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Abstract. Suppose you have an uncomputable set X and you want to find a
set A, all of whose infinite subsets compute X. There are several ways to do
this, but all of them seem to produce a set A which is fairly sparse. We show
that this is necessary in the following technical sense: if X is uncomputable
and A is a set of positive lower density then A has an infinite subset which
does not compute X. We also prove an analogous result for PA degree: if
X is uncomputable and A is a set of positive lower density then A has an
infinite subset which is not of PA degree. We will show that these theorems
are sharp in certain senses and also prove a quantitative version formulated in
terms of Kolmogorov complexity. Our results use a modified version of Mathias
forcing and build on work by Seetapun, Liu, and others on the reverse math of
Ramsey’s theorem for pairs.

1. Introduction

Suppose you have an uncomputable set X and would like to find an infinite set
A ⊆ N such that all infinite subsets of A compute X. Here’s one way to do this,
due to Dekker and Myhill [3]: identify N with 2<ω and let A be the set of all finite
initial segments of X.

This is not the only way to encode an uncomputable set X into all infinite
subsets of A. For example, if X is hyperarithmetic then it can be computed from
any sufficiently fast growing function ([9], Theorem 6.8). If we make sure A has
sufficiently large gaps between its elements then for any infinite subset B of A, the
function which enumerates the elements of B grows fast enough to compute X and
hence B itself computes X.

Note that both of these methods produce fairly sparse subsets of N. If we use
Dekker and Myhill’s method then the set A will have just n elements less than 2n.
If we use the second method (in the case where X is hyperarithmetic) then the set
A will be even sparser—the gaps between successive elements of A grow faster than
any computable function.

It seems reasonable to informally conjecture that this is a necessary feature of
such coding methods; in other words, to conjecture that if X is uncomputable and
every infinite subset of A computes X then A must be sparse. We can turn this
informal conjecture into a formal one by picking a precise definition of “sparse.”

The main theorem of this paper states that the conjecture holds if we define
“sparse” to mean “lower density zero.” Recall that the lower density of a set of
natural numbers A ⊆ N is

ρ(A) = lim inf
n→∞

|A ∩ [n]|
n + 1
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where [n] denotes the set {0, 1, . . . , n}. The main theorem of this paper is as follows.

Theorem 1.1. For any uncomputable set X and any set A ⊆ N of positive lower
density, there is some infinite subset of A which does not compute X.

Our proof of this theorem relies on a theorem implicit in the work of Seetapun [15]
and first proved explicitly by Dzhafarov and Jockusch [6].1 For a proof, see [8],
Theorem 6.63.

Theorem 1.2 (Seetapun’s theorem). For any uncomputable set X and any set
A ⊆ N, either A or A must contain some infinite subset which does not compute X.

Our proof is partially inspired by proofs of results related to Seetapun’s theorem
by Cholak, Jockusch and Slaman [2], Dzhafarov and Jockusch [6] and Monin and
Patey [12]. More specifically, those results are proved using variations on Mathias
forcing and use the low basis theorem (or the cone avoiding basis theorem) to show
that certain sets of conditions are dense. Our proof also uses a variation on Mathias
forcing and the cone avoiding basis theorem, but, in addition, uses Seetapun’s
theorem in a manner similar to the cone avoiding basis theorem. We will explain
our strategy more carefully in Section 3.

It is natural to ask whether Theorem 1.1 holds for stronger notions of sparsity.
In Section 4, we will show that our theorem is sharp in the sense that it fails to hold
for several such notions.

We will also prove two other results which show that it is difficult to encode
information into all infinite subsets of a dense set. These two results are stated in
terms of having PA degree and in terms of Kolmogorov complexity, respectively.

Avoiding PA degree. Theorem 1.1 can be rephrased in terms of the property
of cone avoidance. Say that a set C ⊆ 2ω avoids cones if for every nontrivial cone
of Turing degrees, there is some element of C which is not in that cone. Then
Theorem 1.1 can be restated as: for every set A ⊆ N of positive lower density, the
set of infinite subsets of A avoids cones.

Cone avoidance can be seen as a kind of computability-theoretic weakness.
Another standard weakness notion is PA avoidance. Say that a set C ⊆ 2ω avoids
PA degree if there is some element of C which is not of PA degree. Though cone
avoidance and PA avoidance are not equivalent, they do occur together relatively
frequently.

One example of this comes from research on RT2
2, a statement of Ramsey theory

which has been thoroughly studied in the field of Reverse Mathematics. Seetapun
showed that over RCA0, RT2

2 does not imply ACA0. A core part of the proof is
Seetapun’s theorem above, which can be read as stating that for any set A ⊆ N,
the set of infinite subsets of A and A avoids cones. Later, Liu showed that RT2

2
also does not imply WKL0 and the heart of his proof was a theorem—analogous to
Seetapun’s theorem—stating that for every set A ⊆ N, the set of infinite subsets of
A and A avoids PA degree.

Theorem 1.3 (Liu’s Theorem, [10]). For any set A ⊆ N, either A or A must
contain an infinite set that is not of PA degree.

1This theorem is sometimes known by the name “strong cone avoidance for RT1
2,” which

originates from its connection to the reverse math of Ramsey’s theorem. We decided not to use
that name here since we are not concerned with reverse math in this paper.
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It seems natural to ask whether our main theorem can be modified to yield PA
avoidance rather than cone avoidance, in the same way that Seetapun’s theorem
can be modified to yield Liu’s theorem. We show that this is indeed the case.

Theorem 1.4. For any set A ⊆ N of positive lower density, there is an infinite
subset of A which is not of PA degree.

Just as our proof of Theorem 1.1 uses Seetapun’s theorem, our proof of the
theorem above uses Liu’s theorem (along with several techniques first developed to
prove Liu’s theorem). We will also show that a certain natural-sounding common
generalization of both Theorem 1.1 and Theorem 1.4 is false.

Kolmogorov complexity. We will also investigate a quantitative version of Theo-
rem 1.1. Stated loosely, that theorem says that it is impossible to encode an infinite
amount of information into all infinite subsets of a set of positive lower density. On
the other hand, it is obvious that some finite information may be so encoded. For
example, it is easy to encode one bit of information into all infinite subsets of a
set of lower density 1/2 (by using the parity of the elements of the set) and, more
generally, n bits of information into all infinite subsets of a set of lower density 1/2n.
But just how much information can be encoded?

We can formulate a precise version of this question using Kolmogorov complexity.
To do so, it is convenient to introduce the following definition.

Definition 1.5. For a string σ ∈ 2<ω and a family of sets F ⊆ P(N), define
C(σ | F) = max

X∈F
CX(σ).

Informally, C(σ | F) should be thought of as the Kolmogorov complexity of σ
relative to an arbitrary element of F . Recall that for any set A ⊆ N, [A]ω denotes
the family of all infinite subsets of A. The quantity

C(σ) − C(σ | [A]ω)
can be thought of as the number of bits of information about σ that are encoded
into all infinite subsets of A. Thus a somewhat more formal version of our question
above is: if σ is any string and A ⊆ N is a set of lower density at least δ > 0, then
how large can C(σ) − C(σ | [A]ω) be?

Based on our example above, it is perhaps natural to guess that this difference
should not be much larger than log(1/δ)—in other words, that it should not be
possible to encode more than about log(1/δ) bits of information about σ into all
infinite subsets of a set of lower density δ. Surprisingly, this is not the case.

Proposition 1.6. For any string σ and δ ∈ (0, 1], there is some set A ⊆ N of lower
density at least δ such that

C(σ | [A]ω) ≤ max(0, C0′
(σ) − log(1/δ)) + O(log log(1/δ)).

In other words, in addition to lowering the complexity of σ by log(1/δ), we can
also lower it to the 0′ complexity of σ. In fact, this upper bound on C(σ | [A]ω) is
also optimal (up to a small error term).

Theorem 1.7. For any string σ and set A ⊆ N of lower density at least δ ∈ (0, 1],

C(σ | [A]ω) ≥ C0′
(σ) − log(1/δ) − O(log log(1/δ))

where the constant hidden by the O(·) notation does not depend on σ or A.
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We will prove these two results in Section 6 and comment on some further
questions around how much information can be encoded into all infinite subsets of a
dense set.

Acknowledgements. We thank Andrew Marks for posing the question that moti-
vated this paper and for several helpful conversations and Damir Dzhafarov for a
useful conversation on the topic of Weihrauch reducibility.

2. Preliminaries

2.1. Notation. We will use the following notation for finite sets of natural numbers.
For natural numbers n < m,

[n] = {0, 1, . . . , n}
[n, m) = {n, n + 1, . . . , m − 1}
(n, m) = {n + 1, n + 2, . . . , m − 1}.

We will also use the following notation related to infinite sets of natural numbers.
For a set A ⊆ N,

A(n) = the nth bit of A, i.e. 0 if n /∈ A and 1 if n ∈ A

A = the complement of A

[A]ω = the set of infinite subsets of A.

By a Turing functional we mean a program Φ with oracle access which has inputs
in N and outputs in {0, 1}. We will use the following notation related to Turing
functionals. For a Turing functional Φ, oracle A ⊆ N and number n ∈ N,

Φ(A, n) = the output of Φ with oracle A on input n

Φ(A) = the partial function N → {0, 1} given by n 7→ Φ(A, n)
Φ(A, n) ̸= b means that either Φ(A, n) diverges or Φ(A, n)↓ ≠ b.

We will sometimes want to consider a finite set s ⊆ N as an initial segment of
an oracle. We will use Φ(s, n) to mean the output of Φ on input n when run for at
most max(s) steps, using s as an oracle and automatically diverging if there is any
query to the oracle about a number larger than max(s).

Similarly, we will sometimes want to consider the Kolmogorov complexity of a
string σ relative to a finite set s ⊆ N, which we will denote by Cs(σ). More precisely,
Cs(σ) will denote the length of the shortest program which outputs σ when using an
oracle for s and which runs for at most max(s) steps, never makes an oracle query
about a number larger than max(s) and has length at most max(s). Note that it is
possible that no such program exists due to the limitations on length and running
time. In this case we define Cs(σ) = ∞. Also note that Cs(σ) is computable.

2.2. Density of sets of natural numbers. If A ⊆ N is a set of natural numbers
then its lower density, denoted ρ, and upper density, denoted ρ, are defined by

ρ(A) = lim inf
n→∞

|A ∩ [n]|
n + 1

ρ(A) = lim sup
n→∞

|A ∩ [n]|
n + 1 .
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If ρ(A) > 0 then we say A has positive lower density. Similarly, if ρ(A) > 0 then A
has positive upper density.

In order to work with dense subsets of N, it will be helpful to introduce some
auxiliary terminology. To motivate this terminology, note that if the upper density
of a set A is strictly greater than δ then there are infinitely many n such that

|A ∩ [n]| ≥ δ · (n + 1).

It is useful to be able to speak about the collection of all such n. To that end, we
introduce the following terminology. For A, D ⊆ N and δ > 0:

• A is δ-dense at n if |A ∩ [n]| ≥ δ · (n + 1).
• A is δ-dense if it is δ-dense at every n ∈ N and dense if it is δ-dense for

some δ > 0.
• A is δ-dense along D if it is δ-dense at every n ∈ D and dense along D if it

is δ-dense along D for some δ > 0.
The reason these notions are useful is that they act as lower complexity versions

of the properties of having positive upper or lower density.
For example, a set A has positive lower density if and only if {0} ∪ A is δ-dense

for some δ > 0 (though note that δ may need to be much lower than ρ(A)), but the
property of having positive lower density is Σ0

2, while the property of being δ-dense
is Π0

1.
Similarly, a set A has positive upper density if and only if it is δ-dense along D

for some δ > 0 and infinite set D ⊆ N (and this time, δ can be arbitrarily close to
ρ(A)), but the property of having positive upper density is Σ0

3 while the property of
being δ-dense along D is again Π0

1.

2.3. Mathias forcing. Mathias forcing is a useful tool for constructing an infinite
subset of a set while ensuring that the subset being constructed satisfies various
properties. We will briefly review the basics of Mathias forcing; for a more complete
introduction, see [8], Section 6.5.

A condition for Mathias forcing is a pair (s, A) consisting of a finite set s ⊆ N,
called the stem, and an infinite set A ⊆ N, called the reservoir, such that max(s) <
min(A). Often, the reservoir A is required to come from some restricted class of
sets, such as a Turing ideal or co-cone.

A Mathias condition, (s, A), is extended by a condition, (s′, A′), written (s, A) ≥
(s′, A′), if all of the following hold.

• s ⊆ s′

• A ⊇ A′

• and for all n ∈ s′ \ s, n ∈ A.
In other words, (s′, A′) is formed from (s, A) by choosing finitely many elements of
the reservoir to add to the stem and by removing some elements (possibly infinitely
many) from the reservoir.

A Mathias condition, (s, A), should be thought of as partially specifying a subset
G of N as follows: the stem s consists of numbers that have already been put into
G and the reservoir A consists of numbers that may be put into G at some later
stage. Thus any number which is not in s ∪ A is definitely not in G.

This can be made precise as follows. Any filter for Mathias forcing can be used
to define a subset of N by taking the union of all the stems in the filter. We will
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denote this subset by G and, in a slight abuse of terminology, will often conflate it
with the filter itself (i.e. we will refer to G as the generic).

It is straightforward to check that if the filter is sufficiently generic then G is
infinite. Also, say that a set B is compatible with a condition (s, A) if s ⊆ B ⊆ s∪A.
If (s, A) is any element of the filter defining G then it is straightforward to check
that G is compatible with (s, A).

Thus one way (though not the only way) to show that every sufficiently generic
G satisfies some property P is to show that the following set of conditions

{(s, A) | all infinite sets C compatible with (s, A) satisfy P}
is dense in the Mathias forcing partial order.

2.4. Seetapun’s theorem. In the introduction, we mentioned that our proof of
Theorem 1.1 uses Seetapun’s theorem.

Theorem 1.2 (Seetapun’s theorem). For any uncomputable set X and any set
A ⊆ N, either A or A must contain some infinite subset which does not compute X.

We will also need to use a couple corollaries of this theorem.

Corollary 2.1. Suppose A ⊆ N is infinite and does not compute X. Then for any
B ⊆ A there is some infinite subset of either B or A \ B which does not compute X.

Proof. Let π : A → N be a bijection which is computable from A. The idea is to
consider Seetapun’s theorem applied to π(B).

Note that since π is a bijection, N\π(B) = π(A\B). Thus by Seetapun’s theorem
relativized to A, either π(B) or π(A \ B) has an infinite subset C such that C ⊕ A
does not compute X. Since π is a bijection, π−1(C) is an infinite subset of either
B or A \ B. And since A computes π, C ⊕ A computes π−1(C) and hence π−1(C)
does not compute X. □

Corollary 2.2. Suppose A ⊆ N is infinite and does not compute X. Then for any
finite partition B1, . . . , Bn of A, at least one of the Bi’s has an infinite subset which
does not compute X.

Proof. The idea of the proof is to use induction on n and to reduce the inductive
case to the previous corollary.

The base case, n = 1 is trivial since in this case B1 = A and thus B1 itself does
not compute X.

Now assume for induction that the statement holds for all A, X and partitions
of length at n. Fix A and X as in the statement of the corollary and suppose
B1, . . . , Bn+1 is a partition of A. By applying Corollary 2.1 to the sets

⋃
i≤n Bi and

Bn+1, we obtain an infinite set C which is a subset of either
⋃

i≤n Bi or Bn+1 such
that C does not compute X.

If C ⊆ Bn+1 then we are done. If C ⊆
⋃

i≤n Bi then we can apply the inductive
assumption to the partition B1 ∩ C, . . . , Bn ∩ C of C to obtain an infinite set D
which does not compute X and which is a subset of Bi ∩ C (and thus of Bi as well)
for some i ≤ n. □

3. Proof of the main theorem

For the rest of this section, suppose that X is uncomputable and A ⊆ N has
positive lower density. We want to construct an infinite subset of A which does not
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compute X. We will construct this set using Mathias forcing. The basic strategy is
as follows: let G be a Mathias generic which is compatible with the condition (∅, A)
(i.e. the generic filter used to define G contains the condition (∅, A)). Then we have

• Since G is compatible with (∅, A), G ⊆ A.
• Since G is sufficiently generic, G is infinite.

If we could also show that any sufficiently generic G does not compute X then we
would be done.

However, it is not hard to see that a generic for plain Mathias forcing—with no
restrictions on the possible reservoirs—does not have this property. For example,
suppose B is an infinite set such that all infinite subsets of B compute X. Then any
Mathias generic G which is compatible with (∅, B) will compute X. To solve this
problem, we will impose a restriction on the reservoirs of the Mathias conditions
which guarantees that every sufficiently generic G does not compute X.

3.1. A natural idea that doesn’t work. Perhaps the most obvious restriction
to put on the reservoirs is to require them to have positive lower density. Here’s
why this seems natural. The problem with plain Mathias forcing is that there are
conditions (s, B) such that every set compatible with (s, B) computes X. However,
if we believe the statement we are trying to prove—that every set of positive lower
density contains an infinite subset which does not compute X—then this same
problem cannot occur when B is required to have positive lower density.

However, this approach does not work. The problem, briefly stated is that even
though every set of positive lower density contains an infinite subset which does not
compute X (as we will eventually show), there is a set of positive lower density, all
of whose subsets of positive lower density uniformly compute X. Thus if we only
use reservoirs that have positive lower density, then given a condition (s, B) and a
Turing functional Φ, there is no obvious way to find a condition (s′, B′) ≤ (s, B)
forcing that the generic G does not compute X via Φ (since it could be that for any
such (s′, B′), s′ ∪ B′ itself computes X via Φ).

In fact, it is even possible to show that if we only use reservoirs that have positive
lower density then it is possible that G is forced to compute X. This can be shown
using the following proposition, which we will prove in Section 4.3.

Proposition 4.5. For any set X, there is some set A ⊆ N of positive lower density
such that all subsets of A of positive lower density compute X uniformly.

Proposition 3.1. Let A and X be as in the above proposition. If G is generic for
Mathias forcing with reservoirs of positive lower density and G is compatible with
(∅, A) then G computes X.

Proof. Let Φ be a Turing functional witnessing the fact that all subsets of A of
positive lower density compute X uniformly (in other words, such that for all B ⊆ A
of positive lower density, Φ(B) = X). For each n, we will show that the set of
conditions

Dn = {(s, B) | Φ(s, n)↓ = X(n)}
is dense below (∅, A). This shows that for each n, Φ(G, n)↓ = X(n) and hence that
Φ(G) = X.

So fix n for which we will show that Dn is dense below (∅, A). Let (s, B) be an
arbitrary condition extending (∅, A). We need to show that there is some condition
(s′, B′) extending (s, B) such that Φ(s′, n)↓ = X(n).
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Since s ∪ B is a subset of A of positive lower density, we must have Φ(s ∪ B, n)↓
= X(n). Let s′ be an initial segment of s ∪ B which is long enough to witness this
and set B′ = B \ s′. Then (s′, B′) ≤ (s, B) and Φ(s′, n)↓ = X(n) as desired. □

3.2. Density Mathias forcing. We have seen that if we want to use Mathias
forcing to construct an infinite subset of A which does not compute X then neither
allowing all infinite sets as reservoirs nor requiring the reservoirs to have positive
lower density works. The problem with the former is that there are too many
reservoirs available, in particular there are reservoirs whose infinite subsets all
compute X. The problem with the latter is that there are too few reservoirs
available, in particular, for a fixed reservoir B and Turing functional Φ it may not
be possible to find a reservoir B′ ⊆ B witnessing that not all infinite subsets of
B compute X via Φ. Thus we want a requirement that lies in-between these two
extremes.

We will now describe such a requirement. In essence, we will allow a set B to be
a reservoir if it has positive upper density and the fact that it has positive upper
density is witnessed by a set that does not compute X. We will refer to Mathias
forcing with reservoirs satisfying this condition as density Mathias forcing.

Definition 3.2. A condition for density Mathias forcing is a Mathias condition
(s, B) for which there is some set D such that

(1) B is dense along D
(2) and D does not compute X.

Note that (∅, A) itself is a density Mathias condition: A is dense along N\[min(A)]
and since X is uncomputable, N \ [min(A)] does not compute X.

3.3. The proof. We will now show that if G is sufficiently generic for density
Mathias forcing then G does not compute X. We will begin with a technical lemma
which we will use in the proof. Then we will prove the main lemma, which shows
that for a single program Φ there is a dense set of conditions which guarantee that
Φ(G) ̸= X.

Lemma 3.3. If (s, B) is a density Mathias condition and B1, . . . , Bk is a finite
partition of B then for some i ≤ k, (s, Bi) is a density Mathias condition.

Proof. Since (s, B) is a density Mathias condition there is some δ > 0 and some
infinite set D such that B is δ-dense along D and D does not compute X. Now
define subsets D1, . . . , Dk of D by

Di = {n ∈ D | i is least such that Bi is δ/k-dense at n}.

We claim that D1, . . . , Dk partition D. To see why, let n ∈ D. Thus B ∩ [n] ≥
δ · (n + 1). Since B1, . . . , Bk partition B, at least one of the sets

B1 ∩ [n], B2 ∩ [n], . . . , Bk ∩ [n]

must have size at least δ · (n + 1)/k. Thus there is some i such that Bi is δ/k-dense
at n.

Since D does not compute X and D1, . . . , Dk partition D, we can apply Corol-
lary 2.2 to Seetapun’s theorem to get an infinite set E which is contained in some Di

and which does not compute X. It is straightforward to check that Bi is δ/k-dense
along E and thus (s, Bi) is a density Mathias condition. □
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Lemma 3.4. For any Turing functional Φ and density Mathias condition (s, B),
there is some density Mathias condition (s′, B′) ≤ (s, B) such that for any set C
compatible with (s′, B′), Φ(C) ̸= X.
Proof. Since (s, B) is a density Mathias condition, we can fix some δ > 0 and infinite
set D such that B is δ-dense along D and D does not compute X. There are two
cases to consider.

(1) It is possible to make Φ wrong on some input: there is some n ∈ N and
finite set t ⊆ B such that Φ(s ∪ t, n)↓ ≠ X(n).

(2) It is impossible to make Φ wrong on any input: for every n ∈ N and finite
set t ⊆ B, Φ(s ∪ t, n) either diverges or is equal to X(n).

The first case is easy: we can simply take s′ = s ∪ t and B′ = B \ [max(t)]. Thus
we may assume we are in the second case.

Since we are in the second case, it follows that for every C compatible with (s, B),
Φ(C) never disagrees with X—though it may diverge on some inputs. Our goal
is to find (s′, B′) extending (s, B) such that for every C compatible with (s′, B′),
Φ(C) does diverge on at least one input.
Intuition. Here’s the basic idea of the proof. By using ideas from proofs of
Seetapun’s theorem, it is not too hard to find a set B0 and number n0 such that for
all C compatible with (s, B0), Φ(C, n0) ̸= X(n0). It is also not too hard to ensure
B0 is δ-dense along D. We would like to take B′ = B ∩ B0. The reason is that any
C compatible with (s, B ∩ B0) is compatible with both (s, B) and (s, B0) and thus
for such a C, Φ(C, n0) is neither different from X(n0) (because C is compatible
with (s, B)) nor equal to X(n0) (because C is compatible with (s, B0)) and thus
Φ(C, n0) must diverge.

The problem with this idea is that B ∩ B0 might not be very dense—in fact, it
might even be empty. So instead, we will iterate: we will find another set B1 and
number n1 which have the same properties as B0 and n0 but such that B1 is disjoint
from B0. If neither B ∩ B0 nor B ∩ B1 work then we will keep going and find B2
disjoint from both, and so on.

The fact that sets are disjoint and all fairly dense will ensure that this process
cannot go on forever: it is not possible to have more than 1/δ disjoint sets which
are all δ-dense. Thus we will eventually find some Bi which works. In practice,
carrying out this idea involves a lot of additional technical details.
General strategy. We will find disjoint sets B0, . . . , Bk and numbers n0, . . . , nk

such that
(1) for each i ≤ k and all C compatible with (s, Bi), Φ(C, ni) ̸= X(ni) (i.e. it

may diverge or it may converge to some output that is not equal to X(ni))
(2) and (s, B ∩ (B0 ∪ . . . ∪ Bk)) is a density Mathias condition.

Before explaining how to find the Bi’s, let’s explain why this is enough to finish the
proof. Since (s, B ∩ (B0 ∪ . . . ∪ Bk)) is a density Mathias condition whose reservoir
is partitioned by B ∩ B0, . . . , B ∩ Bk, Lemma 3.3 implies that there is some i such
that (s, B ∩ Bi) is a density Mathias condition.

We now claim that we can take s′ = s and B′ = B ∩ Bi. To see why, note that if
C is compatible with (s, B ∩ Bi) then it is compatible with both (s, B) and (s, Bi).
Thus Φ(C, ni) can neither disagree with X(ni) (since C is compatible with (s, B))
nor agree with X(ni) (since C is compatible with (s, Bi)) and therefore Φ(C, ni)
must diverge.



10 MATTHEW HARRISON-TRAINOR, LU LIU, AND PATRICK LUTZ

Strategy to construct B0, . . . , Bk. We will build the sequence of Bi’s inductively.
To make the induction work, we will require the sets Bi to satisfy some additional
properties. In particular, we will construct a sequence of sets B0, B1, B2, . . . along
with sets D ⊇ D0 ⊇ D1 ⊇ D2 ⊇ . . . and numbers n0, n1, n2, . . . such that for each i,

(1) Di is infinite.
(2) Bi is δ/2-dense along Di.
(3) B0 ⊕ B1 ⊕ . . . ⊕ Bi ⊕ Di does not compute X.
(4) Bi is disjoint from B0 ∪ . . . ∪ Bi−1
(5) For each C compatible with (s, Bi), Φ(C, ni) ̸= X(ni).

We will show by induction that if we have built sequences B0, . . . , Bk, D0, . . . , Dk

and n0, . . . , nk satisfying these requirements then either (s, B ∩ (B0 ∪ . . . ∪ Bk)) is a
density Mathias condition (and thus we are finished building the sequence) or we
can extend the sequence—i.e. find Bk+1, Dk+1 and nk+1 satisfying the requirements.
To finish, we will show that any sequence satisfying the requirements cannot be
infinite.

Extending the sequence: picking Dk+1. Suppose that we have built sequences
B0, . . . , Bk, D0, . . . , Dk and n0, . . . , nk satisfying the five requirements listed above.
If we knew that B ∩ (B0 ∪ . . . ∪ Bk) was dense along Dk then we could stop: in that
case (s, B ∩ (B0 ∪ . . . ∪ Bk)) would be a density Mathias condition. More generally,
if we knew that B ∩ (B0 ∪ . . . ∪ Bk) was dense along any infinite subset of Dk which
does not compute X then we could stop. So let’s assume that’s not the case and
show we can extend the sequence B0, . . . , Bk.

Let E be the subset of Dk defined by

E = {n ∈ Dk | B ∩ (B0 ∪ . . . ∪ Bk) is δ/2-dense at n}.

By (the relativized form of) Corollary 2.2 to Seetapun’s theorem, there is an infinite
subset Dk+1 of either E or Dk \E such that B0 ⊕ . . .⊕Bk ⊕Dk+1 does not compute
X. However, Dk+1 cannot be a subset of E since then B ∩ (B0 ∪ . . . ∪ Bk) would
be dense along Dk+1, which contradicts our assumption above.

Thus Dk+1 ⊆ Dk \ E. This implies B \ (B0 ∪ . . . ∪ Bk) is δ/2-dense along Dk+1.
To see why, consider any n ∈ Dk+1. Since Dk+1 ⊆ Dk ⊆ D and B is δ-dense along
D, B is δ-dense at n. Since n /∈ E, B ∩ (B0 ∪ . . . ∪ Bk) is not δ/2-dense at n.
Therefore B \ (B0 ∪ . . . ∪ Bk) must be δ/2-dense at n.

Extending the sequence: picking Bk+1. Observe that B \ (B0 ∪ . . . ∪ Bk) has
the following properties.

(1) As we just showed, it is δ/2-dense along Dk+1.
(2) It is disjoint from B0 ∪ . . . ∪ Bk.
(3) Since it is a subset of B, for every finite subset t and every n ∈ N, Φ(s ∪ t, n)

either diverges or is equal to X(n).

These properties look almost like what we want from Bk+1 but in the last item
above we would like to have “not equal to X(n)” rather than “equal to X(n).” In
other words, we want to find a set which is very similar to B \ (B0 ∪ . . . ∪ Bk) but
differs in one key respect. We will argue that if we cannot find such a set then X is
computable from B0 ⊕ . . . ⊕ Bk ⊕ Dk+1.



CODING INFORMATION INTO ALL INFINITE SUBSETS OF A DENSE SET 11

For each n ∈ N and b ∈ {0, 1}, define a set Cn,b ⊆ P(N) by

Cn,b = {Y ⊆ N | Y is disjoint from B0 ∪ . . . ∪ Bk

and Y is δ/2-dense along Dk+1

and for all finite t ⊆ Y , either Φ(s ∪ t, n)↑ or Φ(s ∪ t, n)↓ = b}.

Note that each Cn,b is a Π0
1 class relative to B0 ⊕ . . . ⊕ Bk ⊕ Dk+1. Thus for each

(n, b), there is some B0 ⊕ . . . ⊕ Bk ⊕ Dk+1-computable binary tree Tn,b whose paths
are exactly the elements of Cn,b. Furthermore, it is easy to see that Tn,b can be
computed uniformly in (n, b).

We would now like to show that for some n and b ̸= X(n), Cn,b is nonempty.
Suppose not. Then for each n ∈ N and b ∈ {0, 1}, we have the following

(1) If X(n) = b then Cn,b is nonempty (as witnessed by B \ (B0 ∪ . . . ∪ Bk)) and
thus Tn,b is infinite.

(2) If X(n) ̸= b then Cn,b is empty and so, by König’s lemma, Tn,b is finite.
Therefore to compute X(n) using B0 ⊕ . . . ⊕ Bk ⊕ Dk+1, we simply need to check
which of Tn,0 and Tn,1 is finite.

Thus there is some n and b ̸= X(n) such that Cn,b is nonempty. By the cone
avoiding basis theorem, relativized to B0 ⊕ . . . ⊕ Bk ⊕ Dk+1, we can find some
Bk+1 ∈ Cn,b such that

(B0 ⊕ . . . ⊕ Bk ⊕ Dk+1) ⊕ Bk+1 ≱T X.

It is straightforward to check that this Bk+1 satisfies all the necessary requirements.

What about the base case? Since we are forming the sequences B0, B1, . . . and
D0, D1, . . . inductively, it would seem that we need to explain the base case: how
to pick B0, D0 and n0. However, the argument we gave in the inductive case to
pick Bk+1 and Dk+1 works just as well for the base case, with the exception that
instead of having to pick D0 carefully we can just take D0 = D. Also in this case,
we should interpret the union B0 ∪ . . . ∪ Bk as the empty set.

The sequence cannot be infinite. We have shown that if we have formed sets
B0, . . . , Bk and D0, . . . , Dk satisfying the five conditions listed above then either
(s, B ∩ (B0 ∪ . . . ∪ Bk)) is a density Mathias condition (in which case we are done)
or we can find Bk+1 and Dk+1 extending the sequence. But how do we know the
first option ever holds? In other words, how do we know we cannot just extend
the sequence indefinitely? We will now show that no sequence satisfying the five
requirements can be longer than 2/δ.

Suppose for contradiction that B0, . . . , Bk and D0, . . . , Dk do satisfy the five
requirements and k > 2/δ. Let n be any element of Dk. Note that for each i ≤ k,
Dk ⊆ Di and hence Bi is δ/2-dense at n. In other words,

|Bi ∩ [n]| ≥ δ

2 · (n + 1).

However, since the Bi’s are all disjoint, this gives us k > 2/δ disjoint subsets of [n],
all of size at least δ/2 · (n + 1), which is impossible. □

We can now prove Theorem 1.1.

Theorem 1.1. For any uncomputable set X and any set A ⊆ N of positive lower
density, there is some infinite subset of A which does not compute X.
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Proof. Let G be a generic for density Mathias forcing which is compatible with
the condition (∅, A). We claim that G is an infinite subset of A which does not
compute X. Since G is generic, it is infinite and since G is compatible with (∅, A),
G ⊆ A. Now let Φ be any Turing functional. By Lemma 3.4, the following set of
density Mathias conditions is dense

{(s, B) | for all C compatible with (s, B), Φ(C) ̸= X}

and so Φ(G) ̸= X. Since this holds for all Φ, G does not compute X. □

3.4. An open question. Monin and Patey have proved the following variation
on Seetapun’s theorem, in which computability is replaced by hyperarithmetic
reducibility [14].

Theorem 3.5 (Monin and Patey). For any non-hyperarithmetic set X and any
set A ⊆ N, there is an infinite subset B of either A or A such that X is not
hyperarithmetic in B.

It seems natural to ask whether the analogous variation on Theorem 1.1 is true.
Answering this question seems to be beyond the techniques we used to prove our
theorem.

Question 3.6. Suppose X is not hyperarithmetic and A ⊆ N has positive lower
density. Must A have an infinite subset B such that X is not hyperarithmetic in B?

4. The main theorem is sharp

Our goal in proving Theorem 1.1 was to formalize the intuition that if every
infinite subset of a set A can compute an uncomputable set X then A must be
sparse. In our theorem, we interpreted sparse to mean lower density zero. However,
this is not the only reasonable interpretation of what it means for a set of natural
numbers to be sparse. In this section, we will consider a couple other notions of
sparsity and give counterexamples showing that for each, our main theorem becomes
false.

In other words, for various notions of sparsity, we will prove that there is an
uncomputable X and a set A ⊆ N which is not sparse such that all infinite subsets of
A compute X. In nearly all cases, we will be able to strengthen the counterexample
in two ways.

First, instead of just finding a single X that can be encoded into a non-sparse
set in this way, we will show that any set X can be so encoded—i.e. for every X
there is some non-sparse A ⊆ N such that all infinite subsets of A compute X.

Second, instead of every subset of A simply computing X, we can ensure that
they all compute X uniformly—i.e. there is a single Turing functional Φ such that
for all infinite subsets B of A, Φ(B) = X.

4.1. Sets of positive upper density. Our first counterexample concerns replacing
positive lower density with positive upper density. In this case, we can even find a
counterexample where A has upper density one.

Proposition 4.1. For any set X, there is some set A ⊆ N such that ρ(A) = 1 and
all infinite subsets of A compute X uniformly.
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Proof. Let Ã be any infinite set, all of whose infinite subsets compute X uniformly
(for example, Ã could be the set produced by the Dekker-Myhill method explained
in the introduction). The idea is to build A by copying Ã, but add in a lot of
redundancy so that A is occasionally very dense.

To that end, pick a computable sequence of numbers n0 < n1 < n2 < . . . which
grows fast enough that ni+1 > i · ni and define

A =
⋃
i∈Ã

[ni, ni+1).

In other words, for each i ∈ Ã, A contains the entire interval [ni, ni+1).
First observe that A has upper density 1. Indeed, for each i ∈ Ã, A is i−1

i -dense
at ni+1.

Second, observe that all infinite subsets of A compute X uniformly: given an
infinite subset B ⊆ A, we can uniformly compute the following infinite subset B̃ of
Ã,

B̃ = {i | ∃n ∈ [ni, ni+1) ∩ A},

and then use B̃ to compute X. □

In spite of this counterexample, our main theorem can be strengthened to hold
for certain sets of positive upper density.

Proposition 4.2. For any uncomputable X and set A ⊆ N such that A is dense
along some infinite set D which does not compute X, there is some infinite subset
of A which does not compute X.

Proof. Note that (∅, A) is a density Mathias condition, as witnessed by D. Thus
there is a generic G for density Mathias forcing which is compatible with (∅, A).
Exactly as in the proof of Theorem 1.1, G is an infinite subset of A which does not
compute X. □

4.2. Sets whose density goes to zero slowly. Our next counterexample concerns
sets of lower density zero where the density approaches 0 very slowly. Define the
density function of a set A to be the function

dA(n) = |A ∩ [n]|
n + 1 .

Note that if a set A has positive lower density then dA(n) is bounded away from
0. By contrast, most of the methods we have seen so far of coding a set X into
all infinite subsets of a set produce sets whose density functions converge to 0 very
rapidly. For example, the Dekker-Myhill method we mentioned in the introduction
produces a set A such that dA(n) is approximately log(n)

n . In the previous subsection,
we saw a method for which this is not quite true—in particular, we saw a method
which produces a set A of upper density one, which implies that dA(n) is close to 1
infinitely often. However, even for this method, dA(n) is also infinitely often smaller
than log(n)

n .
Based on these examples, one might guess that if all infinite subsets of a set

A compute an uncomputable set X then dA(n) cannot be lower bounded by any
monotone function that goes to zero much slower than log(n)

n —in other words that
there must be infinitely many places where the density of A is exponentially small.
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However, this is false: we will show that it is possible to encode any set X into all
infinite subsets of a set A whose density function goes to zero arbitrarily slowly.

Definition 4.3. For any function f : N → [0, 1], a set A ⊆ N is f -dense if for all n,
dA(n) ≥ f(n).

Proposition 4.4. Suppose f : N → [0, 1] is a function such that
lim

n→∞
f(n) = 0.

Then for any set X there is some A such that A is f -dense and all infinite subsets
of A compute X uniformly.

Proof. The idea is to modify the Dekker-Myhill coding method explained in the
introduction, but slow it down so that it produces an f -dense set. In Dekker and
Myhill’s scheme, each element of A encodes one more bit of X than the previous
element. In our modified version, we will repeatedly encode the same number of bits
of X until f becomes small enough to allow us to encode more. Roughly speaking,
we will only start using elements of A to encode the first n bits of X once f drops
below 1/2n.

One comment before we go into the details of the construction: it might seem
necessary to require f to be computable but there is a trick that allows us to avoid
requiring that. Essentially, we can use elements of A to encode not just some bits
of X but also to encode how many bits are encoded.

To define A formally, first pick a sequence 0 < n1 < n2 < . . . which grows fast
enough that for all i:

(1) for all m ≥ ni, f(m) ≤ 1/(5 · 22i+1)
(2) and ni+1 − ni is divisible by 22i+1.

The idea is that in the interval [ni, ni+1), each element of A will encode the first i
bits of X. Note that the sequence n0, n1, n2, . . . is not required to be computable.

Next, for each i, let σi denote the length 2i + 1 binary string consisting of the
first i bits of X, followed by a 1, followed by a i zeros—i.e.

σi = (X ↾ i)⌢1⌢ 00 . . . 0︸ ︷︷ ︸
i times

.

Now define A as follows.
(1) First put [0, n1) into A.
(2) Next, for each i ≥ 1 and m ∈ [ni, ni+1), put m into A if the binary expansion

of m ends with the string σi.
We will now show that A has the properties desired.

Claim. A is f -dense.

Proof. Consider a single interval [ni, ni+1). Note that this interval is composed of
some number of disjoint intervals of length 22i+1 and that each one of these smaller
intervals contains exactly one element of A. Also note that A contains all numbers
less than n1. From these two observations, it is easy to see that for each i, A is
1/22i+1-dense at ni+1. In other words, A is sufficiently dense at the endpoints of
each interval [ni, ni+1). It remains to check that A is also sufficiently dense in the
interior of these intervals.

Note that any number m ∈ (ni, ni+1) can be written as m = ni + k · 22i+1 + l
for some k and l < 22i+1. Our observations above imply that A is 1/22i+1-dense at
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ni + k · 22i+1. We now want to show that f(m) and l are small enough that A is
still sufficiently dense at m.

To see why, note that by assumption, ni > 22i−1 and thus l < 4 · (ni + k · 22i+1).
Thus, since A is 1/22i+1-dense at ni + k · 22i+1, it is also 1/(5 · 22i+1)-dense at m.
By our choice of ni, this implies that A is f(m)-dense at m. □

Claim. Every infinite subset of A computes X uniformly.

Proof. Suppose B is an infinite subset of A. For any element m ∈ B such that
m ≥ n1, the binary expansion of m must end with some number of zeros. Suppose
it ends with k zeros. Then the binary expansion of m must end with a string σ of
length k, followed by a one, followed by k zeros. By construction of A, this string
σ is guaranteed to be an initial segment of X. So to compute any bit X(i) of X,
we simply need to find an element m ≥ n1 of B whose binary expansion ends with
a long enough string of zeros. And such an element is guaranteed to exist by our
construction of A and the fact that B is infinite. □

This concludes the proof. □

4.3. Dense subsets of dense sets. Our final counterexample is of a somewhat
different nature than the first two. In our previous counterexamples, we considered
possible strengthenings of our main theorem given by relaxing the density require-
ment on A. We will now consider possible strengthenings given by restricting which
subsets of A we are allowed to use.

The main theorem of this paper shows that it is impossible to encode an uncom-
putable set X into all infinite subsets of a set A of positive lower density. But what
if we only want to encode X into all subsets of A of positive lower density? Or into
all subsets of positive upper density? We will show that such encoding is possible in
both cases, but that it can only be done uniformly in the first case.

Proposition 4.5. For any set X, there is some set A ⊆ N of positive lower density
such that all subsets of A of positive lower density compute X uniformly.

Proof. Suppose we only had to consider 1/2-dense subsets of A. For each n, any
such subset must contain at least one element of A between n and 2n. Thus we
could code one bit of X into the parity of the elements of A between n and 2n and
be sure that any 1/2-dense subset of A will be able to recover this bit. However, we
want our procedure to work for subsets of A of any constant density greater than
zero, not just 1/2-dense subsets. So we will encode each bit of X infinitely many
times, each time making a more conservative assumption about the density of the
subset of A doing the decoding.

More formally, pick a computable bijection π : N → N × Q+ and a computable
sequence 0 = n0 < n1 < n2 < . . . such that for all i,

(1) if π(i) = (j, δ) then δ · ni+1 > ni

(2) and ni is even.
The idea is that in the interval [ni, ni+1), elements of A will code the jth bit of X
in such a way that any δ-dense subset of A will be able to decode it.

Now define A as follows. For each i ∈ N and m ∈ [ni, ni+1), let (j, δ) = π(i) and
put m into A if {

m is even and X(j) = 0
or m is odd and X(j) = 1.
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In other words, in the interval [ni, ni+1), the jth bit of X is encoded into the parity
of the elements of A.

First observe that A has lower density 1/2: for each m, either 2m or 2m + 1 is in
A (this is why we wanted to make sure each ni is even).

Second, observe that all subsets of A of positive lower density can compute X
uniformly. Given a subset B ⊆ A of positive lower density and a j ∈ N, we can
compute X(j) as follows: search for any i such that π(i) = (j, δ) for some δ and
[ni, ni+1) ∩ B is nonempty. Then from the parity of any element of [ni, ni+1) ∩ B
we can recover X(j). The fact that such an i must exist follows from our choice of
ni’s and the fact that B has positive lower density—if B is δ-dense and π(i) = (j, δ)
then B must have at least one element in the interval [ni, ni+1) because otherwise
B cannot be δ-dense at ni+1. □

For the case of subsets of positive upper density, the counterexample can be
constructed using a result of Bienvenu, Day and Hölzl [1].

Theorem 4.6 (Bienvenu, Day and Hölzl). For any set X, there is a set A such
that for all partial functions f : N → {0, 1}, if the domain of f has positive upper
density and for all n ∈ dom(f), f(n) = A(n) then f computes X.

Corollary 4.7. For any set X, there is a set A of positive lower density such that
all subsets of A of positive upper density compute X.

Proof. Let A be the set from Bienvenu, Day and Hölzl’s theorem. Let Ã = {2n |
n ∈ A} ∪ {2n + 1 | n /∈ A}. Note that Ã has lower density 1/2 and that from each
element of Ã, we can recover one bit of the characteristic function of A.

Thus any subset B of Ã can compute a partial function fB : N → {0, 1} which
agrees with A everywhere it is defined. Furthermore, the density of dom(fB) at
any n is about twice the density of B at 2n + 2. Therefore if B has positive upper
density then so does dom(fB). So for any such B, our choice of A implies that fB ,
and hence B itself, computes X. □

As we noted above, it is impossible to strengthen this corollary to make all subsets
of A of positive upper density compute X uniformly.

Proposition 4.8. For any uncomputable set X, set A of positive lower density and
Turing functional Φ, there is some subset B ⊆ A of positive upper density such that
Φ(B) ̸= X.

Proof. This follows directly from Lemma 3.4. In particular, using that lemma we
can find a density Mathias condition (s, B) extending (∅, A) such that for every set
C compatible with (s, B), Φ(C) ̸= X. In particular, if C = s ∪ B then Φ(C) ̸= X.
Since (s, B) is a density Mathias condition, C has positive upper density and so we
are done. □

5. Avoiding PA degree

In this section we prove the theorem promised in the introduction which modifies
our main theorem to avoid PA degree rather than cones of Turing degrees.

Theorem 1.4. For any set A ⊆ N of positive lower density, there is an infinite
subset of A which is not of PA degree.
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In order to prove this theorem, it will be convenient to use the following alternative
definition of PA degree.

Definition 5.1. Given a partial function f : N → {0, 1}, a completion of f is a
total function g : N → {0, 1} such that for every n in the domain of f , f(n) = g(n).

Definition 5.2. A set A is said to be of PA degree if for every partial computable
function f : N → {0, 1}, A computes a completion of f .

We can thus obtain Theorem 1.4 as a corollary of the following theorem.

Theorem 5.3. Suppose f : N → {0, 1} is a computable partial function with no
computable completion. Then every set A ⊆ N of positive lower density contains an
infinite subset which does not compute a completion of f .

We show in Theorem 5.11 that the assumption that f is computable is neccesary.
Our proof of this theorem follows the same general strategy as the proof of our

main theorem, with a few notable changes. First, we replace Seetapun’s theorem
with Liu’s theorem (as discussed in the introduction) and also make some more-or-
less standard changes to the proof which are relevant for avoiding PA degrees (these
changes are mostly taken from the work of Liu [10] and of Monin and Patey [13]).
Second, and more interestingly, we can no longer rely on the cone avoiding basis
theorem (the point is that there is no such thing as a “PA degree avoiding basis
theorem” for somewhat obvious reasons). Thus we are forced to replace the argument
using the cone avoiding basis theorem with a somewhat more elaborate argument.
Third, we need an extra combinatorial fact about intersections of dense sets. This
fact is not hard to prove, but it is not as simple as the combinatorics which appeared
in the proof of our main theorem.

5.1. Liu’s theorem and Liu’s lemma. To prove the theorem above, we will
use two results due to Liu. First, Liu’s theorem, which, as we discussed in the
introduction, is the analogue of Seetapun’s theorem for this setting (and will play
an analogous role in the proof). We stated a version of this theorem as Theorem 1.3,
but we will use the following more general version.

Theorem 5.4 (Liu’s Theorem, [10]). Suppose f : N → {0, 1} is a computable partial
function with no computable completion. Then for every set A ⊆ N, there is an
infinite set B which is a subset of either A or the complement of A such that B does
not compute a completion of f .

As with Seetapun’s theorem, it is easy to use this theorem to prove the following
corollary.

Corollary 5.5. Suppose f : N → {0, 1} is a computable partial function and A ⊆ N
is an infinite set which does not compute a completion of f . Then for every finite
partition B1, . . . , Bn of A, at least one of the Bi’s has an infinite subset which does
not compute a completion of f .

In the course of proving Theorem 1.3, Liu implicitly used the following lemma
(see Lemma 6.6 of [10]). It was also used in a slightly different form by Monin and
Patey in [13] (see Lemmas 2.13 and 3.12).

Definition 5.6. A valuation is a finite partial function p : N → {0, 1} represented
as a lookup table (rather than, say, a code for a Turing machine which computes p).
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Definition 5.7. Given a valuation p and a partial function f : N → {0, 1}, p is
f-correct if p ⊆ f—in other words if for all n in the domain of p, n is also in the
domain of f and p(n) = f(n).

Lemma 5.8 (Liu [10]). If W is a c.e. set of valuations and f is a computable
partial function with no total completion then either W contains some f-correct
valuation or for every k, there are at least k many incompatible valuations outside
of W .

Proof. Suppose W does not contain any f -correct valuations and fix a number k.
For any finite set s ⊆ N and valuation p, say that p is f -correct mod s if p is f -correct
when we ignore the elements of s—in other words, for all n ∈ dom(p) \ s, n is in the
domain of f and p(n) = f(n). We will show that there are numbers n1, . . . , nk such
that no element of W is f -correct mod {n1, . . . , nk}. In particular, this implies that
W does not contain any element with domain contained in {n1, . . . , nk}. Since it is
easy to see that there are at least k such incompatible functions (in fact, at least
2k), this is sufficient to prove the lemma.

We will construct n1, . . . , nk by induction. Suppose we have constructed n1, . . . , ni

and want to find ni+1. In other words, we know W contains no element which is
f -correct mod {n1, . . . , ni} and we want to find some n /∈ {n1, . . . , ni} such that no
element is f -correct mod {n1, . . . , ni, n}.

Suppose for contradiction that no such n exists. Then for every n /∈ {n1, . . . , ni},
W contains some element p which is f -correct mod {n1, . . . , ni, n}. At the same
time, p cannot be f -correct mod {n1, . . . , ni}. By unrolling the definitions, it is
possible to see that this implies that n is in the domain of p and either not in the
domain of f or p(n) ̸= f(n). The key point is that in either case, 1 − p(n) does not
disagree with f(n).

But this gives us a method to compute a completion g of f : For each n ∈
{n1, . . . , ni}, hard-code some appropriate value for g(n). For each n /∈ {n1, . . . , ni},
search for some p ∈ W which is f -correct mod {n1, . . . , ni, n} (note that there is
a computable enumeration of f -correct valuations). For the first such p that is
found, set g(n) = 1 − p(n). Since f has no computable completions, this gives us
the desired contradiction. □

5.2. A combinatorial lemma. As we referred to above, we will need the following
combinatorial lemma, which says that when you have enough dense sets, two of them
must have fairly dense intersection. The proof is a standard counting argument,
which we phrase as a probabilistic proof based on estimating the variance of a
certain random variable.

Lemma 5.9. For every δ > 0, there is some k with the following property: For
any n > 0 and any k subsets A1, . . . , Ak ⊆ [0, n), all of which have size at least δn,
there is some pair of indices i ̸= j such that Ai∩Aj

n ≥ δ2/2.

Proof. We will begin by thinking of k as a variable and fixing a number n and sets
A1, . . . , Ak ⊆ [0, n). We will then find a lower bound on the maximum of Ai∩Aj

n
over all i ̸= j. At the end, we will check that if k is large enough then this lower
bound is at least δ2/2 (and does not depend on n).

So: fix n and sets A1, . . . , Ak. Consider choosing x from [0, n) uniformly at
random and counting the number of sets Ai which contain x. Let X be the random
variable denoting this count. For each i, let 1Ai

be the random variable indicating
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whether x is in Ai or not (1Ai
= 1 if x ∈ Ai and 0 otherwise). Note that we have

X =
∑
i≤k

1Ai .

The key to the proof is to estimate the variance of X. First, by a standard
calculation we have

Var[X] = E[X2] − E[X]2

= E
[(∑

i≤k

1Ai

)2
]

− E
[∑

i≤k

1Ai

]2

=
∑

i,j≤k

E
[
1Ai

1Aj

]
−

(∑
i≤k

E[1Ai
]
)2

=
∑
i,j

|Ai ∩ Aj |
n

−
(∑

i

|Ai|
n

)2

=
∑
i ̸=j

|Ai ∩ Aj |
n

+
∑

i

|Ai|
n

−
(∑

i

|Ai|
n

)2
.

Using the fact that Var[X] ≥ 0 and letting y =
∑

i
|Ai|

n , we have∑
i ̸=j

|Ai ∩ Aj |
n

≥ y2 − y.

Since each Ai has size at least δn, y ≥ δk. Let’s assume k > 1/δ and thus y > 1.
Since y2 − y is monotonic in y for y > 1, we have∑

i ̸=j

|Ai ∩ Aj |
n

≥ y2 − y ≥ (δk)2 − δk.

We can now calculate a lower bound ε on the maximum value of |Ai∩Aj |
n over all

i ̸= j. For we have ∑
i ̸=j

|Ai ∩ Aj |
n

≤ εk(k − 1) ≤ εk2

and thus
εk2 ≥ (δk)2 − δk.

Simple algebraic manipulation then yields ε ≥ δ2 − δ/k.
We are now in position to finish the proof. Recall that we wanted k large enough

that ε ≥ δ2/2. The lower bound above shows that it’s enough to take k ≥ 2/δ.
Since this value does not depend on n, we are done. □

5.3. The proof. For the rest of this section, fix a computable partial function f
with no computable completion. Define a modified version of density Mathias forcing
where conditions are Mathias conditions (s, A) such that there is some infinite set
D which does not compute a completion of f and so that A is dense along D. It
suffices to prove the following key lemma; the rest of the proof can be completed as
in the proof of Theorem 1.1.

Lemma 5.10. For any condition (s, A) and Turing functional Φ, there is some
condition (s′, A′) ≤ (s, A) such that for all sets B compatible with (s′, A′), Φ(B) is
not a completion of f .
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Proof. Fix a set D and number δ > 0 such that A is δ-dense along D and D does
not compute a completion of f .

Given a set B and a valuation p, say that p is consistent with B if for all finite
sets t ⊆ B, Φ(s ∪ t) and p are compatible (i.e. for every n either at least one of
Φ(s ∪ t, n) and p(n) is not defined or they are both defined and are equal). Say that
a sequence of sets B1, . . . , Bl is lawful if it satisfies the following criteria:

(1) The Bi’s are all disjoint.
(2) For each Bi, there are incompatible valuations p and q such that Bi is

consistent with both p and q. Note that this implies that for all C compatible
with (s, Bi), Φ(C) must be compatible with both p and q and hence cannot
be total.

(3) There is an infinite set E such that each Bi is δ2/8-dense along E, A \ (B1 ∪
. . . ∪ Bl) is δ/2-dense along E and E does not compute a completion of f .2

We will prove that if there is a lawful sequence of length l then either there is a
condition (s′, A′) with the property we want or there is a lawful sequence of length
l + 1. Also, since the Bi are disjoint and δ2/8-dense along E, there is no lawful
sequence of length strictly greater than 8/δ2, which suffices to finish the proof.

Finding lawful sequences. Suppose that B1, . . . , Bl is a lawful sequence, as
witnessed by E and (p1, q1), (p2, q2), . . . , (pl, ql). We want to either find (s′, A′) ≤
(s, A) satisfying the conclusion of the lemma or a lawful sequence of length l + 1.3

For every valuation r, define Cr to be the set of tuples (X1, . . . , Xl, Y ) such that
(1) X1, . . . , Xl, Y are all disjoint.
(2) Each Xi is δ2/8-dense along E.
(3) Y is δ/2-dense along E.
(4) For each i, Xi is consistent with both pi and qi.
(5) Y is consistent with r.

Note that the sets Cr are uniformly Π0
1(E). Let W be the set of valuations r such

that Cr is empty. Note that W is c.e. relative to E. Since E does not compute a
completion of f , we can apply Liu’s Lemma relative to E to get that one of the
following holds.

(1) There is some r ∈ W which is f -correct.
(2) For every k, there are at least k incompatible valuations outside of W .

Case 1: an f-correct valuation in W . Suppose that some r ∈ W is f -correct.
Thus Cr is empty. In particular, (B1, . . . , Bl, A \ (B1 ∪ . . . ∪ Bl)) is not in Cr. By
our choice of B1, . . . , Bl and E, this can only be because r is not consistent with
A \ (B1 ∪ . . . ∪ Bl). In other words, there is some finite set t ⊂ A and some n
such that Φ(s ∪ t, n) and r(n) are both defined and not equal. Moreover, since r is

2For avoiding a cone in our main theorem, we were also able to have that B1 ⊕ · · · ⊕ Bl ⊕ E

avoids the cone. This was because of the cone avoiding basis theorem. Here, we are not able to
ask that B1 ⊕ · · · ⊕ Bl ⊕ E does not compute a completion of f . Before, we used B1, . . . , Bl in the
definition of Cn,b, so that it was a Π0

1 class relative to B1 ⊕ · · · ⊕ Bk ⊕ E. Now, when defining the
analogous class, it must be a Π0

1 class relative only to E alone.
One consequence of this is that while previously we constructed our sequences B1, . . . , Bl by

extension, here, the sequence of length l + 1 will not necessarily extend the sequence of length l.
3A slightly subtle point here is that we allow l = 0—that is, we allow the starting sequence to

be empty. As in the proof of our main theorem, it is possible to check that the whole proof still
works even in this case.
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f -correct, this implies that Φ(s ∪ t, n) and f(n) are both defined and not equal. In
this case we are done because we can set (s′, A′) = (s ∪ t, A \ [max(s ∪ t)]).

Case 2: many incompatible valuations outside W . Suppose that there are
k many incompatible valuations r1, . . . , rk outside W , where k is chosen as in the
combinatorial lemma (but with δ/2 rather than δ). Thus we can find sequences

(B1
1 , . . . ,B1

l , C1) ∈ Cr1

(B2
1 , . . . ,B2

l , C2) ∈ Cr2

...
(Bk

1 , . . . ,Bk
l , Ck) ∈ Crk

.

Since each Ci is δ/2-dense along E, it follows from the combinatorial lemma (and our
choice of k) that for each n ∈ E, there are i ≠ j such that Ci ∩ Cj is δ2/8-dense at
n. We can now apply the same trick we used in the proof of our main theorem (but
using Liu’s theorem instead of Seetapun’s theorem) to get an infinite set E1 ⊆ E
and a pair i ̸= j such that Ci ∩ Cj is δ2/8-dense along E1 and E1 does not compute
a completion of f .

Now let B′
1, B′

2, . . . , B′
l denote Bi

1, Bi
2, . . . , Bi

l and let B′
l+1 denote Ci ∩ Cj . We

have the following facts about the sequence B′
1, . . . , B′

l+1:
(1) They are all disjoint. This follows from the facts that Bi

1, . . . , Bi
l are all

disjoint from each other and from Ci and that B′
l+1 ⊆ Ci.

(2) For each B′
h, there are incompatible valuations p and q such that B′

h is
consistent with both p and q. For B′

1, . . . , B′
l we can just take ph and qh.

For B′
l+1 we can take ri and rj .

(3) E1 is infinite, does not compute a completion of f and each B′
h is δ2/8-dense

along E1. For B′
1, . . . , B′

l, this last part is because E1 ⊆ E. For B′
l+1, this

follows from our choice of E1.
The point is that B′

1, . . . , B′
l+1 is very close to a lawful sequence of length l + 1. All

that’s missing is that A \ (B′
1 ∪ . . . ∪ B′

l+1) be δ/2-dense along E1. However, this is
easily fixed.

Again using the same trick as in the proof of our main theorem, we can get an
infinite set E2 ⊆ E1 which does not compute a completion of f and such that either

• A ∩ (B′
1 ∪ . . . ∪ B′

l+1) is δ/2-dense along E2
• or A \ (B′

1 ∪ . . . ∪ B′
l+1) is δ/2-dense along E2.

In the first case, we can use the trick once more to find some infinite E3 ⊆ E2 which
does not compute a completion of f and some h ≤ l + 1 such that A ∩ B′

h is dense
along E3 and so we can finish by taking (s′, A′) = (s, A ∩ B′

h). In the latter case,
we have found a lawful sequence of length l + 1. □

5.4. A false generalization. There is a common generalization of both Theorem
1.1 and Theorem 1.4 which at one point the authors thought might be true. Namely,
that given any partial function f : N → {0, 1} with no computable completion, and
any set A ⊆ N of positive lower density, there is an infinite subset of A that does
not compute any completion of f . (Theorem 1.1 is the case when f is already total,
and Theorem 1.4 is the case when f is computable.) However, this is false.
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Theorem 5.11. There is a partial function f : N → {0, 1} and a set A ⊆ N of
positive lower density such that any infinite subset B ⊆ A computes a completion of
f .

Proof. We will define a partial function f while simulateneously defining x0, x1, x2, . . ..
We will make use of a computable function π : N → N such that π−1(n) is infinite for
each n. For each xi, we will have π(xi) = i. The idea is that while the construction
will be non-computable, the function π(x) will allow us to computably recover from
x the function Φπ(x) that x would have been used to diagonalize against if x was
used to diagonalize at all.

Begin with x0 = 0. Suppose that we have defined xi. We have two cases:
(1) If Φi(xi) ↓, let si be the number of stages it takes to converge, and define

f(xi) = 1 − Φi(xi). Let xi+1 > si be such that π(xi+1) = i + 1.
(2) Otherwise, if Φi(xi) ↑, leave f(xi) undefined, and let xi+1 > xi be such that

π(xi+1) = i + 1.
For any x outside of {x0, x1, . . .}, f(x) is undefined.

Now define A ⊆ 2<ω as follows. Put σ ∈ A if whenever Φi(xi) ↓ but Φi,|σ|(xi) ↑,
σ(xi) = f(xi). We claim that A has lower density at least 1/4. For this, it is
important that in identifying 2<ω with N, we list out the finite binary strings in
order of increasing length. Thus it suffices to show that for each n, there is some
x < n and t ∈ {0, 1} such that A ∩ 2n ⊇ {σ ∈ 2n | σ(x) = t}. If not, there would be
i < j with xi < xj < n such that

(1) Φi(xi) ↓ but Φi,n(xi) ↑ and
(2) Φj(xj) ↓ but Φj,n(xj) ↑.

From (1), it follows that n < si, but by construction xj > si. This contradicts the
choice of xj < n.

Now suppose that B is an infinite subset of A. We will compute from B a
completion g of f . For each x, look for some σ ∈ B with σ(x) ↓. Check whether
Φπ(x),|σ|(x) ↓. If so, define g(x) = 1 − Φπ(x),|σ|(x). Otherwise, define g(x) = σ(x).
It is easy to see that g is total.

To see that g is a completion of f , it suffices to check that for all i, g(xi) = f(xi).
Let σ ∈ B be the string used to define g(xi). If Φi,|σ|(xi) ↓, then we defined both g(xi)
and f(xi) to be 1 − Φi(xi). Otherwise, if Φi,|σ|(xi) ↑, then we defined g(xi) = σ(xi),
and if f(xi) is defined then Φi(xi) ↓ and so, as σ ∈ A, σ(xi) = f(xi). □

6. Preserving Kolmogorov complexity

Recall from the introduction that for any string σ and any collection of sets
F ⊆ P(N), we define

C(σ | F) = max
X∈F

CX(σ).

Also recall that C(σ) − C(σ | [A]ω) can be thought of as the number of bits of
information about σ coded into all infinite subsets of A. The goal of this section is
to investigate this quantity in the case where A is a set of positive lower density.

We noted in the introduction that it is possible to encode about log(1/δ) bits
of information into all infinite subsets of a set of lower density δ. For example, if
δ = 1/2n then for any binary string σ of length n, we can encode σ into all infinite
subsets of a set A of lower density 1/2n by letting A consist of all numbers m such
that the last (i.e. least significant) bits of the binary expansion of m match σ.
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However, this is not the only way to encode information into all infinite subsets
of a dense set. Roughly speaking, for any fixed number N , it is possible to encode
“an arbitrary integer greater than N .” We will now make this precise.

Definition 6.1. For any string σ ∈ 2<ω and number N ∈ N, define
C(σ | ≥ N) = max

n≥N
C(σ | n).

Proposition 6.2. For any string σ and number N , there is some set A of lower
density 1 such that

C(σ | [A]ω) ≤ C(σ | ≥ N) + O(1)
where the constant hidden by the O(1) does not depend on σ or N .

Proof. Let A = {n | n ≥ N}. If B is an infinite subset of A then all elements of B
are greater than or equal to N . In other words, from any infinite subset of A we
can uniformly extract a number greater than or equal to N . Thus C(σ | [A]ω) is at
most C(σ | ≥ N) + O(1), where the extra constant represents the complexity of the
extraction procedure. □

It may not be immediately apparent exactly how much information can be gained
from knowing “an arbitrary integer greater than N” (i.e. how large C(σ)−C(σ | ≥ N)
can be). A result of Vereshchagin [16] gives a precise characterization.

Theorem 6.3 (Vereshchagin). For any string σ,

C0′
(σ) = min

N
C(σ | ≥ N) ± O(1).

Together with our proposition above, this shows that for any string σ, it is
possible for all infinite subsets of a dense set A to lower the complexity of σ to its
0′ complexity. This can be combined with the first coding method we mentioned to
give a result claimed in the introduction.

Proposition 1.6. For any string σ and δ ∈ (0, 1], there is some set A ⊆ N of lower
density at least δ such that

C(σ | [A]ω) ≤ max(0, C0′
(σ) − log(1/δ)) + O(log log(1/δ)).

Proof. Let k = C0′(σ) and let ρ be a string witnessing this fact—i.e. a string such
that |ρ| = k and for the universal oracle machine U , U0′(ρ) = σ. It is a standard
fact about Kolmogorov complexity that there is some N such that for all n ≥ N ,
C(σ | ρ, n) = O(1) (this fact is more or less the easy direction of Vereshchagin’s
theorem mentioned above).

Next, let m ∈ N be such that 2−m−1 < δ ≤ 2−m and define A by
A = {n ≥ N | the binary representation of n mod 2m

is equal to the first m bits of ρ}.

If the length of ρ is less than m then first extend ρ to length m by adding a 1
followed by a run of 0s to the end.

Note that the lower density of A is 2−m, which is greater than or equal to δ.
Furthermore, from any infinite subset B ⊆ A, we can uniformly extract a number
n ≥ N . And if we know m then we can also uniformly extract the first m bits of
ρ. Since C(σ | ρ, n) = O(1), to reconstruct σ from this information, we only need
to know the last k − m bits of ρ. In other words, if we are given an infinite subset
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B ⊆ A then to reconstruct σ we just need to know m and the last k − m bits of ρ.
Thus we have

C(σ | [A]ω) ≤ (k − m) + O(C(m)) ≤ k − m + O(log(m)).

Since log(1/δ) ≥ m ≥ log(1/δ) − 1, this gives us

C(σ | [A]ω) ≤ k − log(1/δ) + O(log log(1/δ))

as desired. □

In this section, we will show that this upper bound is essentially optimal. In
particular, we will prove the following theorem.

Theorem 1.7. For any string σ and set A ⊆ N of lower density at least δ ∈ (0, 1],

C(σ | [A]ω) ≥ C0′
(σ) − log(1/δ) − O(log log(1/δ))

where the constant hidden by the O(·) notation does not depend on σ or A.

It is also possible to prove a corresponding result for Seetapun’s theorem. In
particular, for any set A, define

RT1
2(A) = [A]ω ∪ [A]ω.

The quantity C(σ) − C(σ | RT1
2(A)) can be viewed as the number of bits of

information about σ that can be encoded into all infinite subsets of A and A. Just
as in the case of subsets of a dense set, it is always possible to lower the complexity
of σ to its 0′ complexity.

Proposition 6.4. For any string σ, there is some set A ⊆ N such that

C(σ | RT1
2(A)) ≤ C0′

(σ) + O(1).

Proof. Once again, by Vereshchagin’s theorem it is enough to prove that for any N
there is some set A such that C(σ | RT1

2(A)) ≤ C(σ | ≥ N) + O(1). And for this,
we can simply take A = {n | n ≥ N}. □

Just like in the case of dense sets, it is possible to show that this is optimal (and
unlike in the case of dense sets, the error term here is constant).

Theorem 6.5. For any string σ and set A ⊆ N,

C(σ | RT1
2(A)) ≥ C0′

(σ) − O(1)

where the constant hidden by the O(1) does not depend on σ or A.

The remainder of this section is focused on proving Theorems 1.7 and 6.5. As a
warm-up, and to demonstrate our proof strategy, we will first prove a much easier
version of Theorem 6.5. We will then prove the full theorem and, finally, adapt the
techniques from the proof to prove Theorem 1.7.
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6.1. Kolmogorov complexity and Seetapun’s theorem: easy version. We
will now prove a version of Theorem 6.5 where the 0′ oracle is replaced by an oracle
for a complete Σ1

2 set. In particular, let W denote a complete Σ1
2 set and fix a string

σ and set A ⊆ N. We will prove that

C(σ | RT1
2(A)) ≥ CW (σ) − O(1).

This may appear a bit absurd—W is ridiculously powerful—but it helps demonstrate
the basic strategy that we will use in our proofs of Theorems 6.5 and 1.7.

Here’s the core idea of the proof. Suppose k is a number such that C(σ |
RT1

2(A)) < k. We would like to show that CW (σ) ≤ k + O(1). To do this, we will
identify some property of σ which is shared by at most 2k other strings and which
can be recognized using an oracle for W . One obvious special property of σ is that
there is a set X such that C(σ | RT1

2(X)) < k. It is not hard to show that at most
2k strings have this property and that W is powerful enough to check which strings
have it (in fact, we chose W to make this part obvious).

We will now give a more formal version of this argument. We will describe a
program E with the following properties.

• For each k, EW (k) enumerates a set of at most 2k strings.
• For any set A, string σ and number k such that C(σ | RT1

2(A)) < k, σ is in
the set enumerated by EW (k).

By general properties of Kolmogorov complexity, for any number k and string τ
enumerated by EW (k), CW (τ) ≤ k + O(1). In particular, if C(σ | RT1

2(A)) < k
then CW (σ) ≤ k + O(1).

We will now describe E. First, say that a string τ is good-for-k if there is a set
X such that C(τ | RT1

2(X)) < k. We claim that both of the following hold.
(1) It is computable in W to check if a string τ is good-for-k (i.e. the set of

pairs (τ, k) such that τ is good-for-k is computable relative to W ).
(2) There are at most 2k strings which are good-for-k.

To see why the first claim holds, simply note that the statement “τ is good-for-k” is
equivalent to the statement “there is some X such that for every Y , if Y ⊆ X or
Y ⊆ X, then CY (τ) < k,” which is a Σ1

2 formula of τ and k.
To see why the second claim holds, suppose that τ1, . . . , τl are distinct good-

for-k strings, as witnessed by X1, . . . , Xl. Note that the collection of all Boolean
combinations of the sets X1, . . . , Xl forms a finite partition of N. Thus one of these
Boolean combinations is infinite. Let B be this Boolean combination and note that
for each i ≤ l, B is either a subset of Xi or of Xi and, either way, is an element of
RT1

2(Xi). Therefore for each i ≤ l, CB(τi) < k, which is impossible unless l ≤ 2k.
The program EW (k) works as follows. Given the input k, it goes through all

strings in some fixed order and uses W to check whether each one is good-for-k.
Each time it finds a string which is good-for-k, it enumerates it. As we showed above,
EW (k) will never enumerate more than 2k strings. Also, for any set A, string σ and
number k such that C(σ | RT1

2(A)) < k, it is obvious that σ is good-for-k and thus
will be enumerated by EW (k). It follows that for such a σ and k, CW (σ) ≤ k +O(1).

6.2. Kolmogorov complexity and Seetapun’s theorem: hard version. We
will now prove Theorem 6.5, which states that for any string σ and set A ⊆ N,
C(σ | RT1

2(A)) ≥ C0′(σ) − O(1). Our strategy is the same as in the previous
subsection—i.e. let’s assume that C(σ | RT1

2(A)) < k and identify a property of σ



26 MATTHEW HARRISON-TRAINOR, LU LIU, AND PATRICK LUTZ

which is shared by at most 2k strings and which can be recognized using an oracle
for 0′.

In identifying such a property, there is a natural trade-off between how easy the
property is to describe and the computational power required to check if a string has
the property. In the previous subsection, we just needed a property which can be
recognized using a complete Σ1

2 set and this allowed us to use a very straightforward
property of σ. Now, however, we want a property that can be recognized by 0′,
which forces us to use a property that has a more intricate description. The key
definition is the following.

Definition 6.6. A finite set of strings F is k-safe if there is some finite4 partition
X1, . . . , Xn of N and some number m such that for all i ≤ n and all finite subsets
s ⊆ Xi,

|s| ≥ m =⇒ |{τ | Cs(τ) < k} ∪ F | ≤ 2k.

The idea is that F is k-safe as witnessed by a partition X1, . . . , Xn if for any Xi

and any infinite subset B of Xi, we may safely assume that B will assign all strings
in F complexity less than k. More specifically, it may not actually be the case that
B assigns a complexity less than k to each string in F , but if we assume that it
does then we will never see a contradiction of the form “B assigns complexity less
than k to too many strings.”

Essentially the key property of σ is that it is a member of every maximal k-safe
set. More precisely, we will show that any maximal k-safe set has size at most 2k

and contains σ and that there is some maximal k-safe set which can be enumerated
by 0′, uniformly in k. The key facts are

(1) Every k-safe set has size at most 2k.
(2) If F is k-safe then so is F ∪ {σ}.
(3) The collection of k-safe sets is c.e. relative to 0′ (uniformly in k).

Before proving these three facts, let’s see how they can be used to finish the proof.
Consider the following procedure for using 0′ to enumerate a maximal k-safe set.

1. Set F = ∅
2. While true:
3. Search for a string τ such that F ∪ {τ} is k-safe
4. If such a τ is found, enumerate τ and set F = F ∪ {τ}

It is easy to show by induction that at every step of the above algorithm, F is k-safe.
Since no k-safe set has size more than 2k, the above algorithm can add at most
2k strings to F . Thus after some point, no new strings will be added to F . We
claim that at this point, σ must be an element of F . If not, then since F ∪ {σ} is
k-safe, eventually the algorithm will discover this fact and add σ to F , contradicting
our assumption that no new elements are added to F . All this implies that the
algorithm must eventually enumerate σ and also that the algorithm will enumerate
at most 2k strings.

To finish, observe that the above procedure was uniform in k. In other words,
there is a single program E such that for each l, E0′(l) carries out the above
algorithm with k = l. As in the previous subsection, for every number l and string
τ enumerated by E0′(l), C0′(τ) ≤ l + O(1). Since σ is enumerated by E0′(k), this
shows that C0′(σ) ≤ k + O(1), as desired.

4We could take n = 2|F | but this is not needed.
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We will now prove each of the three facts above.

Lemma 6.7. Every k-safe set has size at most 2k.

Proof. Suppose F is a k-safe set. Let X1, . . . , Xn be a partition witnessing that F
is k-safe. Since X1, . . . , Xn is a finite partition of N, some Xi must be infinite. It is
straightforward to check that since Xi is infinite, we must have

|{τ | CXi(τ) < k} ∪ F | ≤ 2k

which implies that |F | ≤ 2k. □

Lemma 6.8. If F is a k-safe set then so is F ∪ {σ}.

Proof. Suppose that F is k-safe as witnessed by X1, . . . , Xn and m. Recall that
the string σ and set A have the property that for all infinite subsets B of A or A,
CB(σ) < k. The main idea of this proof is that the fact that F ∪ {σ} is k-safe can
be witnessed by the partition

X1 ∩ A, X1 ∩ A, . . . , Xn ∩ A, Xn ∩ A.

More precisely, let m′ be a number larger than both the size of any finite piece of
this partition and m. We will show that F ∪ {σ} is k-safe as witnessed by m′ and
X1 ∩ A, X1 ∩ A, . . . , Xn ∩ A, Xn ∩ A.

To prove this claim, suppose s is a finite subset of some set in this partition and
|s| ≥ m′. Without loss of generality, let’s assume that s ⊆ X1 ∩ A. By our choice of
m′ and the assumption that |s| ≥ m′, X1 ∩ A must be infinite. Thus we can find
some subset B ⊆ X1 ∩ A which agrees with s below max(s) and which is infinite. It
is straightforward to check the following facts

(1) Since B is an infinite subset of X1, |{τ | CB(τ) < k} ∪ F | ≤ 2k.
(2) Since s is an initial segment of B, {τ | Cs(τ) < k} ⊆ {τ | CB(τ) < k}.
(3) Since B is an infinite subset of A, CB(σ) < k and thus σ ∈ {τ | CB(τ) < k}.

Putting these together, we have

{τ | Cs(τ) < k} ∪ F ∪ {σ} ⊆ {τ | CB(τ) < k} ∪ F ∪ {σ}
= {τ | CB(τ) < k} ∪ F

and thus

|{τ | Cs(τ) < k} ∪ F ∪ {σ}| ≤ |{τ | CB(τ) < k} ∪ F | ≤ 2k

as desired. □

Lemma 6.9. The collection of k-safe sets is c.e. relative to 0′, uniformly in k.

Proof. Given a number k, a finite set of strings F , a number m and sets X1, . . . , Xn ⊆
N, the statement that m and X1, . . . , Xn witness that F is k-safe is uniformly Π0

1.
In other words, there is some computable tree T (k, F, m, n) such that X1 ⊕ . . . ⊕ Xn

is a path through T (k, F, m, n) if and only if m and X1, . . . , Xn witness that F is
k-safe and, furthermore, T (k, F, m, n) is uniformly computable in k, F , m and n.

By König’s lemma, T (k, F, m, n) has an infinite path if and only if T (k, F, m, n)
is itself infinite. Thus to check if F is k-safe, it suffices to check if there are m and
n such that T (k, F, m, n) is infinite. This is a Σ0

2 property (uniformly in k and F )
and thus c.e. relative to 0′. □
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6.3. Kolmogorov complexity and dense sets. We will now prove Theorem 1.7.
Actually, we will instead prove the following apparently weaker version and then
derive Theorem 1.7 as a corollary.

Theorem 6.10. For any string σ and set A ⊆ N which is δ-dense for δ ∈ (0, 1],

C(σ | [A]ω) ≥ C0′
(σ) − log(1/δ) − O(log log(1/δ))

where the constant hidden by the O(·) notation does not depend on σ or A.

Note that this theorem differs from Theorem 1.7 in that the set A is required to
be δ-dense rather than to have lower density δ (essentially A is required to be dense
everywhere rather than just dense at all sufficiently large points).

We will begin by showing how to use this theorem to prove Theorem 1.7.

Proof of Theorem 1.7 using Theorem 6.10. The basic point is that for any string σ

and set A of lower density δ, there is a set Ã which is δ/4-dense such that

C(σ | [Ã]ω) ≤ C(σ | [A]ω) + O(1)
and thus Theorem 6.10 implies that

C(σ | [A]ω) ≥ C(σ | [Ã]ω) − O(1)

≥ C0′
(σ) − log(4/δ) − O(log log(4/δ))

= C0′
(σ) − log(1/δ) − O(log log(1/δ)).

The set Ã is simple to describe. Let N be large enough that for all n ≥ N , A
has density at least δ/2 at n. Then define

Ã = {n | n is even and n ≤ 2N} ∪ {2n + 1 | n ∈ A}.

In other words, Ã contains a copy of A on the odd numbers, together with enough
even numbers to make sure Ã is relatively dense everywhere.

To finish, note that any infinite subset of Ã must contain an infinite number of
odd numbers and thus can uniformly compute an infinite subset of A and so we
have

C(σ | [Ã]ω) ≤ C(σ | [A]ω) + O(1)
as desired. □

We will now prove Theorem 6.10. The proof closely follows the proof from
the previous subsection, but with a few additional difficulties. We will begin by
modifying the definition of a k-safe set.

Definition 6.11. For any k ∈ N and rational δ ∈ (0, 1], a finite set of strings
F = {τ1, . . . , τn} is k-safe at density δ if there is a number m and sets X1, . . . , Xn ⊆
N of density at least δ such that for all i1 < i2 < . . . < il and all finite subsets
s ⊆ Xi1 ∩ . . . ∩ Xil

,

|s| ≥ m =⇒ |{τ | Cs(τ) < k} ∪ {τi1 , . . . , τil
}| ≤ 2k.

As in the previous subsection, we have the following claims.
(1) If F is k-safe at density δ then |F | ≤ 2k/δ.
(2) Suppose we have a set A and string σ such that A is δ dense and C(σ |

[A]ω) < k. If F is k-safe at density δ then so is F ∪ {σ}.
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(3) The collection of sets which are k-safe at density δ is c.e. relative to 0′,
uniformly in k and δ.

Before proving these claims, let’s see how to use them to finish the proof. In
a similar fashion to the previous subsection, we can find a program E such that
for any k and n, E0′(k, n) enumerates a maximal set which is k-safe at density
2−n. Furthermore, E0′(k, n) enumerates at most 2k · 2n strings. By standard facts
about Kolmogorov complexity, this implies that for any τ which is enumerated by
E0′(k, n), C0′(τ | n) ≤ k + n + O(1). Thus for such a τ we have

C0′
(τ) ≤ C0′

(τ | n) + O(C0′
(n)) ≤ k + n + O(C0′

(n))

and so
C0′

(τ) ≤ k + n + O(log(n)).
Now fix a string σ and a set A of density at least δ ∈ (0, 1/2]. Let k = C(σ | [A]ω)+1
and n be such that 2−n < δ ≤ 2−n+1. Then by the facts above, we have that σ is
enumerated by E0′(k, n) and thus

C0′
(σ) ≤ k + n + O(log(n)) = k + log(1/δ) + O(log log(1/δ)).

Note that in the calculation above we used that n − 1 ≤ log(1/δ) < n.
We will now prove the claims above.

Lemma 6.12. Suppose F is k-safe at density δ. Then |F | ≤ 2k/δ.

Proof. Suppose F = {τ1, . . . , τn} and that the sets X1, . . . , Xn witness that F is
k-safe at density δ.

We first claim that there is some collection of at least δn many Xi’s whose
intersection is infinite. To see why, suppose for contradiction that each such
collection is finite. Then there is some number N large enough that every x ≥ N
is in fewer than δn of the Xi’s. Fix some N ′ much larger than N and consider
a random point x from the interval [N, N ′). We will derive a contradiction by
calculating the expected number of Xi’s which contain x.

First consider a single fixed Xi. Since Xi is δ dense at N ′, Xi has at least δN ′

elements less than N ′ and thus has at least δN ′ −N elements in the interval [N, N ′).
So the probability that x is in Xi is at least

δN ′ − N

N ′ = δ − N

N ′ .

By linearity of expectation, this implies that the expected number of Xi’s which
contain x is at least

δn − Nn

N ′ .

Thus there is some x in the interval [N, N ′) which is contained in at least δn − Nn
N ′

many Xi’s. Since the number of Xi’s containing x must be an integer, this x must
actually be contained in ⌈

δn − Nn

N ′

⌉
many Xi’s. If N ′ is large enough then this is simply equal to ⌈δn⌉. In other words,
x is contained in at least δn many Xi’s, contradicting our assumption.

We have now shown that there is some collection of at least δn many Xi’s
whose intersection is infinite. Suppose for convenience that these Xi’s are simply
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X1, . . . , Xl where l = ⌈δn⌉ and let B = X1 ∩ . . . ∩ Xl. Note that by definition of
“k-safe at density δ,” we must have

|{τ | CB(τ) < k} ∪ {τ1, . . . , τl}| ≤ 2k,

which is impossible unless l ≤ 2k. To summarize, we have δn ≤ 2k, which implies
that n ≤ 2k/δ, as desired. □

Lemma 6.13. Suppose A is δ dense, C(σ | [A]ω) < k and F is k-safe at density δ.
Then F ∪ {σ} is also k-safe at density δ.

Proof. The proof is essentially the same as the proof of Lemma 6.8. Namely, let
F = {τ1, . . . , τn} and fix sets X1, . . . , Xn and a number m witnessing that F is
k-safe at density δ. Let m′ > m be large enough that for any intersection of finitely
many of X1, . . . , Xn, A, if that intersection happens to be finite, then it has at most
m′ elements. By copying the proof of Lemma 6.8, one can show that F ∪ {σ} is
k-safe at density δ, as witnessed by X1, . . . , Xn, A and m′. □

Lemma 6.14. The collection of sets which are k-safe at density δ is c.e. relative to
0′, uniformly in k and δ.

Proof. The proof is essentially the same as the proof of Lemma 6.9. The key point is
that the statement “{τ1, . . . , τn} is k-safe at density δ, as witnessed by X1, . . . , Xn

and m” is Π0
1. □

6.4. Open questions. The presence of the 0′ oracle in Theorems 6.5 and 1.7 is
somewhat unsatisfying. In one sense it is necessary: Propositions 6.4 and 1.6 show
that it cannot be removed. However, there is another sense in which it may be
possible to strengthen the two theorems.

For the sake of concreteness, we will focus on a possible strengthening of
Theorem 6.5. In that theorem, we showed that for any set A and string σ,
C(σ | RT1

2(A)) ≥ C0′(σ) − O(1). By Vereshchagin’s theorem, this is equiv-
alent to showing that for each string σ, there is some number N such that
C(σ | RT1

2(A)) ≥ C(σ | ≥ N) − O(1). However, this allows the possibility that even
for a fixed set A, there is a different such N for each σ. It seems natural to wonder
whether this is necessary, or whether, for each set A, there is a single N which works
for all σ.

Conjecture 6.15. For any set A ⊆ N, there is a number N such that for any string
σ,

C(σ | RT1
2(A)) ≥ C(σ | ≥ N) − O(1).

Note that the set A we constructed to show that the bound in Theorem 6.5 is
tight is not a counterexample to this conjecture: for that set A there is a single
number N such that for all strings σ, C(σ | RT1

2(A)) = C(σ | ≥ N) ± O(1).
One could also ask for a similar strengthening of Theorem 1.7.

Conjecture 6.16. For any set A ⊆ N of lower density δ, there is a number N and
a string τ of length at most log(1/δ) such that for any string σ,

C(σ | [A]ω) ≥ C(σ | ≥ N, τ) − O(log log(1/δ)).

There is another conjecture, also related to Theorem 1.1 and Kolmogorov com-
plexity, but quite distinct from the conjectures above, that we would like to mention
here. Namely, it might be possible to strengthen Theorem 1.1 to say that given A
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of positive lower density, and X uncomputable, not only is there a subset of A that
does not compute X, but there is a subset of A which does not help to compress
initial segments of X.

Conjecture 6.17. Let X be any set. For any set A ⊆ N of lower density δ there is
an infinite subset B ⊆ A such that for infinitely many n,

CB(X ↾n) ≥ C(X ↾n) − O(1).

Here we take inspiration from a theorem due to Chaitin (see [4], Theorem 3.4.4)
that X is computable if and only if C(X ↾n) ≤ C(n) + O(1) for all n. If X is
uncomputable, there is a function f : N → N such that lim supn→∞ f(n) = ∞ and
for all n, C(X ↾n) ≥ C(n) + f(n) − O(1). If B ⊆ A is an infinite set which preserves
the complexity of infinitely many initial segments of X, then for infinitely many n,

CB(X ↾n) ≥ C(X ↾n) − O(1) ≥ C(n) + f(n) − O(1) ≥ CB(n) + f(n) − O(1),
and hence X is not computable relative to B, which is exactly the conclusion of
Theorem 1.1.

Note that in this last conjecture we must only ask that CB(X ↾n) ≥ C(X ↾n) −
O(1) for infinitely many n, rather than for all n, as whenever B ⊆ A is uncomputable
it will given shorter descriptions for infinitely many n, and thus B can further
compress even some initial segments of the empty set X = ∅.

7. The relationship between the main theorem and Seetapun’s theorem

It seems clear that Theorem 1.1 and Seetapun’s theorem are closely related. Both
give limitations on coding information into all infinite subsets of a set and we used
Seetapun’s theorem in our proof of Theorem 1.1. However, the two theorems are
even more closely related than this suggests. In particular, Theorem 1.1 directly
implies Seetapun’s theorem.

To see why, let X be uncomputable and A ⊆ N be arbitrary. Consider the
following set B ⊆ N of lower density 1/2:

B = {2n | n ∈ A} ∪ {2n + 1 | n /∈ A}.

Given any subset C ⊆ B, we can read off a subset Ceven of A by looking at the
even elements of C and a subset Codd of A by looking at the odd elements of C.
Moreover, if C is infinite then at least one of Ceven and Codd must be infinite as
well. By Theorem 1.1, B must have some infinite subset C that does not compute
X. But then either Ceven is an infinite subset of A which does not compute X or
Codd is an infinite subset of A which does not compute X.

The argument above does not constitute a new proof of Seetapun’s theorem
because we used Seetapun’s theorem in our proof of Theorem 1.1. However, it
might make one wonder whether there is a similar direct proof of Theorem 1.1 from
Seetapun’s theorem (in which case, the somewhat complicated proof of Theorem 1.1
that we gave in Section 3 would be pointless). In this section, we will show that
this is not the case. However, we first have to make precise what sort of proof we
are trying to rule out.

7.1. Strong omniscient computable reducibility. The proof of Seetapun’s
theorem from Theorem 1.1 that we gave above can be seen as an example of a strong
computable reduction, a notion closely related to Weihrauch reducibility and reverse
math which was first introduced by Dzhafarov [5].
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Definition 7.1. Given two partial functions P, Q : 2ω → P(2ω), P is strongly
computably reducible to Q, written P ≤sc Q, if for any x ∈ dom(P ),

(1) there is some x̃ ≤T x such that x̃ ∈ dom(Q)
(2) and for any ỹ ∈ Q(x̃), there is some y ≤T ỹ such that y ∈ P (x).

Intuitively, a partial function P : 2ω → P(2ω) can be seen as a problem: elements
x of the domain of P are instances of the problem and elements y of P (x) are
solutions to the instance x. Under this interpretation, a problem P is strongly
computably reducible to a problem Q if any instance x of the problem P can
compute an instance x̃ of Q such that any solution to x̃ can compute a solution to
the original problem x.

As we said, the proof of Seetapun’s theorem from Theorem 1.1 that we gave
above can be seen as an example of a strong computable reduction. First, we can
define problems corresponding to Seetapun’s theorem and Theorem 1.1:

• RT1
2 is the problem in which an instance is a set A ⊆ N and a solution to

that instance is an infinite subset of either A or A.
• SD (which stands for “subset of a dense set”) is the problem in which an

instance is a set A ⊆ N of positive lower density and a solution is an infinite
subset of A.

Next, we can translate the main idea of the proof into a strong computable reduction
of RT1

2 to SD:
(1) Given an instance A of RT1

2, we can compute the instance B = {2n | n ∈
A} ∪ {2n + 1 | n /∈ A} of SD.

(2) Given a solution C to the instance B (i.e. an infinite subset C ⊆ B), we can
compute a solution to the instance A of RT1

2 (namely, either Ceven or Codd).
Furthermore, it is easy to check that if P and Q are problems such that P ≤sc Q
and X is a set such that there is some instance P , all of whose solutions compute
X then there is some instance of Q all of whose solutions compute X. Thus the
fact that RT1

2 ≤sc SD plus Theorem 1.1 implies Seetapun’s theorem.
So to show that there is no proof of this sort of Theorem 1.1 from Seetapun’s

theorem, we can show that there is no strong computable reduction of SD to RT1
2.

In fact, we will prove a somewhat stronger statement: instead of strong computable
reductions of SD to RT1

2, we will consider strong omniscient computable reductions.
Strong omniscient computable reducibility is a natural weakening of strong

computable reducibility, introduced by Monin and Patey [11], in which the transfor-
mation of instances is not required to be computable (though the transformation of
solutions still is).

Definition 7.2. Given two partial functions P, Q : 2ω → P(2ω), P is strongly
omnisciently computably reducible to Q, written P ≤soc Q, if for any x ∈ dom(P ),

(1) there is some x̃ such that x̃ ∈ dom(Q)
(2) and for any ỹ ∈ Q(x̃), there is some y ≤T ỹ such that y ∈ P (x).

Note that the only difference from strong computable reducibility is that here, x̃ is
not required to be computable from x.

It is clear that P ≤sc Q implies P ≤soc Q, but not always vice-versa, and hence
showing that SD ≰soc RT1

2 is a stronger result than showing that SD ≰sc RT1
2.
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7.2. Theorem 1.1 is not reducible to Seetapun’s theorem. We will now prove
that SD ≰soc RT1

2. In our proof, we will construct infinite sets A and G such that
A has lower density at least 1/2 and no infinite subset of G computes any infinite
subset of A.

To see why constructing such an A and G is sufficient to prove SD ≰soc RT1
2,

suppose for contradiction that such an A and G exist and that SD ≤soc RT1
2.

Viewing A as an instance of SD, we get a set B (i.e. an instance of RT1
2) such that

every infinite subset of B and B (i.e. every solution to RT1
2(B)) computes an infinite

subset of A (i.e. a solution to SD(A)). However, since G is infinite, at least one of
G ∩ B and G ∩ B is also infinite and does not compute any infinite subset of A.

In our construction of A and G, we will use a corollary of the Galvin-Prikry
theorem [7].
Theorem 7.3 (Galvin-Prikry theorem). For any Borel set X ⊆ P(N), there is
some infinite set B ⊆ N such that either all infinite subsets of B are in X or no
infinite subsets of B are in X .
Corollary 7.4. For any finite set k, Borel coloring c : P(N) → k and infinite set
B, there is some infinite set B′ ⊆ B such that all infinite subsets of B′ have the
same color.

Before proving the existence of A and G, we will try to motivate the construction
and explain how the Galvin-Prikry theorem will be used. Our goal is to construct
A and G such that for all Turing functionals Φ and all infinite subsets C ⊆ G,
Φ(C) is not an infinite subset of A. Suppose that instead of having to handle all
Turing functionals, we just had to handle a single Turing functional, Φ. By the
Galvin-Prikry theorem, there is some infinite set B0 such that either

(1) for all infinite subsets C ⊆ B0, Φ(C, 0)↓ = 1
(2) or for all infinite subsets C ⊆ B0, Φ(C, 0) ̸= 1 (i.e. Φ(C, 0) either diverges

or converges to something besides 1).
In the first case, we are done: we can take G = B0 and make sure 0 /∈ A (e.g. take
A = N \ {0}). The second case is more difficult. Taking G = B0 is not enough
because it does not give us much control over what is computed by infinite subsets
of G—it just ensures that if C is an infinite subset of G then 0 is not an element of
the set Φ(C).

However, requiring G to be a subset of B0 does seem like progress towards our
goal: if we could similarly ensure that for each n ∈ N and infinite set C ⊆ G, n is
not an element of Φ(C), then we would be done (because this would imply that for
each such C, Φ(C) is either not total or computes the empty set).

This suggests the following strategy: form a sequence of sets
B0 ⊇ B1 ⊇ B2 ⊇ . . .

where for each n, Bn is chosen using the Galvin-Prikry theorem so that either
(1) for all infinite subsets C ⊆ Bn, Φ(C, n)↓ = 1
(2) or for all infinite subsets C ⊆ B0, Φ(C, n) ̸= 1.

If the first case holds for some n, we can take G = Bn and forbid n from being
included in A. If the second case holds for every n, then we would like to take
G =

⋂
n∈N Bn since, as we noted above, this ensures that for each infinite C ⊆ G,

Φ(C) is either not total or computes the empty set. However, there is one problem
with this:

⋂
n∈N Bn could be finite, or even empty.
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To deal with this problem, we will construct G using a sequence of Mathias
conditions, at each step restricting the reservoir in a manner similar to what we
have just described, while also adding some elements to the stem to ensure G is
infinite. We will now give the details of the proof. Because of the necessity of using
Mathias conditions, of dealing with all Turing functionals (rather than just one),
and of ensuring that A has high density, our proof is somewhat more elaborate than
the sketch we have just given. However, the key ideas are the same.

Theorem 7.5. SD ≰soc RT1
2.

Proof. As explained above, we will show how to construct infinite sets A and G
such that A has lower density at least 1/2 and no infinite subset of G computes an
infinite subset of A. To construct G, we will build a sequence of Mathias conditions

(∅,N) = (s0, B0) ≥ (s1, B1) ≥ (s2, B2) ≥ . . .

and take G =
⋃

n sn. Along the way, we will forbid certain numbers from being
included in A and then take A to be the set of all non-forbidden numbers. For
convenience, we will ensure that each sn has size exactly n.

For each e, we must satisfy the following requirement:
Requirement e: for every infinite C ⊆ G, either there is some m
such that Φe(C, m)↓ = 1 and m /∈ A or for all but finitely many m,
Φe(C, m) ̸= 1.

To satisfy requirement e, we will take some action at each step n > e of the
construction. Roughly speaking, on step n we will try to satisfy the requirement for
all m in the interval [2e+n+3, 2e+n+4).

More precisely, to satisfy requirement e, we will ensure that for each step n > e
and each t ⊆ sn, either

(1) there is some m ∈ [2e+n+3, 2e+n+4) such that for all infinite sets C compat-
ible with (t, Bn), Φ(C, m)↓ = 1

(2) or for all m ∈ [2e+n+3, 2e+n+4) and infinite sets C compatible with (t, Bn),
Φ(C, m) ̸= 1.

If the first case holds, we will also pick one such m to forbid from A.
How to pick sn+1 and Bn+1. For each n, form sn+1 by picking an arbitrary
element of Bn to add to sn. Then pick Bn+1 as follows.

For each e < n + 1, t ⊆ sn+1 and m ∈ [2e+n+1+3, 2e+n+1+4), define a coloring
ce,t,m : P(N) → {0, 1} by

ce,t,m(B) =
{

1 if Φe(t ∪ B, m)↓ = 1
0 otherwise.

Next, define a coloring c on P(N) by setting c(B) to be the sequence
c(B) = ⟨ce,t,m(B) | e < n + 1, t ⊆ sn+1, m ∈ [2e+n+1+3, 2e+n+1+4)⟩.

Note that c has finite range and can easily be seen to be Borel. Thus by the corollary
to the Galvin-Prikry theorem, we can choose Bn+1 to be an infinite subset of Bn such
that c assigns the same value to all infinite subsets of Bn+1. It is straightforward to
check that Bn+1 has the properties desired.

Finally, recall that we must forbid some elements from A. For each e < n + 1
and t ⊆ sn+1, if there is any m in the interval [2e+n+1+3, 2e+n+1+4) such that ce,t,m

has constant value 1 on Bn+1 then pick the least such m and forbid it from A. Also
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recall that at the end of the construction, we take A to consist of all numbers not
forbidden from A.

This concludes the construction of G and A. All that remains now is to check
that they have the necessary properties.

The set G satisfies all requirements. Fix any e and we will show that requirement
e is satisfied. Suppose C is an infinite subset of G. We will show that either Φ(C)
is not a subset of A or it is not infinite.

For each n, define tn = C ∩ sn and note that since G ⊆ sn ∪ Bn, C is compatible
with (tn, Bn). We know that for each n > e, one of two possibilities holds:

(1) there is some m ∈ [2e+n+3, 2e+n+4) such that m is forbidden from A and
for all infinite sets D compatible with (tn, Bn), Φ(D, m)↓ = 1

(2) or for every m ∈ [2e+n+3, 2e+n+4) and every infinite set D compatible with
(tn, Bn), Φ(D, m) ̸= 1.

On the one hand, if the first possibility holds for any n then there is some m
such that Φ(C, m)↓ = 1 and m is forbidden from A, which implies that Φ(C) is not
a subset of A.

On the other hand, if the second possibility always holds then for every n > e
and every m in the interval [2e+n+3, 2e+n+4), Φ(C, m) ̸= 1. Since the union of these
intervals consists of all numbers greater than or equal to 22e+4, this shows that
either Φ(C) is not total or it only contains numbers less than 22e+4 and thus is not
infinite.

The set A has high density. For each e, let Ae denote the set of numbers
forbidden from A on behalf of requirement e. Note that A =

⋃
e Ae. We will show

that each Ae never has density greater than 1/2e+2 and thus that their union never
has density more than ∑

e∈N

1
2e+2 = 1

2 .

This implies that A never has density more than 1/2 and thus that A is 1/2-dense.
Note, by the way, that when we say that each Ae never has density greater than
1/2e+2, we mean that for each n, Ae is at most 1/2e+2-dense at n (in the sense of
Section 2.2); it is not good enough for it to just have upper density at most 1/2e+2.

So fix e and we will argue that Ae never has density more than 1/2e+2. First
consider a single interval of the form [2e+n+3, 2e+n+4) for n > e. The only time
numbers from this interval will be added to Ae is on step n of the construction and
on that step, at most one number will be added to Ae per subset of sn. Since sn has
size exactly n, this means at most 2n such numbers will be added. Thus we have

|Ae ∩ [2e+n+3, 2e+n+4)| ≤ 2n = 1
2e+3 · |[2e+n+3, 2e+n+4)|.

In other words, in the interval [2e+n+3, 2e+n+4), Ae has density at most 1/2e+3.
From this fact it can easily be shown that at each power of 2, Ae has density at

most 1/2e+3, i.e. for each m > 0,

|Ae ∩ [2m − 1]| ≤ 2m

2e+3 .

It remains to check that the density of Ae is high enough in-between powers of 2.
But this follows easily from what we have already established. If 2m ≤ k < 2m+1



36 MATTHEW HARRISON-TRAINOR, LU LIU, AND PATRICK LUTZ

then we have

|Ae ∩ [k]| ≤ |Ae ∩ [2m+1 − 1]|

≤ 2m+1

2e+3 = 2m

2e+2 ≤ k + 1
2e+2

and thus Ae is at most 1/2e+2-dense at k, as promised. □

The proof of Theorem 7.5 actually yields a somewhat stronger result. Let RT1
<∞

denote the problem in which an instance is a finite partition A1, . . . , An of N and
a solution is an infinite set B which is a subset of some Ai. Roughly speaking,
RT1

<∞ is the problem corresponding to Corollary 2.2 of Seetapun’s theorem and
thus the corollary below shows that there is no direct proof of our main theorem
from Corollary 2.2 in the same sense that the theorem above showed there is no
direct proof of our main theorem from Seetapun’s theorem.

Corollary 7.6. SD ≰soc RT1
<∞.

Proof. Let A and G be as in the proof of Theorem 7.5 and suppose for contradiction
that SD ≤soc RT1

<∞. Then, thinking of A as an instance of SD, we get a partition
B1, . . . , Bn of N such that for any Bi and any infinite subset C ⊆ Bi, C computes
an infinite subset of A. However, since G is infinite, there must be some Bi such
that G ∩ Bi is infinite. Since G ∩ Bi is an infinite subset of G, it does not compute
any infinite subset of A, which gives a contradiction. □
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