is intimately related to that of a Scott family.

Notation 2.2. All formulas in this paper will be infinitary formulas, that is, formulas
in Lω1ω. See Chapter 6 of [AK00] for background on infinitary formulas and computable
infinitary formulas. We will denote by Σinf

α the infinitary Σα formulas and by Σc
α the

computable Σα formulas.

Definition 2.3. A Scott family for a structure A is a countable family Φ of formulas over
a finite parameter such that

● for each ā ∈ A, there exists ϕ ∈ Φ such that A ⊧ ϕ(ā)
● if ϕ ∈ Φ, A ⊧ ϕ(ā), and A ⊧ ϕ(b̄), then there is an automorphism of A taking ā to b̄.

It follows from work of Scott [Sco65] (see [AK00]) that every countable structure has a
Scott family consisting of Σinf

α formulas for some countable ordinal α.

Theorem 2.4 (Ash-Knight-Manasse-Slaman [AKMS89] and Chisholm [Chi90]). A com-
putable structure A is relatively ∆0

α categorical if and only if it has a Scott family which is
a c.e. set of Σc

α formulas.

Now we can see the power of working on a cone.

Remark 2.5. Let A be a countable structure. Then A has a Scott family consisting of Σinf
α

formulas for some countable ordinal α. Let d be such that A and α are d-computable, and
such that the Scott family for A is c.e. and consists of Σc

α formulas relative to d. Then A
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is ∆0
α categorical on the cone above d. That is, every countable structure is ∆0

α categorical
on a cone for some α.

There is also an analogue of Theorem 2.4 for (non-relative) ∆0
α categoricity. Historically,

this came first; the α = 1 case is due to Goncharov [Gon75] and the general case is due to
Ash [Ash87].

We now recall some definitions from [AK00].

Definition 2.6 (Back-and-forth relations). For a structure A tuples ā, b̄ ∈ A of the same
length

● ā ≤0 b̄ if and only if for every quantifier-free formula ϕ(x̄) with Gödel number less
than length(ā), if A ⊧ ϕ(ā) then B ⊧ ϕ(b̄).

● for α > 0, ā ≤α b̄ if and only if, for each d̄ in A and each 0 ≤ β < α, there exists c̄ in
A such that b̄, d̄ ≤β ā, c̄.

Definition 2.7 (p. 269 Ash-Knight). For tuples c̄ and ā in A, we say that ā is α-free over
c̄ if for any ā1 and for any β < α, there exist ā′ and ā′1 such that c̄, ā, ā1 ≤β c̄, ā′, ā′1 and
c̄, ā′ ≰α c̄, ā.

Definition 2.8 (p. 241 Ash-Knight). A structure A is α-friendly if for β < α, the standard
back-and-forth relations ≤β are c.e. uniformly in β.

There is a version of Theorem 2.4 for the non-relative notion of categoricity. It comes in
two parts:

Proposition 2.9 (Prop 17.6 from [AK00]). Let A be a computable structure. Suppose A is
α-friendly, with computable existential diagram. Suppose that there is a tuple c̄ in A over
which no tuple ā is α-free. Then A has a formally Σ0

α Scott family, with parameters c̄.

Theorem 2.10 (Theorem 17.7 from [AK00]). Let A be α-friendly. Suppose that for each
tuple c̄ in A, we can find a tuple ā that is α-free over c̄. Finally, suppose that the relation
≰α is c.e. Then there is a computable B ≅ A with no ∆0

α isomorphism from A to B.

Corollary 2.11. Suppose that A is not ∆0
α categorical on any cone. Then for any c̄ in A,

there is some ā ∈ A that is α-free over c̄.

We now give the definitions needed to discuss degrees of categoricity on a cone.

Definition 2.12. The structure A has degree of categoricity d relative to c if d can compute
an isomorphism between any two c-computable copies of A, and moreover d ≥ c is the least
degree with this property. If in addition to this there exist two c-computable copies of A
such that for every isomorphism f between them, f ⊕ c ≥T d, then we say A has strong
degree of categoricity d relative to c.

Definition 2.13. We say that a structure A has a (strong) degree of categoricity on a cone,
if there is some d such that for every c ≥ d, A has a (strong) degree of categoricity relative
to c.

Definition 2.14. We say that a structure A has ∆0
α-complete (strong) degree of categoricity

on a cone, if there is some d such that for every c ≥ d, A has ∆0
α-complete (strong) degree

of categoricity relative to c.
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3. Isomorphism of C.E. Degree

Theorem 1.7 follows from the following more technical statement.

Theorem 3.1. Let A be a structure. Suppose that A is ∆0
α categorical on a cone. Then

there is a degree c such that for every copy B of A, there is a degree d that is Σ0
α−1 in and

above B ⊕ c if α is a successor ordinal, or ∆0
α in and above B ⊕ c if α is a limit ordinal,

such that
(1) d computes some isomorphism between A and B and
(2) for every isomorphism f between A and B, f ⊕ c ≥T d.

Before giving the proof, we consider two motivating examples.

Example 3.2. Let N be the standard presentation of (ω,<). If A is any other presentation,
let Succ(A) be the successor relation in A. Then the unique isomorphism between N and
A has the same Turing degree as Succ(A). Note that Succ(A) is Π0

1.

Example 3.3. Let V be an infinite-dimensional Q-vector space with a computable basis.
If W is any other presentation of V, let Indep(W) be the independence relation in W,
as a subset of W<ω. Then any isomorphism between V and W computes Indep(W), and
Indep(W) computes a basis forW and hence an isomorphism between V andW. Note that
Indep(W) is Π0

1.

Theorem 1.7 says that this is the general situation for natural structures.

Proof of Theorem 3.1. Let c be a degree such that A is c-computable and ∆0
α-categorical

on the cone above c. By increasing c to absorb the effectiveness conditions of Proposition
2.9 and Theorem 2.10, A has a c.e. Scott family S consisting of Σc

α formulas relative to
c. Increasing c, we may assume that S consists of formulas of the form (∃x̄)ϕ where ϕ is
Πc
β relative to c for some β < α. Further increasing c, we may assume that c can decide

whether two formulas from S are satisfied by the same elements. Then we can replace S by
a Scott family in which every tuple from A satisfies a unique formula from S. Finally, by
replacing c with a higher degree, we may assume that c can compute, for an element of A,
the unique formula of S which it satisfies, and can decide, for each tuple of the appropriate
arity, whether or not it is a witness to the existential quantifier in that formula. This is the
degree c from the statement of the theorem.

Let B be a copy of A. Consider the set

S(B) = {(b̄, ϕ) ∶ B ⊧ ϕ(b̄), ϕ ∈ S}.

Let d be the degree of S(B) ⊕ B ⊕ c. First, note that the set

S(A) = {(ā, ϕ) ∶ A ⊧ ϕ(ā), ϕ ∈ S}

is c-computable. If f is an isomorphism between A and B, then f⊕c computes S(A). Then
using f and S(A), we can compute S(B). Thus

f ⊕ c ≥T S(B) ⊕ B ⊕ c ≡T d

for every isomorphism f between A and B.
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On the other hand, c computes S(A). Using S(B) and S(A) we can compute an iso-
morphism between A and B. So there is an isomorphism f between A and B such that

f ⊕ c ≡T S(B) ⊕ B ⊕ c ≡T d.

We now introduce a related set T (B). We will show that T (B) ⊕ B ⊕ c ≡T d. If α is a
successor ordinal, then T (B) will be Π0

α−1 in B ⊕ c, and if α is a limit ordinal then T (B)
will be ∆0

α in B⊕ c. Thus d will be a degree of the appropriate type. We may consider the
elements of B to be ordered, and hence order tuples from B via the lexicographic order. Let
T (B) be the set of tuples (ā, b̄, ϕ) where:

(1) ϕ(x̄, ȳ) is a c-computable Π0
β formula, for some β < α,

(2) (∃ȳ)ϕ(x̄, ȳ) is in S, and
(3) B ⊧ ϕ(ā, c̄), for some c̄ ≤ b̄ in the lexicographical ordering of tuples from B.

It is easy to see that if α is a successor ordinal, then T (B) is Π0
α−1 in B ⊕ c, and if α is a

limit ordinal then T (B) is ∆0
α in B⊕c. Now we will argue that T (B)⊕B⊕c ≡T S(B)⊕B⊕c.

Suppose we want to check whether (ā, b̄, ϕ) ∈ T (B) using S(B) ⊕B ⊕ c. Using c, we first
compute whether (1) and (2) hold for ϕ. Then using S(B) ⊕ B ⊕ c we can compute an
isomorphism f ∶ B → A. Now for each c̄ ≤ b̄ in B, B ⊧ ϕ(ā, c̄) if and only if A ⊧ ϕ(f(ā), f(c̄)).
In A, using c we can decide whether A ⊧ ϕ(f(ā), f(c̄)).

On the other hand, to see whether (ā, (∃ȳ)ϕ(x̄, ȳ)) is in S(B) using T (B), look for b̄ and
ψ such that (ā, b̄, ψ) ∈ T (B). Some such ψ and witness b̄ must exist, since ā satisfies some
formula from S. Then (ā, (∃ȳ)ϕ(x̄, ȳ)) ∈ S(B) if and only if ϕ = ψ (recall that we assumed
that each element of A satisfied a unique formula from the Scott family). �

4. Not computably categorical on any cone

This section is devoted to the proof of Theorem 1.5 for structures which are ∆0
2 categorical

on a cone. The general case of the theorem will require the η-systems developed in the next
section, and will be significantly more complicated, so the proof of this simpler case should
be helpful in following the proof in the general case, and in fact, we have a slightly stronger
theorem in this case.

Theorem 4.1. Let A be a countable structure. If A is not computably categorical on any
cone, then there exists an e such that for all d ≥ e, if c is c.e. in and above d, then there
exists a d-computable copy B of A such that

(1) there is a c-computable isomorphism between A and B and
(2) for every isomorphism f between A and B, f ⊕ d computes c.

Proof. Suppose A is not computably categorical on any cone. Before we begin, note that
since A is not computably categorical on any cone, for any tuple c̄ in A, there exist a tuple
ā in A that is 1-free over c̄. Let e be such that:

(1) A is e-computable,
(2) e computes a Scott family for A where each tuple satisfies a unique formula, and e

can compute which which formula a tuple of A satisfies,
(3) A is 1-friendly relative to e, and
(4) given c̄, e can compute the least tuple ā that is 1-free over c̄.
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Let d ≥ e, and let c be c.e. in and above d. Let C ∈ c be such that we have a d-computable
approximation to C where at most one number is enumerated at each stage, and there are
infinitely many stages when nothing is enumerated.

We will build B with domain ω by a d-computable construction. We will build a bijection
f ∶ω → A and B will be the pullback, along f , of A. At each stage s, we will have a finite
approximation fs to f , and B[s] a finite part of the diagram of B so that fs is a partial
isomorphism between B[s] and A. Once we put something into the diagram of B, we
will not remove it, and so B will be d-computable. While the approximation fs will be
d-computable, f will be C-computable.

We will have distinguished tuples ā0 ∈ A and b̄0 ∈ B, such that for any isomorphism
g ∶ B → A, we will have 0 ∉ C if and only if g(b̄0) is automorphic to ā0 in A. For n > 0 the
strategy for coding whether n ∈ C will be the same, but our ān and b̄n will be re-defined each
time some m < n is enumerated into C. When n is enumerated into C, we will be able to
redefine f on b̄n and on all greater values. At each stage s, we have current approximations
ān[s] and b̄n[s] to these values. The tuple b̄n[s] will be a series of consecutive elements of
ω; by B ↾↾ b̄ we mean the elements of B up to, and including, those of b̄, and by B ↾ b̄ we
mean those up to, but not including, b̄.

At each stage, if n ∉ C, for those ān and b̄n which are defined at that stage we will have
f(b̄n) is 1-free over f(B ↾ b̄n); otherwise, we will have f(B ↾ b̄n)f(b̄n) ≇ f(B ↾ b̄n)ān.

Construction.

Stage 0 : Let ā0[0] be the least tuple of A that is 1-free, and let b̄0[0] be the first ∣ā0∣-many
elements of ω. Define f0 to be the map b̄0[0] ↦ ā0[0]. Let B[0] be the pullback, along f0,
of A, using only the first ∣ā0[0]∣-many symbols from the language.

Stage s + 1: Suppose n enters C at stage s + 1. Let b̄ = B[s] ↾ b̄n[s]. Let b̄′ be those
elements of B[s] which are not in b̄ or b̄n[s]. Then, since ān[s] is 1-free over f(b̄), there are
ā, ā′ ∈ A such that

f(b̄), ān[s], f(b̄′) ≤0 f(b̄), ā, ā′, but f(b̄), ā /≅ f(b̄), ān[s].

Define fs+1 to map b̄, b̄n[s], b̄′ to f(b̄), ā, ā′. For m ≤ n, let ām[s+ 1] = ām[s] and b̄m[s+ 1] =
b̄m[s]. For m > n, ām[s + 1] and b̄m[s + 1] are undefined.

If nothing enters C at stage s+ 1, let n be least such that ān[s] is undefined. For m < n,
let ām[s + 1] = ām[s] and b̄m[s + 1] = b̄m[s]. Let ān[s + 1] be the least tuple that is 1-free
over ran(fs). Extend fs to fs+1 with range A ↾↾ ān[s + 1] by first mapping new elements
b̄n[s + 1] of ω to ān[s + 1], and then mapping more elements to the rest of A ↾↾ ān[s + 1]. If
n ∈ C, we must modify fs+1 as described above in the case n entered C.

In all cases, let B[s + 1] be the pullback, along fs+1, of A. We have B[s] ⊆ B[s + 1].
End of construction.

Since ān and b̄n are only re-defined when there is an enumeration of some m ≤ n into C,
it is easy to see that for each n, ān and b̄n eventually reach a limit. Moreover, since the
ān and b̄n form infinite sequences in A and B, respectively, and since f is not re-defined on
B ↾↾ b̄n unless there is an enumeration of m ≤ n into C, we see that f is an isomorphism
between B and A. Moreover, C can compute a stage when ān and b̄n have reached their
limit, and hence f is c-computable.
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Now suppose g ∶ B → A is an isomorphism. To compute C from g⊕d, proceed as follows.
Compute g(b̄0). Ask d whether (A, g(b̄0)) ≅ (A, ā0). If yes, then 0 ∉ C. We also know that
b̄1 = b̄1[0] and that ā1 = ā1[0]. If (A, g(b̄0)) ≇ (A, ā0), then 0 ∈ C. Compute s such that
0 ∈ C[s]. Then b̄1 = b̄1[s] and ā1 = ā1[s]. Continuing in this way, given b̄n and ān, we ask
d whether (A, g(b̄n)) ≅ (A, ān), using the answer to decide whether n ∈ C and to compute
b̄n+1 and ān+1. �

Using Knight’s theorem on the upwards closure of degree spectra [Kni86], we get a slight
strengthening of the above theorem.

Corollary 4.2. Let A be a countable structure. If A is not computably categorical on any
cone, then there exists an e such that for all d ≥ e, if c is c.e. in and above d, then there
exists a d-computable copy B of A such that every isomorphism between A and B computes
c, and such that there exists a c-computable isomorphism between A and B.

Proof. Take e as guaranteed by the theorem, with e computing A, and fix d ≥ e, and let
c be c.e. in d. Let C be as guaranteed by the theorem. Since C is d-computable, by the
proof of Knight’s upward closure theorem [Kni86] (and noting that a “trivial” structure is
computably categorical on a cone), there exists B such that deg(B) = d and such that there
exists a d-computable isomorphism h ∶ B ≅ C. Now since A is e-computable and deg(B) = d,
any isomorphism g ∶ A ≅ B computes d. Since d computes h, g computes the isomorphism
g ○ h ∶ C ≅ A and hence it computes c. On the other hand, since c computes d and hence
h, and since c computes an isomorphism between A and C, we have that c computes an
isomorphism between A and B. �

Corollary 4.3. On a cone, a structure cannot have degree of categoricity which is ∆0
2 but

not ∆0
1 or ∆0

2-complete. That is, if A is not computably categorical on any cone, and if
A has a degree of categoricity on a cone, then there is some e such that for all d ≥ e, the
degree of categoricity of A relative to d is at least d′.

Corollary 4.4. If A is ∆0
2 categorical on a cone then A has ∆0

1-complete or ∆0
2-complete

degree of categoricity on a cone.

5. A Version of Ash’s Metatheorem

The goal of the remainder of the paper is to prove Theorem 1.5. Our main tool will
be a version of Ash’s metatheorem for priority constructions which was first introduced in
[Ash86a, Ash86b, Ash90]. Ash and Knight’s book [AK00] is a good reference. Montalbán
[Mon14] has recently developed a variant of Ash’s metatheorem using computable approxi-
mations. Montalbán’s formulation of the metatheorem also provides more control over the
construction; for the proof of Theorem 1.5, we will require this extra control. However,
Montalbán’s version of the metatheorem, as written, only covers 0(η)-priority constructions
for η a successor ordinal. In this section, we will introduce the metatheorem and expand it
to include the case of limit ordinals.

Fix a computable ordinal η for which we will define η-systems and the metatheorem for
constructions guessing at a ∆0

η-complete function. Here our notation differs from Mon-
talbán’s but corresponds to Ash’s original notation. What we call an η-system corresponds
to what Ash would have called an η-system, but what Montalbán calls an η-system we will
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call an η + 1-system. This will allow us to consider, for limit ordinals η, what Montalbán
might have called a < η-system.

5.1. Some ∆0
ξ-complete functions, their approximations, and true stages. Before

defining an η-system and stating the metatheorem, we discuss some ∆0
ξ-complete functions

and their approximations as introduced by Montalbán [Mon14]. We will introduce orderings
on ω to keep track of our beliefs on the correctness of the approximations.

For each computable ordinal ξ ≤ η, Montalbán defines a ∆0
ξ-complete function ∇ξ ∈ ωω,

and for each stage s ∈ ω a computable approximation ∇ξs to ∇ξ. ∇ξs is a finite string which
guesses at an initial segment of ∇ξ. The approximations are all uniformly computable in
both s and ξ. Montalbán shows that the approximation has the following properties (see
Lemmas 7.3, 7.4, and 7.5 of [Mon14]):

(N1) For every ξ, the sequence of stages t0 < t1 < t2 < ⋯ for which ∇ξt is correct is an

infinite sequence with ∇ξt0 ⊆ ∇
ξ
t1
⊆ ⋯ and ⋃i∈ω∇ξti = ∇

ξ.

(N2) For each stage s, there are only finitely many ξ with ∇ξs ≠ ⟨⟩, and these ξs can be
computed uniformly in s.

(N3) If γ ≤ ξ, s ≤ t, and ⟨⟩ ≠ ∇ξs ⊆ ∇ξt , then ∇γs ⊆ ∇γt .
We say that s is a true stage or η-true stage if ∇ηs ⊆ ∇η.

Montalbán defines relations (≤ξ)ξ<η on ω, to be thought of as a relation on stages in an
approximation. We will define relations (≤ξ)ξ<η which are almost, but not exactly, the same
as Montalbán’s (we leave the definition of these relations, and the proofs of their properties,
to Lemma 5.3). An instance s ≤ξ t of the relation should be interpreted as saying that,
from the point of view of t, s is a ξ-true stage. A relation s ≤ξ t is almost, but not exactly,
equivalent to saying that for all γ ≤ ξ + 1, ∇γs ⊆ ∇γt . The problem is that we require the
property (B4) below.

Definition 5.1. Let s ⊴ t if and only if, for all ξ < η, ∇ξ+1
s ⊆ ∇ξ+1

t .

We can interpret s ⊴ t as saying that s appears to be a true stage (or η-true stage) from
stage t. This relation is computable by (N2) above.

We will see that the relations ≤ξ satisfy the following properties:
(B0) ≤0 is the standard ordering on ω.
(B1) The relations ≤ξ are uniformly computable.
(B2) Each ≤ξ is a preordering (i.e., reflexive and transitive).
(B3) The sequence of relations is nested (i.e., if γ ≤ ξ and s ≤ξ t, then s ≤γ t).
(B4) The sequence of relations is continuous (i.e., if λ is a limit ordinal, then ≤λ= ⋂ξ<λ ≤ξ).
(B5) For every s < t in ω, if s ≤ξ t then ∇ξ+1

s ⊆ ∇ξ+1
t .

(B6) The sequence t0 < t1 < . . . of true stages satisfies t0 ⊴ t1 ⊴ ⋯ and ⋃i∈ω∇ηti = ∇
η. We

call the sequence of true stages the true path.

(B7) For s ∈ ω, we can compute H(s) = max{ξ < η ∣ ∇ξs /= ⟨⟩}. H(s) has the property that
if t > s and s ⋬ t, then s ≰H(s) t. We call H(s) the height of s.

(B8) For every ξ with ξ < η, and r < s < t, if r ≤ξ t and s ≤ξ t, then r ≤ξ s. Moreover, if ξ
is a successor ordinal, then it suffices to assume that s ≤ξ−1 t.

(B9) s ⊴ t if and only if for all ξ < η, s ≤ξ t.
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(B10) If t is a true stage and s ⊴ t, then s is also a true stage.
Properties (B0)-(B5) are as in Montalbán [Mon14]. Our (B6) is a modification of Mon-
talbán’s (B6). (B7), (B9) and (B10) are new properties. (B8) is Montalbán’s (♣) together
with his Observation 2.1.

We will define, for convenience, the relations ⊴ξ for ξ < η.

Definition 5.2. Let s ⊴ξ t if for all γ ≤ ξ + 1, ∇γs ⊆ ∇γt .

These relations are uniformly computable because by (N2), we only need to check whether
∇γs ⊆ ∇γt for finitely many γ.

Following Montalbán, we will construct the desired relations (≤ξ)ξ<η.
Proposition 5.3. There is a sequence (≤ξ)ξ<η satisfying (B0)-(B10).

In order to prove this proposition, we will use a number of lemmas from [Mon14], as well
as properties (N1)-(N3).

Lemma 5.4 (Lemma 7.3 of [Mon14]). For each ξ, there is a subsequence {ti ∶ i ∈ ω} such

that ⋃i∈ω∇ξti = ∇
ξ.

Lemma 5.5 (Lemma 7.6 of [Mon14]). Let λ ≤ η be a limit ordinal, and s < t ∈ ω. Suppose

that ∇λs ≠ ⟨⟩. Then ∇λs ⊆ ∇λt if and only if (∀ξ < λ)∇ξs ⊆ ∇ξt .
Lemma 5.6 (Lemma 7.7 of [Mon14]). (⊴ξ)ξ≤η is a nested computable sequence of pre-
orderings satisfying:

(♣) For every ξ < η, and every r < s < t, if r ⊴ξ+1 t and s ⊴ξ t, then r ⊴ξ+1 s.

Lemma 5.7. We have:
(♡) For every limit ordinal ξ ≤ η, and every r < s < t, if ∇ξr ⊆ ∇ξt and ∇ξs ⊆ ∇ξt , then

∇ξr ⊆ ∇ξs.
Proof. Fix ξ ≤ η and r < s < t such that ∇ξr ⊆ ∇ξt and ∇ξs ⊆ ∇ξt . For each γ < ξ, r ⊴γ+1 t and

s ⊴γ t, so that by (♣) we have r ⊴γ+1 s. Then, by Lemma 5.5, ∇ξr ⊴ξ ∇ξs. �

In verifying that the relations (≤ξ)ξ<η have the desired properties, we will also need to use
several facts which Montalbán uses without proof (and without explicitly isolating them as,
say, a lemma). We will isolate these in the following lemma, and prove them. Unfortunately,
the proofs require notation that is introduced in [Mon14] which we have not introduced here
(and which would require repeating most of [Mon14] in order to introduce). We suggest that
the reader either take these statements for granted, or if the reader is interested in the proofs
of these statements, we suggest that they consult [Mon14] for the required background and
definitions.

Lemma 5.8.
(i) ∇1

s is the string of s 0’s.

(ii) Fix s < t and ξ < η. If ∇ξs = ∇ξt , then ∇ξ+1
s = ∇ξ+1

t .

(iii) Fix s < t, r and ξ < η. If ∇ξs ⊆ ∇ξt ⊆ ∇
ξ
r, and ∇ξ+1

s ⊆ ∇ξ+1
r , then ∇ξ+1

s ⊆ ∇ξ+1
t .

(iv) Let ξ be a limit ordinal. There is an increasing sequence γ1, γ2, γ3, . . . with limit ξ
such that for all s,

∇ξs = ⟨∇γ1s (0),∇γ2s (0), . . . ,∇γnss (0)⟩
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where ns is the greatest such that ∇γns (0) ≠ ∅.

(v) Given s < t, if ∇γnss (0) = ∇γnst (0), then ∇ξs ⊆ ∇ξt .
Proof. All of the notation in this proof is as in [Mon14].

(i). This is just Definition 7.2 of [Mon14].
(ii). Since ξ + 1 is a successor ordinal, if we unwrap Definitions 6.15 and 7.2 of [Mon14],

we find that ∇ξ+1
s = J(∇ξs) and ∇ξ+1

t = J(∇ξt ).1 If ∇ξs = ∇ξt , then ∇ξ+1
s = ∇ξ+1

t .

(iii) Once again we have that ∇ξ+1
s = J(∇ξs), ∇ξ+1

t = J(∇ξt ), and ∇ξ+1
r = J(∇ξr). Then

Lemma 6.4 of [Mon14] gives the desired conclusion.
(iv). Let ξ = 1 + η⟨n0, . . . , nk⟩. Then, if nk > 0,

∇ξs = Jω
η

⟨n0,...,nk⟩
(∇1

s) = Jω
η[n0]...[nk] ○ Jωη

⟨n0,...,nk−1⟩(∇
1
s).

Now

Jω
η[n0]...[nk](σ) = ⟨Jωη[n0]...[nk]1 (σ)(0), Jωη[n0]...[nk]2 (σ)(0), . . . , Jωη[n0]...[nk]j (σ)(0)⟩

where j is greatest such that Jω
η[n0]...[nk]

j (σ) ≠ ⟨⟩. Recall that

Jω
η[n0]...[nk]

n = Jωη[n0]...[nk][n−1] ○ Jωη[n0]...[nk][n−2] ○ ⋯ ○ Jωη[n0]...[nk][0] .
Thus ∇ξs(n) is

Jω
η[n0]...[nk][n−1] ○ Jωη[n0]...[nk][n−2] ○ ⋯ ○ Jωη[n0]...[nk][0] ○ Jωη

⟨n0,...,nk−1⟩(∇
1
s)(0)

which is just

Jω
η

⟨n0,...,nk,n−1⟩(∇
1
s)(0) = ∇1+η⟨n0,...,nk,n−1⟩

s (0).
If nk = 0, then

∇ξs = Jω
η

⟨n0,...,nk⟩
(∇1

s) = Jω
η[n0]...[nk] ○ Jωη

⟨n0,...,nk−1⟩
(∇1

s).

In this case, we get that ∇ξs(n) is

Jω
η[n0]...[nk][n−1] ○ Jωη[n0]...[nk][n−2] ○ ⋯ ○ Jωη[n0]...[nk][0] ○ Jωη

⟨n0,...,nk−1⟩
(∇1

s)(0)
which is again just

Jω
η

⟨n0,...,nk,n−1⟩(∇
1
s)(0) = ∇1+η⟨n0,...,nk,n−1⟩

s (0).
(v) Let ξ = 1 + η⟨n0, . . . , nk⟩. In (iv), we showed that for each s,

∇ξs = ⟨∇1+η⟨n0,...,nk,0⟩
s (0), . . . ,∇1+η⟨n0,...,nk,j−1⟩

s (0)⟩

where j is the greatest such that ∇1+η⟨n0,...,nk,j−1⟩
s (0) ≠ ⟨⟩. So given s < t, we have

∇ξt = ⟨∇1+η⟨n0,...,nk,0⟩
t (0), . . . ,∇1+η⟨n0,...,nk,`−1⟩

t (0)⟩.
If s ⊴1+η⟨n0,...,nk,j−1⟩ t, then

∇1+η⟨n0,...,nk,i⟩
s (0) = ∇1+η⟨n0,...,nk,i⟩

t (0)

for 0 ≤ i < j. So ∇ξs ⊆ ∇ξt . �

1This requires some effort to check.
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Now we will show how to construct the order (≤ξ)ξ<η and prove Proposition 5.3.

Proof of Proposition 5.3. The proof of this proposition is very similar to the proof of Lemma
7.8 of [Mon14]. The definition of our relations ≤ξ is the same as Montalbán’s, except for one

small change. Let C be the set of tuples (λ,u, v) where λ < η is a limit ordinal, ∇λu ⊊ ∇λv ,
∇λ+1
u ⊈ ∇λ+1

v , and if there is r with ∇λu ⊊ ∇λr ⊆ ∇λv then ∇λ+1
u ⊆ ∇λ+1

r . (The only change here
is that we require that λ < η.) Let γλ,v be such that the last entry of ∇λv is ∇γλ,vv (0). (Some
such γλ,v exists by Lemma 5.8 (iv).)

For ξ < η, define

s ≤ξ t⇔ s ⊴ξ t and ¬∃(λ,u, v) ∈ C(γλ,v < ξ and u ≤ s < v ⊴γλ,v t).
Except for the difference in the definition of C, this is the same as Montalbán’s definition.

We must now verify that ≤ξ satisfies (B0)-(B10). For many of the properties the verifi-
cation is very similar to, or exactly the same as, Montalbán’s, but we will reproduce them
here for completeness.

(B0) We can see that ⊴0=≤ as ∇1
s is the sequence of s zeros (Lemma 5.8 (i)).

(B1) The relations ≤ξ are uniformly computable as the relations ⊴ξ are, γλ,v is computable
in λ and v by (N2), and the existential quantifier is bounded, as u, v ≤ t and by (N2), there
are only finitely many λ’s with ∇λ+1

v ≠ ⟨⟩.
(B2) Fix ξ and s. Then note that s ⊴ξ s, and there is no v with s < v ⊴γλ,v s. Hence

s ≤ξ s.
Now for transitivity, suppose that s ≤ξ t ≤ξ r, but that s ≰ξ r. Since ⊴ξ is transitive,

s ⊴ξ r, and so it must be that there is (λ,u, v) ∈ C such that γλ,v < ξ and u ≤ s < v ⊴γλ,v r. If
t < v, then u ≤ t < v ⊴γλ,v r and so (λ,u, v) witnesses that t ≰ξ r, a contradiction. So it must

be that v ≤ t. Now v ⊴γλ,v r, so by Lemma 5.8 (v), ∇λv ⊆ ∇λr . By (N3), v ⊴γλ,v+1 r. Also,
t ⊴ξ r. Since ξ is greater than γλ,v, by (♣), v ⊴γλ,v t. Then u ≤ s < v ⊴γλ,v t and so (λ,u, v)
witnesses that s ≰ξ t. This is again a contradiction. So ≤ξ is transitive.

(B3) Suppose that γ ≤ ξ and s ≤ξ t. We claim that s ≤γ t. Since s ≤ξ t, s ⊴ξ t, and
so s ⊴γ t as ⊴ is nested. We must show that there is no (λ,u, v) ∈ C with γλ,v < γ and
u ≤ s < v ⊴γλ,v t. If there was, then since γ < ξ, (λ,u, v) witnesses that s ≰ξ t. Since in fact
s ≤ξ t, s ≤γ t.

(B4) Suppose to the contrary that for some limit ordinal α < η, s ≰α t, but that for
all ξ < α, s ≤ξ t. If s ≰α t due to the existence of some (λ,u, v) ∈ C with γλ,v < α and
u ≤ s < v ⊴γλ,v t, then (λ,u, v) also witnesses that s ≰γλ,v+1 t, and γλ,v + 1 < α, contrary
to our initial assumption. So it must be that s ≰α t because s ⋬α t. Now, for all ξ < α,
s ⊴ξ t, and so by Lemma 5.5 it must be that ∇αs ⊆ ∇αt , but ∇α+1

s ⊈ ∇α+1
t . Let v be the least

such that ∇αs ⊊ ∇αv ⊆ ∇αt and ∇α+1
s ⊈ ∇α+1

v . Some such v exists because, by Lemma 5.8 (ii),
if ∇αs = ∇αt , then ∇α+1

s = ∇α+1
t . Then (α, s, v) ∈ C. And v ⊴γα,v t by Lemma 5.5 because

⟨⟩ ≠ ∇αv ⊆ ∇αt . So s ≰γα,v+1 t contradicting our assumptions.

(B5) Fix s, t ∈ ω with s ≤ξ t. Then s ⊴ξ t, and so ∇ξ+1
s ⊆ ∇ξ+1

t by definition.
(B6) Let t0 < t1 < ⋯ be the true stages. Then, for each ξ, this is a subsequence of the

sequence from (N1), and so ∇ξt0 ⊆ ∇
ξ
t1
⊆ ⋯ and ⋃i∈ω∇ξti = ∇

ξ. Thus t0 ⊴ t1 ⊴ t2 ⊴ ⋯. Also, by

Lemma 5.4, we get that ∇ξt0 ⊆ ∇
ξ
t1
⊆ ⋯. So t0, t1, . . . is a subsequence of the sequence from

(N1) for ξ = η, and so ⋃i∈ω∇ηti = ∇
η.
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(B7) Fix s. By (N2) there are only finitely many ξ with ∇ξs /= ⟨⟩, and we can compute

H(s) = {ξ < η ∣ ∇ξ+1
s ≠ ⟨⟩}. Suppose that t > s and s /⊴ξ t. Then, for some ξ < η, ∇ξ+1

s ⊈ ∇ξ+1
t .

Since we must have ∇ξ+1
s ≠ ⟨⟩, ξ ≤H(s). Thus s ≰H(s) t.

(B8) First, we will prove the successor case. Suppose that r < s < t, r ≤ξ+1 t, and s ≤ξ t.
Suppose towards a contradiction that r ≰ξ+1 s. By (♣), we get that r ⊴ξ+1 s. So it must be
that there is some (λ,u, v) ∈ C which witnesses that r ≰ξ+1 s. So v ⊴γλ,v s ⊴ξ t, and so since
ξ + 1 > γλ,v, v ⊴γλ,v t. Thus (λ,u, v) witnesses that r ≰ξ+1 t.

Now we will show the limit case. This is the content of Observation 2.1 of [Mon14].
Suppose that r < s < t, r ≤ξ t, and s ≤ξ t. If ξ is a successor, then we just use the previous
case and the fact that s ≤ξ−1 t. For the limit case, for every γ < ξ, we have r ≤γ+1 t and
s ≤γ t and so by the previous case we have r ≤γ+1 s. But then, by (B4), we get r ≤ξ s.

(B9) If, for all ξ < η, s ≤ξ t, then for all ξ < η, ∇ξ+1
s ⊆ ∇ξ+1

t , and so s ⊴ t. On the other
hand, suppose that s ⊴ t. Fix ξ < η. Then s ⊴ξ t, so to show that s ≤ξ t, it suffices to show
that there is no (λ,u, v) ∈ C with γλ,v < ξ and u ≤ s < v ⊴γλ,v t. Suppose to the contrary that

there was such a (λ,u, v). Since v ⊴γλ,v t, ∇
γλ,v
v (0) = ∇γλ,vt (0), and since ∇γλ,vv (0) is the last

entry of ∇λv , by Lemma 5.8 (v) we have ∇λv ⊆ ∇λt . Since s ⊴ t, ∇λs ⊆ ∇λt . Since (λ,u, v) ∈ C,
∇λu ⊆ ∇λv . Since λ is a limit ordinal, applying Lemma 5.5 and using (♡) we get that ∇λu ⊆ ∇λs
and ∇λs ⊆ ∇λv . So ∇λu ⊆ ∇λs ⊆ ∇λv ⊆ ∇λt . By the minimality of v, we get ∇λ+1

u ⊆ ∇λ+1
s , and so

since ∇λ+1
u ⊈ ∇λ+1

v , ∇λ+1
s ⊈ ∇λ+1

v . Since ∇λs ⊆ ∇λv ⊆ ∇λt and ∇λ+1
s ⊈ ∇λ+1

v , by Lemma 5.8 (ii)
∇λ+1
s ⊈ ∇λ+1

t . This is a contradiction (as s ⊴ t), and so s ≤ξ t.
(B10) Suppose that t is a true stage, and s ⊴ t. If η is a successor ordinal, say η = ξ + 1,

then ∇ηs ⊆ ∇ηt . If η is a limit ordinal, then by Lemma 5.5, ∇ηs ⊆ ∇ηt . �

5.2. η-systems and the metatheorem. We are now ready to define an η-system. The
definition is essentially the same as for Montalbán, except that what Montalbán would have
called an η-system, we call an η + 1-system.

Definition 5.9. An η-system is a tuple (L,P, (≤Lξ )ξ<η,E) where:

(1) L is a c.e. subset of ω called the set of states.
(2) P is a c.e. subset of L<ω called the action tree.
(3) (≤Lξ )ξ<η is a nested sequence of c.e. pre-orders on L called the restraint relations.

(4) ` ⊴L `′ is c.e., where we define ` ⊴L `′ if and only if ` ≤Lξ `′ for all ξ < η.

(5) E ⊆ L × ω is a c.e. set called the enumeration function, and is interpreted as E(l) =
{k ∈ ω ∶ (l, k) ∈ E}. We require that for `0, `1 ∈ L with `0 ≤L0 `1, E(`0) ⊆ E(`1).

Definition 5.10. A 0-run for (L,P, (≤Lξ )ξ<η,E) is a finite or infinite sequence π = (`0, `1, . . .)
which is in P if it is a finite sequence, or is a path through P if it is an infinite sequence,
such that for all s, t < ∣π∣ and ξ < η,

s ≤ξ t⇒ `s ≤Lξ `t.
If π is a 0-run, let E(π) = ⋃s<∣π∣E(`i).

Given an infinite 0-run `0, `1, . . . of an η-system (L,P, (≤Lξ )ξ<η,E), let t0 ⊴ t1 ⊴ t2 ⊴ ⋯ be

the true stages. Then by the properties of E above, E(π) = ⋃i∈ωE(`ti). So E(π) is c.e.,
but it is determined by the true stages.
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Montalbán defines an extendability condition and a weak extendability condition. For
our extendability condition, we weaken Montalbán’s extendability condition even further
(as well as modifying it slightly to allow limit ordinals). In order to define our extendability
condition, we need the following definition.

Definition 5.11. To any stage s > 0, we effectively associate a sequence of stages and
ordinals as follows.

Choose t∗ < s greatest such that t∗ ⊴ s. Some such t∗ exists as 0 ⊴ s. Now for each ξ < η0,
let tξ < s be the largest such that tξ ≤ξ s. Note that t∗ ≤ tξ for each ξ as by (B9) t∗ ≤ξ s.

There may be infinitely many ξ < η, but there are only finitely many possible values of
tξ since they are bounded by s. Since the ≤ξ are nested (B3), if γ ≤ ξ < η, then tξ ≤ tγ . Now
we will effectively define stages t∗ = sk < ⋯ < s0 = s − 1 so that {s0, . . . , sk} = {tξ ∶ ξ < η} as
sets. Let s0 = t0 = s − 1. Suppose that we have defined si. If si ⊴ s, then k = i and we are
done. Otherwise, let ξi < η be the greatest such that si = tξi . By definition of si, it is of the
form tξ for some ξ. We can find the greatest such by computably searching for ξi such that
si ≤ξi s but si /≤ξi+1 s; some such ξi exists since the relations are continuous and nested. Let
si+1 = tξi+1. Since si ≰ξi+1 s, si+1 < si. This completes the definition of sk < ⋯ < s0 = s − 1
and ξ0 < . . . < ξk−1 < η.

By (B8), for i < k, since si+1 ≤ξi+1 s and si ≤ξi s, si+1 ≤ξi+1 si.

Definition 5.12. We say that an η-system (L,P, (≤Lξ )ξ≤η,E) satisfies the extendability

condition if: whenever we have a finite 0-run π = ⟨`0, ..., `s−1⟩ such that for all i < k,
`si+1 ≤Lξi+1 `si , where sk < sk−1 < ... < s0 = s − 1 and ξ0 < ξ1 < ... < ξk−1 < η are the associated
sequences of stages and ordinals to s as in Definition 5.11, then there exists an ` ∈ L such
that π̂ ` ∈ P , `sk ⊴L `, and for all i < k, `si ≤Lξi `.

s

≥ξ0≥
ξ1

sk ≤ξk−1+1

⊴
sk−1 ≤ξk−2+1

≤ξk−1
sk−2 ≤ξk−3+1

≤ξk−2
⋯ ≤ξ1+1 s1 ≤ξ0+1 s0

`sk ≤Lξk−1+1

⊴L
`sk−1 ≤Lξk−2+1

≤L
ξk−1

`sk−2 ≤Lξk−3+1

≤ L
ξk
−2

⋯ ≤Lξ1+1 `s1 ≤Lξ0+1 `s0

`

≥Lξ0≥Lξ1

Now we are ready for the metatheorem.

Theorem 5.13. For every η-system (L,P, (≤Lξ )ξ<η,E) with the extendability condition,
there is a computable infinite 0-run π. A 0-run can be built uniformly in the η-system.

Proof of Theorem 5.13. The proof is essentially the same as the proof of Theorem 3.2 in
[Mon14]. By the trivial case of the extendability condition, there is `0 ∈ L with ⟨`0⟩ ∈ P .
Now suppose that we have a 0-run π = ⟨`0, . . . , `s−1⟩. We want to define `s ∈ L such that
π̂ `s ∈ P , and such that for every ξ < η, if t ≤ξ s, then `t ≤Lξ `s.
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Let {tξ ∣ ξ < η}, sk < . . . s0 = s− 1, and ξ1 < . . . < ξk be as in Definition 5.11. If t ≤ξ s, then

t ≤ tξ, and by (B8), t ≤ξ tξ, so since π is a 0-run `t ≤Lξ `tξ . So it is sufficient to find ` with

π̂ ` ∈ P such that, for ξ < η, `tξ ≤Lξ `. That is, we must find an ` with π̂ ` ∈ P , `sk ⊴L ` and

`si ≤Lξi ` for 0 ≤ i < k.

By (B8), for i ≤ k, since si+1 ≤ξi+1 s and si ≤ξi s, si+1 ≤ξi+1 si. Since p is a 0-run,

`si+1 ≤Lξi+1 `si . By the extendability condition, there is ` ∈ L with p̂ ` ∈ P , `sk ⊴L `, and

`si ≤Lξi ` for i < k. We can find such an l effectively, since we have described how to compute

the si and since the relations ≤Lξ and ⊴L are computable. �

6. Proof of Theorem 1.5

In this section, we will give the proof of Theorem 1.5. The proof will use the η-systems as
developed in the previous section, together with a strategy expanding on that in the proof
of Theorem 4.1. It is not sufficient to simply combine the techniques of Theorem 4.1 with
the α-system construction. Consider a Σ0

2 set C. The difficulty is that in the approximation
of C, an element x may enter C, exit C and then later exit C again (and may continue to
enter and exit C infinitely many times). Each time x enters C, we will have to code this in
a way that can be distinguished from each other time that x entered C. To do this, we will
use that fact that given a tuple ā in a structure of sufficient length, we can pick a tuple b̄
which is automorphic to ā (coding that x is not in C), or we can pick a tuple b̄ which is not
isomorphic to ā (coding that x is in C). In the latter case, we will distinguish between how
many times x has entered C by choosing b̄ to be in a different automorphism orbit each
time. Of course, we must also code whether or not x + 1 is in C. But the actions that we
take towards coding x can interfere with those that we take to code x+1, and because x can
both enter and exit C, the interactions between the two become much more complicated
than they were in the case of Theorem 4.1; in that case, if x entered C, we simply started
coding x+1 in a new place. Now, if x later exits C, we must return to where we were coding
x + 1 beforehand, and if x enters C again, then we must code x + 1 in another new place
because we may have interfered with the previous coding locations of x + 1 (and we must
have the coding of x tell us where to look for the coding of x + 1).

To begin, we prove the following lemma which we will use for coding.

Lemma 6.1. Let A be a countable structure. Let x̄ be a tuple from A. Let α1 > β1, . . . , αn >
βn be computable ordinals with β1 ≥ β2 ≥ ⋯ ≥ βn. Let ū1, . . . , ūn and v̄1, . . . , v̄n be tuples
from A such that ∣ūi+1∣ = ∣ūi∣ + ∣v̄i∣ and such that v̄i is αi-free over ūi. Then there is a tuple
ȳ from A such that, for each i = 1, . . . , n,

(1) x̄ ↾∣ū1∣= ȳ ↾∣ū1∣,
(2) x̄ ↾∣ūi∣+∣v̄i∣≤βi ȳ ↾∣ūi∣+∣v̄i∣,
(3) ȳ ↾∣ūi∣+∣v̄i∣≇ ūiv̄i.

Proof. We will inductively define tuples x̄0, . . . , x̄n, so that taking ȳ = x̄n satisfies the lemma.
Begin with x̄0 = x̄, so x̄0 satisfies (1) and (2).
Given x̄m satisfying (1) and (2) for all i, and (3) for i = 1, . . . ,m, define x̄m+1 as follows.

If x̄m already satisfies (3) for i = m + 1, set x̄m+1 = x̄m. Otherwise, x̄m ↾∣ūm+1∣+∣v̄m+1∣≅
ūm+1v̄m+1. Since v̄m+1 is αm+1-free over ūm+1, there is x̄m+1 with x̄m ≤βm+1 x̄m+1, x̄m ↾∣ūm+1∣=
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x̄m+1 ↾∣ūm+1∣, and x̄m+1 ↾∣ūm+1∣+∣v̄m+1∣≇ ūm+1v̄m+1. So x̄m+1 satisfies (3) for i = m + 1. Note
that since x̄m ↾∣ūm+1∣= x̄m+1 ↾∣ūm+1∣, we have x̄m+1 ↾∣ūi∣+∣v̄i∣= x̄m ↾∣ūi∣+∣v̄i∣ for i ≤m, so that x̄m+1

satisfies (1) and satisfies (2) and (3) for 1 ≤ i ≤ m. Since x̄m ≤βm+1 x̄m+1, and for i ≥ m + 1,
βi ≤ βm+1, we have x̄ ↾∣ūi∣+∣v̄i∣≤βi x̄m ↾∣ūi∣+∣v̄i∣≤βi x̄m+1 ↾∣ūi∣+∣v̄i∣ for such i. So (2) holds for
x̄m+1. �

Theorem 1.5 will follow easily from the following technical result.

Theorem 6.2. Let A be a countable structure. If η is an ordinal and A is not ∆0
β categorical

on any cone for any β < η, then there exists an e such that for all d ≥ e, there exists a
d-computable copy B of A such that

(1) there is a ∆0
η(d)-computable isomorphism between A and B and

(2) for every isomorphism f between A and B, f ⊕ d computes ∆0
η(d).

Proof. Suppose A is not ∆0
β categorical on any cone for any β < η. Let e be such that:

(i) A and η are e-computable, and e computes a Scott family for A in which each tuple
satisfies a unique formula and also computes, for tuples in A, which formula in the
Scott family they satisfy,

(ii) A is η + 1-friendly relative to e,
(iii) given a tuple ā and β < η, e can decide whether a tuple b̄ is β-free over ā. (Such a

tuple is guaranteed to exist by Corollary 2.11 since A is not ∆0
β-categorical on any

cone.)
Fix d ≥ e and D ∈ d. Our argument involves a D-computable η-system. To ease notation,
we make no further mention of D (e.g., whenever we write ∇β we really mean ∇β(D), we
will say computable when we mean d-computable, etc.).

We will define our η-system. Let B be a computable set of constant symbols not occurring
in A. Let L be the set of sequences

⟨p; (ā0, b̄0), (ā1, b̄1), . . . , (ār, b̄r)⟩
where:

(L1) p is a finite partial bijection B → A,
(L2) ān, b̄n ∈ A are tuples with ∣ān+1∣ = ∣ān∣ + ∣̄bn∣,
(L3) ∣ ran(p)∣ = ∣ār ∣ + ∣̄br ∣,
(L4) dom(p) and ran(p) include the first r elements of B and A respectively,
(L5) b̄n is α-free over ān, where α = maxm≤nH(m) (see (B7)).

Note that (L1)-(L4) are clearly computable, and that (L5) is computable by (iii).
If ` has first coordinate p, and `′ has first coordinate p′, then for ξ < η, we set ` ≤Lξ `′ if

and only if p ≤ξ p′, that is, if and only if ran(p) ≤ξ ran(p′) as substructures of A under the
usual back-and-forth relations.

Then (≤Lξ )ξ<η is nested since the usual back-and-forth relations are, and (≤Lξ )ξ<η and ⊴L
are computable by (ii).

Let P consist of the sequences `0, . . . , `r such that
(P1) if

`n = ⟨p; (ā0, b̄0), (ā1, b̄1), . . . , (ān, b̄n)⟩
then

`n+1 = ⟨p∗; (ā0, b̄0), (ā1, b̄1), . . . , (ān, b̄n), (ān+1, b̄n+1)⟩
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with dom(p) ⊆ dom(p∗),
(P2) for each n, if

`n = ⟨p; (ā0, b̄0), (ā1, b̄1), . . . , (ān, b̄n)⟩
then for each i, ran(p ↾

∣āi∣+∣̄bi∣
) ≅ āib̄i if and only if i ⊴ n,

(P3) if m ⊴ n, `m has first coordinate pm, and `n has first coordinate pn, then pm ⊆ pn.
Note that (P1) and (P3) are computable, and that (P2) is computable by (i).
Given

`n = ⟨p; (ā0, b̄0), (ā1, b̄1), . . . , (ān, b̄n)⟩,
let E(`) be the partial atomic diagram on B obtained by the pullback along p (using only
the first ∣p∣ logical symbols).

Note that E(`) is computable, and if `0 ≤L0 `1 with first coordinates p0 and p1, respectively,
then p0 ≤0 p1, so that E(`0) ⊆ E(`1).

Thus we have an η-system (L,P, (≤Lξ )ξ<η,E).

Lemma 6.3. The η-system (L,P, (≤Lξ )ξ<η,E) has the extendability condition.

Proof. Suppose we have a finite 0-run π = ⟨`0, ..., `s−1⟩, and let sk < sk−1 < ... < s0 = s − 1,
and ξ0 < ξ1 < ... < ξk−1 < η be the associated sequences of stages and ordinals to s, as in
Definition 5.11. Suppose that for each i, the first coordinate of `si is qsi .

Claim. There exists p ⊃ qsk such that qsi ≤ξi p for 0 ≤ i ≤ k.

Proof. We construct p inductively as follows. We let q∗s0 = qs0 , and for 0 ≤ i < k, let
q∗si+1 ⊇ qsi+1 be such that q∗si ≤ξi q

∗

si+1 . This is possible since qsi+1 ≤ξi+1 qsi and since q∗si ⊇ qsi .
Let p = q∗sk . Then certainly q∗sk ≤Lξk p. As q∗si ≤ξi q

∗

si+1 and ξi < ξi+1, it follows inductively

that each q∗si ≤ξi p. Since q∗si ⊇ qsi , we have qsi ≤ξi p as desired. �

Let

`s0 = `s−1 = ⟨qs−1; (ā0, b̄0), (ā1, b̄1), . . . , (ās−1, b̄s−1)⟩.

Claim. There exists p∗ ⊃ qsk such that qsi ≤ξi p∗ for 0 ≤ i < k and such that ran(p∗ ↾
∣ān∣+∣̄bn∣

) ≇ ānb̄n for sk < n ≤ s0 = s − 1.

Proof. Let p ⊃ qsk be as in the previous claim. We will use Lemma 6.1. Let x̄ = ran(p)
and n = s0 − sk. For i = 1, . . . , n, let ūi = āsk+i and v̄i = b̄sk+i. For i = 1, . . . , n, let
αi = max1≤j≤sk+iH(j) and let βi = ξj where j is such that sj+1 < i ≤ sj . Note that by (L5),
v̄i is αi-free over ūi and that β1 ≥ β2 ≥ ⋯. Also, if sj+1 < i ≤ sj , then since sj+1 = tξj+1,
i /≤ξj+1 s. So αi ≥ H(i) ≥ ξj + 1 > ξj = βi. Let ȳ be the tuple we get by applying Lemma 6.1
and let p∗ map the domain of p to ȳ. Then

p∗ ↾
∣āsk ∣+∣̄bsk ∣

= p ↾
∣āsk ∣+∣̄bsk ∣

⊃ qsk
and so p∗ ⊇ qsk . Also,

qsi ≤ξi p ↾∣āsi ∣+∣̄bsi ∣≤ξi p
∗ ↾
∣āsi ∣+∣̄bsi ∣

and so qsi ≤ξi p∗. Finally, for i = sk + 1, . . . , s0, p∗ ↾
∣āi∣+∣̄bi∣

≇ āib̄i. �
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Let ās = ran(p∗), and let b̄s be α-free over ās where α = maxt≤sH(t), and such that
āsb̄s contains the first s-many elements of A. Let c̄ be a new set of constants in B and let
p∗∗ = p∗ ∪ {c̄↦ b̄s}. Let

`s = ⟨p∗∗; (ā0, b̄0), (ā1, b̄1), . . . , (ās−1, b̄s−1), (ās, b̄s)⟩.
We claim that `0, . . . , `s is in P . That (L1), (L2), and (L3) hold is clear. (L4) and (L5)
follow from the choice of b̄s. (P1) is also clear. (P3) follows from the fact that p∗∗ ⊇ qsk and
sk was maximal with sk ⊴ s.

For (P2), if i ≤ sk, then since p∗∗ ⊇ qsk and (P2) held at stage sk, ran(p∗∗ ↾
∣āi∣+∣̄bi∣

) ≅ āib̄i if

and only if i ⊴ sk, and since sk ⊴ s, i ⊴ sk if and only if i ⊴ s by (B8) and (B9). If sk < i < s,
then since sk is maximal with sk ⊴ s, i ⋬ s and by choice of p∗ in the second claim above,
ran(p∗∗ ↾

∣āi∣+∣̄bi∣
) ≇ āib̄i. The case i = s is clear. Hence πˆ`s ∈ P .

Since p∗∗ ⊇ qsk , qsk ≤ξ p∗∗ for all ξ < η. Given i < k, qsi ≤ξi p∗ ⊆ p∗∗. This completes the
proof of the extendability condition. �

By the metatheorem, there is a computable 0-run π = `0`1⋯ for (L,P, (≤Li )i≤η,E). E(π)
is the diagram of a structure on B. For each j, let

`j = ⟨pj ; (ā0, b̄0), (ā1, b̄1), . . . , (āj , b̄j)⟩.
Then, along the true stages, by (P3) the pi are nested, and by (L4) they form a bijection
B → A. By definition of E, they are an isomorphism B → A.

Lemma 6.4. Let f ∶ B → A be an isomorphism. Then f ≥T ∆0
η.

Proof. Using f we will compute the true path i1 ⊴ i2 ⊴ . . .. Then we can compute ∇η =
⋃n∈ω∇ηin . We claim that `j is a true stage if and only if

(∗) ran(f ↾
∣āj ∣+∣̄bj ∣

) ≅ āj b̄j .
Note that (∗) is computable in f , and so this will complete the proof.

If j is a true stage, then pj extends to an isomorphism B → A. Since f is also an
isomorphism, there is an automorphism of A taking ran(f ↾dom(pj)), as an ordered tuple,

to ran(pj). By (P2), we have ran(pj ↾∣āj ∣+∣̄bj ∣) ≅ āj b̄j and so we have (∗).

If j satisfies (∗), then we claim that j is a true stage. Suppose not, and let p = ⋃n∈ω pin
be the isomorphism B → A along the true path. Let in be such that j < in. Then by (B10),
j ⋬ in, and so ran(pin ↾∣āj ∣+∣̄bj ∣) ≇ āj b̄j . Since pin ⊆ p and f is also an isomorphism B → A,

we have

ran(f ↾
∣āj ∣+∣̄bj ∣

) ≅ ran(pin ↾∣āj ∣+∣̄bj ∣) ≇ āj b̄j .
This contradicts (∗). So j is a true stage. �

Lemma 6.5. There is an isomorphism f ∶ B → A with ∆0
η ≥T f .

Proof. Using ∆0
η we can compute the true path i1 ⊴ i2 ⊴ ⋯. Then along this path we

compute an isomorphism f = ⋃n pin from B → A. �

This completes the proof. �

As before, we can improve the statement of the theorem slightly as follows using Knight’s
theorem on the upwards closure of degree spectra.
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Corollary 6.6. Let A be a countable structure. If η is an ordinal and A is not ∆0
β cate-

gorical on any cone for any β < η, then there exists an e such that for all d ≥ e, there exists
a d-computable copy B of A such that ∆0

η(d) computes an isomorphism between A and B,

and every such isomorphism computes ∆0
η(d).

Proof. Take e as guaranteed by the theorem, with e computing A and η, and fix d ≥ e.
Let B be as guaranteed by Theorem 1.5. Since B is d-computable, by the proof of Knight’s
upward closure theorem [Kni86], there exists C such that deg(C) = d and such that there
exists a d-computable isomorphism h ∶ C ≅ B. Now since A is e-computable and deg(C) = d,
any isomorphism g ∶ A ≅ C computes d. Since d computes h, g computes the isomorphism
g ○ h ∶ B ≅ A and hence ∆0

η(d). Moreover, d computes an isomorphism between A and B,
and hence between A and C. �

It is now simple to extract Theorem 1.5 from the above result.

Proof of Theorem 1.5. Let A be a countable structure. By Remark 2.5, there is an ordinal
α such that A is ∆0

α categorical on a cone. Let α ≥ 1 be the least such. By Corollary 6.6,
there is a cone on which A and α are computable such that for every d in the cone, there
exists a d-computable copy B of A such that every isomorphism between A and B computes
∆0
α(d). Thus A has ∆0

α-complete strong degree of categoricity on this cone. �
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