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Abstract

Given a countable mathematical structure, its Scott sentence is a sentence of the
infinitary logic Lω1ω that characterizes it among all countable structures. We can
measure the complexity of a structure by the least complexity of a Scott sentence
for that structure. It is known that there can be a difference between the least
complexity of a Scott sentence and the least complexity of a computable Scott
sentence; for example, Alvir, Knight, and McCoy showed that there is a computable
structure with a Π2 Scott sentence but no computable Π2 Scott sentence. It is well
known that a structure with a Π2 Scott sentence must have a computable Π4 Scott
sentence. We show that this is best possible: there is a computable structure with a
Π2 Scott sentence but no computable Σ4 Scott sentence. We also show that there is
no reasonable characterization of the computable structures with a computable Πn

Scott sentence by showing that the index set of such structures is Π1
1-m-complete.

1 Introduction

Let A be a countable mathematical structure, such a countable graph, group, or ring.
Suppose that we want to characterize A by writing down a sentence, or theory, which
characterizes A up to isomorphism. If we work in elementary first-order logic then,
as a consequence of compactness, we cannot do this for most countable structures A.
However, suppose we strengthen our logic to the logic Lω1ω which allows countably infinite
conjunctions and disjunctions. Scott [Sco65] showed that for any countable structure A
there is a sentence φ of Lω1ω that characterizes A up to isomorphism among countable
structures, i.e., for all countable B,

B ⊧ φ⇐⇒ A ≅ B.

We call such a sentence a Scott sentence for A. This fact implies, for example, that
while isomorphism is analytic-complete if we fix a particular L-structure A then the set
{B ∈Mod(L) ∶ A ≅ B} is actually Borel.

The standard proof that every countable structure has a Scott sentence uses through
the back-and-forth relations. First, one shows that they must stabilize at some countable
ordinal, and then from this one can extract a Scott sentence, called the canonical Scott
sentence. This Scott analysis of a structure has played an important role in the study of
Vaught’s conjecture, e.g. in Morley’s theorem [Mor70] that the number of non-isomorphic
countable models of a theory is either at most ℵ1 or is exactly 2ℵ0 .

For each particular structure A, there is some ordinal α at which the back-and-forth
relations stabilize. This gives a way of assigning an ordinal rank to each countable
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structure giving a measure of that structure’s complexity. There are numerous non-
equivalent definitions of Scott rank depending on the particular back-and-forth relations
one chooses or exactly what one means by stabilizing. Within the last ten years the most
commonly used has been the (unparametrized) Scott rank due to Montalbán [Mon15]
which measures the least complexity of a Scott sentence for A, namely, the Scott rank
is the least α such that A has a Πα+1 Scott sentence. The following theorem shows that
this definition is particularly robust.

Theorem 1.1 (Montalbán [Mon15]). Let A be a countable structure, and α a countable
ordinal. The following are equivalent:

(1) A has a Πα+1 Scott sentence.

(2) Every automorphism orbit in A is Σα-definable.

(3) The set {B ∈Mod(L) ∶ B ≅ A} of isomorphic copies of A is Π0
α+1.

(4) A is (boldface) ∆0
α-categorical.

In computable structure theory, there has been a long history of studying the Scott
analysis of computable structures, or more generally how the Scott analysis of a struc-
ture relates computationally to the structure. Nadel [Nad74] showed that every com-
putable structure A has Scott rank at most ωA1 + 1. Harrison [Har68], Millar and
Knight [KM10] (building on work of Makkai [Mak81]), Harrison-Trainor, Igusa, and
Knight [HTIK18], Harrison-Trainor [HT18a], and Alvir, Greenberg, Harrison-Trainor,
and Turetsky [AGHTT21] constructed various examples of computable structures with
non-computable Scott ranks.

In particular, if A is computable and has computable Scott rank < ωCK
1 , then the

canonical Scott sentence constructed by Scott will also be a computable sentence. How-
ever this construction is not optimal: Alvir, Knight, and McCoy [AKM20] showed that
there is a computable structure with a Π2 Scott sentence but with no computable Π2

Scott sentence. It is well-known (see, e.g., Lemma VI.14 of [Mon]) that if a computable
structure A has a Πα Scott sentence, with α computable, then it has a computable Π2α

Scott sentence. This is obtained by noting that if A has a Πα Scott sentence φ, then A
has the property that for countable structure B,

A ≤α B⇐⇒ A ≅ B.

Writing out the definition of the back-and-forth relations, we can see that there is a
computable Π2α sentence ψ such that

B ⊧ ψ⇐⇒ A ≤α B.

This ψ is a computable Π2α Scott sentence.
In this paper, we restrict to the case of structures with Π2 Scott sentences, which

are called by Montalbán [Mon17] the ∃-atomic structures because every automorphism
orbit is isolated by a (finitary) existential formula. Even in this seemingly simple class of
structures we find that there is significant complexity. As described above, such structures
have a computable Π4 Scott sentence; we improve the result of [AKM20] to show that
this upper bound is optimal.
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Theorem 1.2. There is a computable structure with a Π2 Scott sentence but no com-
putable Σ4 Scott sentence.

By taking Marker extensions / jump inversions, one can also obtain that for any n there is
a computable structure with a Πn Scott sentence but no computable Σn+2 Scott sentence.
(One can also extend this to non-limit ordinals though we will remain at finite levels since
all of the complexity appears there; see Corollary 5.8.) We leave open the question of
improving this to an example with no Σ2n Scott sentence.

In the second part of this paper, we consider the effective Scott rank, i.e., the least α
such that a given structure A has a computable Πα+1 Scott sentence (when a computable
Scott sentence exists). Whether or not this effective Scott rank is as robust as the (non-
effective) Scott rank was an open problem from [AKM20]. It is known that there are a few
conditions equivalent to having a formally Σα Scott family; a “boldface” version of this
result led to many of the equivalences of Theorem 1.1, so it was not unreasonable to expect
similar robustness in the effective setting. In fact, it was known that for a computable
structure, having having a formally Σα Scott family implies that the structure has a
computable Πα+1 Scott sentence. Whether the reverse implication held was left open.

In Section 4, we show that the effective Scott rank is not robust and that there is
no good way to characterize when a structure has a computable Πn Scott sentence, even
when the structure is computable.

Theorem 1.3. With (Ai)i∈ω an effective list of (possibly partial) structures in a suffi-
ciently rich language, the set

{i ∣ Ai has a computable Π2 Scott sentence}

is Π1
1-m-complete.

By a sufficiently rich language we mean any language which is universal, e.g., those
including at least a binary relation symbol. This result was also obtained independently
and around the same time by Knight, Lange, and McCoy [KLMC].

Again by taking Marker extensions / jump inversions, one can replace Π2 with Πn,
or through the hyperarithmetic hierarchy, as in Corollary 5.9. One can obtain from this
theorem several interesting corollaries which we give in Section 5, for example:

Corollary 1.4. There is a computable structure A with a Π2 Scott sentence but no
computable Π2 Scott sentence, but with a computable Π2 sentence φ such that, for all
hyperarithmetic B,

B ⊧ φ ⇐⇒ A ≅ B.

We leave open several questions. Though there are further generalizations that one
can ask (e.g., to infinite ordinals), we see the two mains questions to be the following.

Question 1.5. Is there, for every n, a computable structure A with a Πn Scott sentence
but with no computable Σ2n Scott sentence?

Question 1.6. Is the set of computable structures with a Π2 Scott sentence and a com-
putable Π3 Scott sentence Π1

1-m-complete?

For Question 1.5, recall that the upper bound of Π2n was obtained as follows. Given
A with a Πn Scott sentence, A ≤n B Ô⇒ A ≅ B. We find a Π2n sentence ψ such that
B ⊧ ψ⇐⇒ A ≤n B. Chen, Gonzalez, and Harrison-Trainor [CGHT] have recently showed
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that the set of pairs {(A,B) ∶ A ≤n B} is Π0
2n-complete. This means that there is no

way of defining the set {B ∶ A ≤n B} in a way that is both better than Π2n and which is
“schematic” in A. On the other hand, they showed that the set {B ∶ A ≤n B} is Π0

n+2.
This relies on the fact that every Πn-type in A is Πn-definable, and so is a non-effective
argument. The case of Question 1.5 solved in this paper, n = 2, satisfies n + 2 = 2n = 4
and the distinction does not yet show up at this level. Thus one might expect Question
1.5 for n ≥ 3 to involve some new insight.

2 A simplifying remark

Given a structure A, we can consider the structure A ⋅ω which consists of an equivalence
relation E with infinitely many equivalence classes, on each of which is a copy of A. Then:

(1) if A has a (computable) Πα Scott sentence, then A ⋅ω will have a (computable) Πα

Scott sentence, and

(2) if A has no (computable) Πα Scott sentence, then A ⋅ ω will have no (computable)
Σα+1 Scott sentence.

(1) is straightforward, and (2) uses the fact that B has a Σα+1 if and only if there is b̄ ∈ B
such that (B, b̄) has a Πα Scott sentence. (This fact was first stated by Montalbán in
[Mon15] and proved in [Mon17, AGHTT21].)

Given the above facts, we do not need to consider Σ Scott sentences, as e.g., the fact
that there is a computable structure with a Π2 Scott sentence but no computable Π2 Scott
sentence yields that there is a structure with a Π2 Scott sentence but no computable Σ3

Scott sentence. When we prove Theorem 1.2 we will prove that there is a computable
structure with a Π2 Scott sentence but no computable Π3 Scott sentence; it will follow
that there is a computable structure with a Π2 Scott sentence but no computable Σ4

Scott sentence.

3 A computable structure with a Π2 Scott sentence

but no computable Π3 Scott sentence

As a warmup we sketch a new construction of a computable structure with a Π2 Scott
sentence but no computable Π2 Scott sentence. Theorems 1.2 and 1.3 will build on this
technique and so we begin by presenting it in its simplest form.

Theorem 3.1 (Alvir, Knight, and McCoy [AKM20]). There is a computable structure
with a Π2 Scott sentence but with no computable Π2 Scott sentence.

Proof sketch. We list all of the computable Π2 sentences as (θe)e∈ω where

θe =⩕
i∈ω

∀x̄e,i φe,i(x̄e,i)

where the φe,i(x̄e,i) are computable Σ1 formulas uniformly in e, i and the arities of each
of the x̄e,i are also computable in the indices.

We can take A to be the “bouquet graph” G1(F) of a collection F of subsets of ω.
A will be ∃-atomic and hence have a Π2 Scott sentence. Recall that by Lemma 8.17 of
[Mon21] the structure G1(F) is ∃-atomic exactly when F is discrete.
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The structure A will consist of a number of elements each of which is given various
c.e. labels. We can think of A as consisting of the elements which are the centers of the
flowers, labeled by labels ℓn; putting a label ℓn on a flower means to add a loop of length
n + 3 to the flower.

We divide our label into sort labels (ue)e∈ω such that only exactly one label holds of
each element, dividing the domain into the disjoint sets Ue = {x ∈ A ∶ ue(x)}; we think of
these as different sorts of the structure, and call the elements of Ue the eth sort. Then we
have two other sets of labels (ℓi)i∈ω and (ℓ†i)i∈ω which we call simply labels. For example,
we may use loops of length 2e + 3 for the labels ue, and of length 4i + 4 for the ℓi, and
4i + 6 for the labels ℓ†i .

We use the eth sort to diagonalize against θe. We do this by simultaneously building
a structure Be such that if A ⊧ θe then Be ⊧ θe and A ≇ B. Be will differ from A only on
the eth sort Ue. We build A by finite approximations A = ⋃sAs. Be will also be built by
approximations Be = ⋃sBe,s with each Be,s ≅ As.

When we describe the construction of A = ⋃As, we will describe the construction of
the eth sort. The constructions for the different sorts should be thought of as happening
simultaneously.

During the construction certain stages will be e-expansionary stages where we get
evidence that As ⊧ θe. We use k = k[s] to keep track of the number of expansionary
stages and n = n[s] = k[s] + 1 to keep track of the number of flowers in As. At stage s,
As will have elements a1, . . . , an and Be,s will have elements b1, . . . , bn−1, c.

Construction.

Stage 0. We begin with n = n[0] = 1 and k = k[0] = 0. A0 consists of a single element a1,
and Be,0 of a single element c. We give a1 and c the same label ℓ0.

Stage s + 1. Suppose that we have constructed As and Be,s with k = k[s] and n = n[s] =
k + 1. The elements of As will be a1, . . . , an. For each i ≤ n, ai will have the labels ℓj for

j ≤ i; and for i < n, ai will have the label ℓ†i . The elements of Be,s will be b1, . . . , bn−1, c.
For each i ≤ n − 1, bi will have the labels ℓj for j ≤ i and ℓ

†
i . The element c will have the

labels ℓj for j ≤ n.
Let sk be the last expansionary stage. Check whether

As ⊧⋀
i≤k
∀x̄e,i ∈ Ask φe,i(x̄e,i).

If not, then this is not an expansionary stage. Make no changes to A, Be, k[s+ 1] = k[s],
or n[s + 1] = n[s]. If so then this stage is an expansionary stage. In As+1 put the label
ℓ†i on an, and add a new element an+1 to with labels ℓi for i ≤ n + 1. In Be,s+1 add a new

element bn with labels ℓi for i ≤ n and ℓ†n. Put the label ℓn+1 on c. Set k[s + 1] = k[s] + 1
and n[s + 1] = n[s] + 1.

End construction.

We will not give the full details of the verification. However, the general idea of the
argument is as follows. We argue that there are infinitely many expansionary stages if
and only if A ⊧ θe. On the one hand, if there are infinitely many expansionary stages s
then for every k there is s such that

As ⊧⋀
i≤k
∀x̄e,i ∈ Ask φe,i(x̄e,i).
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and so as φe,i is Σ1 we have A ⊧ θe. On the other hand, if there are only finitely many
expansionary stages, then there is i and x̄ such that for all s we have

As ⊧ ¬φe,i(x̄).

Then A ⊧ ¬θe.
If there are infinitely many expansionary stages, then Be ≇ A as the element c ∈ Be

has infinitely many labels ℓi for each i, but A has no such element. We can also argue
that Be,s ⊧ θn; the tricky part is to check tuples x̄e,i containing c. Here we use the fact
that at the k + 1st expansionary stage s > sk we have

As ⊧⋀
i≤k
∀x̄e,i ∈ Ask φe,i(x̄e,i)

and that that the isomorphism As ≅ Be,s extends the isomorphism Ask ≅ Be,sk .
Finally, we need to check that A is always ∃-atomic and hence always has a Π2 Scott

sentence. Any element with a label ℓ†i is isolated by that label in its sort; and in each
sort, there is at most one element without such a label (and only if there were finitely
many expansionary stages in that sort), and that element is isolated by a label ℓi which
no other element of the sort has.

The construction of a computable structure with a Π2 Scott sentence but no com-
putable Π3 Scott sentence is similar, but the guessing as to whether a Π3 sentence is true
in A is more involved. Otherwise, the general ideas in the argument remain the same.
Recall that by proving that such a structure exists, we have also shown that there is a
computable structure with a Π2 Scott sentence but no computable Σ4 Scott sentence.

Theorem 1.2. There is a computable structure with a Π2 Scott sentence but no com-
putable Σ4 Scott sentence.

Proof. We list all of the computable Π3 sentences as (θe)e∈ω where

θe =⩕
i∈ω

∀x̄e,i ⩔
j∈ω

∃ȳe,i,j φe,i,j(x̄e,i, ȳe,i,j)

where the φe,i,j(x̄e,i, ȳe,i,j) are computable Π1 formulas uniformly in e, i, j and the arities
of each of the x̄e,i and ȳe,i,j are also computable in the indices.

We will build a structure A which is ∃-atomic. The structure A consist of a number
of elements each of which is given various c.e. labels. Formally, A can be taken to be
the “bouquet graph” G1(F) of a collection F of subsets of ω—see Section VIII of [Mon].
As we construct A, we think of ourselves as giving the centers of various “flower graphs”
and when we add labels this corresponds to adding loops to the flower graphs. Thus in
a computable construction of A we can add labels to elements in a c.e. way.

We introduce two sets of distinguished labels. First, we have sort labels (ue)e∈ω such
that only exactly one label holds of each element, dividing the domain into the disjoint
sets Ue = {x ∈ A ∶ ue(x)}; we think of these as different sorts of the structure, and call the
elements of Ue the eth sort. The second set of labels (ℓi)i∈ω we will just call labels, and
they will be the most important labels for the construction.

Within Ue we will diagonalize against θe. We will do this by constructing another
countable structure Be such that if A ⊧ θe then Be ⊧ θe and A ≇ Be. Be will be the same as
A except for the eth sort Ue on which they will differ. At each stage s we will have a finite
approximation As to A, with A = ⋃sAs. Be will also be built by finite approximations
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Be = ⋃sBe,s with each Be,s ≅ As. Thus one can think of A and Be as direct limits of direct
systems of the same finite structures but with different embeddings

A0 → A1 → A2 → ⋯.

At each stage s, each element of As will satisfy some finite set of labels (in fact two, a
domain label and another label) that is satisfied by no other elements except duplicates
of itself which satisfy exactly the same labels. Thus the isomorphism As → Be,s will be
easily and uniquely determined up to mapping duplicates.

For each e, we have requirements Re
i,b̄

for each i ∈ ω and b̄ ∈ Be of the right arity; to

make sense of this, we must fix ahead of time the domain of Be even though these elements
will only be added to Be slowly over time. The elements b̄ may be in any sort of Be, not
just the eth. Each requirement will have a stage t = t(Re

i,b̄
) when it began working; it will

only start working at some stage when b̄ ∈ Be,t. At this stage, there will be an element ā of
At which corresponds to b̄ ∈ Be,t at this stage t via the isomorphism At ≅ Be,t. The require-
ment will be met if wheneverA ⊧⩔j ∃ȳe,i,j φe,i,j(ā, ȳe,i,j) then Be ⊧⩔j ∃ȳe,i,j φe,i,j(b̄, ȳe,i,j);
equivalently, if Be ⊧ ⩕j ∀ȳe,i,j ¬φe,i,j(b̄, ȳe,i,j) then A ⊧ ⩕j ∀ȳe,i,j ¬φe,i,j(ā, ȳe,i,j). One can
think of the requirements for a given e as splitting up, into the different possible out-
ermost witnesses, the supreme requirement that if A ⊧ θe then Be ⊧ θe (or equivalently
if B ⊧ ¬θe then A ⊧ ¬θe). The requirement will require attention when we believe that
Be ⊧ ∀ȳe,i,j ¬φe,i,j(b̄, ȳe,i,j). This is Π0

2 and so if this is the case, this requirement will
require attention infinitely often. Meeting a single requirement in this infinitary manner
will be enough, as for b̄ ∈ Be we have that if Be ⊧ ∀ȳe,i,j ¬φe,i,j(b̄, ȳe,i,j) then Be ⊭ θe and
the requirement will have the outcome that Be ≅ A so that A ⊭ θe. Thus even though the
injury may be infinite, any guessing is simply finitary since if a requirement is injured
infinitely often, then it does not need to be satisfied as a higher priority requirement will
be satisfied. In addition to the value t = t(Re

i,b̄
), each requirement will also have a value

k = k(Re
i,b̄
) which denotes the number of times that it has previously received attention.

The general idea of the construction is that, over time, we work to build Be taking,
at each stage, a step towards making Be ≇ A. In particular, there will be some special
element of the eth sort of Be which we will work to make different from each element of
A. However, whenever we see evidence that Be ⊧ ¬θe, we will undo our previous work to
make Be different from A; since this makes Be look similar to A, we can at the same time
transfer our evidence that Be ⊧ ¬θe to evidence that A ⊧ ¬θe. If in fact Be ⊧ ¬θe, then we
will continually find evidence of this, continually rolling back our construction, so that
actually Be never becomes different from A. Since A ≅ Be, A ⊧ ¬θe. On the other hand,
if Be ⊧ θe, then we will have A ≇ Be so that θe cannot be a Scott sentence for A.

We describe the construction of A and the Be stage-by-stage. We will describe for a
fixed e the construction of the eth sort of A together with the eth sort of Be. However all
of these constructions for the different sorts should be thought of as happening simulta-
neously. All of the other sorts of Be will be exactly the same as A, so when constructing
the eth sort of A we need only discuss Be and not any other Bm. In the construction that
follows, without explicitly saying so we put the label ue on all elements that we add to A
and Be so that they are in Ue. We sometimes suppress e and the label ue in what follows,
e.g., we write for θ = θe

θ =⩕
i∈ω

∀x̄i ⩔
j∈ω

∃ȳi,j φi,j(x̄i, ȳi,j).

However, when we are guessing at whether some formula is true in A or Be, we must
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allow the quantifiers to quantify over all of the sorts; we will remind the reader of this
later.

We begin at stage 0 with a single element a0 with no labels (other than ue, which we
no longer mention). At each stage s we will have a number n = n[s]. There will be n
active elements designated a1[s], . . . , an[s]. Each active element will have a label that
no other active element has. The rest of the elements of As will be duplicate elements
and will have exactly the same labels as one of the active elements. When we declare a
(formerly active) element to be a duplicate of ai, we will give it exactly the same labels
as ai, and whenever ai gets a new label, the element will as well; thus if later ai becomes
a duplicate of some other aj, then any duplicates of ai will become duplicates of aj.
When an active element ai is declared to be a duplicate of another, becoming inactive, it
gives up the designation ai. Recall that Be,s will be isomorphic to As; however, Be will
follow different embeddings from one stage to the next. The active elements of Be,s will
be b1[s], . . . , bn−1[s], c. The isomorphism As → Be,s will map ai ↦ bi and an ↦ c. (The
duplicate elements will also be mapped correspondingly.)

To illustrate the idea of the construction, we will describe a generic stage of the
construction when no requirement requires attention. Suppose that we have defined As

and Be,s with n = n[s]. Define As+1 as follows. Add a new element an+1, and give an+1
all of the labels that an had in As. Give an and an+1 each a new label unique only to it.
For Be,s+1, add a new element bn and let bn have the same labels as an, and let c have the
same labels as an+1. If we do this at every stage, then A will have elements a1, a2, . . . and
Be will have corresponding elements b1, b2, . . . with the same labels, but also an additional
element c which does not correspond to any element of A. Thus A ≇ Be. However we
have not ensured that if A ⊧ θe then Be ⊧ θe.

To ensure that if A ⊧ θe then Be ⊧ θe, our strategy (for some i and b̄) is to wait for
stages at which we think that Be,s ⊧ ⩕j ∀ȳi,j ¬φ

e
i,j(b̄, ȳi,j). This is evidence that Be ⊭ θe.

At stage s+ 1 instead of taking our usual action towards making Be different from A, we
instead revert some of our previous actions to make Be look like A. If Be ⊭ θe then we
will get more and more evidence of this, and we will instead have Be ≅ A and thus A ⊭ θe.
How we do this is the heart of the construction.

Construction.

Stage 0. We begin with n = n[0] = 1 and A0 consisting of a single element a1, and Be,0 of
a single element c. We give a1 a label and give c the same label.

Stage s + 1. Suppose that we have constructed As and Be,s with n = n[s] and active
elements a1, . . . , an. We first check whether any requirement Re

i,b̄
requires attention.

Given Re
i,b̄
, let t = t(Re

i,b̄
) be the corresponding stage and let k = k(Re

i,b̄
). Then we say

that Re
i,b̄

requires attention if

Be,s ⊧ ⋀
j≤k

∀ȳi,j ∈ Be,t+k ¬φe
i,j(b̄, ȳi,j).

Note that this quantifier is not restricted to the eth sort of Be,t+k but is over the elements
of all sorts.

If no requirement requires attention, then define As+1 as follows. Add a new element
an+1, and give an+1 all of the labels that an had in As. Give each of an and an+1 a new
label unique only to it. Any duplicates of an receive the same labels that an did. For
Be,s+1, add a new element bn and let bn have the same labels as an, and let c have the same
labels as an+1. There may be elements of Be,s which look like duplicates of c; these are

8



the elements which correspond to the duplicates of an. We call these pending duplicates
and we now give them the same labels as bn, making them duplicates of bn. Let Re

i,b̄

be the next highest priority requirement; we may assume, by appropriately listing the
requirements, that b̄ ∈ Be,s+1. We initialize Re

i,b̄
by setting t(Re

i,b̄
) = s + 1 and k(Re

i,b̄
) = 0.

Otherwise, let Re
i,b̄

be the highest priority requirement which requires attention, and

we will act on the requirement as follows. Let t = t(Re
i,b̄
) be the corresponding stage,

and n∗ = n[t] the corresponding value of n. Let n[s + 1] = n[t] = n∗. In As+1, declare
an∗+1[s], . . . , an[s] to be duplicates of an∗ ; they give up these designations an∗+1, . . . , an.
Moreover, any duplicates of these elements also become duplicates of an∗ . Add labels
to these elements and an∗ so that they have the same labels, i.e., for each label of one
of these elements, give it to each other element. So in As+1 we have active elements
a1[s + 1], . . . , an∗[s + 1] together with duplicates of these elements. In Be,s+1 add each
label of any of bn∗ , . . . , bn−1, c to each of the others. In Be,s+1 there are elements which
correspond to the duplicates of an[s + 1]. One should think of these not as duplicates of
c, but as duplicates of an element bn which does not yet exist. We call these elements
pending duplicates. Then put bi[s + 1] ∶= bi[s] for i < n∗. Thus, at stage s + 1, the
correspondence between As+1 and Be,s+1 is ai ↦ bi for i < n∗ and an∗ ↦ c (together with
the duplicates mapping to corresponding duplicates, with duplicates of an mapping to
pending duplicates). Each lower priority e-requirement is injured, and increment k(Re

i,ā)
by 1.

End construction.

We must now verify that the construction works. Standard arguments show that for
each e, there are two possibilities. First, it might be that some requirement Re

i,b̄
is, after

some point, never injured and acts infinitely often. In this case, let t = t(Re
i,b̄
) and let

n = n[t]. Since no higher priority requirement acts, the elements a1, . . . , an never become
duplicates of any other elements, and every time Re

i,b̄
acts every other element which is

not already becomes a duplicate of one of these elements. Thus the eth sort of A consists
of n elements a1, . . . , an together with duplicates of them. We write a1[∞], . . . , an[∞] for
these elements.

The other possibility is that each requirement acts only finitely many times. If, after
some stage s with n = n[s], no requirement with t(Re

i,b̄
) < s ever acts, then after this

stage a1, . . . , an never become duplicates. In the limit, we build infinitely many elements
a1[∞], a2[∞], a3[∞], . . .. (Note that the first time we introduce some ai, this element
may become a duplicate; but there will be some point after which this stops happening.)
All of the other elements will be duplicates of these.

Lemma 3.2. A has a Π2 Scott sentence.

Proof. Recall that by Lemma 8.17 of [Mon21] the structure G1(F) is ∃-atomic exactly
when F is discrete. Therefore it suffices to show that for each element of A, there is
a finite set of labels on that element such that no other element has the same labels.
Each element is in only one sort Ue, so it suffices to only compare elements within the
same sort. Within each sort we will argue that each element has a label, that we call the
distinguishing label, which it has and no other element has other than duplicates of that
element.

Each element ai[∞], when it is created, is given a label which is never given to
a1[∞], . . . , ai−1[∞]. If ai+1[∞] exists then, when it is created, ai[∞] is given a label that
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is never given to ai+1[∞]; and no aj[∞], j > i + 1, is ever given that label. The other
elements of A are duplicates of the ai[∞] and hence share the same distinguishing label
as the element they duplicate.

Lemma 3.3. Fix i and b̄. Suppose that there is a stage s after which Re
i,b̄

is never injured.

Let t = t(Re
i,b̄
). Suppose that

Be ⊧⩕
j

∀ȳi,j ¬φi,j(b̄, ȳi,j).

Then there are infinitely many stages at which Re
i,b̄

requires attention.

Proof. Given s0 = s, we will argue that there are infinitely many stages su at which Re
i,b̄

requires attention. Given su, we have that

Be ⊧⩕
j

∀ȳi,j ¬φi,j(b̄, ȳi,j).

and so there must be some stage su+1 > su such that

Be,su+1 ⊧ ⋀
j≤u+1

∀ȳi,j ∈ Be,su ¬φi,j(b̄, ȳi,j).

At this stage su+1, Re
i,b̄

requires attention. (Since Re
i,b̄

is not injured, no higher priority

requirement can require attention at this stage.)

Lemma 3.4. Suppose that Be ⊧ ¬θe. Then A ≅ Be and A ⊧ ¬θe

Proof. Then there is i and b̄ ∈ Be such that

Be ⊧⩕
j

∀ȳi,j ¬φi,j(b̄, ȳi,j).

By the previous lemma, for any such i and b̄, if there is some stage after which it is
not injured, the requirement Re

i,b̄
will require attention infinitely many times. Thus in

particular there is some highest priority requirement Re
i,b̄

which requires attention infinite

often.
Let t = t(Re

i,b̄
). Let n = n[t]. Let s0 be the stage at which Re

i,b̄
is initiated, and let

s1, s2, . . . be the stages at which it requires attention. At each of these stages, Asi consists
of a1, . . . , ae and duplicates, and Be,si consists of b1, . . . , bn−1, c and duplicates; thus the
isomorphisms a1, . . . , ae ↦ b1, . . . , bn−1, c at these stages extend to an isomorphism A ≅ Be.
(For this, we also need to know that corresponding elements have the same number of
duplicates; this is maintained at each stage of the construction.) Thus A ≅ Be, and since
Be ⊧ ¬θe we have A ⊧ ¬θe.

As a result, if A ⊧ θe then Be ⊧ θe. Now we show that if Be ⊧ θe then A ≇ Be.

Lemma 3.5. Suppose that Be ⊧ θe. Then A ≇ Be.

Proof. We will argue that each requirement, after it is initialized and unless it is injured,
requires attention only finitely many times. We argue by induction; given a requirement
Re

i,b̄
, suppose that the higher priority requirements only require attention finitely many
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times. Then there is a stage s0 after which Re
i,b̄

is never injured. Let t = t(Re
i,b̄
). Whenever

Re
i,b̄

acts for the kth time at stage s + 1, it is because

Be,s ⊧ ⋀
j≤k

∀ȳi,j ∈ Be,t+k ¬φi,j(b̄, ȳi,j).

Then ifRe
i,b̄

requires attention infinitely many times, we see that Be ⊧⩕j ∀ȳi,j ¬φi,j(b̄, ȳi,j)

and so Be ⊧ ¬θe, contradicting the hypotheses of this lemma. Thus each requirement
requires attention only finitely many times.

In particular, there are infinitely many “true expansionary stages” and A ≇ Be because
the element c in Be does not correspond to any element of A.

We have proved that if A ⊧ θe then Be ⊧ θe and A ≇ Be. Thus θe cannot be a Scott
sentence for A. It follows that, since the θe list all computable Π3 sentences, A cannot
have a computable Scott sentence.

4 There is no characterization of the structures with

a computable Π2 Scott sentence

Given that we know that some computable structures with Π2 Scott sentences have no
computable Π2 Scott sentences (or even computable Π3 Scott sentences), we might like
to know how to decide whether or not some particular structure with a computable Π2

Scott sentence has a computable Π2 Scott sentence.
Having a Π2 Scott sentence is equivalent to being ∃-atomic, which means that it has

a Scott family of existential formulas. This is equivalent (see [Mon17]) to the following
statement: for each tuple ā ∈ A there is an existential sentence φ(x̄) such that for any
universal sentence ψ(x̄) with A ⊧ ψ(x̄), A ⊧ ∀x̄ φ(x̄)→ ψ(x̄). Thus it is not too difficult
to tell whether a structure has a Π2 Scott sentence: Π0

4 if one counts the quantifiers
(though we leave it as an open question to determine if this is best possible).

Since it is not too hard to decide whether a computable structure A has a Π2 Scott
sentence, we might as well assume that our given structure A does. One possible attempt
to characterize whether A has a computable Π2 Scott sentence is to ask whether it is
effectively ∃-atomic, that is, whether it has a c.e. Scott family of existential formulas.
Alvir, Knight, and McCoy [AKMC20] proved that if a computable structure A has a c.e.
Scott family of existential formulas, then it has a computable Π2 Scott sentence. However
the converse fails (and while our Theorem 1.3 gives a counterexample it is not too hard
to construct a one directly).

In this section we will prove that there is no characterization of the structures with a
computable Π2 Scott sentence. We will use the technique of index set complexity which
has been used to great effect in computable structure theory, as suggested in [GK02], e.g.,
to show that there is no characterization of when a computable structure has a decidable
or automatic presentation [HT18b, BHTK+19]. Given a listing of all (partial) computable
structures in a given langauge, we consider the set of (indices for) structures with the
particular property we are interested in. In this case, we consider the set

{i ∣ Ai has a computable Π2 Scott sentence}.

This set is naively Π1
1, because Ai has a computable Π2 Scott sentence if and only if (a)

A has a Π2 Scott sentence and (b) there is a computable Π2 sentence φ such that for
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all countable structures B, B ⊧ φ if and only if A ≡2 B. Note that give (a), if A ≡2 B
then A ≅ B. While (a) is Π0

4, (b) is Π1
1. If there was a better characterization of when

a structure had a computable Scott sentence, then this index set would be simpler than
Π1

1, e.g., hyperarithmetic. However we show that the set is Π1
1-m-complete, and hence

there is no simpler characterization.

Theorem 1.3. With (Ai)i∈ω an effective list of (possibly partial) structures in a suffi-
ciently rich language, the set

{i ∣ Ai has a computable Π2 Scott sentence}

is Π1
1-m-complete.

Proof. By general results on the universality of certain languages up to effective bi-
interpretability, we can construct examples in whatever language we wish to. We ex-
plained above why the class is Π1

1, and it remains to show that it is Π1
1-m-complete. Let

T ⊆ ω<ω be a tree. We will define a computable structure A = AT which is ∃-atomic and
hence has a Π2 Scott sentence, and such that A has a computable Π2 Scott sentence if
and only if A is well-founded.

We list all of the computable Π2 sentences as (θe)e∈ω where

θe =⩕
i∈ω

∀x̄e,iφe,i(x̄e,i)

where the φe,i(x̄e,i) are computable Σ1 formulas uniformly in e, i and the arities of each
of the x̄e,i are also computable in the indices.
A will be ∃-atomic and hence have a Π2 Scott sentence. It will consist of a number

of elements each of which is given various c.e. labels. As before, we can take A to be
the “bouquet graph” G1(F) of a collection F of subsets of ω. We introduce three sets of
labels. First, we have sort labels (ue)e∈ω such that only exactly one label holds of each
element, dividing the domain into the disjoint sets Ue = {x ∈ A ∶ ue(x)}; we think of these
as different sorts of the structure, and call the elements of Ue the eth sort. Then we will
have two set of labels (ℓσ)σ∈ω<ω and (ℓ†σ)σ∈ω<ω we will just call labels.

Within Ue we will diagonalize against θe, though this diagonalization may only be
successful if T has an infinite path. Given a path π through T , we will diagonalize by
constructing another countable structure Be = Be,π such that if A ⊧ θe then Be ⊧ θe
and A ≇ Be. At each stage s we will have an approximation As to A, with A = ⋃sAs.
Be will differ from A only on the eth sort Ue. Be will also be built by approximations
Be = ⋃sBe,s with each Be,s ≅ As, though the construction of Be is non-computable as it
requires knowing a path through T .

When we describe the construction of A = ⋃As, we will describe the construction of
the eth sort. The constructions for the different sorts should be thought of as happening
simultaneously.

During the construction certain stages will be e-expansionary stages where we get
evidence thatA ⊧ θe. We use the variable k[s] to keep track of the number of expansionary
stages. The elements of A will all be of the form aσ for some σ ∈ T . We write Ts for the
set of σ such that aσ ∈ As, i.e., for the set of σ which correspond to elements of As at
stage s. Ts will be a subtree of T , with the property that if one child of σ ∈ Ts is in Ts,
then all children of σ are in Ts.

Construction of the eth sort of A.
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Stage 0. We begin with A0 consisting of a single element a∅ with the single label ℓ∅.
Thus T0 = {∅}. Begin with k = 0 as we have not yet had any expansionary stages.

Stage s + 1. Suppose that we have constructed As with k = k[s]. We say that a tuple x̄
is k-small it consists of elements aσ ∈ A of the eth sort with σ ∈ {0, . . . , k}≤k and elements
not of the eth sort but among the first k elements of A. First, we check whether this is
an expansionary stage1: Check whether, for each i ≤ k and each k-small tuple x̄i we have

As ⊧ φi(x̄i)

where the existential quantifier in φi(x̄i) is witnessed by one of the first s witnesses
(being careful to use an appropriately dovetailed listing of possible witnesses). If this is
the case, then stage s+ 1 is an expansionary stage, and set k[s+ 1] = k[s]+ 1. Otherwise,
set k[s + 1] = k[s] + 1.

If stage s+1 is not an expansionary stage, setAs+1 = As. If stage s+1 is an expansionary
stage:

(1) for each σ ∈ Ts ∩ {0, . . . , k}≤k with a child τ in T ∩ {0, . . . , k}≤k, put the label ℓ†σ on
aσ.

(2) for each σ ∈ Ts∩{0, . . . , k}≤k which is a leaf of Ts and has a child τ in T ∩{0, . . . , k}≤k,
and each child τ ∈ T of σ, add a new element aτ with the labels ℓρ for ρ ⪯ τ . Let
Ts+1 be Ts together with all of these new τ .

End construction.

What A looks like depends on whether there are finitely many or infinitely many
expansionary stages.

(1) If there are finitely many expansionary stages, say k, then A has finitely many
elements aσ with each ∣σ∣ ≤ k. Write T∞ for the set of such σ; T∞ = ⋃Ts is a subtree
of T . Each aσ has the labels ℓρ for ρ ⪯ σ; and if σ is not a leaf of T∞, then aσ also

has the label ℓ†σ.

(2) If there are infinitely many expansionary stages, then A has elements aσ for σ ∈ T ,
and each aσ has the labels ℓρ for ρ ⪯ σ and the label ℓ†σ. (We have T∞ = ⋃Ts = T .)

Thus it is easy to see that A has a Π2 Scott sentence.

Lemma 4.1. A has a Π2 Scott sentence.

Proof. For each aσ, either aσ has the label ℓ†σ and no other element has this label, or σ is
a leaf of T∞ and aσ is the unique element with the label ℓσ.

Lemma 4.2. Suppose that T is well-founded. Then A has a computable Π2 Scott sen-
tence.

Proof. Note that T∞ = ⋃Ts is a c.e. set. Moreover, the set of non-leaves of T∞ is also a
c.e. set. Consider the computable Π2 sentence which says that:

1The conditions to have an expansionary stage, and exactly which elements we should add to As+1

at an expansionary stage, are quite subtle. We must ensure that we can perform the construction of Be
given below and prove Lemmas 4.4 and Lemma 4.5.
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(1) if x has the label ℓσ then it also has all of the labels ℓρ for ρ ≺ σ.

(2) if x has the label ℓ†σ then it has the label ℓσ and does not have any label ℓτ for τ ≻ σ.

(3) no x has labels ℓσ1 and ℓσ2 for incompatible σ1 and σ2.

(4) if x has the label ℓσ then σ ∈ T∞.

(5) every x has the label ℓ∅ and if x has the label ℓσ and σ is not a leaf of T∞ then x
has either the label ℓ†σ or some label ℓτ where τ is a child of σ on T .

(6) if x has the label ℓ†σ, then σ is a non-leaf of T∞.

(7) for each σ ∈ T∞, there is some x with the label ℓσ.

(8) for each σ ∈ T∞ which is not a leaf, there is some x with the label ℓ†σ.

(9) for every distinct x and y, either there are some incompatible σ, τ such that one
element has the label ℓσ and the other has the label ℓτ , or there is some σ and a
child σ∗ of σ such that one element has the label ℓ†σ and the other has the label ℓσ∗ .

Since T is well-founded, T∞ must also be well-founded. We can check that this sentence
is true of A.

Suppose that a structure C satisfies this sentence. For each non-leaf σ of T∞, by (8)
there is an element cσ with the label ℓ†σ (and thus, by (1) and (2) also the labels ℓρ for
ρ ⪯ σ, and by (2) and (3) these are the only labels). By (9) and (2) no other element of
C has the label ℓ†σ.

For each leaf σ of T∞ by (7) there is an element cσ with the label ℓσ. By (1) it also
has all of the labels ℓρ for ρ ≺ σ, and by (2), (3), and (6) it has no other labels. Thus we
have shown that A embeds as a substructure of C.

Suppose that d is some other element of C, not included among the cσ above. By (5)
d has the label ℓ∅. Let σ0 = ∅. We argue inductively as follows. Given σi such that d
has the label ℓσi

, by (5) either (a) σi is a leaf of T∞, (b) d has the label kσi
, or (c) d has

some label ℓσi+1
for some child σi+1 ∈ T∞ of σi. Since T∞ is well-founded, we can repeat

this process to build a sequence of children σ0 = ∅, σ1, . . . , σm in T∞ with either (a) σm is
a leaf of T∞, or (b) d has the label kσm . Recall that there is already an element cσm with
the label kσm , and by (2) and (9) there are no other such elements. Thus σm is a leaf of
T∞ and d has the label ℓσm . But we already have an element cσm with the label ℓσm , and
by (9) we cannot have two such elements. So no such d exists, that is, C ≅ A.

Lemma 4.3. Suppose that A ⊧ θe. Then there are infinitely many expansionary stages.

Proof. Let s1 < s2 < s3 < ⋯ < sk be expansionary stages. We must argue that there will
later be another expansionary stage, the k + 1st. For each i ≤ k and k-small tuple x̄i we
have

A ⊧ φi(x̄i).

Since φi is existential, and A = ⋃sAs, there must be some stage sk+1 > sk such that for
each such i and x̄i we have

Ask+1 ⊧ φi(x̄i)

with the existential quantifier in φi witnessed at this stage. This stage sk+1 is expansion-
ary.

14



Suppose that T has an infinite path π. Let Be be A together with another element c
of the eth sort satisfying ℓρ for each ρ ≺ π. Clearly Be ≇ A. However we also want to know
that if A ⊧ θe, then Be ⊧ θe. To see this, we will show that Be is also a union Be = ⋃Be,s
and that Be,s ≅ As. Thus one can think of A and Be as direct limits of direct systems of
the same structures but with different embeddings

A0 → A1 → A2 → ⋯.

However the definition of Be,s depends on the path π and thus is non-computable.
At stage s, let πs be the longest initial segment of π which on Ts. Then πs is a

leaf of Ts—this is because Ts has the property that if there is any child of πs in Ts,
then all children of πs from T are in Ts. Be,s will have domain consisting of elements
{bσ ∣ σ ∈ Ts, σ ≠ πs}∪ {c}. We put the same labels on bσ as on aσ, and the same labels on
c as on aπs . Note that since πs is on the infinite path π, there cannot be a label kπs on c
and aπs . We must check that Be is in fact the union of these Be,s.

Lemma 4.4. If there are infinitely many expansionary stages, then lims πs = π, and so
Bn = ⋃sBe,s.

Proof. Suppose not, so that for some t for all s ≥ t we have πs = πt. But then there is k
such that π ↾∣πt∣+1∈ {0, . . . , k}≤k, and at some stage s ≥ t there is a k′th expansionary stage
for some k′ ≥ k. At this stage, we add the children of πt on T to Ts+1, so that πt+1 is one
of these children and strictly extends πt.

Now we can show that Be ⊧ θe.

Lemma 4.5. Suppose that T has an infinite path. If there are infinitely many expan-
sionary stages, then Be ⊧ θe.

Proof. Fix i and ȳi ∈ Be. Fix some stage s sufficiently large such that (a) by stage s there
have been k expansionary stages, (b) for each bσ in ȳi of the eth sort, σ ∈ {0, . . . , k}≤k and
∣σ∣ < ∣πs∣, and (c) each element of ȳi not in the eth sort is among the first k elements of
A (recalling that Be is the same as A on these other sorts). Let x̄i be ȳi except that each
bσ in ȳi is replaced by aσ, and c is replaced by aπs , and elements not of the e sort are
kept the same. Then at some stage s′ ≥ s there is for the first time a k′th expansionary
stage with πs ∈ {0, . . . , k′}≤k

′

. Since x̄i is k-small we have As ⊧ φi(x̄i). Since Be,s ≅ As via
an isomorphism mapping bσ ↦ aσ and c↦ aπs (and hence ȳi ↦ x̄i), we have Be,s ⊧ φi(ȳi).
Since φi is Σ1, Be ⊧ φi(ȳi). Thus, since this is true for all i and ȳi ∈ Be, Be ⊧ θe.

We have shown in Lemma 4.1 that A has a Π2 Scott sentence. If T is well-founded,
then Lemma 4.2 says that A has a computable Π2 Scott sentence. Otherwise, if T has
an infinite path, we argue that A has no computable Π2 Scott sentence. If it did, say
θe, then we have A ⊧ θe. Then by Lemma 4.3 there are infinitely many e-expansionary
stages. We construct the structure Be,s ≇ A using a path through T , and by Lemma 4.5
we have that Be ⊧ θe. Thus in fact θe cannot have been a Scott sentence for A. Thus if
T has an infinite path, we argue that A has no computable Π2 Scott sentence.
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5 Corollaries and other commentary

5.1 Complexity of Scott families

In [AKM20] it was shown that if a computable structure has a c.e. Scott family of com-
putable Σα formulas then the structure has a computable Πα+1 Scott sentence. Note
that it is easy to construct uncountably many structures with a c.e. Scott family of Σ1

formulas, so it is necessary here that the structure is computable.
The following corollary shows that this theorem does not, in general, reverse.

Corollary 5.1. There is a computable structure with a computable Π2 Scott sentence but
with no c.e. Scott family of computable Σ1 formulas.

Proof. Any computable structure with a c.e. Scott family of computable Σ1 formulas has
a computable Π2 Scott sentence. However the index set of computable structures with
a c.e. Scott family of computable Σ1 formulas is Σ0

5 while the index set of computable
structures with a computable Π2 Scott sentence is Π1

1-m-complete. Thus there must be a
computable structure with a computable Π2 Scott sentence but with no c.e. Scott family
of computable Σ1 formulas.

Despite this, one can ask how bad the Scott family for such a structure must be.
Note that by Theorem 1.2 these give neccesary but not sufficient conditions to have a
computable Π2 Scott sentence.

Proposition 5.2. Suppose A is computable and has a computable Πα+1 Scott sentence.
Then A has a c.e. Scott family of computable Σα+1 formulas.

Proof. Note it is enough to show there is a Σα+1 Scott family of computable Σα+1 formuals.
We will show a uniform procedure that given ā ∈ A produces a computable Σα+1 formula
defining the automorphism orbit of ā. It is enough to find a formula that supports the
computable Πα type of ā. It is Πα to list all the computable Πα formulas true of ā.
Taking the conjunction of all such formulas we get a formula that supports the type and
thus defines the automorphism orbit of ā. However, the Πα conjunction of computable
Πα formulas is equivalent to a computable Πα formula. This computable Πα formula is
at worst Πα to find given ā.

Proposition 5.3. Suppose A is a computable structure with a computable Πα+1 Scott
sentence. Then A has a ∆α+2 Scott family of computable Σα formulas.

Proof. We will show that there is a ∆α+2 map that, given ā, can find a Σα formula defining
the automorphism orbit of ā.

Since A has a computable Πα+1 Scott sentence, there is a computable Σα formula
defining the automorphism orbit of ā. Thus, we know there is some computable Π<α
formula θ such that if θ(c̄b̄) ever is true, then b̄ ∼ ā. Moreover, this is true of ā for some
c̄. Note now if ψ is any such formula then ∃x̄ψ(x̄ȳ) defines the automorphism orbit of ā.

We now claim the set S of all such formulas ∃x̄ψ(x̄ȳ) is Πα+1. To construct the set,
we list all of the tuples c̄, b̄ ∈ A and all of the computable Π<α formulas ψ(x̄ȳ). As we go,
we check if ∃x̄ψ(x̄, ā) is true. This is Σα to check. If so, we continue; if not, we throw out
the formula ∃x̄ψ(x̄ȳ) from the set. Now, we check as we go along if ψ(c̄, b̄) holds which is
Π<α to check. If so, we check if ā /∼ b̄, which is Πα to check. If ψ(c̄, b̄) ever holds for some
c̄ and ā /∼ b̄, we throw out the formula. What remains are those computable Πα formulas
ψ such that ∃x̄ψ(x̄ȳ) defines the automorphism orbit of ā.
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To find one such formula, we list all candidate formulas and check if they are in the
set, stopping when we get a “yes.” This process will halt since we know by assumption
there is at least one such formula. Therefore the desired map can be computed via a
Πα+1 oracle, so the map is ∆α+2.

Question 5.4. Let A be a computable structure with a computable Πα+1 Scott sentence.
Are the bounds on the Scott family obtained in Proposition 5.2 and Proposition 5.3 best
possible?

5.2 Pseudo-Scott sentences

Recall that a pseudo-Scott sentence for a computable structureA is a computable sentence
φ such that for all computable structure B,

B ⊧ φ ⇐⇒ A ≅ B.

There are several examples of structures with a computable pseudo-Scott sentence of a
certain complexity but no computable Scott sentence of that complexity [Ho17, Qui20].
As a corollary we get a much stronger example.

Corollary 5.5. There is a computable structure A with a Π0
2 Scott sentence but no

computable Π0
2 Scott sentence, but with a computable Π0

2 sentence φ such that, for all
hyperarithmetic B,

B ⊧ φ ⇐⇒ A ≅ B.

Proof. Consider the index set of computable structures A with a Π2 Scott sentence and
such that there is a computable Π0

2 sentence φ such that for all hyperarithmetic structures
B, B ⊧ φ if and only if A ≡2 B (so that A ≅ B). Since we are quantifying universally over
hyperarthimetic structures, this index set is Σ1

1. Moreover, it is a superset of the Π1
1-m-

complete set of computable structures with a computable Π0
2 sentence. Thus it must be

a proper superset, proving the corollary.

5.3 Working in Mod(L)

Sometimes by working inMod(L) rather than with index sets we get a stronger theorem.
In this case, it depends on how we relativize the statement and whether we work with
boldface or lightface Borel classes.

Proposition 5.6. The set of structures with a computable Π0
2 Scott sentence is a Borel—

in fact (boldface) Σ0
3—set in Mod(L). It is (lightface) Π1

1 but, in a sufficiently rich
language, not (lightface) Σ1

1.

Proof. A similar argument as above (in the first paragraph of Theorem 1.3) shows that it
is (lightface) Π1

1. It is also (boldface) Σ1
1: listing out all of the countably many structures

with a computable Π0
2 Scott sentence, together with their Scott sentences, a structure

has a computable Π0
2 Scott sentence if and only if it is isomorphic to one of these. This

is (boldface) Σ0
3: given A, we ask whether there exists a structure in this list such that

A satisfies the corresponding Π0
2 Scott sentence. If this set was (lightface) Σ1

1, then the
index set of computable such structures would be Σ1

1; but we know that this index set is
Π1

1-m-complete.

Corollary 5.7. The set of structures A with an A-computable Π0
2 Scott sentence is Π1

1-
Wadge-complete set in Mod(L).

Proof. The proof is the same as that of Theorem 1.3, working relative to the tree T .
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5.4 Jump inversion

We can use the method of jump inversion or Marker extensions to generalize our results
from Π2 sentences to Πn sentences for arbitrary n. We get the following corollaries of our
main theorem:

Corollary 5.8. For each computable ordinal α there is a computable structure with a
Πα+2 Scott sentence but with no computable Σα+4 Scott sentence.

Corollary 5.9. With (Ai)i∈ω an effective list of (possibly partial) structures in a suffi-
ciently rich language, for each computable ordinal α, the set

{i ∣ Ai has a computable Πα+2 Scott sentence}

is Π1
1-m-complete.

Note that Marker extensions are only additive, so that we do not answer whether every
computable structure with a Πn Scott sentence has a computable Σ2n Scott sentence for
n ≥ 3.

The particular flavour of jump inversion that we use is due to Goncharov, Harizanov,
Knight, McCoy, R. Miller, and Solomon [GHK+05] and also given in Chapter X.3 of
[Mon]. In Chapter X.3 of [Mon] Montalbán shows that given a computable ordinal α and
a structure A there is a structure Φα(A) such that A is effectively bi-interpretable with
the α-canonical structural jump of the image. There is a uniform effective construction
fromA of Φα(A) as discussed in [CGHT]. We leave to [Mon] the definitions and properties
of effective bi-interpretations and jumps of structures (see also [Mon09]).

If two structures are effectively bi-interpretable, then one has a Πβ Scott sentence if
and only if the other does. Thus A has a Πβ Scott sentence if and only if the α-canonical
structural jump of Φα(A) does. And the α-canonical structural jump of a structure has
a Πβ Scott sentence if and only if the original structure has a Πα+β Scott sentence. The
same is true for computable Scott sentences. Thus:

Proposition 5.10. Let A be a computable structure and let α and β be computable
ordinals.

• A has a Πβ Scott sentence if and only if Φα(A) has a Πα+β Scott sentence.

• A has a computable Πβ Scott sentence if and only if Φα(A) has a computable Πα+β
Scott sentence.

The same is true for Σ Scott sentences.

From this we can prove the corollaries above.

Proof of Corollary 5.8. Let A be a computable structure with a Π2 Scott sentence but
no computable Σ4 Scott sentence. Then Φα(A) is a computable structure with a Πα+2
Scott sentence but no computable Σα+4 Scott sentence.

Proof of Corollary 5.9. Given a Π1
1 set X, we can construct for i ∈ X a computable

structure Ai such that i ∈X if and only if Ai has a computable Π2 Scott sentence. Then
i ∈X if and only if Φα(Ai) has a computable Πα+2 Scott sentence.
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