
Degree Spectra of Relations on a Cone

Matthew Harrison-Trainor

Author address:

Group in Logic and the Methodology of Science, University of
California, Berkeley, USA 94720

E-mail address: matthew.h-t@berkeley.edu

Contents

Chapter 1. Introduction 1

Chapter 2. Preliminaries 7
2.1. Computability Theory 7
2.2. Computable Structure Theory 8
2.3. Relativizing to a Cone 9

Chapter 3. Degree Spectra Between the C.E. Degrees and the D.C.E. Degrees 13
3.1. Necessary and Sufficient Conditions to be Intrinsically of C.E. Degree 13
3.2. Incomparable Degree Spectra of D.C.E. Degrees 23

Chapter 4. Degree Spectra of Relations on the Naturals 45

Chapter 5. A “Fullness” Theorem for 2-CEA Degrees 67
5.1. Approximating a 2-CEA Set 68
5.2. Basic Framework of the Construction 70
5.3. An Informal Description of the Construction 73
5.4. The Game Gs and the Final Condition 77
5.5. Basic Plays and the Basic Game Gbs 79
5.6. The Construction 83

Chapter 6. Further Questions 91

Bibliography 95

Index of Notation and Terminology 97

Appendix A. Relativizing Harizanov’s Theorem on C.E. Degrees 99
A.1. Framework of the Proof 101
A.2. The First Two Cases 102
A.3. The Third Case 104

iii

Abstract

Let A be a mathematical structure with an additional relation R. We are
interested in the degree spectrum of R, either among computable copies of A when
(A,R) is a “natural” structure, or (to make this rigorous) among copies of (A,R)
computable in a large degree d. We introduce the partial order of degree spectra
on a cone and begin the study of these objects. Using a result of Harizanov—that,
assuming an effectiveness condition on A and R, if R is not intrinsically computable,
then its degree spectrum contains all c.e. degrees—we see that there is a minimal
non-trivial degree spectrum on a cone, consisting of the c.e. degrees. We show that
this does not generalize to d.c.e. degrees by giving an example of two incomparable
degree spectra on a cone. We also give a partial answer to a question of Ash and
Knight: they asked whether (subject to some effectiveness conditions) a relation
which is not intrinsically ∆0

α must have a degree spectrum which contains all of the
α-CEA degrees. We give a positive answer to this question for α = 2 by showing that
any degree spectrum on a cone which strictly contains the ∆0

2 degrees must contain
all of the 2-CEA degrees. We also investigate the particular case of degree spectra
on the structure (ω,<). This work represents the beginning of an investigation of
the degree spectra of “natural” structures, and we leave many open questions to be
answered.

Received by the editor November 17, 2015.

2010 Mathematics Subject Classification. Primary 03D45 03C57.
Key words and phrases. computable structure, degree spectrum of a relation, cone of Turing

degrees.
The author would like to thank Julia Knight, Alexander Melnikov, Noah Schweber, and

especially Antonio Montalbán for their helpful comments and conversations. The author was
partially supported by the Berkeley Fellowship, NSERC grants PGSD3-454386-2014 and PGSM-

425069-2014.

v

CHAPTER 1

Introduction

The aim of this monograph is to introduce the study of “nice” or “natural”
relations on a computable structure via the technical device of relativizing to a
cone of Turing degrees.

Let A be a mathematical structure, such as a graph, poset, or vector space,
and R ⊆ An an additional relation on that structure (i.e., not in the diagram).
The relation R might be the set of nodes of degree three in a graph or the set
of linearly independent pairs in a vector space. The basic question we ask in
the computability-theoretic study of such relations is: how do we measure the
complexity of the relation R? One way to measure the complexity of R is the
degree spectrum of R. As is often the case in computability theory, many examples
of relations with pathological degree spectra have been constructed in the literature
but these tend to require very specific constructions. In this work, we restrict our
attention to natural relations to capture those structures and relations which tend
to show up in normal mathematical practice. We find that the degree spectra of
natural relations are much better behaved than those of arbitrary relations, but not
as well-behaved as one might hope.

The study of relations on a structure began with Ash and Nerode [AN81]
who showed that, given certain assumptions about A and R, the complexity of the
formal definition of R in the logic Lω1ω is related to its intrinsic computability. For
example, R has a computable Σn definition if and only if R is intrinsically Σn, that
is, for any computable copy B of A, the copy of R in B is Σn.

Harizanov [Har87] introduced the degree spectrum of R to capture a finer
picture of the relation’s complexity. The degree spectrum of R is the collection
of all Turing degrees of copies of the relation R inside computable copies B of A.
The degree spectra of particular relations have been frequently studied, particularly
with the goal of finding as many possible different degree spectra as possible. For
example, Harizanov [Har93] has shown that there is a ∆0

2 (but not c.e.) degree a
such that {0,a} is the degree spectrum of a relation. Hirschfeldt [Hir00] has shown
that for any α-c.e. degree b, with α ∈ ω ∪ {ω}, {0,b} is the degree spectrum of a
relation. Hirschfeldt has also shown that for any c.e. degree c and any computable
ordinal α, the set of α-c.e. degrees less than or equal to c is a degree spectrum.
A number of other papers have been published showing that other degree spectra
are possible—see for example Khoussainov and Shore [KS98] and Goncharov and
Khoussainov [GK97].

These results require complicated constructions and one would not expect re-
lations which one finds in nature to have such degree spectra. Instead, we expect
to find simpler degree spectra such as the set of all c.e. degrees, the set of all d.c.e.
degrees, or the set of all ∆0

2 degrees. The goal of this paper is to begin to answer
the question of what sorts of degree spectra we should expect to find in nature.

1

2 1. INTRODUCTION

Since we cannot formally describe what we mean by a relation found in nature, we
will prove our results relative to a cone, that is, relativized to any sufficiently high
degree. One expects a result which holds on a cone to hold for any “nice” or “nat-
ural” relations and structures because natural properties tend to relativize. Such
structures include vector spaces and algebraically closed fields, but not first-order
arithmetic. We hope to be able to convince the reader that the study of relations
relative to a cone is an interesting and useful way of approaching the study of re-
lations that one might come across in nature. Our results are the beginning and
there is a large amount of work still to be done. An interesting picture is already
starting to emerge.

Before proceeding further, we will try to give an intuitive idea of what “on a
cone” means in relation to computable structures. A property holds of a structure
A on a cone if it holds (relative to X) of all X-computable copies of A, for all
X on a cone (i.e., for all X ≥T Y for some set Y). One can view complexity
in computable structure theory as coming from two sources: complexity coming
from coding subsets of ω and structural complexity. For an example of what we
mean, first consider a computable graph G with a loop of length n for each n. Let
S ⊆ ω be any set, computable or non-computable. Let RS be the set of elements
of G that are contained in a loop of length n for some n ∈ S. If S is computable,
then RS is computable; but if S is non-computable, then RS is non-computable.
The same is true in any computable copy of G. Thus RS codes S. And yet, if
we relativize everything to the set S (including looking at S-computable copies
of G), then RS becomes computable in every copy. So RS is complicated only
insofar as it codes S. On the other hand, consider the graph H which has infinitely
many vertices of degree zero, and infinitely many cycles of length three. Let R
be the relation consisting of all points in a cycle of length three. Then in some
computable presentations of H, R is computable; in others, R is non-computable
because we cannot decide that a point has degree zero just because we have not yet
seen any edges from it. Even relativizing to any set S, there are still S-computable
presentations of H in which the relation R is non-computable. R does not code
any non-computable subset of ω; its complexity is all structural complexity. In
general, a relation can have complexity of both types. By relativizing to a cone,
we can ignore complexity which comes from coding sets, and focus on structural
complexity. On a cone, we can have access to any fixed set of information, but we
must use the same information to view all copies of the structure.

We will introduce the definition, suggested by Montalbán, of a degree spectrum
of a relation on a cone. The results in this paper can be viewed as studying the
partial ordering of degree spectra on a cone. The following is a simplification of the
full definition which will come later in Chapter 2.

Definition 1.1 (Montalbán). Let A and B be structures with relations R and
S respectively. We say that R and S have the same degree spectrum on a cone if
there is a degree d such that for all degrees c ≥ d (i.e., for all c on a cone),

{d(RÃ) ⊕ c ∶ Ã ≅ A and Ã ≤T C} = {d(SB̃) ⊕ c ∶ B̃ ≅ B and B̃ ≤T C}

where d(D) is the Turing degree of the set D.

We are particularly interested in whether or not there are “fullness” results
for particular types of degree spectra, by which we mean results which say that
degree spectra on a cone must contain many degrees. This is in opposition to

1. INTRODUCTION 3

the pathological examples of many small (even two-element) degree spectra that
can be constructed when not working on a cone. There are a small number of
previous “fullness” results, though not in the language which we use here, starting
with Harizanov [Har91] who proved that (assuming (∗) below), as soon as a degree
spectrum contains more than the computable degree, it must contain all c.e. degrees:

Theorem 1.2 (Harizanov [Har91, Theorem 2.5]). Let A be a computable struc-
ture and R a computable relation on A which is not relatively intrinsically com-
putable. Suppose moreover that the effectiveness condition (∗) holds of A and R.
Then for every c.e. set C, there is a computable copy B of A such that RB ≡T C.

(∗) For every c̄, we can computably find ā ∈ R such that for all b̄ and quantifier-
free formulas θ(z̄, x̄, ȳ) such that A ⊧ θ(c̄, ā, b̄), there are ā′ ∉ R and b̄′ such
that A ⊧ θ(c̄, ā′, b̄′)

The result is stated using the effectiveness condition (∗) which says that R
must be a nice relation in some particular way. When we relativize to a cone, the
effectiveness condition becomes trivial, as we can relativize to a degree which can
compute what we require in (∗) (about the fixed computable copy A). We are left
with the statement:

Corollary 1.3 (Harizanov). Relative to a cone, every degree spectrum either
is the computable degree, or contains all c.e. degrees.

This result stands in contrast to the state of our knowledge of degree spectra when
not working on a cone, where we know almost no restrictions on what sets of degrees
may be degree spectra.

Ash and Knight tried to generalize Harizanov’s result in the papers [AK95] and
[AK97]. They wanted to replace “c.e.” by “Σ0

α”. In our language of degree spectra
on a cone, they wanted to show that every degree spectrum is either contained in
the ∆α degrees or contains all of the Σα degrees. However, they discovered that
this was false: there is a computable structure A with a computable relation R
where R is intrinsically Σα, not intrinsically ∆0

α, and for any computable copy B,
RB is α-CEA. Moreover, the proof of this relativizes.

So instead of asking whether “c.e.” can be replaced by Σ0
α, Ash and Knight

asked whether “c.e.” can be replaced by “α-CEA”. A set S is n-CEA if there are
sets S0, S1, S2, . . . , Sn = S such that S0 is c.e., S1 is c.e. in and above S0, S2 is c.e.
in and above S1, and so on. For now, the reader can ignore what this means for
an infinite ordinal α (the definition in general will follow in Chapter 2). Ash and
Knight were able to show that Harizanov’s result can be extended in this manner
when the coding is done relative to a ∆0

α-complete set (note that every Σ0
α set,

when joined with a ∆0
α-complete set, becomes α-CEA; each α-CEA set is already

Σα):

Theorem 1.4 (Ash-Knight [AK97, Theorem 2.1]). Let A be a computable
structure and R a computable relation on A which is not relatively intrinsically
∆0
α. Suppose moreover that the effectiveness condition (∗∗) holds of A and R.

Then for any Σ0
α set C, there is a computable copy B of A such that

RB ⊕∆0
α ≡T C ⊕∆0

α

where ∆0
α is a ∆0

α-complete set.

4 1. INTRODUCTION

(∗∗) A is α-friendly1 and that for all c̄, we can find ā ∉ R which is effectively
α-free2 over c̄.

The reader need not worry about the effectiveness condition, which is somewhat
technical; as before, after relativizing to a cone, the effectiveness condition becomes
trivial. On a cone, this theorem says that either R is intrinsically ∆0

α or for every
Σ0
α set C, there is a computable copy B of A such that

RB ⊕∆0
α ≡T C ⊕∆0

α.

This is not enough to show that, on a cone, every degree spectrum is either contained
in the the ∆α degrees or contains all of the α-CEA degrees. A much better result,
and one which would be sufficient, would be to show that RB ≡T C rather than
RB⊕∆0

α ≡T C⊕∆0
α. This was the goal of Knight in [Kni98] where she showed that

it could be done with strong assumptions on the relation R. The general question,
without these strong assumptions, was left unresolved.

One of our main results in this paper in Chapter 5 is a positive answer to this
question in the case α = 2.

Theorem 1.5. Let A be a structure, and let R be an additional relation. Sup-
pose that R is not intrinsically ∆0

2 on any cone. Then, on a cone, the degree
spectrum of R contains the 2-CEA sets.

The proof uses an interesting method which we have not seen before and which we
think is of independent interest. We will describe the method briefly here. During
the construction, we are presented with two possible choices of how to continue,
but it is not clear which will work. We are able to show that one of the two choices
must work, but in order to find out which choice it is we must consider a game in
which we play out the rest of the construction against an opponent who attempts
to make the construction fail. By finding a winning strategy for this game, we are
able to decide which choice to make.

Up to this point, degree spectra on a cone are looking very well-behaved, and
in fact one might start to hope that they are linearly ordered. However, this is not
the case as we see by considering Ershov’s hierarchy. Suppose (once again working
on a cone) that there is a computable copy B such that RB is not of c.e. degree. Is
it necessarily the case that for every d.c.e. set W , there is a computable copy C such
that RC ≡T W? We will show in Chapter 3 that this is not the case. Moreover, we
will show that there is a computable structure A with relatively intrinsically d.c.e.
relations R and S which have incomparable degree spectra relative to every oracle.

Theorem 1.6. There is a computable structure A and relatively intrinsically
d.c.e. relations R and S such that neither R nor S are intrinsically of c.e. degree,
even relative to any cone, and the degree spectra of R and S are incomparable
relative to any cone (i.e., the degree spectrum of R is not contained in that of S,
and vice versa).

1A computable structure is α-friendly if for β < α, the back-and-forth relations ≤β are c.e.

uniformly in β. See [AK00, Section 15.2].
2By a theorem of Barker, under certain effectiveness conditions such ā exist because R is not

relatively intrinsically ∆0
α. See [AK00, page254] for the definition of α-free. Note that, as an

unfortunate consequence of the standard terminology, this notion of α-free tuples is different from
that of Chapter 4.

1. INTRODUCTION 5

In proving this, we will also give a structural condition equivalent to being
intrinsically of c.e. degree (which, as far as we are aware, is a new definition; we
mean that in any computable copy, the relation has c.e. degree). The structural
condition works for relations which are intrinsically d.c.e., and it does not seem
difficult to extend it to work in more general cases.

The following is a summary of all that we know about the possible degree
spectra of relations on a cone:

(1) there is a smallest degree spectrum: the computable degree,
(2) there is a smallest degree spectrum strictly containing the computable

degree: the c.e. degrees (Corollary 1.3, see [Har91]),
(3) there are two incomparable degree spectra both strictly containing the

c.e. degrees and strictly contained in the d.c.e. degrees (Theorem 1.6),
(4) any degree spectrum strictly containing the ∆0

2 degrees must contain all
of the 2-CEA degrees (Theorem 1.5).

Figure 1.1 gives a graphical representation of all that is known. There are many
more questions to be asked about degree spectra on a cone. In general, at least
at the lower levels, there seem to be far fewer degree spectra on a cone than there
are degrees (or degree spectra not on a cone). We expect this pattern to continue.
However, an interesting phenomenon is that not all degree spectra are “named”
(e.g., as the Σ0

1 or ∆0
2 degrees are), though perhaps this is just because we do not

understand enough about them to name them. The hope would be to classify and
name all of the possible degree spectra. The degree spectra from (3) give rise to
new “natural” classes of degrees, where by natural we mean that they relativize.

In this paper, we will also consider the special case of the structure (ω,<).
This special case has been studied previously by Downey, Khoussainov, Miller,
and Yu [DKMY09], Knoll [Kno09], and Wright [Wri13]. Knoll showed that
for the standard copy of (ω,<), the degree spectrum of any unary relation which
is not intrinsically computable consists of exactly the ∆0

2 degrees. So while the
counterexamples of Theorem 1.6 exist in general, such counterexamples may not
exist for particular structures. Wright [Wri13] later independently found this same
result about unary relations, and also showed that for n-ary relations on (ω,<),
any degree spectrum which contains a non-computable set contains all c.e. sets. In
Chapter 4, we begin an investigation of what the partial order of degree spectra on
a cone looks like when we restrict ourselves to relations on (ω,<). We show that
every relation which is intrinsically α-c.e. is intrinsically of c.e. degree. We also
introduce the notion of what it means for a relation to uniformly have its degree
spectrum, and show that either

(1) there is a computable relation R on (ω,<) whose degree spectrum strictly
contains the c.e. degrees but does not contain all of the d.c.e. degrees, or

(2) there is a computable relation R on (ω,<) whose degree spectrum is all
of the ∆0

2 degrees but does not have this degree spectrum uniformly.

Both (1) and (2) are interesting situations, and one or the other must occur. It
seems likely, but very difficult to show, that (1) occurs.

In this monograph, we would like to advocate for this program of studying
degree spectra on a cone. We hope that some of the results in this paper will
support the position that this is a fruitful view. We believe that the study of degree
spectra on a cone is interesting beyond the characterization of the degree spectra
of naturally occurring structures. Even when considering structures in general,

6 1. INTRODUCTION

∆0
3

∆0
2

d.c.e. 2-CEA

● ●

Σ0
1

∆0
1

Figure 1.1. A visual summary of everything we know so far (in-
cluding results from this paper) about the possible degree spectra
of relations on a cone. The possible degree spectra are labeled or
contained within one of the two enclosed areas (i.e., between Σ0

1

and ∆0
2, or above 2-CEA). The two strictly d.c.e. degrees shown

are incomparable.

knowing which results can and cannot be proven on a cone is still illuminating. If
a result holds in the computable case, but not on a cone, then that means that the
result relies in some way on the computable presentation of the original structure
(for example, diagonalization arguments can often be used to produce pathological
examples; such arguments tend not to relativize). Understanding why certain a
result holds for computable structures but fails on a cone is a way of understanding
the essential character of the proof of that result.

We will begin by making some preliminary definitions in Chapter 2. In Chapter
3, we will consider d.c.e. degrees. We begin by introducing the notion of being
intrinsically of c.e. degree and give a characterization of such relations. We then
prove Theorem 1.6. In Chapter 4, we apply some of the results from Chapter 3
to the structure (ω,<) and study the degree spectra of such relations. Chapter
5 is devoted to the proof of Theorem 1.5 on 2-CEA degrees. Finally, in Chapter
6 we will state some interesting open questions and describe what we see as the
future of this program. We also include a discussion of the technical details around
the definition of degree spectra on a cone, in particular in relation to relativizing
Harizanov’s results on c.e. degrees, in Appendix A.

CHAPTER 2

Preliminaries

In this chapter, we will introduce some background from computability theory
and computable structure theory before formally defining what we mean by “on a
cone.”

2.1. Computability Theory

We will assume that the reader has a general knowledge of computability theory.
For the most part, the reader will not need to know about computable ordinals.
Occasionally we will state general questions involving a computable ordinal α, but
the reader should feel free to assume that α is a finite number n. See Chapter 4 of
[AK00] for a reference on computable ordinals.

There are two classes of sets which will come up frequently which we will define
here. Ershov’s hierarchy [Erš68a, Erš68b, Erš70] generalizes the c.e. and d.c.e.
sets to classify sets by how many times their computable approximation is allowed
to change.

Definition 2.1 (Ershov’s hierarchy). A set X is α-c.e. if there are computable
functions g ∶ ω × ω → {0,1} and n ∶ ω × ω → {β ∶ β ≤ α} such that for all x and s,

(1) g(x,0) = 0,
(2) n(x,0) = α,
(3) n(x, s + 1) ≤ n(x, s),
(4) if g(x, s + 1) ≠ g(x, s) then n(x, s + 1) < n(x, s), and
(5) lims→∞ g(x, s) =X(x).

The function g guesses at whether x ∈ X, with n counting the number of
changes. We could instead have made the following equivalent definition:

Definition 2.2 (Ershov’s hierarchy, alternate definition). X is α-c.e. if there
are uniformly c.e. families (Aβ)β<α and (Bβ)β<α such that

X = ⋃
β<α

(Aβ − ⋃
γ<β

Bγ)

and if x ∈ Aβ ∩Bβ , then x ∈ Aγ ∪Bγ for some γ < β.

See Chapter 5 of [AK00] for more on α-c.e. sets.
A set X is c.e. in and above (CEA) a set Y if X is c.e. in Y and X ≥T Y . We

can easily generalize this to any finite n by iterating the definition: X is n-CEA
in Y if there are X0 = Y,X1, . . . ,Xn = X such that Xi is CEA in Xi−1 for each
i = 1, . . . , n. We can even generalize this to arbitrary α:

Definition 2.3 (Ash-Knight [AK95]). A set X is α-CEA in a set Y if there
is a sequence (Xβ)β≤α such that

(1) X0 is recursive,

7

8 2. PRELIMINARIES

(2) Xβ+1 is CEA in Xβ uniformly in β,
(3) Xδ is CEA in ⊕β<δXβ uniformly in δ when δ is a limit ordinal, and
(4) Xα =X.

Ash and Knight [AK95] note that a set which is α-CEA is Σ0
α, but that the

converse is not necessarily true (one can see that this follows from the existence of
a minimal ∆0

2 set; a minimal ∆0
2 set is not c.e. and hence not 2-CEA).

2.2. Computable Structure Theory

We will consider only countable structures, so we will say “structure” when
we mean “countable structure.” For an introduction to computable structures as
well as much of the other background, see [AK00]. We view the atomic diagram
D(A) of a structure A as a subset of ω, and usually we will identify A with its
diagram. A computable presentation (or computable copy) B of a structure A is
another structure B with domain ω such that A ≅ B and the atomic diagram of B
is computable.

The infinitary logic Lω1ω is the logic which allows countably infinite conjunc-
tions and disjunctions but only finite quantification. If the conjunctions and dis-
junctions of a formula ϕ are all over computable sets of indices for formulas, then
we say that ϕ is computable. We use Σin

α and Πin
α to denote the classes of all

infinitary Σα and Πα formulas respectively. We will also use Σc
α and Πc

α to denote
the classes of computable Σα and Πα formulas. These formulas will often involve
finitely many constant symbols from the structure. See Chapter 6 of [AK00] for a
more complete description of computable formulas.

By a relation R on a structure A, we mean a subset of An for some n. We
say that R is invariant if it is fixed by all automorphisms of R. It is a theorem,
following from the Scott Isomorphism Theorem [Sco65], that a relation is invariant
if and only if it is defined in A by a formula of Lω1ω. All of the relations that we
will consider will be invariant relations. If B is a computable copy of A, then there
is a unique interpretation RB of R in B, either by using the Lω1ω-definition of R,
or using the invariance of R under automorphisms (so that if f ∶ A → B is an
isomorphism, f(R) is a relation on B which does not depend on the choice of the
automorphism f).

The study of invariant relations began with Ash and Nerode [AN81]. They
made the following definition: if Γ is some property of sets, then R is intrinsically
Γ if among all of the computable copies B of A, RB is Γ. Usually we will talk about
relations which are intrinsically computable (or more generally ∆α), intrinsically
c.e. (or more generally Σα or Πα), intrinsically α-CEA, or intrinsically α-c.e. Ash
and Nerode showed that (making some assumptions on the structure and on the
relation) a relation is intrinsically c.e. if and only if is defined by a Σc

1 formula:

Theorem 2.4 (Ash-Nerode [AN81, Theorem 2.2]). Let A be a computable
structure and R a relation on A. Suppose that for any tuple c̄ ∈ A and any finitary
existential formula ϕ(c̄, x̄), we can decide whether or not there is ā ∉ R such that
A ⊧ ϕ(c̄, ā). Then the following are equivalent:

(1) R is intrinsically c.e.
(2) R is defined by a Σc

1 formula with finitely many parameters from A (we
say that R is formally Σ1 or formally c.e.).

2.3. RELATIVIZING TO A CONE 9

In practice, most naturally occurring structures and relations satisfy the effec-
tiveness condition from this theorem. However, there are structures which do not
have the effectiveness condition, and some of these structures are counterexamples
to the conclusion of the theorem.

Barker [Bar88] later generalized this to a theorem about intrinsically Σα rela-
tions. Ash and Knight [AK96] also proved a result for intrinsically α-c.e. relations
(with the formal definition being of the form of Definition 2.2 above).

Ash, Knight, Manasse, and Slaman [AKMS89] and independently Chisholm
[Chi90] considered a relativized notion of intrinsic computability. We say that R
is relatively intrinsically Σα (or Πα, etc.) if, in every copy B of A, RB is Σ0

α(B)
(Π0

α(B), etc.). Then they were able to prove a theorem similar to Theorem 2.4
above but without an effectiveness condition:

Theorem 2.5 (Ash-Knight-Manasse-Slaman [AKMS89], Chisholm [Chi90]).
Let A be a computable structure and R a relation on A. The following are equiva-
lent:

(1) R is relatively intrinsically Σα,
(2) R is defined by a Σc

α formula with finitely many parameters from A.

These theorems say that the computational complexity of a relation is strongly tied
to its logical complexity.

In order to give a finer measure of the complexity of a relation, Harizanov
[Har87] introduced the degree spectrum.

Definition 2.6 (Degree Spectrum of a Relation). The degree spectrum of a
relation R on a computable structure A is the set

dgSp(R) = {d(RB) ∶ B is a computable copy of A}.

2.3. Relativizing to a Cone

In this section, we will formally describe what we mean by working on a cone,
and by the degree spectrum of a relation on a cone. Consider the degree spectrum
of a relation. For many natural structures and relations, the degree spectrum of
a relation is highly related to the model-theoretic properties of the relation R.
However, for more pathological structures (and first-order arithmetic), the degree
spectra of relations can often be badly behaved. Some examples of such relations
were given in the introduction. On the other hand, Theorem 1.2 says that many
relations have degree spectra which are nicely behaved (of course, there are relations
which do not satisfy the effectivity condition from this theorem and which do not
satisfy the conclusion—see [Har91]).

It is a common phenomenon in computable structure theory that there are
unnatural structures which are counterexamples to theorems which would otherwise
hold for natural structures. This unnatural behaviour tends to disappear when the
theorem is relativized to a sufficiently high cone; in the case of Harizanov’s result,
relativizing the conclusion to any degree above 0′′ allows the theorem to be stated
without the effectivity condition (since 0′′ can compute what is required by the
effectivity condition).

A Turing cone is collection of sets of the form {X ∶ X ≥T A} for some fixed
set A. A collection of sets is Turing invariant if whenever X is in the collection,
and X ≡T Y , then Y is in the collection (i.e., the collection is a set of Turing

10 2. PRELIMINARIES

degrees). Martin [Mar68] noticed that any Turing invariant collection A which
is determined1 either contains a cone, or contains a cone in its complement. Note
that only one of these can happen for a given set A, as any two cones intersect non-
trivially and contain a cone in their intersection. Moreover, by Borel determinacy
(see [Mar75]) every Borel invariant set is determined. Thus we can form a {0,1}-
valued measure on the Borel sets of Turing degrees, selecting as “large” those sets
of Turing degrees which contain a cone.

Given a statement P which relativizes to any degree d, we say that P holds on
a cone if the set of degrees d for which the relativization of P to d holds contains a
cone. If P defines a Borel set of degrees in this way, then either P holds on a cone
or ¬P holds on a cone. If P holds on a cone, then P holds for most degrees, or for
sufficiently high degrees.

We say that R is intrinsically Σα on a cone if for all degrees d on a cone,
and all copies B of A with B computable in d, RB is Σ0

α(d). Then by relativizing
previous results (Theorem 2.4 or Theorem 2.5), we see that R is intrinsically Σα
on a cone if and only if it is defined by a Σin

α formula, without any computability-
theoretic assumptions on either A and R or the Σin

α formula. Note that a relation
is intrinsically Σ0

α on a cone if and only if it is relatively intrinsically Σ0
α on a cone;

so after relativizing to a cone, both notions coincide. We make similar definition
for Πα and other classes of degrees.

Note that when we work on a cone, we do not need to assume that the structure
A or the relation R is computable, because we can consider only cones with bases
above A⊕R. Also, for the same reason, we can work with arbitrary ordinals, even
those which are not computable, by working on a cone on which that ordinal is
computable. Thus, for example, we can say that a relation is intrinsically Σα on a
cone even when α is not a computable ordinal. What we mean is that there is a
cone above which α is computable, and the relation is intrinsically Σα relative to
all degrees on that cone.

Now we will define what we mean by the degree spectrum of a relation on a
cone. First, there is a natural relativisation of the degree spectrum of a relation to
a degree d. The degree spectrum of R below the degree d is

dgSp(A,R)≤d = {d(RB)⊕d ∶ (B,RB) is an isomorphic copy of (A,R) with B ≤T d}.

An alternate definition would require the isomorphic copy B to be Turing equivalent
to d, rather than just computable in d:

dgSp(A,R)≡d = {d(RB)⊕d ∶ (B,RB) is an isomorphic copy of (A,R) with B ≡T d}.

If B ≤T d, then by Knight’s theorem on the upwards closure of the degree spectrum
of structures (see [Kni86]), there is an isomorphic copy C of B with C ≡T d and
a d-computable isomorphism f ∶ B → C. Then RC ⊕ d ≡T RB ⊕ d. So these two
definitions are equivalent.

The proof of Theorem 1.2 relativizes to show that for any degree d ≥ 0′′, if
dgSp(A,R)≤d contains a degree which is not computable in d, then it contains
every degree CEA in d. One could also have defined the degree spectrum of a

1A set A (viewed as set of reals in Cantor space 2ω) is determined if one of the two players

has a winning strategy in the Gale-Stewart game GA, where players I and II alternate playing
either 0 or 1; I wins if the combined sequence of plays is in A, and otherwise II wins. See [GS53]

and [Jec03].

2.3. RELATIVIZING TO A CONE 11

relation to be the set

dgSp∗(A,R)≤d = {d(RB) ∶ (B,RB) is an isomorphic copy of (A,R) with B ≤T d}.

In this case, Harizanov’s proof of Theorem 1.2 does not relativize. In Appendix
A, we will consider a new proof of Harizanov’s result which relativizes in the cor-
rect way for this definition of the degree spectrum. However, our proof becomes
much more complicated than Harizanov’s original proof. For the other results in
the paper, we will not consider dgSp∗(A,R)≤d. Though it is quite possible that
there are similar ways to extend our proofs, it would distract from main content
of those results. We are interested in whether there is any real difference between
dgSp(A,R)≤d and dgSp∗(A,R)≤d, or whether any result provable about one trans-
fers in a natural manner to the other. For example, is it always the case that re-
stricting dgSp∗(A,R)≤d to the degrees above d gives dgSp(A,R)≤d for sufficiently
high d?

Now we want to make our relativisation of the degree spectrum independent of
the degree d. Thus we turn to Definition 1.1 due to Montalbán, which we will now
develop more thoroughly. To each structure A and relation R, we can assign the
map fR∶d ↦ dgSp(A,R)≤d. Given two pairs (A,R) and (B, S), for any degree d,
either dgSp(A,R)≤d is equal to dgSp(B, S)≤d, one is strictly contained in the other,
or they are incomparable. By Borel determinacy, there is a cone on which exactly
one of these happens. Thus we get a pre-order on these functions fR, and taking
the quotient by equivalence, we get a partial order on degree spectrum. Denote
the elements of the quotient by dgSprel(A,R). We call dgSprel(A,R) the degree
spectrum of R on a cone.

For many classes Γ of degrees which relativize, for example the Σα degrees,
there is a natural way of viewing them in this partial ordering by considering the
map Γ ∶ d → Γ(d). By an abuse of notation, we will talk about such a class Γ as
a degree spectrum (in fact, it is easy to see for many simple classes of degrees that
they are in fact the degree spectrum of some relation on some structure). Thus we
can say, for example, that the degree spectrum, on a cone, of some relation contains
the Σ0

α degrees, or is equal to the d.c.e. degrees, and so on.
In particular, using this notation, we see that Theorem 1.2 yields:

Corollary 2.7 (Harizanov). Let A be a structure and R a relation on A.
Then either:

(1) dgSprel(A,R) = ∆0
1 or

(2) dgSprel(A,R) ⊇ Σ0
1.

The cone on which this theorem holds is (A ⊕ R)′′—i.e., one could replace
dgSprel with dgSp≤d for any degree d ≥T (A⊕R)′′.

We also get the following restatements of Theorems 1.5 and 1.6:

Corollary 2.8. Let A be a structure and R a relation on A. Then either:

(1) dgSprel(A,R) ⊆ ∆0
2 or

(2) dgSprel(A,R) ⊇ 2-CEA.

Corollary 2.9. There is a structure A and relations R and S on A such that
dgSprel(A,R) and dgSprel(A, S) contains the c.e. degrees and are contained within
the d.c.e. degrees, but neither dgSprel(A,R) ⊆ dgSprel(A, S) nor dgSprel(A, S) ⊆
dgSprel(A,R).

12 2. PRELIMINARIES

Note that these two concepts that we have just introduced—intrinsic com-
putability on a cone and degree spectra on a cone—are completely independent of
the presentations of A and R. Moreover, the intrinsic computability of a relation R
is completely dependent on its model-theoretic properties. So by looking on a cone,
we are able to look at more model-theoretic properties of relations while using tools
of computability theory.

The reader should always keep in mind the motivation behind this work. The
theorems we prove are intended to be applied to naturally occurring structures.
For well-behaved structures, “property P” and “property P on a cone” should be
viewed as interchangeable.

This work was originally motivated by a question of Montalbán first stated in
[Wri13]. There is no known case of a structure (A,R) where dgSp(A,R)≤d does
not have a maximum degree for d sufficiently large. When the degree spectrum
does contain a maximum degree, define the function fA,R which maps a degree d to
the maximum element of dgSp(A,R)≤d. This is a degree-invariant function,2 and
hence the subject of Martin’s conjecture. Montalbán has asked whether Martin’s
conjecture is true of this function fA,R, that is, is it true that for every structure

A and relation R, there is an ordinal α < ω1 such that for all d on a cone, d(α) is
the maximal element of dgSp(A,R)≤d?

Recall the question of Ash and Knight from the introduction, which we stated
as: is it true that every degree spectrum is either contained in the ∆α degrees or
contains all of the α-CEA degrees? If this were true, then Montalbán’s question
would (almost) be answered positively, as every relation R has a definition which is
Σin
α and Πin

α for some α < ω1; choosing α to be minimal, if α is a successor ordinal
α = β+1, then for all degrees d on a cone, there is a complete ∆0

α(d) degree which is
β-CEA above d and hence is the maximal element of dgSp(A,R)≤d. The relativized
version of Harizanov’s Theorem 1.2 answers Ash and Knight’s question (and hence
Montalbán’s question) for relations which are defined by a Σin

1 formula, and our
Theorem 1.5 answers these questions for relations which are Σin

2 -definable.3

2Technically, the function we are considering maps a set C to some set D which is of maximum

degree in dgSp(A,R)
≤d(C). For now, we can ignore which sets we choose.

3Note that the proofs of these results also show that fA,R is uniformly degree-invariant for

these relations, which also implies that Martin’s conjecture holds for these fA,R—see [Ste82] and
[SS88]. What we mean is that, given sets C and D of degree d (with C ≡T D), Theorem 1.2

(respectively Theorem 1.5) provide isomorphic copies C and D of A with C ≤T C and D ≤T D

with RC ≡T C′ and RD ≡T D′ (resp. RC ≡T C′′ and RD ≡T D′′) and these Turing equivalences
are uniform in C′ and D′ (resp. C′′ and D′′). So given an index for the equivalence C ≡T D, we

can effectively find an index for the equivalence RC ≡T R
D.

CHAPTER 3

Degree Spectra Between the C.E. Degrees and the
D.C.E. Degrees

We know that every degree spectrum (on a cone) which contains a non-comput-
able degree contains all of the c.e. degrees. In this section, we will consider relations
whose degree spectra strictly contain the c.e. degrees. The motivating question
is whether any degree spectrum on a cone which strictly contains the c.e. degrees
contains all of the d.c.e. degrees. We will show that this is false by proving Theorem
1.6 which says that there are two incomparable degree spectra which contain only
d.c.e. degrees. In the process, we will define what it means to be intrinsically of
c.e. degree (as opposed to simply being c.e.) and give a characterization of the
relatively intrinsically d.c.e. relations which are intrinsically of c.e. degree, and at
the same time a sufficient (but not necessary) condition for a relation to not be
intrinsically of c.e. degree.

3.1. Necessary and Sufficient Conditions to be Intrinsically of C.E.
Degree

We begin by defining what it means to be intrinsically of c.e. degree.

Definition 3.1. R on A is intrinsically of c.e. degree if in every computable
copy B of A, RB is of c.e. degree.

We can make similar definitions for relatively intrinsically of c.e. degree and intrin-
sically of c.e. degree on a cone. As far as we are aware, these are new definitions.

Any relation which is intrinsically c.e. is intrinsically of c.e. degree, but the
following example shows that the converse implication does not hold (even on a
cone).

Example 3.2. Let A be two-sorted with sorts B and C. There is a relation S
in the signature of A of type B×C. The sort B is a directed graph, each connected
component of which consists of two elements and one directed edge. Each element
of B is related via S to zero, one, or two elements of C, and each element of C is
related to exactly one element of A. A consists of infinitely many disjoint copies of
each of the following three connected components and nothing else, with the edge
adjacency relation and S:

0 // 1 1 // 2 2 // 2 .

The numbers show how many elements of C a particular element of B is related to.
For example, 0 → 1 is a two element connected component with a single directed
edge, and the first element is not related to any elements of C, while the second
element is related to a single element of C. The additional relation R (not in the

13

14 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

signature of A) consists of those elements of B which are related to exactly one
element of C.

In any copy B of A, the set TB of elements related to exactly two elements of
C is c.e. in B. We claim that this set has the same Turing degree as RB. Let a
and b be elements in A, with a directed edge from a to b. Then there are three
possibilities:

(1) a ∉ RB, b ∈ RB and a ∉ TB, b ∉ TB,
(2) a ∈ RB, b ∉ RB and a ∉ TB, b ∈ TB, or
(3) a ∉ RB, b ∉ RB and a ∈ TB, b ∈ TB.

Each of these three possibilities is distinct from the others both in terms of R and
also in terms of TB. So knowing whether a ∈ RB and b ∈ RB determines whether
a ∈ TB and b ∈ TB, and vice versa. Hence RB ⊕B ≡ TB ⊕B. Since TB is c.e., RB is
of c.e. degree in D(B). Note that RB is always d.c.e. in D(B), but one can show
using a standard argument that RB is not always c.e. in D(B).

We will begin by finding a necessary and sufficient condition for a relation to
be intrinsically of c.e. degree. We will assume, for one of the directions, that the
relation is relatively intrinsically d.c.e. A relation which is not intrinsically ∆2 can-
not be intrinsically of c.e. degree (and, assuming sufficient effectiveness conditions,
the same is true for the relative notions). We leave the question open for relations
which are relatively intrinsically ∆2 but not relatively intrinsically d.c.e.

An important idea in most of the results in this work are the free tuples from
the theorem of Ash and Nerode on intrinsically computable relations [AN81], and
other variations.

Definition 3.3. Let c̄ be a tuple from A. We say that ā ∉ R is free (or 1-free)
over c̄ if for any finitary existential formula ψ(c̄, x̄) true of ā in A, there is ā′ ∈ R
which also satisfies ψ(c̄, x̄).

Such free elements, and many variations, have been used throughout the literature,
including in many of the results we referenced in the previous chapters. We will
only use 1-free elements in Appendix A, but we will use other variants in Chapters
3, 4, and 5.

In the spirit of the definitions made just before Propositions 2.2 and 2.3 of
[AK96], we will make the following definition of what it means to be difference-
free, or d-free. Let A be a computable structure and R a computable relation on A.
We begin with the case where R is unary, where the condition is simpler to state.
We say that a ∉ R is d-free over c̄ if for every b1, . . . , bn and existential formula
ϕ(c̄, u, v1, . . . , vn) true of a, b1, . . . , bn, there are a′ ∈ R and b′1, . . . , b

′
n which satisfy

ϕ(c̄, u, v1, . . . , vn) such that for every existential formula ψ(c̄, u, v1, . . . , vn) true of
them, there are a′′, b′′1 , . . . , b

′′
n satisfying ψ with a′′ ∉ R and bi ∈ R⇔ b′′i ∈ R.

Note that this is different from the 2-free elements which are defined just before
Propositions 2.2 and 2.3 in [AK96]. The definitions are the same, except that for a
to be 2-free over c̄, there is no requirement on the bi and b′′i . Note that an element
a may be 2-free over c̄, but not d-free over c̄ (but if a is d-free over c̄, then it is
2-free over c̄).

Now suppose that R is an m-ary relation. We say that ā is d-free over c̄ if for
every b̄ and existential formula ϕ(c̄, ū, v̄) true of ā, b̄, there are ā′ and b̄′ which satisfy
ϕ(c̄, ū, v̄) such that R restricted to tuples from c̄ā′ is not the same as R restricted
to tuples from c̄ā and also such that for every existential formula ψ(c̄, ū, v̄) true of

3.1. CONDITIONS TO BE INTRINSICALLY OF C.E. DEGREE 15

them, there are ā′′, b̄′′ satisfying ψ and such that R restricted to c̄ā′′b̄′′ is the same
as R restricted to c̄āb̄. If R is unary, a tuple ā is d-free over c̄ if and only if one of
its entries ai is.

Under sufficient effectiveness conditions we will show—for a formally d.c.e.
relation R on a structure A—that R is not intrinsically of c.e. degree if and only
if for each tuple c̄ there is some ā which is d-free over c̄ (note that under the
effectiveness conditions of Proposition 2.2 of Ash and Knight [AK96], a relation
is formally d.c.e. if and only if it is intrinsically d.c.e.). In fact, the existence of a
tuple c̄ over which no tuple ā is d-free will imply that R is not intrinsically of c.e.
degree even if R is not formally d.c.e. We will use this in Theorem 4.17 of Chapter
4.

When stated in terms of degree spectra on a cone, our result is:

Proposition 3.4. Let A be a structure and R a relation on A. Then if, for
each tuple c̄, there is ā which is d-free over c̄, then the degree spectrum dgSprel(A,R)
on a cone strictly contains the c.e. degrees. Moreover, if R is formally d.c.e., then
this is a necessary condition.

The (relativizations of) the next two propositions prove the two directions of
this using the appropriate effectiveness conditions.

Proposition 3.5. Let R be a formally d.c.e. relation on a computable structure
A. Suppose that there is a tuple c̄ over which no ā is d-free. Assume that given
tuples ā and c̄, we can find witnesses b̄ and ϕ(c̄, ū, v̄) to the fact that ā is not d-
free over c̄ (and furthermore, given ā′ and b̄′ satisfying ϕ, find ψ(c̄, ū, v̄)) as in
the definition of d-freeness. Then for every computable copy B of A, RB is of c.e.
degree.

Proof. Let A and R be as in the statement of the proposition. We will assume
that R is unary. The proof when R is not unary uses exactly the same ideas, but
is a little more complicated as we cannot ask whether individual elements are or
are not in RB, but instead we must ask about tuples (including tuples which may
include elements of c̄). The translation of the proof to the case when R is not
unary requires no new ideas, and considering only unary relations will make the
proof much easier to understand.

Let c̄ ∈ A be such that no a ∉ R is d-free over c̄. We may omit any reference
to c̄ by assuming that it is in our language. Let B be a computable copy of A. We
must show that RB is of c.e. degree. We will use a, a′, b̄, b̄′, etc. for elements of A,
and d, e, etc. for elements of B.

We will begin by making some definitions, following which we will explain the
intuitive idea behind the proof. Finally, we will define two c.e. sets A and B such
that RB = A −B ≡T A⊕B.

Since there are no d-free elements, for each a ∉ R there is an existential formula
ϕa(u, v1, . . . , vna) and a tuple b̄a = ba1 , . . . , b

a
na such that

A ⊧ ϕa(a, b̄
a)

which witness the fact that a is not d-free.
Now let a ∉ R, a′ ∈ R, and b̄′ be such that

A ⊧ ϕa(a
′, b̄′).

16 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

By choice of ϕa and b̄a, there is an existential formula ψ(u, v̄) true of a′, b̄′ and
extending ϕa(u, v̄) such that for all a′′ and tuples b̄′′ = (b′′1 , . . . , b

′′
na) with

A ⊧ ψ(a′′, b̄′′),

if bk ∈ R⇔ b′′k ∈ R for all k then ā′′ ∈ R. Note that ψ depends only on a, a′, and b̄′

(as b̄a depends on a). Let ψa,a′,b̄′ be this formula ψ. We can find b̄a, ϕa, and ψa,a′,b̄
effectively using the hypothesis of the theorem.

Let R be defined by α(u) ∧¬β(u) with α(u) and β(u) being Σc
1 formulas with

finitely many parameters (which we may assume are included in our language).
We may assume that every solution of ∃v̄ψa,a′,b̄′(u, v̄) for every a, a′, and b̄′ is a
solution of α(u) by replacing each formula by its conjunction with α(u). Let αs(u)
and βs(u) be the finitary existential formulas which are the disjunctions of the
disjuncts enumerated in α(u) and β(u) respectively by stage s.

We can effectively enumerate the Σc
1 formulas which are true of elements of B.

At each stage s, we have a list of formulas which we have found to be true so far.
This is the partial existential diagram of B at stage s, which we denote by D∃,s(B).
We say that an element d ∈ B appears to be in RB at stage s if one of the disjuncts
of αs(d) is in D∃,s(B), and no disjunct of βs(d) is in D∃,s(B). Otherwise, we say
that d appears to be in ¬RB at stage s.

Now note that α defines a c.e. set Ã in B, and β defines a c.e. set B̃, and
RB = Ã − B̃. Then Ã ⊕ B̃ ≥T R

B. If in fact we had Ã ⊕ B̃ ≡T R
B, then RB would

be of c.e. degree. However, RB may not compute Ã ⊕ B̃ because it may not be
able to tell the difference between an element of B̃ and an element not in Ã. So we
will come up with appropriate sets A and B where RB can tell the difference, i.e.
RB ≥T A and RB ≥T B. We can always assume that B ⊆ A and hence B = A −RB,
so it suffices to show that RB ≥T A.

The set A will consist of the elements d ∈ B with the following property: for
some stages t > s,

(1) d appears to be in RB at stage s and at stage t, and
(2) for every a ∈ A with a ∉ R and ē = (e1, . . . , ena) ∈ B we have found at stage

s with the property that ϕa(d, ē) is in D∃,s(B), by stage t we have found
an a′ ∈ A and b̄′ ∈ A with ψa,a′,b̄′(d, ē) in D∃,t(B).

When we say that at stage s we have found a ∈ A and ē ∈ B, we mean that a comes
from the first s elements of A and ē from the first s elements of B.

Claim 3.5.1. RB ⊆ A and thus RB = A − (A −RB).

Proof. Let d be an element of RB. There is some stage s at which d appears
to be in RB and moreover, at any stage t > s, d still appears to be in RB. For any
a ∈ A and ē ∈ B with

B ⊧ ϕa(d, ē),

there are a′ ∈ A and b̄′ ∈ A with

B ⊧ ψa,a′,b̄′(d, ē).

If f ∶ A → B is any isomorphism, then a′ = f−1(d) and b̄′ = f−1(ē) are one possible
choice. This suffices to show that d ∈ A, and so RB ⊆ A.

The second part of the claim follows immediately. �

Claim 3.5.2. A and A −RB are c.e.

3.1. CONDITIONS TO BE INTRINSICALLY OF C.E. DEGREE 17

Proof. A is c.e. because to check whether d ∈ A, we search for s and t satisfying
the two conditions in the definition of A. For a given s and t, these two conditions
are computable to check.

A − RB is c.e. because it is just equal to the elements of A which satisfy the
formula β, as every element of A satisfies α. �

Claim 3.5.3. RB ≥T A.

Proof. Given d, we want to check (using RB as an oracle) whether d ∈ A.
First ask RB whether d ∈ RB. If the answer is yes, then we must have d ∈ A.

Otherwise, d ∉ RB. Now, since A is c.e., it suffices to show that checking
whether d is in its complement is also c.e. in RB. Suppose that at some stage s, d
has not yet been enumerated into A, and we find a ∈ A and ē ∈ B such that:

(1) d does not appear to be in RB at stage s,
(2) a and ē are from among the first s elements of A and B respectively,
(3) ϕa(d, ē) is in D∃,s(B), and
(4) the oracle RB tells us that ej ∈ R

B if and only if baj ∈ R.

We claim that d ∉ A. Suppose to the contrary that d ∈ A. Then there is a stage
s′ at which d appears to be in RB, and a stage t′ at which d enters A (i.e., s′ and
t′ are the s and t from the definition of A). Now at these two stages s′ and t′, d
appears to be in RB. Moreover, we know that at stage s, d has not yet entered A,
and so s < t′. Then we must have s < s′ since between stages s′ and t′, d appears to
be in RB, and this is not the case at stage s. Then there must be elements a′, b̄′ ∈ A
with ψa,a′,b̄′(d, ē) in D∃,t′(B). This is a contradiction, since by choice of ψa,a′b̄′ we

cannot have d ∉ RB and ej ∈ R
B⇔ bj ∈ R.

Now, since d ∉ RB, there exists some a and ē such that

B ⊧ ϕa(d, ē)

and ej ∈ R
B if and only if baj ∈ R. If f ∶ A → B is an isomorphism, a = f−1(d) and

ē = f(b̄a) are one possible choice for a and ē. Then one of two things must happen
first—either d is enumerated into A, or we find a and ē as above at some stage s
when a does not appear to be in RB and hence d is not in A. Since finding such a
and ē is a computable search, the complement of A is c.e. in RB. �

Now since RB ≥T A, RB ≥T A −RB. Thus RB ≥T A⊕ (A −RB). It is trivial to
see that A⊕ (A −RB) ≥ RB. Finally, A and A −RB are c.e. sets, and so their join
is of c.e. degree. Thus RB is of c.e. degree. �

For the second direction, we do not have to assume that R is formally d.c.e.
We will use this direction in Section 4.2 and in Chapter 5, and the style of the proof
will be a model for Propositions 3.11 and 3.13, and Theorem 4.17 later on.

Proposition 3.6. Let A be a computable structure and R a computable relation
on A. Suppose that for each c̄, there is ā ∉ R d-free over c̄. Also, suppose that for
each tuple c̄, we can effectively find a tuple ā which is d-free over c̄, and moreover we
can find ā′, b̄′, and ā′′ as in the definition of d-freeness. Then there is a computable
copy B of A such that RB is not of c.e. degree.

Proof. We will assume that R is a unary relation, and hence that for each c̄,
there is a ∉ R d-free over c̄. We begin by describing a few conventions. We denote
by X[0, . . . , n] the initial segment of X (written as a binary string) of X of length

18 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

n + 1; X[0, . . . , n] can be identified with the finite set of elements of X up to and
including n. We say that a computation ΦX = Y has use u if it takes fewer than u
steps and it only uses the oracle X[0, . . . , u].

The proof will be to construct a computable copy B of A which diagonalizes
against every possible Turing equivalence with a c.e. set. The construction will be
a finite-injury priority construction. We use the d-free elements to essentially run
a standard proof that there are d.c.e. degrees which are not c.e. degrees.

We will construct B with domain ω by giving at each stage s a tentative finite
isomorphism Fs ∶ ω → A. In the limit, we get F ∶ ω → A a bijection, and B is the
pullback along F of the structure on A. We will maintain values ae,i,j[s], ue,i,j[s],
te,i,j[s], and ve,i,j[s] which reference computations that have converged. See Figure
3.1 for a visual representation of what these values mean.

We will meet the following requirements:

Re,i,j: If Φi and Φj are total, then either RB ≠ ΦWe

i or We ≠ ΦR
B

j .
Si: The ith element of A is in the image of F .

Put a priority ordering on these requirements.
At each stage, each requirement Re,i,j will be in one of four states: initial-

ized, waiting-for-computation, waiting-for-change, or diagonalized. A
requirement will move through these four stages in order, and be satisfied when it
enters the state diagonalized. If it is injured, a requirement will return to the
state initialized.

We are now ready to describe the construction.

Construction.

At stage 0, let Fs = ∅ and for each e, i, j, let ae,i,j[0], ue,i,j[0], te,i,j[0], and
ve,i,j[0] be 0 (i.e., undefined).

At a stage s+1, let Fs ∶ {0, . . . , ξs} → A be the partial isomorphism determined
in the previous stage, and let Bs be the finite part of the diagram of B which has

ae,i,j

RB We

...

ve,i,j

ue,i,j

...

...

...

...
Φi

Φj

Figure 3.1. The values associated to a requirement for Proposi-
tion 3.6. An arrow shows a computation converging. The com-
putations use an oracle and compute some initial segment of their
target. The tail of the arrow shows the use of the computation,
and the head shows the length. So, for example, we will have
RB[0, . . . , ae,i,j] = ΦWe

i [0, . . . , ae,i,j] with use ue,i,j .

3.1. CONDITIONS TO BE INTRINSICALLY OF C.E. DEGREE 19

been determined so far. We have an approximation RBs to RB which we get by
taking k ∈ RBs if Fs(k) ∈ R.

We will deal with a single requirement—the highest priority requirement which
requires attention at stage s + 1. We say that a requirement Si requires attention
at stage s + 1 if the ith element of A is not in the image of Fs. If Si is the highest
priority requirement which requires attention, then let a be the ith element of A.
Let Fs+1 extend Fs with Fs+1(ξs +1) = a. Set ξs+1 = ξs +1. Injure each requirement
of lower priority.

The conditions for a requirementRe,i,j to require attention at stage s+1 depend
on the state of the requirement. Below, we will list for each possible state of Re,i,j ,
the conditions for Re,i,j to require attention, and the action that the requirement
takes if it is the highest priority requirement that requires attention.

Initialized: The requirement has been initialized, so ae,i,j[0], ue,i,j[0], te,i,j[0],
and ve,i,j[0] are all 0.

Requires attention: The requirement always requires attention.
Action: Choose a new element a of A which is d-free over the image of Fs.

Note that a ∉ R. Set Fs+1(ξs + 1) = a, ae,i,j[s + 1] = ξs, and ξs+1 = ξs + 1.
Waiting-for-computation: We have set ae,i,j , so we need to wait for the com-

putations (3.1) and (3.2) below to converge. Once they do, we can use
the fact that F (ae,i,j) = a ∉ R was chosen to be d-free to modify F so that
F (ae,i,j) ∈ R to break the computation (3.1).

Requires attention: The requirement requires attention if there is a compu-
tation

RBs[0, . . . , ae,i,j[s]] = Φ
We,s

i,s [0, . . . , ae,i,j[s]] (3.1)

with use u, and a computation

We,s[0, . . . , u] = ΦR
Bs

j,s [0, . . . , u] (3.2)

with use v.
Action: Set ue,i,j[s + 1] = u, te,i,j[s + 1] = s, and ve,i,j[s + 1] = v. Let

c̄ = (Fs(0), . . . , Fs(ae,i,j[s] − 1))

a = Fs(ae,i,j[s])

b̄ = (Fs(ae,i,j[s] + 1), . . . , Fs(ξs)).

Write c̄ = (c0, . . . , cae,i,j[s]−1) and b̄ = (bae,i,j[s]+1, . . . , bξs). We will have en-
sured during the construction that a is d-free over c̄. So we can find a′ ∈ R
and b̄′ such that c̄, a′, b̄′ satisfies the same quantifier-free formulas deter-
mined so far in Bs as c̄, a, b̄, and so that for any further existential formula
ψ(c̄, u, v̄) true of c̄, a′, b̄′, there are a′′ ∉ R and b̄′′ = (b′′ae,i,j[s]+1, . . . , b

′′
ξs
)

satisfying ψ and with b′′k ∈ R if and only if bk ∈ R. Define

Fs+1(k) = ck for 0 ≤ k < ae,i,j[s]

Fs+1(ae,i,j[s]) = a
′

Fs+1(k) = b
′
k for ae,i,j[s] < k ≤ ξs.

Set the state of this requirement to waiting-for-change. Each re-
quirement of lower priority has been injured. Reset the state of all such
requirements to initialized and set all of the corresponding values to 0.

20 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

Waiting-for-change: In the previous state, F was modified to break the com-
putation (3.1). If we are to have RB = ΦWe

i , then We must change below
the use of that computation. In this state, we wait for this to happen,
and then use the fact that a was chosen to be d-free in state initialized
to return RB to the way it was for the computation (3.2).

Requires attention: Let u = ue,i,j[s], v = ve,i,j[s] and t = te,i,j[s]. The re-
quirement requires attention if

We,s[0, . . . , u] ≠We,t[0, . . . , u].

Action: Let

c̄ = (Fs(0), . . . , Fs(ae,i,j[s] − 1))

a′ = Fs(ae,i,j[s])

b̄′ = (Fs(ae,i,j[s] + 1), . . . , Fs(v))

d̄′ = (Fs(v + 1), . . . , Fs(ξs))

As before, write c̄ = (c0, . . . , cae,i,j[s]−1), b̄
′ = (b′ae,i,j[s]+1, . . . , b

′
v), and d̄′ =

(d′v+1, . . . , d
′
ξs
). Now a′ was chosen in state waiting-for-computation.

So we can choose a′′ ∉ R, b̄′′ = (b′′ae,i,j[s]+1, . . . , b
′′
v), and d̄′′ = (d′′v+1, . . . , d

′′
ξs
)

such that c̄a′′b̄′′d̄′′ satisfies any formula determined by Bs to be satisfied
by c̄a′b̄′d̄′, and moreover b′′k ∈ R if and only if Ft(k) ∈ R (note that Ft(k)
is the value bk from state waiting-for-computation). Define

Fs+1(k) = ck for 0 ≤ k < ae,i,j[s]

Fs+1(ae,i,j[s]) = a
′′

Fs+1(k) = b
′′
k for ae,i,j[s] < k ≤ v

Fs+1(k) = d
′′
k for v < k ≤ ξs.

Then we will have

RBs+1[0, . . . , v] = RBt[0, . . . , v].

So

Φ
RBs+1
j [0, . . . , u] = Φ

RBt
j [0, . . . , u] =We,t[0, . . . , u] ≠We,s+1[0, . . . , u]

since the use of this computation at stage t was v. Set the state of this
requirement to diagonalized. Each requirement of lower priority has
been injured. Reset the state of all such requirements to initialized and
set all of the corresponding values to ∅.

Diagonalized: In this state, RB is the same as it was under the use v in the
computation (3.2) from state waiting-for-computation. By (3.2), if

we are to have We = ΦR
B

j , then We restricted to the elements 0, . . . , u must
be the same as it was then. But this cannot happen, because some such
element has entered We since then. So we have satisfied the requirement
Re,i,j .

Requires attention: The requirement never requires attention.
Action: None.

3.1. CONDITIONS TO BE INTRINSICALLY OF C.E. DEGREE 21

Set Bs+1 to be the atomic and negated atomic formulas true of 0, . . . , ξs+1 with
Gödel number at most s.

End construction.

Note that at any stage s, the ae,i,j are ordered by the priority of the correspond-
ing requirements. This is because if a requirement is injured, each lower priority
requirement is injured at the same time, and then new values of ae,i,j are defined
in order of priority. Moreover, if Re,i,j is of higher priority than Re′,i′,j′ and ve,i,j
is defined, then ae,i,j < ve,i,j < ae′,i′,j′ .

If Re,i,j is never injured after some stage s, then it only acts at most three
times—once in each of the stages initialized, waiting-for-computation, and
waiting-for-change, in that order—and it never moves backwards through the
states. A requirement Si acts only once if it is not injured. So every requirement
is injured only finitely many times.

It remains to show that every requirement is eventually satisfied. Suppose to
the contrary that some requirement is not satisfied. There must be some least such
requirement. First, suppose that it is a requirement Si. Then there is a stage s
after which each higher priority requirement never acts. Then at the next stage, Si
acts, and is never again injured. So Si is satisfied.

Now suppose that Re,i,j is the least requirement which is not satisfied, and let
s be a stage after which each higher priority requirement never acts. So Re,i,j is
never injured after the stage s. Also, since Re,i,j is not satisfied, we have

We = ΦR
B

j and RB = ΦWe

i .

If Re,i,j was in state initialized at stage s, then at a later stage, ae,i,j is
defined and the requirement enters stage waiting-for-computation. Eventually,
at a stage t, the following computations must converge:

RBt[0, . . . , ae,i,j] = Φ
We,t

i,t [0, . . . , ae,i,j] with use u (3.3)

We,t[0, . . . , u] = ΦR
Bt

j,t [0, . . . , u] with use v. (3.4)

Then Re,i,j requires attention at stage t + 1. We modify F to have F (ae,i,j) ∈ R,
breaking computation (3.3). Requirement Re,i,j also moves to state waiting-for-
change.

Since RB = ΦWe

i , eventually at some stage t′, We must change below the use u
of the computation (3.3). Then Re,i,j requires attention at stage t′ + 1. We modify
F by moving F (ae,i,j) back to ¬R and ensuring that

RBt′+1[0, . . . , v] = RBt[0, . . . , v].

But for every stage t′′ > t′ we have We,t′′[0, . . . , u] ≠We,t[0, . . . , u] since We is a c.e.
set and

We,t′[0, . . . , u] ≠We,t[0, . . . , u].

This, together with computation (3.4) contradicts the assumption that RB = ΦWe

i .
So every requirement is satisfied. �

In Proposition 3.5, we showed that a condition about the non-existence of free
elements is equivalent to a condition on the possible degrees of the relation RB in
computable copies B of A. In particular, we showed that the relation RB is Turing
equivalent to the join of c.e. sets. In, for example, the theorems of Ash and Nerode

22 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

[AN81] and Barker [Bar88] there are two parts: first, that a condition on the
existence of free tuples is equivalent to a condition on the possible computability-
theoretic properties of RB; and second, that a condition on the existence of free
tuples is equivalent to a syntactic condition on the relation R. In Propositions 3.5
and 3.6, we are missing this second syntactic part.

We might hope that there is a syntactic condition which is equivalent (under
some effectiveness conditions) to being intrinsically of c.e. degree. For example, one
candidate (and certainly a sufficient condition) would be that there are formally Σ0

1

sets A ⊇ R and B = A −R such that A is formally Σ0
1 and Π0

1 relative to R.
In the proof of Proposition 3.5, we found c.e. sets A and B in our particular

copy B of A such that RB = A−B and RB ≥T A. These c.e. sets were not necessarily
definable by Σ0

1 formulas, but instead depended on the enumeration of B. When
R was defined by α(x) ∧ ¬β(x), whether or not an element a ∉ RB which satisfied
both α(x) and β(x) was in A depended on the order in which we discovered certain
facts in B.

The following example should be taken as (very strong) evidence that we cannot
find an appropriate syntactic condition.

Example 3.7. Consider a structure as in Example 3.2, except that the con-
nected components are different. There are infinitely many copies of each of the
following five connected components, and no others:

0 0 1 0 1

0

@@

//

��

��

1 1

@@

//

��

��

1 // 0 2

@@

//

��

��

1 // 0 2

@@

//

��

��

1 2

@@

//

��

��

1

1 1 1 1 1

⋮ ⋮ ⋮ ⋮ ⋮

The formally d.c.e. relation R consists of the nodes which are labeled 1. Note that
the elements at the center of their connected component are definable in both a Σ0

1

and a Π0
1 way (in a Σ0

1 way as they are the only nodes of degree at least three, and
in a Π0

1 way because they are the unique such nodes in their connected components,
and so they are the only node which are not connected to some other node of degree
at least three). In particular, given a connected component, we can compute the
center.

Claim 3.7.1. R is relatively intrinsically of c.e. degree.

Proof. We will use Proposition 3.5.1 First, we claim that no tuple ā is d-free
over ∅. Since R is unary, it suffices to show that no single element a is d-free over
∅. If a is not in the center of its connected component, then there is an existential
formula ϕ(u) which witnesses this. If a′ ∈ R also satisfies ϕ(u), then ϕ(u)∧ψ(u) is
true of a′ where ψ(u) is the existential formula which says that u is labeled “1” or
“2”. Every solution of ϕ(u) ∧ψ(u) is in R. So a is not d-free over ∅. Now suppose
that a ∉ R is the center element of its connected component. If a is labeled “2”,
then it is not d-free over ∅. So suppose that a is labeled “0”. There is a b ∉ R which
is connected to a, and an existential formula ϕ(u, v) which says that u is the center

1This will also give us our first non-trivial application of Proposition 3.5.

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 23

element of its connected component and v is connected to u. Now if a′ ∈ R satisfies
(∃v)ϕ(u, v), then a′ also satisfies ψ(u) which says that there is a chain of length
two leading off of a′. Now suppose that a′′ ∉ R satisfies ψ(u) ∧ (∃v)ϕ(u, v). Let
b′′ be such that we have ψ(a′′, b′′). Now, since a′′ satisfies ψ(u), any such b′′ must
be labeled “1” and hence be in R. But we had b ∉ R. Thus a cannot have been
d-free. So there is no tuple ā which is d-free over ∅. The effectiveness conditions
of Proposition 3.5 are immediate, because everything we did above is computable.
Moreover, this relativizes. Thus R is relatively intrinsically of c.e. degree. �

Now we argue that there is no syntactic fact about R which explains this. Such
a syntactical fact should say that R is intercomputable with a join of formally Σ1

sets. So it should say something like: there is a join S of formally Σ1 sets which is
formally Π1(R), and R is formally Σ1(S) and Π1(S). We will show that there are
no non-trivial sets which are formally Σ0

1 and Π0
1(R).

Let A, B, C, D, and E be the sets of points which are at the center of connected
components of the first, second, third, fourth and fifth types respectively. It is not
hard to check that the formally Σ0

1 sets are:

(1) A ∪B ∪C ∪D ∪E,
(2) B ∪C ∪D ∪E,
(3) B ∪C,
(4) C ∪D ∪E, and
(5) C.

The formally Σ0
1(R) sets are those above, and in addition:

(1) B,
(2) A ∪D,
(3) A ∪B ∪D,
(4) A ∪C ∪D ∪E.

Every Σ1(R) set containing E also contains C and D. If a set X and its complement
X̄ are both Σ1(R) and one of them is Σ1, then one of them must contain E, and
hence C and D. Then the other must be contained within A ∪ B. The only
possibilities for X and X̄ are B and A∪C ∪D∪E, but neither of these are formally
Σ1.

So there are no formally Σ1 sets which are also formally Π1(R). Thus it seems
impossible to have a syntactic condition which is necessary and sufficient for a
relation to be intrinsically of c.e. degree.

3.2. Incomparable Degree Spectra of D.C.E. Degrees

In this section our goal is to prove the following theorem, which will yield
Theorem 1.6:

Theorem 3.8. There are structures A and M with relations R and S respec-
tively which are relatively intrinsically d.c.e. such that the degree spectra of R and
of S are incomparable even relative to every cone.

This is a surprising result which is interesting because it says that there is no
“fullness” result for d.c.e. degrees over the c.e. degrees, that is, no result that says
that any degree spectrum on a cone which strictly contains the c.e. degrees contains
all of the d.c.e. degrees. Also, it implies that the partial ordering of degree spectra

24 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

on a cone is not a linear order. The two structures A and M, and the relations R
and S, are as follows.

Example 3.9. Let A be two-sorted with sorts A1 and A2. The first sort A1 will
be the tree ω<ω with the relation “is a child of” and the root node distinguished.
The second sort A2 will be an infinite set with no relations. There will be a single
binary relation U of type A1 × A2. Every element of A2 will be related by U to
exactly one element of A1, and each element of A1 will be related to zero, one,
or two elements of A2. The only elements of A1 related to no elements of A2 are
those of the form 0n = 0 . . .0

²
n

. Any other element of the form σˆa is related to one

element of A2 if a is odd, and to two if a is even. The structure A consists of these
two sorts A1 and A2, the “is a child of” relation, the root of the tree, and U .

We say that an element of A1 is of type ⟨n⟩ (so possibly of type ⟨0⟩, type ⟨1⟩,
or type ⟨2⟩) if it is related by U to exactly n elements of A2. The relation R on A
is the set of elements of A1 which are related by U to exactly one element of A2,
that is, the elements of type ⟨1⟩.

Example 3.10. Let M be a three-sorted model with sorts M1, M2, and M3.
The sort M1 will be the tree ω<ω, however, instead of defining the tree with the
relation “is a child of,” the tree will be given as a partial order. We will have a
relation V of type M1 ×M2 which is defined in the same way as U , except with M1

replacing A1 and M2 replacing A2. There will be another relation W on M1 ×M3

such that each element of M3 is related by W to exactly one element of M1, and
each element of M1 is related to either no elements or one element of M3. An
element of M1 will be related (via W) to an element of M3 exactly if its last entry
is odd, but it is not of the form 0nˆ1.

Once again, we give elements of M1 a “type”. We say that an element of M1

is of type ⟨n,m⟩ if it is related by V to exactly n elements of M2 and by W to
exactly m elements of M3. The possible types of elements are ⟨0,0⟩, ⟨1,0⟩, ⟨1,1⟩,
and ⟨2,0⟩. The relation S onM will be defined in the same way as R, but again A1

is replaced by M1 and A2 by M2; so S consists of the elements of types ⟨1,0⟩ and
⟨1,1⟩. Note that every element of B which is in S, except for those of the form 0n1,
is of type ⟨1,1⟩, and hence satisfies an existential formula which is only satisfied by
elements of S.

Both examples have d-free elements over any tuple c̄; these elements are of the
form 0n for n large enough that no children of 0n appear in c̄ (i.e., the elements of
type ⟨0⟩ in A or type ⟨0,0⟩ inM). In either structure, any existential formula (over
c̄) satisfied by 0n is also satisfied by 0n−11, and any existential formula satisfied by
0n−11 is also satisfied by 0n−1b for b even. Moreover, the relation R (or S) on
the subtrees of 0n and 0n−1b is the same under the natural identification. Both
structures satisfy the effectiveness condition from Proposition 3.6, so for all degrees
d, dgSp(A,R)≤d strictly contains Σ0

1(d).
Note that in A, there is an existential formula ϕ(u) which says that u is of

type ⟨2⟩, and an existential formula ψ(u) which says that u is of type ⟨1⟩ or of type
⟨2⟩ (i.e., of type ⟨n⟩ with n ≥ 1). Similarly, in M, for each n0 and m0 there are
existential formulas which say that an element u is of type ⟨n,m⟩ with n ≥ n0 and
m ≥m0.

We begin by proving in Proposition 3.11 that there is a Turing degree in the
(unrelativized) degree spectrum of S which is not in the degree spectrum of R before

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 25

proving in Proposition 3.13 that there is a Turing degree in the degree spectrum
of R which is not in the degree spectrum of S. After each proposition, we give the
relativized version.

Proposition 3.11. There is a computable copy N of M such that no com-
putable copy B of A has SN ≡T R

B.

Proof. The proof will be very similar to that of Proposition 3.6, though it
will not be as easy to diagonalize as both structures have d-free elements. We will
construct N with domain ω by giving at each stage a tentative finite isomorphism
Fs ∶ ω →M. F = limFs will be a bijection, giving N as an isomorphic copy.

We need to diagonalize against computable copies of A. Given a computable
function Φe, we can try to interpret Φe as giving the diagram of a computable
structure Be isomorphic to A. At each stage, we get a finite substructure Be,s which
is isomorphic to a finite substructure of A by running Φe up to stage s, and letting
Be,s be the greatest initial segment on which all of the relations are completely
determined and which is isomorphic to a finite substructure of A (because A is
relatively simple, this can be checked computably). Let Be be the union of the
Be,s. If Φe is total and gives the diagram of a structure isomorphic to A, then Be
is that structure. Otherwise, Be will be some other, possibly finite, structure. For
elements of Be,s, we also have an approximation of their type in Be, by looking at
how many elements of the second sort they are connected to in Be,s. By further
reducing the domain of Be,s, we may assume that Be,s has the following property
since A does: all of the elements of Be,s which are of type ⟨0⟩ in Be,s are linearly
ordered.

We will meet the following requirements:

Re,i,j: If Be is isomorphic toA, and ΦR
Be

i and ΦS
N

j are total, then either SN ≠ ΦR
Be

i

or RBe ≠ ΦS
N

j .
Si: The ith element of M is in the image of F .

Note that the d-free elements of both structures are linearly ordered. Suppose
that in A, p ∉ R is d-free (so p = 0` for some `), and q ∉ R is d-free over p and
in the subtree below p. Then, using the fact that p is d-free, we can replace it
by p′ ∈ R (replacing q by q′) while maintaining any existential formula, and then
we can replace p′ by p′′ ∉ R (and q′ by q′′). However, q′′ will no longer be d-free,
because it will not be of the form 0k. The same is true inM. This is what we will
exploit for both this proof and the proof of the next proposition.

The way we will meet Re,i,j will be to put a d-free element x ∉ S into N . If
there is no p in Be,s which is d-free, we would be able to diagonalize by moving
x to x′ ∈ S, and then later to x′′ ∉ S and using appropriate computations as in
Proposition 3.6. So we may assume that there is p in Be,s which is d-free. Now if
Be is an isomorphic copy of A, we will eventually find a chain p0, p1, . . . , pn = p from
the root node p0 to p, where pi+1 is a child of pi. Then in A every d-free element
aside from p0, . . . , pn = p is in the subtree below p.

In N , we just have to respect the tree-order, so no matter how much of the
diagram of N we have built so far, we can always add a new d-free element y such
that x is in the subtree below y. Then we will use the fact described above about
d-free elements which are in the subtree below another d-free element. By moving
x to x′ ∈ S and then to x′′ ∉ S, we can force p to move to p′ ∈ R and then p′′ ∉ R.
Then, by moving y to y′ ∈ S and then y′′ ∉ S, we can diagonalize as Be will have

26 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

ae,i,j

SN RBe

ve,i,j

ue,i,j

me,i,j

...

be,i,j

...

νe,i,j

µe,i,j

...

...

...

...

...

...
Φi

Φj

Figure 3.2. The values associated to a requirement for Proposi-
tion 3.11. An arrow shows a computation converging. The com-
putations use an oracle and compute some initial segment of their
target. The tail of the arrow shows the use of the computation,
and the head shows the length.

no d-free elements which it can use: all of the d-free elements which were below p
have now been moved to be below p′′ are are no longer d-free. We could still move
y to y′ and then y′′ as x was in the subtree below y rather than vice versa. As in
Proposition 3.6, we will use various computations to force Be to follow Ne.

The requirement Re,i,j will have associated to it at each stage s values ae,i,j[s],
ue,i,j[s], ve,i,j[s], me,i,j[s], and te,i,j[s], and be,i,j[s], µe,i,j[s], νe,i,j[s], and τe,i,j[s].
These values will never be redefined, but may be canceled. When a requirement
is injured, its corresponding values will be canceled. Figure 3.2 shows how these
values are related.

At each stage, each of the requirements Re,i,j will be in one of the following
states: initialized, waiting-for-first-computation, waiting-for-second-
computation, waiting-for-first-change, waiting-for-second-change, waiting-
for-third-change, or diagonalized. Every requirement will move through
these linearly in that order.

We are now ready to describe the construction.

Construction.

At stage 0, let Fs = ∅ and for each e, i, and j let ae,i,j[0], ue,i,j[0], and so on
be 0 (i.e., undefined).

At a stage s+1, let Fs ∶ {0, . . . , ξs} →M be the partial isomorphism determined
in the previous stage, and let D(Ns) be the finite part of the diagram of N which
has been determined so far. We have an approximation SNs to SN which we get
by taking k ∈ SNs if Fs(k) ∈ S. For each e, we have a guess RBes at RBe using the

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 27

diagram of the finite structure Be,s, given by x ∈ RBes if and only if in Be,s, x is of
type ⟨1⟩ (i.e., related by UBe,s to exactly one element of the second sort).

We will deal with a single requirement—the highest priority requirement which
requires attention at stage s + 1. A requirement Si requires attention at stage s + 1
if the ith element of A is not in the image of Fs. If Si is the highest priority
requirement which requires attention, then let c be the ith element of A. Let Fs+1

extend Fs with c in its image. Injure each requirement of lower priority.
The conditions for a requirementRe,i,j to require attention at stage s+1 depend

on the state of the requirement. Below, we will list for each possible state of Re,i,j ,
the conditions for Re,i,j to require attention, and the action that the requirement
takes if it is the highest priority requirement that requires attention. We will
also loosely describe what is happening in the construction, but a more rigorous
verification will follow.

Initialized: The requirement has been initialized, so ae,i,j[0], ue,i,j[0], and so on
are all 0.

Requires attention: The requirement always requires attention.
Action: Let Fs+1 extend Fs by adding to its image the element 0`, where `

is large enough that 0` has no children in ran(Fs). Then 0` is d-free over
ran(Fs). Let ae,i,j[s+ 1] be such that Fs+1(ae,i,j[s + 1]) = 0`. Change the
state to waiting-for-first-computation.

Waiting-for-first-computation: We have set F (ae,i,j) = 0` ∉ R a d-free ele-
ment. We wait for the computations (3.5) and (3.6) below. Then, we use
the fact that M is given using the tree-order to insert an element be,i,j
in N above ae,i,j (so that now the image of be,i,j under F is 0` and the

image of ae,i,j under F is 0`+1).

Requires attention: The requirement requires attention if:
(1) there is a computation

SNs [0, . . . , ae,i,j[s]] = Φ
RBes
i,s [0, . . . , ae,i,j[s]] (3.5)

with use u < s,
(2) each element p of the first sort in Be,s, with p ≤ u, is part of a chain

p0, p1, . . . , pn = p in Be,s where p0 is the root node and pi+1 is a child
of pi, and

(3) there is a computation

RBes [0, . . . ,m] = Φ
SNs
j,s [0, . . . ,m] (3.6)

with use v < s where m ≥ u is larger than each pi above.
Action: Set ue,i,j[s+1] = u, ve,i,j[s+1] = v, me,i,j[s+1] =m, and te,i,j[s+1] =

s. Let a = ae,i,j[s]. We have Fs(a) = 0`, where ` is large enough that no

child of 0` appears earlier in the image of Fs. Set

Fs+1(w) =

⎧⎪⎪
⎨
⎪⎪⎩

0`+1σ Fs(w) = 0`σ

Fs(w) otherwise
.

What we have done is taken every element of N which was mapped to
the subtree below 0`, and moved it to the subtree below 0`+1. Now let
b = be,i,j[s+1] be the first element on which Fs+1 is not yet defined and set

Fs+1(b) = 0`. So Fs+1(b) is the parent of Fs+1(a). Any existential formula

28 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

which was true of the tree below 0` is also true of the tree below 0`+1.
Also, for w ∈ dom(Fs), Fs(w) ∈ R if and only if Fs+1(w) ∈ R. Change the
state to waiting-for-second-computation.

Waiting-for-second-computation: In the previous state we defined be,i,j , so
now we have to wait for the computations (3.7) and (3.8) below involving
it. Then we modify F so that it now looks like ae,i,j ∈ S, breaking the
computation (3.5) above.

Requires attention: The requirement requires attention if there are computa-
tions

SNs [0, . . . , be,i,j[s]] = Φ
RBes
i,s [0, . . . , be,i,j[s]] (3.7)

with use µ < s, and

RBes [0, . . . , µ] = Φ
SNs
j,s [0, . . . , µ] (3.8)

with use ν < s.
Action: Set µe,i,j[s + 1] = µ, νe,i,j[s + 1] = ν, and τe,i,j[s + 1] = s. Let a =

ae,i,j[s] and b = be,i,j[s]. We have Fs(a) = 0`+1 and Fs(b) = 0`, where `

is large enough that no child of 0` appears before a in the image of Fs.
Choose x odd and larger than any number we have encountered so far,
and define Fs+1 by

Fs+1(w) =

⎧⎪⎪
⎨
⎪⎪⎩

0`xˆσ Fs(w) = 0`+1ˆσ

Fs(w) otherwise
.

What we have done is taken every element of N which was mapped to
the subtree below 0`+1, and moved it to the subtree below 0`x. Note that
Fs+1(b) = Fs(b) and for w < a, Fs(w) = Fs+1(w). Any existential formula
which was true of the tree below 0` is also true of the tree below 0`x
(but not vice versa, since 0`x is of type ⟨1⟩ but 0`+1 is of type ⟨0⟩). Also,
for w ∈ dom(Fs), Fs(w) ∈ S if and only if Fs+1(w) ∈ S with the single
exception of w = a. In that case, Fs(a) ∉ S and Fs+1(a) ∈ S. Change to
state waiting-for-first-change.

Waiting-for-first-change: In the previous state, we modified F to break the

computation (3.5). If we are to have SN = ΦR
Be

i , then RBe must change
below its use ue,i,j . So some element of Be which was previously of type
⟨0⟩ becomes of type ⟨1⟩, or some element which was previously of type ⟨1⟩
becomes of type ⟨2⟩. When this happens, we modify F (by changing the
image of ae,i,j again) so that SN becomes the same as it was originally
(below ν).

Requires attention: The requirement requires attention if

RBes [0, . . . , ue,i,j[s]] ≠ R
Be
te,i,j[s][0, . . . , ue,i,j[s]].

Action: Let a = ae,i,j[s] and b = be,i,j[s]. We have Fs(a) = 0`x, where x is
odd. Choose y > 0 even and larger than any number we have encountered
so far, and define Fs+1 by

Fs+1(w) =

⎧⎪⎪
⎨
⎪⎪⎩

0`yˆσ Fs(w) = 0`xˆσ

Fs(w) otherwise
.

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 29

This is moving the subtree below 0`x to the subtree below 0`y. Once
again, Fs+1(b) = Fs(b) = 0`. For w ∈ dom(Fs), w ≠ a, we have Fs(w) ∈ S
if and only if Fs+1(w) ∈ S. For w = a, we have Fs(a) ∈ S and Fs+1(a) ∉ S.
Change the state to waiting-for-second-change.

Waiting-for-second-change: In the previous state, we modified F so that SN

is the same as it was previously in state waiting-for-first-computa-
tion. By the computation (3.6), RBe must return, below the use ue,i,j ,
to the way it was previously (i.e., as it was when the computation (3.6)
was found). It must be that the element from state waiting-for-first-
change which changed its type then (from type ⟨0⟩ to type ⟨1⟩ or from
type ⟨1⟩ to type ⟨2⟩) must now change its type again, and so it must have
gone from type ⟨0⟩ to type ⟨1⟩ and now changes from type ⟨1⟩ to type ⟨2⟩.
Call this element p. When this happens, we modify F so that be,i,j looks
like it is in SN . We can do this because so far we have only modified the
image of ae,i,j , and ae,i,j was in the subtree below be,i,j . This breaks the
computation (3.7).

Requires attention: The requirement requires attention if

RBes [0, . . . , µe,i,j[s]] = R
Be
te,i,j[s][0, . . . , µe,i,j[s]].

and also, each of the elements me,i,j[s] + 1, . . . , µe,i,j[s] is of type ⟨1⟩ or
type ⟨2⟩.

Action: Let b = be,i,j[s]. We have Fs(b) = 0`. Choose x > 0 odd and larger
than any number we have encountered so far, and define Fs+1 by

Fs+1(w) =

⎧⎪⎪
⎨
⎪⎪⎩

0`−1xˆσ Fs(w) = 0`ˆσ

Fs(w) otherwise
.

This is moving the subtree below 0` to the subtree below 0`−1x. For
w ∈ dom(Fs), w ≠ b, we have Fs(w) ∈ S if and only if Fs+1(w) ∈ S. For
w = b, we have Fs(b) ∉ S and Fs+1(b) ∈ S. Change the state to waiting-
for-third-change.

Waiting-for-third-change: In the previous state, we broke the computation

(3.7). If we are to have SN = ΦR
Be

i , then RBe must change below the
use µ of this computation. But since SN [0, . . . , v] is the same as it was
before, by the computation (3.6), RBe[0, . . . , u] cannot change. So RBe
must change on one of the elements u + 1, . . . , µ. Let p be the element we
described in the previous state. By (2) from state waiting-for-first-
computation, the only elements from among u+1, . . . , µ in Be which can
be of type ⟨0⟩ are in the subtree below p. So when, in state waiting-for-
first-change, p becomes of type ⟨1⟩, each of the elements in the subtree
below p becomes of type ⟨1⟩ or type ⟨2⟩. So now, when RBe changes on
one of the elements u + 1, . . . , µ, it does so by some such element which
was of type ⟨1⟩ becoming of type ⟨2⟩. Now modify F so that SN looks
the same as it did originally (below ν).

Requires attention: The requirement requires attention if

RBes [0, . . . , µe,i,j[s]] ≠ R
Be
τe,i,j[s][0, . . . , µe,i,j[s]].

30 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

Action: Let b = be,i,j[s]. We have Fs(b) = 0`−1x. Choose y > 0 even and larger
than any number we have encountered so far, and define Fs+1 by

Fs+1(w) =

⎧⎪⎪
⎨
⎪⎪⎩

0`−1yˆσ Fs(w) = 0`−1xˆσ

Fs(w) otherwise
.

This is moving the subtree below 0`−1x to the subtree below 0`−1y. For
w ∈ dom(Fs), w ≠ b, we have Fs(w) ∈ S if and only if Fs+1(w) ∈ S.
For w = b, we have Fs(b) ∈ S and Fs+1(b) ∉ S. Change the state to
diagonalized.

Diagonalized: In the previous state, we made sure that one of the elements u +
1, . . . , µ of Be which previously looked like it was in RBe is now not in
RBe , so that that element is now of type ⟨2⟩ and hence must be in RBe .
We also modified F so that SN is the same as it was in state initialized
(below ν). Then, by computation (3.8), we cannot have RBe = ΦS

N

j . So
we have satisfied Re,i,j .

Requires attention: The requirement never requires attention.
Action: None.

When a requirement of higher priority than Re,i,j acts, Re,i,j is injured. When
this happens, Re,i,j is returned to state initialized and its values ae,i,j , ue,i,j , etc.
are set to 0. Now injure all requirements of lower priority than the one that acted.
Set D(Ns+1) to be the pullback along Fs+1 of the atomic and negated atomic
formulas true of ran(Fs+1) with Gödel number at most s.

End construction.

If Re,i,j is never injured after some stage s, then it acts at most once at each
stage, and it never moves backwards through the states. A requirement Si only
acts once if it is not injured. So every requirement is injured only finitely many
times.

Now we will show that each requirement is satisfied. Each requirement Si is
satisfied, because there is a stage s after which each higher priority requirement
never acts, and then at the next stage, Si acts if it is not already satisfied, and is
never again injured.

Now suppose that Re,i,j is the least requirement which is not satisfied, and let
s be the last stage at which it is injured (or s = 0 if it is never injured). So Re,i,j is
never injured after the stage s. Also, since Re,i,j is not satisfied, Be is isomorphic

to A, SN = ΦR
Be

i , and RBe = ΦS
N

j .
SinceRe,i,j was just injured at stage s, it in state initialized, and so it requires

attention at stage s1 = s + 1. Then we define a such that Fs1+1(a) ∉ S and change
to state waiting-for-first-computation.

Since SN = ΦR
Be

i , RBe = ΦS
N

j , and Be is isomorphic to A, at some stage t > s1,
Re,i,j will require attention. Thus we get u, m, and v such that

SNt [0, . . . , a] = Φ
RBet
i,t [0, . . . , a] (3.9)

with use u <m,

RBet [0, . . . ,m] = Φ
SNt
j,t [0, . . . ,m] (3.10)

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 31

with use v, each element p from among 0, . . . , u in Be has a chain in Be,t from the
root node to itself, and these chains are in {0, . . . ,m}. We define b >m and Ft+1 such
that Ft+1(b) ∉ S. Then we change to state waiting-for-second-computation.

Once again, using the fact that RBe = ΦS
N

i and SN = ΦR
Be

j , at some stage τ > t,
we will have

SNτ [0, . . . , b] = Φ
RBeτ
i,τ [0, . . . , b] (3.11)

with use µ and

RBeτ [0, . . . , µ] = Φ
SNτ
j,τ [0, . . . , µ] (3.12)

with use ν. Note that (3.11) implies that

RBeτ [0, . . . , u] = RBet [0, . . . , u]. (3.13)

Then Re,i,j requires attention at stage τ + 1. We define Fτ+1 so that Fτ+1(a) ∈ S.
Then we have

SNτ+1[0, . . . , u] ≠ S
N
τ [0, . . . , u] (3.14)

The state is changed to waiting-for-first-change.

Now by (3.11), (3.14), and the fact that SN = ΦR
Be

i , at some stage s1 > τ , we
have

RBes1 [0, . . . , u] ≠ RBet [0, . . . , u] = RBeτ [0, . . . , u] (3.15)

and so Re,i,j requires attention at stage s1 + 1. Fs1+1 is defined such that

SNs1+1[0, . . . , ν] = S
N
τ [0, . . . , ν]. (3.16)

Then the state is changed to waiting-for-second-change.

Since RBe = ΦS
N

j and using (3.12) and (3.16), at some stage s > s1, we have

RBes [0, . . . , µ] = RBeτ [0, . . . , µ]. (3.17)

Now by (3.15) and (3.17), there must be some p ∈ {0, . . . , u} such that p ∉ RBeτ ,
p ∈ RBes1 , and p ∉ RBes . Then in Be,s, p must be of type ⟨2⟩. All of the elements of
Be from {m + 1, . . . , µ} which looked like they were of type ⟨0⟩ at stage t were in
the subtree below p, so there is a stage s′ > s at which each of them is of type ⟨1⟩
or type ⟨2⟩. Then, at some stage s2 > s

′, we still have

RBes2 [0, . . . , µ] = RBeτ [0, . . . , µ].

So Re,i,j requires attention at stage s2 + 1. Fs2+1 is defined so that Fs2+1(b) ∈ S.
The state is changed to waiting-for-third-change.

Since we had Fs2(b) ∉ S,

SNs2+1[0, . . . , v] = S
N
τ [0, . . . , v] = SNt [0, . . . , v].

So by (3.10) and (3.11) and since RBe = ΦS
N

j , at some stage s3 > s2, we have

RBes3 [0, . . . , µ] ≠ RBeτ [0, . . . , µ]

but
RBes3 [0, . . . ,m] = RBeτ [0, . . . ,m]

so that
RBes3 [m + 1, . . . , µ] ≠ RBeτ [m + 1, . . . , µ]

So Re,i,j requires attention. Fs3+1 is defined so that

SNs3+1[0, . . . , µ] = S
N
τ [0, . . . , µ].

The state is changed to diagonalized.

32 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

Since RBe = ΦS
N

j , at some stage s4 > s3, by (3.12), we have

RBes4 [0, . . . , µ] = RBeτ [0, . . . , µ].

Then in Be, there must be q ∈ {m + 1, . . . , µ} such that Fs2(q) ∉ R, Fs3(q) ∈ R,
and Fs4(q) ∉ R. Then in Be,s2 at stage s2, q must have looked like it was of type
⟨0⟩. We have already established that all of the elements in {m + 1, . . . , µ} were of
type ⟨1⟩ or of type ⟨2⟩. This is a contradiction. Hence all of the requirements are
satisfied. �

The proposition relativizes as follows:

Corollary 3.12. For every degree d, there is a copy N of M with N ≤T d
such that no copy B of A with B ≤T d has SN ⊕ d ≡T R

B ⊕ d.

Now we have the proposition in the other direction, in the unrelativized form:

Proposition 3.13. There is a computable copy B of A such that no computable
copy N of M has RB ≡T SN .

Proof. We will construct a computable copy B of A with domain ω. We will
diagonalize against every possible Turing equivalence with a computable copy N
of M. We will build B with an infinite injury construction using subrequirements,
where each subrequirement is injured only finitely many times.

We will construct B by giving at each stage a tentative finite isomorphism
Fs ∶ ω → A. F = limFs will be a bijection, giving B as an isomorphic copy.
The proof will be very similar in style to the proofs of Propositions 3.6 and 3.11,
but there are some significant complications. In particular, we have to introduce
subrequirements.

We need to diagonalize against computable copies of M. As in the previous
proposition, given a computable function Φe, we can try to interpret Φe as giving
the diagram of a computable structure Ne isomorphic to M. At each stage, we
get a finite substructure Ne,s isomorphic to a substructure of M. If Φe is total
and gives the diagram of a structure isomorphic to M, then Ne = ⋃Ne,s is that
structure. Otherwise, Ne will be some structure which may be finite and may or
may not be isomorphic toM. Also, recall that elements of Ne,s have a type which
approximates their type in Ne, and that we can assume that our approximation
Ne,s has the the following property: all of the elements of Ne,s which are of type
⟨0,0⟩ in Ne,s are linearly ordered.

We will meet the following requirements:

Re,i,j: If Ne is isomorphic to M, and ΦS
Ne

i and ΦR
B

j are total, then either RB ≠

ΦS
Ne

i or SNe ≠ ΦR
B

j .
Si: The ith element of A is in the image of F .

The strategy for satisfying a requirement Re,i,j is as follows. The requirement
Re,i,j will have, associated to it at each stage s, values ae,i,j[s], ue,i,j[s], ve,i,j[s],
and te,i,j[s]. Also, for each n, there will be values bne,i,j[s], µ

n
e,i,j[s], ν

n
e,i,j[s], and

τne,i,j[s]. See Figure 3.3 for a depiction of what these values mean. If Re,i,j is not
satisfied, then Ne will be isomorphic to M, and we will have

RB = ΦS
Ne

i and SNe = ΦR
B

j .

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 33

Thus given, for example, a value for ae,i,j , there will be some ue,i,j such that

RB[0, . . . , ae,i,j] = ΦS
Ne

j [0, . . . , ae,i,j]

with use ue,i,j . In the overview of the proof which follows below, we will just
assume that these values (and the corresponding computations) always exist, since
otherwise Re,i,j is trivially satisfied. We also write a for ae,i,j etc.

We begin by mapping ae,i,j in B to the d-free element 0` in A. Because of the
computation

RB[0, . . . , ae,i,j] = ΦS
Ne

j ,

there must be at least one element in Ne below the use ue,i,j of this computation
which still looks like it could be d-free in Ne, i.e. of type ⟨0,0⟩. If not, we could
modify F to map ae,i,j to 0`−1x where x is odd (so that F (ae,i,j) ∈ R) and then

later modify it again to map ae,i,j to 0`−1y where y is even (and so F (ae,i,j) ∉ R)
to immediately diagonalize against the computation above (while maintaining, as
usual, any existential formulas). So one of the elements 0, . . . , ue,i,j of Ne must look
like an element of the form 0m, i.e., be of type ⟨0,0⟩. All of the elements in M of

ae,i,j

RB SNe

...

ve,i,j

b1e,i,j

ue,i,j

µ1
e,i,j

ν1e,i,j

b2e,i,j

...

...

...

ν2e,i,j

b3e,i,j

...
µ2
e,i,j

...

...

...

...
Φi

Φj

Figure 3.3. The values associated to a requirement for Propo-
sition 3.13. An arrow shows a computation converging. The
computations use an oracle and compute some initial segment of
their target. The tail of the arrow shows the use of the computa-
tion, and the head shows the length of the output. For example,

RB[0, . . . , ae,i,j] = ΦS
Ne

j with use ue,i,j .

34 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

the form 0m (i.e., of type ⟨0,0⟩) are linearly ordered; if Ne is isomorphic toM, the
same is true in Ne. Let p be the element from 0, . . . , ue,i,j which is of type ⟨0,0⟩
and which is furthest from the root node of all such elements.

Now map b1e,i,j ∈ B, a new element of the domain, to an element of the form

0`11 ∈ A where `1 ≥ `. We claim that one of the elements ue,i,j + 1, . . . , µ1
e,i,j of Ne

has to be:

(i) not in the subtree below p and
(ii) of type ⟨0,0⟩ or type ⟨1,0⟩.

Otherwise, we will be able to diagonalize to satisfy the requirement Re,i,j in the

following way. First, modify F to map ae,i,j to 0`−1x where x is odd and then to

0`−1y where y is even. Then b1e,i,j is now mapped to an element of the form ρ1 for
some ρ. This will force p, or some other element between p in the root node, to
enter SNe and then leave SNe . Then p must be look like an element of the form
0mz for z even, or τz where τ is not of the form 0m. In either case, by assumption
each of the elements ue,i,j + 1, . . . , µ1

e,i,j of Ne must now either be of type ⟨1,1⟩ or

type ⟨2,0⟩ (if one of these elements was not before, then it is now as it was in the
subtree below p and p is not of type ⟨0,0⟩). So all of these elements satisfy some
existential formula which forces them to be in SNe (if they are of type ⟨1,1⟩) or
which forces them out of SNe (if they are of type ⟨2,0⟩). Recall that F is now
mapping b1e,i,j to ρ1 for some ρ. We also have the computations

RB[0, . . . , b1e,i,j] = ΦS
Ne

j [0, . . . , b1e,i,j]

with use µ1
e,i,j and

SNe[0, . . . , ue,i,j] = ΦR
B

i [0, . . . , ue,i,j]

with use ve,i,j . So by now modifying F to map b1e,i,j to an element of the form ρz

for z even, we now have b1e,i,j ∉ R
B. We break the first computation, causing SNe

to change below the use µ1
e,i,j . Because the use ve,i,j of the second computation is

less than b1e,i,j , R
B has not changed on the use of the second computation. So SNe

must stay the same on the elements 0, . . . , ue,i,j . Thus SNe must change on the
elements ue,i,j + 1, . . . , µe,i,j . But this cannot happen as remarked before. Thus we
have diagonalized and satisfied Re,i,j .

Thus, if we cannot diagonalize to satisfy Re,i,j in this way, one of the elements
ue,i,j + 1, . . . , µ1

e,i,j of Ne satisfies (i) and (ii) above. Choose one such element,

and call it q1. Defining b2e,i,j , b
3
e,i,j , and so on in the same way, we get q2, q3,

and so on. Thus we find, in Ne, infinitely many elements satisfying (i) and (ii).
But if Ne is isomorphic to M, there can only be finitely many such elements: if
p is the isomorphic image of 0m, then the only elements satisfying (i) and (ii)

are the isomorphic images of 0m
′

and 0m
′
1 for m′ < m. Thus we force Ne to be

non-isomorphic to M and satisfy Re,i,j in that way.
The requirement Re,i,j will have subrequirements Rne,i,j for n ≥ 1. The main

requirement will choose a, while each subrequirement will choose bn. A subrequire-
ment will act only when all of the previous requirements have chosen their values bn.
The main requirementRe,i,j will monitor Ne to see whether it has given us elements
p and qn, and if not, it can attempt to diagonalize. Either the parent requirement
Re,i,j will at some point diagonalize and be satisfied, or each subrequirement will
be satisfied guaranteeing that Ne is not isomorphic to M.

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 35

Because the subrequirements use infinitely many values bn, we need to assign
the subrequirements a lower priority than the main requirement in order to give
the other requirements a chance to act. Re,i,j will be of higher priority than its
subrequirements Rne,i,j , and the subrequirements will be of decreasing priority as
n increases. The subrequirements will be interleaved in this ordering, so that, for
example, the ordering might begin (from highest priority to lowest priority):

Re1,i1,j1 > R
1
e1,i1,j1 > Re2,i2,j2 > R

2
e1,i1,j1 > R

1
e2,i2,j2 > R

3
e1,i1,j1 > ⋯.

The requirement Re,i,j will have, associated to it at each stage s, the values
ae,i,j[s], ue,i,j[s], ve,i,j[s], and te,i,j[s]. A subrequirement Rne,i,j will be associated

with the values bne,i,j[s], µ
n
e,i,j[s], ν

n
e,i,j[s], and τne,i,j[s]. These values will never be

redefined, but may be canceled. When a requirement is injured, its corresponding
values will be canceled, with one exception. If Re,i,j finds an opportunity to diago-
nalize using bne,i,j[s], then it will protect the values bne,i,j[s], µ

n
e,i,j[s], ν

n
e,i,j[s], and

τne,i,j[s] using its own priority.
At each stage, each requirement Re,i,j will be in one of the following states: ini-

tialized, waiting-for-computation, next-subrequirement, waiting-for-
change, diagonalized, waiting-for-first-change-n, waiting-for-second-
change-n, or diagonalized-n. The requirement will move through these in the
following order (where, at the branch, the requirement will move along either the
left branch or the right branch, and if it moves along the right branch it does so
for some specific value of n):

initialized
��

waiting-for-computation

��
next-subrequirement

}} %%
waiting-for-change

��

waiting-for-first-change-n
��

diagonalized waiting-for-second-change-n
��

diagonalized-n

When the requirement is in state next-subrequirement, the subrequire-
ments will begin acting. The requirement will then monitor them for a chance
to diagonalize. There are two ways in which the requirement can diagonalize, ei-
ther by going to state waiting-for-change if the element p described above does
not exist, or waiting-for-first-change-n if some element qn described above
does not exist. Recall that in the second case, the values bne,i,j , µ

n
e,i,j , ν

n
e,i,j , and

τne,i,j are protected by the requirement Re,i,j at its priority.
Each subrequirementRne,i,j will be in one of three states: initialized, waiting-

for-computation, or next-subrequirement. The subrequirement will move
through these states in order. When one subrequirement is in state next-subre-
quirement, it has finished acting and the next one can begin.

36 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

We are now ready to describe the construction.

Construction.

At stage 0, let Fs = ∅ and for each e, i, and j let ae,i,j[0], ue,i,j[0], ve,i,j[0],
and te,i,j[0] be ∅. For each n, let bne,i,j[0], µ

n
e,i,j[0], ν

n
e,i,j[0], and τne,i,j[0] be 0 as

well.
At a stage s+1, let Fs ∶ {0, . . . , ξs} → A be the partial isomorphism determined

in the previous stage, and let D(Bs) be the finite part of the diagram of B which
has been determined so far. We have an approximation RBs to RB which we get
by taking k ∈ RBs if Fs(k) ∈ R. For each e, we have a guess SNes at SNe using the
diagram of the finite structure Ne,s, given by x ∈ SNes if and only if in Ne,s, x is in
the first sort and is related by V Ne,s to exactly one element of the second sort.

We will deal with a single requirement—the highest priority requirement which
requires attention at stage s + 1. A requirement Si requires attention at stage s + 1
if the ith element of A is not in the image of Fs. If Si is the highest priority
requirement which requires attention, then let c be the ith element of A. Let Fs+1

extend Fs with c in its image. Injure each requirement of lower priority.
The conditions for a requirement Re,i,j or a subrequirement Rne,i,j to require

attention at stage s + 1 depend on the state of the requirement. Below, we will list
for each possible state of Re,i,j , the conditions for Re,i,j to require attention, and
the action that the requirement takes if it is the highest priority requirement that
requires attention. The subrequirements will follow afterward.

Initialized: The requirement has been initialized, so ae,i,j[0], ue,i,j[0], and so on
are all 0.

Requires attention: The requirement always requires attention.
Action: Let Fs+1 extend Fs by adding to its image the element 0`, where

` is large enough that 0` has no children in ran(Fs). Let ae,i,j[s + 1]

be such that Fs+1(ae,i,j)[s + 1] = 0`. Change the state to waiting-for-
computation.

Waiting-for-computation: We have set F (ae,i,j) = 0` ∉ R a d-free element. We
wait for the computations (3.18) and (3.19) below. Then we can begin to
satisfy the subrequirements.

Requires attention: The requirement requires attention if there is a compu-
tation

RBs [0, . . . , ae,i,j[s]] = Φ
SNes
i [0, . . . , ae,i,j[s]] (3.18)

with use u < s, and

SNes [0, . . . , u] = Φ
RBs
j [0, . . . , u] (3.19)

with use v < s.
Action: Let u and v be the uses of the computations which witness that

this requirement requires attention. Set ue,i,j[s + 1] = u, ve,i,j[s + 1] = v,
and te,i,j[s + 1] = s. We have Fs+1 = Fs. Change the state to next-
subrequirement.

Next-subrequirement: While in this state, we begin trying to satisfy the sub-
requirements, building elements b1e,i,j , b

2
e,i,j , and so on. At the same time,

we look for a way to immediately satisfy Re,i,j . The requirement requires

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 37

attention during this state if we see such a way to satisfy Re,i,j . There
are two possible ways that we might immediately diagonalize. The first is
that we can diagonalize using only ae,i,j and the computations (3.18) and
(3.19), because none of the elements of Ne below the use ue,i,j of (3.18)
are d-free. The second is that we can diagonalize using ae,i,j and some
bne,i,j , because we use ae,i,j to force SNe to change below the use ue,i,j of
(3.18), and this will mean that we can diagonalize by changing bne,i,j from

being in RB to being out of RB. If we see a chance to diagonalize, we
modify F to put ae,i,j into RB, breaking the computation (3.18).

Requires attention: There are two possible ways that this requirement might
require attention. The requirement requires attention of the first kind if
in Ne,s:

(1) each of the elements 0, . . . , ue,i,j[s] of Ne which is in the first sort
is of type ⟨1,0⟩, type ⟨1,1⟩, or type ⟨2,0⟩,

(2) we still have

SNes [0, . . . , ue,i,j[s]] = S
Ne
te,i,j[s][0, . . . , ue,i,j[s]].

The requirement requires attention of the second kind if for some n:
(1) each of the subrequirements Rme,i,j is in state next-requirement

for all m ≤ n,
(2) each of the elements µn−1

e,i,j[s] + 1, . . . , µne,i,j[s] of Ne,s (with µn−1
e,i,j[s]

replaced by ue,i,j[s] if n = 0) which is in the first sort and is either
of type ⟨0,0⟩ or type ⟨1,0⟩ in Ne,s is in the subtree below those
elements from among 0, . . . , ue,i,j[s] which are not related to any
elements of the second sort,

(3) we still have

SNes [0, . . . , µne,i,j[s]] = S
Ne
τne,i,j[s][0, . . . , µ

n
e,i,j[s]].

Action: There were two different ways in which this requirement might re-
quire attention. The only difference in the action we take is which state
we move to. Let a = ae,i,j[s]. We have Fs(a) = 0`, where ` is large enough

that no child of 0` appears earlier in the image of Fs. Choose x odd and
larger than any number we have encountered so far, and define Fs+1 by

Fs+1(w) =

⎧⎪⎪
⎨
⎪⎪⎩

0`−1xˆσ Fs(w) = 0`ˆσ

Fs(w) otherwise
.

What we have done is taken every element of C which was mapped to the
subtree below 0`, and moved it to the subtree below 0`−1x. Any existential
formula which was true of the tree below 0` is also true of the tree below
0`−1x (but not vice versa, since 0`−1x is connected by U to an element of
the second sort, but 0` is not). Also, for w ∈ dom(Fs), Fs(w) ∈ R if and
only if Fs+1(w) ∈ R with the single exception of w = a. In that case, Fs(a) ∉
R and Fs+1(a) ∈ R. If the requirement required attention of the first kind,
change to state waiting-for-change. Otherwise, if it required attention
of the second kind, change to state waiting-for-first-change-n where
n is the least witness to the fact that this requirement required attention
of the second kind.

38 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

Waiting-for-change: In this state, we are trying to diagonalize against Re,i,j in
the first way described above. The computation (3.18) was broken, and
so as usual, SNe must change below the use ue,i,j . When we first entered
this state, all of the elements 0, . . . , ue,i,j of Ne were of types ⟨1,0⟩, ⟨1,1⟩,
or ⟨2,0⟩ (i.e., were not d-free). So in order for SNe to change below the
use ue,i,j , one of these elements (call it p) which was connected to one
element of the second sort must become connected to two elements of the
second sort. We then modify F to make RB the same as it was originally
(below ve,i,j). This will successfully satisfy the requirement, because SNe
cannot return to the way it was originally because p cannot return to
being in SNe , and so the computation (3.19) from the state waiting-

for-computation means that we cannot have SNe = ΦR
B

j .

Requires attention: This requirement requires attention if

SNes [0, . . . , ue,i,j[s]] ≠ S
Ne
te,i,j[s][0, . . . , ue,i,j[s]].

Action: Let a = ae,i,j[s]. We have Fs(a) = 0`−1x, where x is odd and no child

of 0`−1x appears earlier in the image of Fs. Choose y > 0 even and larger
than any number we have encountered so far, and define Fs+1 by

Fs+1(w) =

⎧⎪⎪
⎨
⎪⎪⎩

0`−1yˆσ Fs(w) = 0`−1xˆσ

Fs(w) otherwise
.

This is moving the subtree below 0`−1x to the subtree below 0`−1y. For
w ∈ dom(Fs), w ≠ a, we have Fs(w) ∈ R if and only if Fs+1(w) ∈ R.
For w = a, we have Fs(a) ∈ R and Fs+1(a) ∉ R. Change the state to
diagonalized.

Diagonalized: In this state, we have successfully satisfied Re,i,j in the first way
described above.

Requires attention: The requirement never requires attention.
Action: None.

Waiting-for-first-change-n: In this state, we are trying to diagonalize against
Re,i,j in the second way described above. The computation (3.18) was
broken, and so as usual, SNe must change below the use ue,i,j . So some
such element (which we call p) which was connected to no elements of the
second sort (i.e., of type ⟨0,0⟩) must become connected to one element of
the second sort2 (i.e., it is now some other type). We then modify F to
make RB the same as it was originally (below ve,i,j).

Requires attention: This requirement requires attention if

SNes [0, . . . , ue,i,j[s]] ≠ S
Ne
te,i,j[s][0, . . . , ue,i,j[s]].

Action: Do the same thing as in state waiting-for-change, except that
instead of moving to state diagonalized, change to state waiting-for-
second-change-n.

2It is possible for some element which was connected to one element of the second sort to

become connected to two elements, but in this case we will successfully satisfy Re,i,j in much the

same way as above as a byproduct of our general construction.

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 39

Waiting-for-second-change-n: In the previous state, F was modified so that
RB is the same as it was originally below ve,i,j . By the computation
(3.19) from state waiting-for-computation, SNe must return to the
same as it was originally below ue,i,j , i.e., the element p from the previous
state must become connected to two elements of the second sort. Now, in
state next-subrequirement, we had the condition (2). This condition
implied that each of the elements µn−1

e,i,j + 1, . . . , µne,i,j of Ne which is not

either forced to be in SNe (by being of type ⟨1,1⟩) or forced to be not
in SNe (by being of type ⟨2,0⟩) was in the subtree below p. But now p
is of type ⟨2,0⟩, and so there are no such elements below p. So each of
µn−1
e,i,j +1, . . . , µne,i,j is either forced to be in SNe or forced to not be in SNe .

Now bne,i,j in B is currently in RB, and we can modify F so that bne,i,j is not

in RB. By the computation (3.20) below from the nth subrequirement,

we cannot have RB = ΦS
Ne

i .

Requires attention: This requirement requires attention if

SNes [0, . . . , µne,i,j[s]] = S
Ne
te,i,j[s][0, . . . , µ

n
e,i,j[s]]

and also in Ne,s, each of the elements µn−1
e,i,j[s] + 1, . . . , µne,i,j[s] of Ne,s is

either of type ⟨1,1⟩ or of type ⟨2,0⟩ in Ne,s.

Action: Let a = ae,i,j[s] and b = bne,i,j[s]. We have Fs(a) = 0`1−1y for some

even y, and Fs(b) = 0`1−1y0`21. Let ρ = 0`1−1y0`2 so that Fs(b) = ρ1.
Choose z > 0 even and larger than any number we have encountered so
far, and define Fs+1 by

Fs+1(w) =

⎧⎪⎪
⎨
⎪⎪⎩

ρˆzˆσ Fs(w) = ρˆ1ˆσ

Fs(w) otherwise
.

This is moving the subtree below ρˆ1 to the subtree below ρˆz. For
w ∈ dom(Fs), w ≠ b, we have Fs(w) ∈ R if and only if Fs+1(w) ∈ R.
For w = b, we have Fs(b) ∈ R and Fs+1(b) ∉ R. Change the state to
diagonalized-n.

Diagonalized-n: In this state, we have successfully satisfied Re,i,j in the second
way using bne,i,j .

Requires attention: The requirement never requires attention.
Action: None.

In order for a subrequirement Rne,i,j to require attention (in any state), there is
a necessary (but not sufficient) condition: the parent requirement Re,i,j must be in
state next-subrequirement. If this condition is satisfied, then the whether the
requirement requires attention depends on its state:

Initialized: The subrequirement has been initialized, so bne,i,j , µ
n
e,i,j , and so on

are all 0. We define bne,i,j[s + 1].

Requires attention: The subrequirement always requires attention.
Action: Let Fs+1 extend Fs by adding to its image the element 0`1, where

` is large enough that 0` has no children in ran(Fs). Let bne,i,j[s + 1] be

such that Fs+1(b
n
e,i,j[s + 1]) = 0`1. Change the state to waiting-for-

computation.

40 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

Waiting-for-computation: In the previous state, we defined bne,i,j . We now wait
for the computations below.

Requires attention: This subrequirement requires attention if there are com-
putations

RBs [0, . . . , b
n
e,i,j[s]] = Φ

SNes
i [0, . . . , bne,i,j[s]] (3.20)

with use µ < s, and

SNes [0, . . . , µ] = Φ
RBs
j [0, . . . , µ] (3.21)

with use ν < s.
Action: Set µne,i,j[s + 1] = µ, νne,i,j[s + 1] = ν, and τne,i,j[s + 1] = s. We have

Fs+1 = Fs. Change the state to next-subrequirement.
Next-subrequirement: In the previous state, we found the computations (3.20)

and (3.21). This subrequirement is done acting, and the next subrequire-
ment can begin.

Requires attention: The subrequirement never requires attention.
Action: None.

Now we will say what happens when we say that we injure a requirement
or subrequirement. When a requirement Re,i,j is injured, it is returned to state
initialized and its values ae,i,j , ue,i,j , ve,i,j , and te,i,j are set to 0. Moreover, if
it is in one of the states waiting-for-first-change-n, waiting-for-second-
change-n, or diagonalized-n, then for m ≤ n set bme,i,j , µ

m
e,i,j , ν

m
e,i,j , and τme,i,j to

0.
When a subrequirement Rne,i,j is injured, it is returned to state initialized.

Unless its parent requirement Re,i,j is in one of the states waiting-for-first-
change-m, waiting-for-second-change-m, or diagonalized-m for m ≥ n,
set bne,i,j , µ

n
e,i,j , ν

n
e,i,j , and τne,i,j to 0. In this way, by being in one of these

three states waiting-for-first-change-n, waiting-for-second-change-n, or
diagonalized-n the parent requirement can take over control of the values associ-
ated to the subrequirements Rme,i,j for m ≤ n and protect them with its own priority
level.

Set D(Bs+1) to be the pullback along Fs+1 of the atomic and negated atomic
formulas true of ran(Fs+1) with Gödel number at most s.

End construction.

Each requirement and subrequirement, if it is not injured, only acts finitely
many times. We must show that each requirement is satisfied. Suppose not. Then
there is a least requirement which is not satisfied. It is easy to see that a requirement
Si is always eventually satisfied, so let Re,i,j be the least requirement which is not

satisfied. Then Ne is a computable structure isomorphic to B, RB = ΦS
Ne

i , and

SNe = ΦR
B

j .
There is some last stage at which Re,i,j is injured. At this stage Re,i,j and its

subrequirements are in state initialized.
We will use the following fact implicitly throughout the rest of the proof. It is

easy to prove.

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 41

Lemma 3.14. If a requirement Re,i,j is never injured after the stage s, then
after the stage s, F is only changed on the domain [0, . . . , ve,i,j] by Re,i,j. If a sub-
requirement Rne,i,j is never injured after the stage s, then after the stage s, F is only

changed on the domain [0, . . . , νne,i,j] by Re,i,j. Also, if a requirement Re,i,j is in
one of the states waiting-for-first-change-n, waiting-for-second-change-
n, or diagonalized-n and is never injured after the stage s, then F is only changed
on [0, . . . , νne,i,j] by Re,i,j.

We will show that eventually Re,i,j enters state diagonalized or diagona-
lized-n and diagonalizes against the two computations above, a contradiction. We
will write a for ae,i,j[s] since the e, i, and j are fixed, and the value is never redefined
since Re,i,j is never injured. Similarly, we write u for ue,i,j[s], µ

n for µne,i,j[s], and
so on.

In state initialized, Re,i,j always requires attention, so we will always define a

such that Fs(a) = 0` for some ` and move on to state waiting-for-computation.

Now because RB = ΦS
Ne

i and SNe = ΦR
B

j , at some later stage t we will have
computations

RBt [0, . . . , ae,i,j[t]] = Φ
SNet
i,t [0, . . . , ae,i,j[t]] (3.22)

with use u < t, and

SNet [0, . . . , u] = Φ
RBt
j,t [0, . . . , u] (3.23)

with use v < t. Then u, v, and t will be defined to be these values and the require-
ment will move to state next-subrequirement.

Now we have three cases. First, it might be that at some later stage, Re,i,j
leaves state next-subrequirement and enters state waiting-for-change. Sec-
ond, it might be that it enters the state waiting-for-first-change-n. Third,
the requirement might never leave state next-subrequirement. We have to find
a contradiction in each case.

Case 1. Re,i,j leaves state next-subrequirement and enters state waiting-
for-change.

At some stage s1 + 1 > t, Re,i,j requires attention of the first kind. We change
F so that Fs1+1(a) ∈ R and change to state waiting-for-change.

Now since RB = ΦS
Ne

i , at some stage s2 > s1, we have

RBs2[0, . . . , a] = Φ
SNes2
i,s2

[0, . . . , a]

and hence, by (3.22) and the fact that Fs2(a) = Fs1+1(a) ≠ Ft(a), we have

SNes2 [0, . . . , u] ≠ SNet [0, . . . , u]. (3.24)

So the requirement requires attention at stage s2 + 1.
We change F so that Fs2+1(a) ∉ R and change to state diagonalized. We

make sure that
RBs2+1[0, . . . , v] = R

B
t [0, . . . , v] (3.25)

Since SNe = ΦR
B

j , at some stage s3 > s2, we have

SNes3 [0, . . . , u] = Φ
RBs3
j,s3

[0, . . . , u].

Then by (3.25) and (3.23) we have

SNes3 [0, . . . , u] = SNet [0, . . . , u] (3.26)

42 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

Combining this with (3.24) we see that there is some p in [0, . . . , u] with p ∉ SNet ,
p ∈ SNes2 , and p ∉ SNes3 .

Now s1 + 1 was the stage at which Re,i,j required attention of the first kind
while in state next-subrequirement. First of all, this means that

SNes1 [0, . . . , u] = SNet [0, . . . , u]

and so p ∉ SNes1 .

Also, in Ne,s1 , p must be related by V Ne to at least one element of the second
sort (i.e., p is of one of the types ⟨1,0⟩, ⟨1,1⟩, or ⟨2,0⟩). Since p ∉ SNes1 , p must be
related to two elements of the second sort, so of type ⟨2,0⟩. But then the same is
true at stage s2, which contradicts the fact that p ∈ SNes2 .

Case 2. Re,i,j leaves state next-subrequirement and enters state waiting-
for-first-change-n for some n.

The beginning of the proof of this case is the same as the beginning of the
last case (with the states waiting-for-change and diagonalized replaced by
waiting-for-first-change-n and by waiting-for-second-change-n respec-
tively). Only the part of the proof after we conclude that p ∉ SNes1 , p ∈ SNes2 , and

p ∉ SNes3 is different—this no longer leads to a contradiction. The requirement is in
state waiting-for-second-change-n.

Since Re,i,j required attention of the second kind at stage s1+1, the subrequire-
ment Rne,i,j must have been in state next-subrequirement. It will have defined,
for m ≤ n, bm, µm, νm, and τm with

RBτm[0, . . . , bm] = Φ
SNe
τm

i,τ [0, . . . , bm] (3.27)

with use µm, and

SNeτm[0, . . . , µm] = Φ
RBτm
j,τ [0, . . . , µm] (3.28)

with use νm.
Now if q is an element of Ne from among µn−1 + 1, . . . , µn, and in Ne,s1 it

looks like q is either of type ⟨1,1⟩ or type ⟨2,0⟩, then q has the same type in the
diagram at stage s3. Now since Re,i,j required attention of the second kind while
in state next-subrequirement at stage s1 + 1, any other element q from among
µn−1 + 1, . . . , µn not satisfying either of the above conditions was in the subtree
below p. At stage s3, p is of type ⟨2,0⟩, and so we can see from the definition of
M that any q in the subtree below p must be of type ⟨1,1⟩ or type ⟨2,0⟩.

Thus at some stage s4 > s3, the requirement requires attention. Each element
q from among µn−1 + 1, . . . , µn has been determined to either not be in SNe if it is
of type ⟨2,0⟩, or to be in SNe if it is of type ⟨1,1⟩. So for all stages s > s4, we have

SNes [µn−1 + 1, . . . , µn] = SNes4 [µn−1 + 1, . . . , µn] = SNeτn [µn−1 + 1, . . . , µn] (3.29)

We change F so that Fs4+1(b
n) ∉ R (while Fτn(b

n) was in R) and

Rs4+1[0, . . . , ν
n−1] = Rτn[0, . . . , ν

n−1].

This is also true with s4 replaced by any s ≥ s4. By (3.28), for sufficiently large
s > s4 we have

SNes [0, . . . , µn−1] = SNeτn [0, . . . , µn−1]. (3.30)

Then since for all s > s4 we have

RBs [0, . . . , b
n] ≠ RBτn[0, . . . , b

n]

3.2. INCOMPARABLE DEGREE SPECTRA OF D.C.E. DEGREES 43

by (3.27) for sufficiently large s > s4 we have

Ss[0, . . . , µ
n] ≠ Sτn[0, . . . , µ

n].

From this and (3.30), we see that

Ss[µ
n−1 + 1, . . . , µn] ≠ Sτn[µ

n−1 + 1, . . . , µn].

This contradicts (3.29).

Case 3. Re,i,j never leaves state next-subrequirement.

Suppose to the contrary that Re,i,j never requires attention while in state
next-subrequirement. Then for all stages s > t, we have

RBs [0, . . . , v] = R
B
t [0, . . . , v].

Since SNe = ΦR
B

j and using (3.23), for sufficiently large stages s we have

SNes [0, . . . , u] = SNet [0, . . . , u]. (3.31)

So for sufficiently large stages s, the subrequirementR1
e,i,j always requires attention

in state initialized. At some stage, each requirement of higher priority than R1
e,i,j

has acted, and so R1
e,i,j is never injured after this point.

Then the subrequirement R1
e,i,j will require attention and we will define b1 such

that Fs(b
1) = 0`1 for some ` and move on to state waiting-for-computation.

Because RB = ΦS
Ne

i and SNe = ΦR
B

j , at some later stage τ1 we will have
computations

RBτ1[0, . . . , b
1] = Φ

SNe
τ1

i,τ1 [0, . . . , b1]

with use µ1 < τ1, and

SNe
τ1 [0, . . . , µ1] = Φ

RB
τ1

j,τ1 [0, . . . , ν
1]

with use ν1 < τ1. Then µ1, ν1, and τ1 will be defined to be these values and the
requirement will move to state next-subrequirement.

Continuing a similar argument, each of the subrequirements defines bn, µn, νn,
and τn such that

SNeτn [0, . . . , µn] = ΦR
Bτn

j,τ1 [0, . . . , µn] (3.32)

with use νn.
Now we claim that Ne is not isomorphic to M. First, Re,i,j never requires

attention of the first kind. Because of (3.31), the only way this is possible is if
there is an element p from among 0, . . . , u which is of type ⟨0,0⟩. That is, p is the
isomorphic image of 0` in M for some `.

Let n be arbitrary. By (3.32) and the fact that SNe = ΦR
B

j , for sufficiently large
stages s, we have

SNes [0, . . . , νn] = SNeτn [0, . . . , νn].

Then since Re,i,j does not ever require attention of the second kind, there is qn
from νn−1 + 1, . . . , νn which is of type ⟨0,0⟩ or type ⟨1,0⟩ and not in the subtree
below p.

But one can easily see form the definition ofM that there cannot be infinitely
many such elements qn, a contradiction. �

This proposition relativizes as follows:

44 3. DEGREE SPECTRA BETWEEN THE C.E. DEGREES AND THE D.C.E. DEGREES

Corollary 3.15. For every degree d, there is a copy B of A with B ≤T d such
that no copy N of M with N ≤T d has RB ⊕ d ≡T S

N ⊕ d.

From the relativized versions of these two propositions (Corollaries 3.12 and
3.15), we get Theorem 3.8.

CHAPTER 4

Degree Spectra of Relations on the Naturals

In this chapter, we will consider the special case of the structure (ω,<). We
will generally be working with relations on the standard computable copy of this
structure. Downey, Khoussainov, Miller, and Yu [DKMY09] studied relations on
ω and though they were mostly interested in the degree spectra of non-computable
relations, they showed that any computable unary relation R on (ω,<) has a maxi-
mal degree in its degree spectrum, and this degree is either 0 or 0′. Knoll [Kno09]
(and later independently Wright [Wri13]) extended this to show:

Theorem 4.1 (Knoll [Kno09, Theorem 2.2], Wright [Wri13, Theorem 1.2]).
Let R be a computable unary relation on (ω,<). Then either R is intrinsically
computable, or its degree spectrum consists of all ∆0

2 degrees.

For relations which are not unary, Wright was able to show:

Theorem 4.2 (Wright [Wri13, Theorem 1.3]). Let R be a computable n-ary
relation on (ω,<) which is not intrinsically computable. Then the degree spectrum
of R contains all of the c.e. degrees.

Note that this is the same as the conclusion of Harizanov’s Theorem 1.2 for
this particular structure. One could adapt Wright’s proof to check Harizanov’s
effectiveness condition. All of these results relativize.

In the case of unary relations on the standard copy of (ω,<), Knoll was able to
classify the possible degree spectra completely—they are either just the computable
degree, or all ∆0

2 degrees. This suggests the following idea: study the partial order
of degree spectra (on a cone) for relations on a single fixed structure (or class of
structures). While in general, we know from §3 that there are incomparable d.c.e.
degree spectra, this is not the case for unary relations on (ω,<); in fact, there are
only two possible degree spectra for such relations. We know that there are at
least three possible degree spectra for arbitrary relations on (ω,<): the computable
degree, the c.e. degrees, and the ∆0

2 degrees. Are there more, and if so, is there a
nice classification of the possible degree spectra?

To begin, we will study the intrinsically α-c.e. relations on ω. We need some
definitions and a lemma about Lω1,ω-definable sets which is implicit in Wright’s
work. A significant portion of the lemma coincides with Lemma 2.1 of [Mon09].

A partial order is a well-quasi-order if it is well-founded and has no infinite anti-
chains (see, for example, [Kru72] where Kruskal first noticed that the same notion
of a well-quasi-order had been used in many different places under different names).
Note that a total ordering which is well-ordered is a well-quasi-order. There are
two simple constructions that we will use which produce a new well-quasi-ordering
from an existing one. First, if (Ai,≤i) for i = 1, . . . , n are partial orders, then their
product A1 × ⋯ × An is partially ordered by ā ≤ b̄ if and only if ai ≤i bi for each

45

46 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

i. If each (Ai,≤i) is a well-quasi-order, then so is the product. Second, if (A,≤)
is a partial order, then let P<ω(A) be the set of finite subsets of A. Define ≤P on
this set by U ≤P V if and only if for all a ∈ U , there is b ≥ a in V . If (A,≤) is a
well-quasi-order, then (P<ω(A),≤P) is a well-quasi-order.

Lemma 4.3. The set of Σin
1 -definable n-ary relations on (ω,<) over a fixed set

of parameters c̄ is a well-quasi-order under (reverse) inclusion. That is, there is no
infinite strictly increasing sequence, and there are no infinite anti-chains.

Proof. We will begin by considering the relations defined without parameters.
Let R be a Σin

1 n-ary relation. There are various possible orderings of an n-tuple,
for example the entries may be increasing, decreasing, some entries may be equal
to other entries, or many other possible orderings. But however many ways an
n-tuple may be ordered, there are only finitely many possibilities. We can write
R as the disjoint union of its restrictions to each of these orderings. Each of these
restrictions is also Σin

1 -definable. For any two such relations, we have S ⊆ R if and
only if each of these restrictions of S is contained in the corresponding restriction of
R. Hence inclusion on n-ary relations is the product order of the inclusion order on
each of these restrictions, and so it suffices to show that each of these restrictions is
a well-quasi-order. Without loss of generality, it suffices to show this for increasing
tuples.

Let R be Σin
1 -definable relation on increasing n-tuples. Then R is defined by a

Σin
1 formula ϕ(x̄). We may assume that ϕ(x̄) can be written in the form

ϕ(x̄) = (x1 < x2 < ⋯ < xn) ∧⩔
i

(∃ȳ)ψi(x̄, ȳ).

Now each of these disjuncts can be written in turn as the disjunct of finitely many
formulas χp̄(x̄) where p̄ = (p1, . . . , pn) ∈ ω

n and χp̄(x̄) is the formula which say that
x1 < x2 < ⋯ < xn and that there are at least p1 elements less than x1, p2 elements
between x1 and x2, and so on. So we can write ϕ(x̄) as the disjunction of such
formulas χp̄. For each p̄ ∈ ωn, let Dp̄ be the set of solutions to χp̄(x̄) in ωn. Then
R is the union of some of these sets Dp̄.

Then note that p̄ ↦ Dp̄ is an order-maintaining bijection between the product
order ωn and the relations Dp̄ ordered by reverse inclusion (that is, p̄ ≤ q̄ in the
product order if and only if Dp̄ ⊇ Dq̄). Since ωn is well-quasi-ordered, the set of
relations Dp̄ is also well-quasi-ordered. Thus any set of such relations Dp̄ contains
finitely many maximal elements ordered under inclusion (or minimal elements or-
dered under reverse inclusion), and each other relation is contained in one of those
maximal elements. In particular, R is the union of finitely many sets of the form
Dp̄. What we have done so far is the main content of Montalbán’s work in [Mon09,
Lemma 2.1].

Let p̄ = (p1, . . . , pn). Now note that the element p̂ = (p1, p1 + p2 + 1, . . . , p1 +⋯+
pn + n − 1) is in Dr̄ if and only if pi ≥ ri for each i, in which case Dp̄ ⊆ Dr̄. Now
suppose that Dp̄ ⊆ Dq̄1 ∪ ⋯ ∪Dq̄` . Then p̂ ∈ Dp̄ and so p̂ ∈ Dq̄k for some k. Hence
for this k, Dp̄ ⊆Dq̄k . Thus Dp̄ ⊆Dq̄1 ∪⋯∪Dq̄` if and only if, for some k, Dp̄ ⊆Dq̄k .

From this it follows that the partial order on Σin
1 -definable relations on increas-

ing n-tuples is isomorphic to the finite powerset order on ωn. This is a well-quasi-
order.

Now we must consider formulas over a fixed tuple of parameters c̄. Note that
if ϕ(x̄, ȳ) and ψ(x̄, ȳ) are Σin

1 formulas with no parameters, and every solution

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 47

of ϕ(x̄, ȳ) is a solution of ψ(x̄, ȳ), then every solution of ϕ(c̄, ȳ) is a solution of
ψ(c̄, ȳ). Thus there is no infinite anti-chain of sets Σin

1 -definable over c̄ (as any such
anti-chain would yield an anti-chain of sets definable without parameters).

Now suppose that there is a strictly increasing chain of sets definable over c̄,
A1 ⊊ A2 ⊊ ⋯, which are definable by Σin

1 formulas ϕ(c̄, ȳ). Let B1,B2, . . . be the
corresponding sets definable by the formulas ϕ(x̄, ȳ). Then B1,B2, . . . cannot be
a strictly increasing sequence, nor can it be an anti-chain. Thus for some i < j,
Bi ⊇ Bj . But then Ai ⊇ Aj , and so Ai = Aj . This is a contradiction. Hence
there is no strictly increasing chain of sets Σin

1 -definable over c̄. This completes the
proof. �

From now on, by Σin
1 -definable we mean definable with finitely many parame-

ters. Then:

Corollary 4.4. Let R be a Σin
1 -definable relation on (ω,<). Then R is defined

by a finitary existential formula and R is computable (in the standard copy of (ω,<
)). Moreover, R is computable uniformly in the finitary existential formula and the
tuple c̄ over which it is defined.

Note that while R is computable as a relation on (ω,<), it may not be intrin-
sically computable.

Proof. Suppose that R is definable by a Σin
1 formula ϕ(c̄, ȳ). By the proof of

the previous lemma, ϕ(x̄, ȳ) is a disjunction of finitely many formulas of the form
χp̄(x̄, ȳ). Since in (ω,<) we can compute the number of elements between any two
particular elements, the solution set in ω of each of these formulas χp̄(x̄, ȳ) is a
computable set. Then ϕ(x̄, ȳ) is equivalent to a finitary existential formula and its
solutions are computable; thus the same is true of ϕ(c̄, ȳ). �

Recall that R is said to be intrinsically α-c.e. if in all computable copies B of
A, RB is α-c.e. There is a theorem due to Ash and Knight (Propositions 3.2 and
3.3 of [AK96]), like that of Ash and Nerode [AN81], which relates the notion of
intrinsically α-c.e. to formally α-c.e. definitions. The theorem uses the following
notion of α-free1 for a particular (computable presentation of) an ordinal α. Given
tuples c̄ and ā in a structure, we say that ā is α-free over c̄ if for any finitary
existential formula ϕ(c̄, x̄) true of ā, and any β < α, there is a ā′ satisfying ϕ(c̄, x̄)
which is β-free over c̄ and such that ā ∈ R if and only if ā′ ∉ R. Then there are two
theorems which together describe the intrinsically α-c.e. relations:

Theorem 4.5 (Ash-Knight [AK96, Proposition 3.3]). Let α be a computable
ordinal. Let A be a computable structure and R a computable relation on A. Let c̄
be a tuple. Suppose that no ā ∈ R is α-free over c̄, and for each tuple ā we can find
a formula ϕ(c̄, ā) which witnesses this. Also, suppose that for any β < α, we can
effectively decide whether a tuple ā is β-free over c̄, and if not then we can find the
witnessing formula ϕ(c̄, ā). Then R is formally α-c.e., that is, there are computable
sequences (ϕβ(c̄, x̄))β≤α and (ψβ(c̄, x̄))β≤α such that

(1) for all β ≤ α and tuples ā, if

A ⊧ ϕβ(c̄, ā) ∧ ψβ(c̄, ā)

1Note that this is different from the notion of α-free in Theorem 1.4.

48 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

then for some γ < β,

A ⊧ ϕγ(c̄, ā) ∨ ψγ(c̄, ā), and

(2) R is defined by

⩔
β<α

(ϕβ(c̄, x̄) ∧ ¬ ⩔
γ<β

ψβ(c̄, x̄))

Theorem 4.6 (Ash-Knight [AK96, Proposition 3.2]). Let α be a computable
ordinal, A be a computable structure, and R a computable relation on A. Suppose
that for each tuple c̄, we can find a tuple ā ∈ R which is α-free over c̄. Suppose if
β ≤ α, ā is β-free, and given an existential formula ϕ, we can find the witness ā′ to
β-freeness. Then R is not intrinsically α-c.e.

Recall that when working on a cone, we can work with non-computable ordinals
by relativizing to a cone on which they are computable (see page 10). For any
ordinal α, even those which are not computable, a relation R is intrinsically α-
c.e. on a cone if and only if it has a formally α-c.e. definition in the sense of
Theorem 4.5, where the sequences ϕβ and ψβ are not necessarily computable. We
see this by working on a cone above which α is computable and above which the
effectiveness conditions of the above theorems hold; then the equivalence follows
from the relativized versions of those theorems.

There is also the usual relationship between relationship between relatively
intrinsically α-c.e. and formally α-c.e. This was shown in the d.c.e. case by McCoy
[McC02], and also independently McNicholl [McN00] who proved the result for
all n-c.e. degrees. The general theorem for any ordinal α was shown by Ash and
Knight in [AK00].

Theorem 4.7 (Ash-Knight [AK00, Theorem 10.11]). Let α be a computable
ordinal, A be a computable structure, and R a computable relation on A. Then R
is relatively intrinsically α-c.e. if and only if it is formally α-c.e. in the sense of
Theorem 4.5.

We will show that for the structure (ω,<), all of these notions coincide. We
begin by showing that intrinsically α-c.e. implies relatively intrinsically α-c.e. We do
this by checking in the next two lemmas that in (ω,<), the effectiveness conditions
from Theorems 4.6 and 4.5 are always satisfied.

Lemma 4.8. The structure (ω,<) satisfies the effectiveness conditions of The-
orem 4.6 for any computable relation R and computable ordinal α (i.e., if for each
tuple c̄ there is ā α-free over c̄, then we can find such an ā, etc.).

Proof. Our argument will be very similar to the proof of Theorem 1.3 of
[Wri13]. Using similar arguments, we may assume that R is a relation on increasing
n-tuples. Suppose that for each tuple c̄, there is a tuple ā which is α-free over c̄.

We will show that if ā is α-free over the empty tuple, and each element of ā is
greater than each element of a tuple c̄, then ā is α-free over c̄. Let c̄ = (c1, . . . , cn)
and let m = max(ci). Then for any existential formula ϕ(c̄, x̄) true of ā, there is a
corresponding formula ψ(x̄) which says that there are elements y0 < ⋯ < ym smaller
than each element of x̄, and that yc1 , . . . , ycn , x̄ satisfy ϕ. Any solution of ϕ(c̄, x̄)
is also a solution of ψ(x̄), and vice versa (note that if ψ(b̄) holds for some b̄, then
y0 = 0, . . . , ym =m witness the existential quantifier, since ϕ is existential).

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 49

Consider for each β ≤ α the following sets:

Cβ = {ā ∶ ā is not β-free over ∅}

and its complement
Fβ = {ā ∶ ā is β-free over ∅}.

Now suppose that the set

Lα = {min(ā) ∶ ā ∈ Fα}

is not unbounded, say its maximum is m. (Here, min(ā) is the least entry of ā.)
Then consider the (n − 1)-ary relations R(0, x1, . . . , xn−1), R(1, x1, . . . , xn−1), and
so on up to R(m,x1, . . . , xn−1). One of these relations must have α-free tuples over
any tuple c̄. We may replace R with this new relation. Continuing in this way,
eventually we may assume that Lα is unbounded.

Now if ā is not β-free, this is because there is a finitary existential formula ϕ(x̄)
true of ā which witnesses that ā is not β-free. Thus Cβ can be written in the form

Cβ = (Dβ ∩R) ∪ (Eβ ∩ ¬R)

where Dβ and Eβ are Σin
1 -definable (and hence computable and definable by a

finitary existential formula). Since R is computable, Cβ is computable, and hence
Fβ is computable as well for each β. Moreover, these are uniformly computable,
because the sets Cβ are increasing and the Σin

1 -definable sets are well-quasi-ordered.
So there are β1, . . . , βm ≤ α such that C0 = ⋯ = Cβ1 , Cβ1+1 = ⋯ = Cβ2 , and so on
until Cβm+1 = ⋯ = Cα, and each of these sets are computable.

Thus, for any c̄, we can find some tuple ā which is α-free over c̄ (by searching
through Fα for a tuple ā all of whose elements are greater than each element of c̄).

Now suppose that ā is β-free over a tuple c̄ for some β ≤ α. Then for any γ < β
and existential formula ϕ(c̄, x̄) true of ā, there is b̄ satisfying ϕ(c̄, x̄) and γ-free over
c̄. Note that there must be such a b̄ all of whose elements are greater than each
element of c̄, since this true of ā, and that any such element of Fγ is γ-free over c̄.
So we can compute such a b̄. �

Lemma 4.9. (ω,<) satisfies the effectiveness condition of Theorem 4.5 for any
computable relation R and ordinal α.

Proof. Fix c̄. Suppose that there are no α-free tuples over c̄. For each β ≤ α,
let

Cβ = {ā ∶ ā is not β-free over c̄}.

Once again, Cβ ∩R and Cβ ∩¬R are Σin
1 -definable over c̄, and so by the well-quasi-

ordering of such sets, they are uniformly computable and the finitary existential
definitions can be uniformly determined. This is enough to have the effectiveness
condition of Theorem 4.5. �

Now as a corollary of the previous two lemmas, we can prove the following fact.

Corollary 4.10. Suppose that R is a computable relation on (ω,<) which is
intrinsically α-c.e. Then R is relatively intrinsically α-c.e.

Proof. Suppose that R is computable and intrinsically α-c.e. for some com-
putable ordinal α. We must show that R is relatively intrinsically α-c.e., that is,
that R is formally α-c.e.

Claim 4.10.1. There is a tuple c̄ such that no ā ∈ R is α-free over c̄.

50 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

Proof. Suppose for a contradiction that for each tuple c̄, there is ā ∈ R which
is α-free over c̄. By Theorem 4.6 and Lemma 4.8, R is not intrinsically α-c.e. This
contradicts the fact that R is intrinsically α-c.e. �

Now let c̄ be as in the claim. By Theorem 4.5 and Lemma 4.9, R is formally
α-c.e., and hence relatively intrinsically α-c.e. �

Now we use this to show that the notions of intrinsically α-c.e., relatively
intrinsically α-c.e., and intrinsically α-c.e. on a cone all coincide for (ω,<). One
can view this as saying that (ω,<) and such relations on it are “natural.”

Proposition 4.11. If R is a relation on (ω,<) and α is any (possibly non-
computable) ordinal, then if R is intrinsically α-c.e. on a cone then R is computable
and intrinsically m-c.e. for some finite m.

Proof. Now suppose that R is a possibly non-computable relation on (ω,<),
α is a possibly non-computable countable ordinal, and R is intrinsically α-c.e. on a
cone. As remarked after Theorems 4.5 and 4.6, R has a formally α-c.e. definition in
the sense of Theorem 4.5, but where the sequences ϕβ and ψβ are not necessarily
computable. Then there are sets Aβ and Bβ for β < α which are Σin

1 -definable over
a tuple c̄ such that

R = ⋃
β<α

(Aβ − ⋃
γ<β

Bγ)

and if x ∈ Aβ∩Bβ then for some γ < β, X ∈ Aγ∪Bγ . We may replace Aβ by ⋃γ≤β Aβ
for each β, and similarly for Bβ . Then the sequences Aβ and Bβ are increasing in β.
Since the Σin

1 -definable relations form a well-quasi-order under inclusion, there is
some sequence 0 = β1, . . . , βm ≤ α such that Aγ and Bγ are constant on the intervals
[β1 = 0, β2), [β2, β3), and so on up to [βm, α]. Otherwise, we could construct an
infinite strictly increasing chain. So

R = (Aβm −Bβm−1) ∪ (Aβm−1 −Bβm−2) ∪⋯ ∪Aβ1

Suppose that x ∈ Aβi ∩ Bβi . Then for some least γ < βi, x ∈ Aγ ∪ Bγ . By the
minimality of γ, γ ≤ βi−1. Thus, for some j < i, x ∈ Aβj ∪Bβj .

Since each of these sets Aβi and Bβj is Σin
1 -definable, they are all computable

subsets of ω which are definable by a finitary existential (and hence Σc
1) formula.

Thus R is intrinsically m-c.e. for some m and R is computable by Corollary 4.4. �

Proposition 4.12. Let R be a relation on (ω,<). Then the following are
equivalent for any computable ordinal α:

(1) R is intrinsically α-c.e. and computable in (ω,<),
(2) R is relatively intrinsically α-c.e.,
(3) R is intrinsically α-c.e. on a cone.

In this case, R is intrinsically m-c.e. for some m.

Proof. Corollary 4.10 shows that if R is intrinsically α-c.e. and computable
in (ω,<), then R is relatively intrinsically α-c.e.

If R is relatively intrinsically α-c.e., then R is formally α-c.e., and hence intrin-
sically α-c.e. on a cone.

The previous proposition shows that if R is intrinsically α-c.e. on a cone, then
it is intrinsically α-c.e. and computable in (ω,<). �

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 51

Now we will show that any intrinsically α-c.e. relation on (ω,<) (which must
be m-c.e. for some m) is intrinsically of c.e. degree. One example of such a relation
is the intrinsically d.c.e. relation S consisting of pairs (a, b) which are separated by
exactly one element. In any computable copy, S computes the adjacency relation
(which is always co-c.e.). Two elements a and b are adjacent if and only if there is
some c > b such that c and a are separated by a single element (which is b), and
so the adjacency relation is c.e. in S in any computable copy of (ω,<). Since it
is always co-c.e., it is always computable in S. On the other hand, the adjacency
relation in any computable copy computes an isomorphism between that copy and
(ω,<), and hence computes S in that copy. Thus we see that S is intrinsically of
c.e. degree. The proof of the following proposition is just a generalization of this
idea.

Note that it is possible to have a relation which is formally ∆0
2 but not formally

α-c.e. for any computable ordinal α. Indeed, there is a formally ∆0
2 relation R

on a structure A whose degree spectrum, relativized to any degree d, consists of
all of the ∆0

2(d) degrees. (One can take A to be an equivalence structure with
infinitely many equivalence classes, each of which is ordered as either ω or ω∗; the
relation R picks out those equivalence classes which are ordered as ω.) The degree
spectrum of any formally α-c.e. relation does not consist, relative to any degree d,
of all of the ∆0

2(d) degrees; each degree in the degree spectrum is α-c.e. for the
particular computable presentation of α used in the formal α-c.e. definition. So such
a relation R is formally ∆0

2 but not formally α-c.e. for any computable ordinal α.
This is in contrast to the ∆0

2 degrees, all of which are ω2-c.e. for some computable
presentation of ω2 (see Theorem 8 of [EHK81]), though no single presentation of
ω2 suffices.

Proposition 4.13. Let R be an intrinsically m-c.e. n-ary relation on (ω,<)
for some finite m. Then R is intrinsically of c.e. degree.

Proof. Let A1 ⊋ ⋯ ⊋ Am be intrinsically Σ0
1 sets such that (depending on

whether m is odd or even) either

R = (A1 −A2) ∪ (A3 −A4) ∪⋯ ∪ (Am−1 −Am)

or
R = (A1 −A2) ∪ (A3 −A4) ∪⋯ ∪ (Am−2 −Am−1) ∪Am.

We claim that in any computable copy B ≅ (ω,<), from RB we can compute the
successor relation on B. The successor relation computes the isomorphism between
B and (ω,<) and hence computes RB. The successor relation is intrinsically Π0

1 and
hence of c.e. degree, so this will suffice to complete the proof.

We will begin with a simple case to which we will later reduce the general case.
For p̄ ∈ ωn−1, let Ep̄ = D0ˆp̄, that is, Ep̄ consists of those x̄ = (x1, . . . , xn) such that
there are p1 points between x1 and x2, p2 point between x2 and x3, and so on (but
no restriction on the number of points before x1).

Claim 4.13.1. Suppose that B ⊆ A are intrinsically Σ0
1 sets of the form

A = Ep̄1 ∪⋯ ∪Ep̄`1
and

B = Eq̄1 ∪⋯ ∪Eq̄`2 .

Furthermore, suppose that A ≠ B and B ≠ ∅, A − B ⊆ R, and B ⊆ ¬R. Then R
computes the successor relation.

52 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

Proof. Since A−B is non-empty, we may write A and B as in the statement
of the claim with the additional property that there is some j such that Eq̄j is not
contained in any of the others, and Eq̄j is not equal to Ep̄i for any i.

Now, in the proof of Lemma 4.3 we showed that if

Eq̄j ⊆ Ep̄1 ∪⋯ ∪Ep̄`2

then Eq̄j ⊂ Ep̄i for some i (though we showed this with E replaced by D, the same
result still applies here). Fix such an i. There must be some index t ∈ {1, . . . , n−1}
such that p̄i(t) < q̄j(t).

Then let

ū = (u1, . . . , un−1) = (q̄j(1), q̄j(2), . . . , q̄j(t) − 1, . . . , q̄j(n − 1))

and

v̄ = (v1, . . . , vn−1) = q̄j .

Thus ui = vi except for i = t, in which case vi = ui + 1. So Ev̄ ⊆ Eū.
Now Ev̄ = Eq̄j ⊆ B and Eū ⊆ Ep̄i ⊆ A. Moreover, if, for any w̄, Ev̄ ⊆ Ew̄ ⊆ Eū,

then either Ew̄ = Eū or Ew̄ = Ev̄.
So, by the choice of j, we have

Eū −Ev̄ ⊆ A −B ⊆ R

and

Ev̄ ⊆ B ⊆ ¬R.

Let B be a computable copy of (ω,<). Let S be the successor function on B.
We claim that, using RB, we can compute S. Suppose that we wish to compute
whether an element y is the successor of x. We can, in a c.e. way, find out if y
is not the successor of x, so we just need to show how to recognize that y is the
successor of x if this is the case. We can non-uniformly assume that we know some
initial segment of B, say the first t + u1 +⋯ + ut + 1 elements.

First, we must have x < y. If x ≤ t + u1 + ⋯ + ut, then we can non-uniformly
decide whether y is the successor of x. Otherwise, search for z1 < z2 < ⋯ < zt−1 <
x < y = zt < ⋯ < zn such that

(1) there u1 elements between z1 and z2, u2 elements between z2 and z3, and
so on,

(2) there are ut − 1 elements between zt−1 and x, and
(3) (z1, . . . , zn) ∈ R

B.

Then since (z1, . . . , zn) ∈ Eū, and Ev̄ ⊆ ¬R,

(z1, . . . , zn) ∈ Eū −Ev̄.

In particular, there cannot be more than vt elements between zt−1 and zt. As
zt−1 < x < y = zt, and there are ut = vt − 1 elements between zt−1 and x, y is the
successor of x. If y is the successor of x and x ≥ t + u1 +⋯ + ut, then it is possible
to find such elements z1, . . . , zn. �

Now we will finish the general case. Let B be a computable copy of (ω,<) and
let S be the successor relation on B. Suppose that

R = (A1 −A2) ∪ (A3 −A4) ∪⋯ ∪ (Am−1 −Am)

or

R = (A1 −A2) ∪ (A3 −A4) ∪⋯ ∪ (Am−2 −Am−1) ∪Am

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 53

where each of these sets is an intrinsically Σ0
1 set definable over constants c̄.

Let M be a constant greater than each entry of c̄. Then we can non-uniformly
know the which elements of B correspond to {0, . . . ,M} ⊆ ω. It remains to compute
the successor relation of B on the rest of the elements of B. Consider the restriction
R̂ of R to {M,M + 1, . . .}n; RB computes R̂B. By restricting B to the elements
which correspond to {M,M + 1, . . .} ⊆ ω, and making the natural identification
M ↦ 0, M +1↦ 1, and so on, we have reduced to the case where (for some possibly
smaller m) we have

R = (A1 −A2) ∪ (A3 −A4) ∪⋯ ∪ (Am−1 −Am)

or
R = (A1 −A2) ∪ (A3 −A4) ∪⋯ ∪ (Am−2 −Am−1) ∪Am

and each of these sets is intrinsically Σ0
1 and definable without parameters. Note

that R̂B may not compute RB. However, if we can show that R̂B computes the
successor relation S, then since S computes RB, all three of the relations RB, R̂B,
and S will be intercomputable.

Now by the arguments of Lemma 4.3 each Ai is a finite union of sets of the
form Dp̄ for p̄ ∈ ωn. Let N be larger than the first entry p0 of each of these tuples
p̄. Then make the same reduction as before to reduce to the case where each Ai is
a union of sets Eq̄.

Now if
R = (A1 −A2) ∪ (A3 −A4) ∪ ⋯ ∪ (Am−1 −Am)

then A = Am−1 and B = Am are both as in the claim above. If

R = (A1 −A2) ∪ (A3 −A4) ∪⋯ ∪ (Am−2 −Am−1) ∪Am

then A = Am−1 and B = Am are as in the claim above, except with R and ¬R
interchanged. �

So far, we still only know of three possible degree spectra for a relation on
(ω,<): the computable degree, the c.e. degrees, and the ∆0

2 degrees. It is possible
that there is another degree spectrum in between the c.e. degree and the ∆0

2 degrees,
but we do not know whether such a degree spectrum exists. This is the main open
question of this section:

Question 4.14. Is there a relation on (ω,<) whose degree spectrum is strictly
contained between the c.e. degrees and the ∆0

2 degrees on a cone?

This question appears to be a difficult one. If the answer to the question is no,
that such a degree spectrum cannot exist, and the proof was not too hard, then it
would probably be of the following form. Let R be a relation on (ω,<). Working on
a cone, there is a computable function f such that given an index e for a computable
function ϕe(x, s) of two variables which is total and gives a ∆0

2 approximation of
a set C, f(e) is an index for a structure A isomorphic to (ω,<) with RA ≡T C. If
ϕe(x, s) does not give a ∆0

2 approximation, then we place no requirements on f(e).
Moreover, if the coding is simple, then we will have indices g1(e) and g2(e) for the
computations RA ≤T C and C ≤T R

A respectively. We capture this situation with
the following definition:

Definition 4.15. Let A be a structure and R a relation on A. Let Γ be a class
of degrees indexed by some subset of ω which relativizes. Then the degree spectrum
of R is uniformly equal to Γ on a cone if, on a cone, there are computable functions

54 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

f , g1, and g2 such that given an index e for C ∈ Γ, the computable structure A
with index f(e) has

RA = ΦCg1(e) and C = ΦR
A

g2(e).

We do not know of any relations which are not uniformly equal to their degree
spectrum.

Question 4.16. Must every relation obtain its degree spectrum uniformly on
a cone?

This question is not totally precise, because we have not classified all possible
degree spectra on a cone and so we do not have an indexing for each of them. But
this question is precise for relations with particular degree spectra, such as the c.e.
degrees or the ∆0

2 degrees.
Theorem 4.17 below says that one of the two questions we have just introduced

is resolved in a surprising way: either there is a relation R on (ω,<) with degree
spectrum all of the ∆0

2 degrees, but not uniformly, or the relation R has a degree
spectrum contained strictly in between the c.e. degrees and the ∆0

2 degrees.
If the answer to Question 4.14 is no, that there are only three possible degree

spectra for a relation on (ω,<), then by Theorem 4.17 the answer to Question 4.16
must also be no. If the answer to Question 4.14 is yes, then the answer to Question
4.16 might be either yes or no.

If the answer to Question 4.14 is yes, there are more than three possible degree
spectra, then we can ask what sort of degree spectra are possible. We know that
any relation which is intrinsically α-c.e. has degree spectra consisting only of the
c.e. degrees, but can there be a relation which is intrinsically of α-c.e. degree, while
not being intrinsically of c.e. degree?

We are now ready to prove Theorem 4.17.

Theorem 4.17. There is a relation R on (ω,<) whose degree spectrum on a
cone is strictly contained in the ∆0

2 degrees, but strictly contains the c.e. degrees.

Proof. We will begin by working computably, and everything will relativize.
We will exhibit the relation R and show that there is a computable function h
which, given indices e, i, j, produces a ∆0

2 set C with index h(e, i, j) such that if e is
the index for a computable structure A isomorphic to (ω,<), then either RA ≠ ΦCi
or C ≠ ΦR

A

j . Note that h(e, i, j) will be total and will always give an index for a ∆0
2

set, even if e is not an index of the desired type. We will also show that R is not
intrinsically of c.e. degree. The construction of R and h will follow later, but first
we will show that such an R has a degree spectrum which is not uniformly equal
to the ∆0

2 degrees.
Suppose to the contrary that there are computable functions f , g1, and g2

such that, given an index e for a function ϕe(x, s) which is total and gives a ∆0
2

approximation of a set C, f(e) is the index of a computable copy A of (ω,<) with

RA = ΦCg1(e) and C = ΦR
A

g2(e).

Then we would like to take the composition θ(e) = h(f(e), g1(e), g2(e)), except
that this may not be total when applied to indices e where ϕe(x, s) is either not
total or not a ∆0

2 approximation. So instead define h as follows. Given an input
e, we will define a ∆0

2 set uniformly by giving an approximation by stages. Try

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 55

to compute f(e), g1(e), and g2(e), and while these do not converge, make the ∆0
2

approximation equal to zero. When they do converge, compute h(f(e), g1(e), g2(e))
(since h is total, this will always converge and give an index for a ∆0

2 set) and have
our approximation instead follow the ∆0

2 set with index h(f(e), g1(e), g2(e)). Thus
θ(e) = h(f(e), g1(e), g2(e)) whenever the right hand side is defined, and is an index
for the empty set otherwise.

Now, by the recursion theorem, there is a fixed point e of θ, so that

ϕθ(e)(x, s) = ϕe(x, s).

Now the left hand side is always total and is a ∆0
2 approximation, so the same is

true of the right hand side. Thus θ(e) = h(f(e), g1(e), g2(e)). Let C be the ∆0
2 set

with this approximation, so that C has indices e and θ(e). Thus f(e) is the index
of a computable copy A of (ω,<) with

RA = ΦCg1(e) and C = ΦR
A

g2(e).

But then by definition of h,

RA ≠ ΦCg1(e) or C ≠ ΦR
A

g2(e).

This is a contradiction. Hence no such functions f , g1, and g2 can exist, and the
degree spectrum of R is not uniformly equal to the ∆0

2 degrees on a cone.

Construction of R.

We will begin by defining an, bn, and cn with a1 < b1 = c1 < a2 < b2 < c2 < a3 < ⋯.
Begin with a1 = 0. Let bn = an+n+1, cn = bn+an, and an+1 = cn+n+1. This divides
ω up into disjoint intervals [an, bn), [bn, cn), and [cn, an+1) as n varies. Note that
b1 = 2 = c1, and so the interval [b1, c1) is empty. Every other interval is non-empty.
Also, the length of the interval [bn, cn) is the same as the length of the interval
[0, an).

The relation R will be a binary relation which we can interpret as a directed
graph. For each n, we will have cycles of edges

an ↔ an + 1↔ an + 2↔⋯↔ an + n↔ an

and

cn ↔ cn + 1↔ cn + 2↔⋯↔ cn + n↔ cn.

These edges all go in both directions; i.e., there is an edge from an to an + 1 and
from an + 1 to an.

Now add an edge from an to cn. These edges are directed, and go from the
smaller element to the larger element. Also, add edges from y to cn + n for all
y ≥ an+1. These edges are also directed, but go from the larger element to the
smaller element. By looking at whether an edge goes in both directions, in the
increasing direction, or in the decreasing direction, we can decide what type of
edge it is (i.e., is it from a cycle, from an to cn for some n, or from y to cn + n for
some n and some y ≥ an+1).

For x, y ∈ [bn, cn), put an edge from x to y if and only if there is an edge from
(x − bn) to (y − bn). So the relation R on the interval [bn, cn) looks the same as it
does on the interval [0, an). This completes the definition of the relation R. Note
that R is computable. Figure 4.1 shows the relation R on an initial segment of ω.

56 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

0

a1

1 2

b1 = c1

3 4

a2

5 6 7

b2

8 9 10 11

c2

12 13 14

a3

15

Figure 4.1. The relation R on the first sixteen elements of (ω,<).
The arrows ↔ are those from the cycles an ↔ an + 1 ↔ an + 2 ↔
⋯ ↔ an + n ↔ an and cn ↔ cn + 1 ↔ cn + 2 ↔ ⋯ ↔ cn + n ↔ cn.
The arrows ⇢ (which curve above) are those between an and cn
for some n. The arrows ⇠ (which curve below) are those from y
to cn + n for y ≥ an+1.

We say that elements ȳ = (y0, y1, . . . , ym) of (ω,<) form an m + 1-cycle (for
m ≥ 1) if y0 < y1 < ⋯ < ym and there is a cycle

y0 ↔ y1 ↔⋯↔ ym ↔ y0

and there are no other edges between any of the yi. An m + 1-cycle is just a
bi-directional m + 1-cycle of the graph. Note that every m + 1-cycle is either

am ↔ am + 1↔⋯↔ am +m↔ am,

or
cm ↔ cm + 1↔⋯↔ cm +m↔ cm,

or contained in [bn, cn) for some n >m.

Remark 4.18. Each element x ∈ ω is part of exactly one cycle.

Proof. This can easily be seen by an induction argument on the n such that
x ∈ [an, cn). If x is in [an, bn) or [cn, an+1) then this is obvious, and if x is in
[bn, cn) then this follows by the induction hypothesis. �

If x̄ = (x0, . . . , xm) and ȳ = (y0, . . . , ym) are m + 1-cycles, listed in increasing
order, and there is an edge from x0 to y0 (so that x0 < y0), then we say that x̄ and
ȳ are a matching pair of m + 1-cycles. Note that, by convention, we list the two
tuples of a matching pair in increasing order: thus, if x̄ and ȳ are a matching pair,
then x0 < x1 < ⋯ < xm < y0 < y1 < ⋯ < ym. Each m + 1-cycle is part of a matching
pair of m + 1-cycles.

Remark 4.19. If x̄ = (x0, . . . , xm) and ȳ = (y0, . . . , ym) are a matching pair of
m+1-cycles, then there is some n such that both x̄ and ȳ are contained in [an, an+1).

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 57

Proof. Since x̄ and ȳ form a matching pair, there is an edge from x0 to y0 but
not vice versa. We can see by the definition of R that either x̄ = (am, . . . , am +m)
and ȳ = (cm, . . . , cm +m), or x̄ and ȳ are both contained in [bn, cn) for some n. �

Remark 4.20. If ū = (u0, . . . , um) and v̄ = (v0, . . . , vm) are a matching pair of
m+1-cycles, and x̄ = (x0, . . . , xm) and ȳ = (y0, . . . , ym) are another matching pair of
m+1-cycles (for the same m), then the relation R restricted to the interval [u0, vm]
is the same as the relation R restricted to the interval [x0, ym]. In particular, the
lengths of these intervals are the same: vm − u0 = ym − x0.

Proof. We may assume that ū = (am, . . . , am +m) and v̄ = (cm, . . . , cm +m).
Suppose to the contrary that there are x̄ = (x0, . . . , xm) and ȳ = (y0, . . . , ym) a
matching pair of m + 1-cycles such that the relation R restricted to the interval
[u0, vm] is not the same as the relation R restricted to the interval [x0, ym]. Assume
that x0 is least with this property.

Now by the previous fact, x̄ and ȳ are contained in [an, an+1) for some n. We
must have x0 > cm+m, and so n >m. Then x̄ and ȳ are contained in [bn, cn). Then
by definition of R, x̄′ = (x0 − bn, . . . , xm − bn) and ȳ′ = (y0 − bn, . . . , ym − bn) are a
matching pair of m + 1-cycles and R restricted to the interval [x0, ym] is the same
as R restricted to the interval [x0−bn, ym−bn]. But by the induction hypothesis, R
restricted to the interval [x0−bn, ym−bn] is the same as R restricted to the interval
[u0, vm]. This contradiction finishes the proof. �

In any computable copy A of (ω,<), using RA as an oracle we can compute
for each x ∈ A the unique m + 1-cycle in which x is contained, x’s position in that
cycle, and we can compute the other m+ 1-cycle with which this m+ 1-cycle forms
a matching pair.

R is not intrinsically of c.e. degree.

Let c̄ be a tuple and an be such that c̄ < an. We will show that the tuple
ā = (an, . . . , an + n) is d-free over c̄. First, we will introduce some notation. Given
a tuple x̄ = (x0, . . . , xn), and r ∈ ω, write x̄ + r for (x0 + r, . . . , xn + r).

Recall what it means for ā to be d-free over c̄: for every b̄ and existential
formula ϕ(c̄, ū, v̄) true of ā, b̄, there are ā′ and b̄′ which satisfy ϕ(c̄, ū, v̄) such that
R restricted to tuples from c̄ā′ is not the same as R restricted to tuples from c̄ā and
also such that for every existential formula ψ(c̄, ū, v̄) true of them, there are ā′′, b̄′′

satisfying ψ and such that R restricted to c̄ā′′b̄′′ is the same as R restricted to c̄āb̄.
Figure 4.2 shows the choices of ā′, b̄′, etc. in one particular example. Given

b̄ and some existential formula ϕ(c̄, ū, v̄) true of ā, b̄, we may assume that ϕ is
quantifier-free by expanding b̄. Then ϕ just says that c̄āb̄ are ordered in some
particular way. Now, some of the entries of b̄ are less than an, and the rest are
greater than or equal to an. Rearranging b̄ as necessary, write b̄ = b̄1b̄2 where each
entry of b̄1 is less than an, and each entry of b̄2 is greater than or equal to an.
Let ā′ = ā + 1 (recall that this is shifting each entry by one) and b̄′ be b̄1b̄

′
2 where

b̄′2 = b̄2 + 1. Then c̄ā′b̄′ are ordered in the same way as c̄āb̄ and hence still satisfy
ϕ. Also, the valuation of R on ā is different from that of R on ā′, since there are
edges between an and an + n, but not between an + 1 and an + n + 1 = bn.

58 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

0

a1

1 2

b1 = c1

3 4

a2

5 6 7

b2

8 9 10 11

c2

12 13 14

a3

15

ā b̄

ā′ b̄′ ē

ā′′ b̄′′ ē′

Figure 4.2. The choice of ā′, b̄′, ā′′, b̄′′, and ē′. The figure shows
the case when c̄ = ∅, we choose ā = (0,1), and b̄ = b̄2 = (2,3). We
choose k = 2 so that bk = b2 = 7.

Now suppose that ψ(c̄, ū, v̄) is some further existential formula true of c̄ā′b̄′. Let
ē be the witnesses to the existential quantifiers, and χ(c̄, ū, v̄, w̄) be the quantifier-
free formula which holds of c̄ā′b̄′ē. Write ē = ē1ē2 with each entry of ē1 less than
an, and each entry of ē2 greater than or equal to an. Let k be such that bk is larger
than all of the entries of ā and b̄. Let ā′′ = ā + bk, b̄′′ = b̄1b̄′′2 where b̄′′2 = b̄2 + bk, and
ē′ = ē1ē

′
2 where ē′2 = ē + bk. Then c̄ā′′b̄′′ē′ is ordered in the same way as c̄ā′b̄′ē, and

so c̄ā′′b̄′′ē′ satisfies χ. Thus c̄ā′′b̄′′ satisfies ψ. We need to show that the relation R
restricted to c̄ā′′b̄′′ is the same as R restricted to c̄āb̄.

Note that ā′′ and b̄′′2 are contained in the interval [bk, ck). By definition of R,
there is an edge between x and y in [bk, ck) if and only if there is an edge between
x− bk and y − bk. Since ā′′ = ā+ bk and b̄′′2 = b̄2 + bk, R restricted to ā′′ and b̄′′2 is the
same as R restricted to ā and b̄2. Now c̄ and b̄1 are contained in the interval [0, an).
There are no edges from some x < an to some y ≥ an. Note from the construction
of R that there is an edge from x ≥ an to y < an if and only if there is an edge from
every z ≥ an to y. This completes the proof that R restricted to c̄āb̄ is the same as
R restricted to c̄ā′′b̄′′.

So for any tuple c̄, there is a tuple ā which is d-free over c̄. Moreover, everything
was effective. Thus, by Proposition 3.6, the degree spectrum of R contains a non-
c.e. degree.

Construction of h.

Let e be an index for a computable function ϕe, which we attempt to interpret
as the diagram of a computable structure A. Let i and j be indices for the Turing
functionals Φi and Φj . We will build a ∆0

2 set C such that if A is a computable
copy of (ω,<), then either

C ≠ ΦR
A

i or RA ≠ ΦCj .

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 59

By constructing C via a ∆0
2 approximation uniformly from e, i, and j we will obtain

the required function h.
At each stage s, we get a finite linear order As which approximates A. Now,

the domain of As is contained in ω, but A may also be isomorphic to ω. To avoid
confusion, when we say ω, we refer to the underlying domain of As, and by (ω,<)
we mean the structure as a linear order. We may assume that the elements of As
form a finite initial segment of the domain ω. To differentiate between the ordering
(as part of the language of the structure) on As and the underlying order on the
domain as a subset of ω, we will use ⪯A for the former and ≤ for the latter. We
can write the elements of As as xs1 ≺A xs2 ≺A ⋯ ≺A xsn, and given z ∈ ω, we write
Ns(z) = k if z = xsk. So Ns(z) is a guess at which element of (ω,<) the element
z ∈ As represents. For z ∈ A, let N(z) ∈ (ω,<) be the element which z is isomorphic
to (if A is isomorphic to (ω,<)). We also get an approximation RAs of RA by setting
z ∈ RAs if and only if Ns(z) ∈ R. Then RAs is a ∆0

2 approximation of RA in the case
that A is isomorphic to (ω,<).

The general idea of the construction is as follows. At each stage s, we will have
finite set Cs such that C(n) = lims→∞Cs(n). If we do not explicitly say that we
change C from stage s to stage s+ 1, then we will have Cs+1 = Cs. Suppose that at
stage s we have Cs(0) = 0 and we have computations

Cs(0) = 0 = Φ
RAs
i,s (0)

with use u and
RAs [0, . . . , u] = ΦCsj,s[0, . . . , u]

with use v. By putting 0 into C, we destroy the first computation, forcing RAs to
change below the use u (or else we are done); then, by removing 0 from C, because
of the second computation we force RAs , at some later stage t, to change back to the
way it was before (i.e., RAs [0, . . . , u] = RAt [0, . . . , u]). This means that some q ≤ u
in A must have had some element enumerated ⪯A-below it, so that Nt(q) > Ns(q).
By moving 0 in and out of C in this way, we can force arbitrarily many elements to
be enumerated ⪯A-below one of [0, . . . , u]. If we could enumerate infinitely many
such elements, then we would have prevented A from being isomorphic to (ω,<).
However, this would require moving 0 in and out of C infinitely many times, which
would make C not ∆0

2. We must be more clever.
Let p0 = 0. We will wait for computations as above (with uses u0 and v0), and

then choose p1 > v. We wait for computations

Cs[0, . . . , p1] = 0 = Φ
RAs
i,s [0, . . . , p1]

with use u1 and
RAs [0, . . . , u1] = ΦCsj,s[0, . . . , u1]

with use v1. We will move p0 = 0 into and then out of C as above to enumerate an
element in A ⪯A-below one of [0, . . . , u]. At the same time, we will create a “link”
between [0, . . . , u0] and [u0 + 1, . . . , u1] so that if some element gets enumerated
⪯A-below one of [u0 + 1, . . . , u1], then some element will also get enumerated ⪯A-
below one of [0, . . . , u0]. (Exactly how these links work will be explained later.)
We have moved p0 into and then out of C, but from now on it will stay out of
C. We will find a p2, and move p1 into and out of C. On the one hand, this will
cause an element to be enumerated ⪯A-below one of [u0 + 1, . . . , u1], and hence
⪯A-below one of [0, . . . , u0]. On the other hand, we will create a “link” between

60 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

[u0+1, . . . , u1] and [u1+1, . . . , u2]. Now when an element gets enumerated ⪯A-below
one of [u1+1, . . . , u2], an element gets enumerated ⪯A-below one of [u0+1, . . . , u1],
and thus some element gets enumerated ⪯A-below one of [0, . . . , u0]. Continuing in
this way, defining p3, p4, and so on, and maintaining these links, we force infinitely
many elements to be enumerated ⪯A-below some element of [0, . . . , u0]. We will
describe exactly how these links work in the construction. Figure 4.3 shows the
computations which we use during the construction.

pn

C RA

un

mn

wn

...

...

...
Φi

vn

...

...

pn+1

wn+1

vn+1

...

...

un+1

mn+1

...

...

...
...

Φj

ρn

νn

...

...

...

ρn+1

...

νn+1

Figure 4.3. The values associated to a requirement for Proposi-
tion 4.17. An arrow shows a computation converging. The com-
putations use an oracle and compute some initial segment of their
target. The tail of the arrow shows the use of the computation,
and the head shows the length.

The construction will consist of three steps defined below, which are repeated
for each of n = 0,1, The proof of the following lemma will be interspersed with
the construction below:

Lemma 4.21. If A is an isomorphic copy of (ω,<), and

C = ΦR
A

i and RA = ΦCj

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 61

then the construction does not get stuck in any step.

After describing the action taking place at each step, we will prove that if A is
an isomorphic copy of (ω,<), and

C = ΦR
A

i and RA = ΦCj

then the construction eventually finishes that step.
Begin the construction with p0 = 0 and C0 = ∅. Before beginning to repeat the

three steps, wait for a stage s where we have computations

Cs[p0] = 0 = Φ
RAs
i,s [p0] (4.1)

with use u0 and

RAs [0, . . . , u0] = ΦCsj,s[0, . . . , u0] (4.2)

with use v0. Let s0 = s. If C = ΦR
A

i and RA = ΦCj , we eventually find computations
as in (4.1) and (4.2).

Now repeat, in order, the following steps. We call each repetition of these steps
a Rep. Begin at Rep 0 with n = 0. At the beginning of Rep n, we will have defined
values pi, si, ui, and vi for 0 ≤ i ≤ n, mi, wi, and qi for 0 ≤ i < n, and ρi and νi for
1 ≤ i ≤ n (note that we never define ρ0 or ν0). At the beginning of each repetition,
we will have C = ∅; in Step One, we will add an element to C, and in Step Two we
will remove that element from C returning it to the way it was before.

Step One. Wait for a stage s and an m > ρn (or m > u0 if n = 0) such that

(1) at this stage s we still have the computation

RAs [0, . . . , ρn] = ΦCsj,s[0, . . . , ρn] (4.3)

with use νn from Step 3 of the previous step (see equation (4.12)). If
n = 0, then instead we ask that

RAs [0, . . . , u0] = ΦCsj,s[0, . . . , u0], (4.4)

(2) all of the elements x of As with x ⪯A pn come from among [0, . . . ,m],
(3) there is a computation

RAs [0, . . . ,m] = ΦCsj,s[0, . . . ,m] (4.5)

with use w,
(4) there are computations

Cs[0, . . . ,w + 1] = Φ
RAs
i,s [0, . . . ,w + 1] (4.6)

with use u and

RAs [0, . . . , u] = ΦCsj,s[0, . . . , u] (4.7)

with use v,
(5) for each z ∈ [0, . . . , un], among the elements [0, . . . ,m] of As there is

a matching pair of k + 1-cycles (for some k ∈ ω) x̄ = (x0, . . . , xk) and
ȳ = (y0, . . . , yk) in As with x0 ⪯A z ⪯A yk and there are edges from each
element of [m+1, . . . , u] to yk (and an edge from x0 to y0 witnessing that
the k + 1-cycles form a matching pair).

62 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

Set mn =m, wn = w, pn+1 = w+1, un+1 = u, vn+1 = v, and sn+1 = s. Set Cs+1(pn) = 1
to break the computation 4.6 the previous Rep.

The idea at this step is to find, for each z ∈ [0, . . . , un], a matching pair of k+1-
cycles x̄ and ȳ which contain z between them. These k-cycles are all contained
in the elements [0, . . . ,mn]. Moreover, x̄ and ȳ look like they correspond to the
k-cycles (ak, . . . , ak + k) and (ck, . . . , ck + k) respectively from the standard copy of
(ω,<) in the sense that there is an edge from each element of [mn + 1, . . . , un+1] to
yk. We also define the next value pn+1 during this step. All of this is to set up the
“link” between pn+1 to pn (but the link will not be completed until Step Three).

Note that, since we set pn+1 = w + 1, un+1 = u, and sn+1 = s, the computation
(4.6) is really

Csn+1[0, . . . , pn+1] = Φ
RAsn+1
i,sn+1

[0, . . . , pn+1] (4.8)

with use un+1. At the end of this step, we set Cs+1(pn) = 1 to break the computation

Cs[0, . . . , pn] = Φ
RAs
i,s [0, . . . , pn]

with use un from (4.8) of Rep n − 1.

Proof of Lemma 4.21 for Step One. Suppose that we never leave Step
One. Let t be the stage at which we entered Step One. Then C = Ct. For sufficiently
large s > t, we have the true computation

RAs [0, . . . , ρn] = ΦCsj,s[0, . . . , ρn]

as in (4.3). Thus we satisfy (1). Recall that N is the isomorphism A → (ω,<).
Since A is an isomorphic copy of (ω,<), there are only finitely many elements x ∈ A
with x ⪯A an and so for sufficiently large m, they all come from [0, . . . ,m]. So (2)
is satisfied as well. For each z ∈ [0, . . . , un], there is k such that N(z) is in the
interval [ak, ak+1). Let x̄ and ȳ be the matching pair of k + 1-cycles in A which are
the pre-images, under the isomorphism N , of (ak, . . . , ak + k) and (ck, . . . , ck + k).
Increasing m if necessary, we may assume that these k + 1-cycles are contained in
[0, . . . ,m] in A, and that all of the elements of A which are ⪯A-less than any entry
of x̄ and ȳ are contained in [0, . . . ,m]. Do this for each z.

Since RA = ΦCj , for sufficiently large s we have true computations as in (4.5),
(4.6), and (4.7) defining w, u, and v. So (3) and (4) are satisfied.

Finally, for each z ∈ [0, . . . , un] the k-cycles x̄ and ȳ chosen above satisfy x0 ⪯A
z ⪯A yk and there is an edge from x0 to y0. Since all of the elements of A which are
⪯A-less than any entry of x̄ and ȳ are contained in [0, . . . ,m], each of m + 1, . . . , u
are ⪯A-greater than yk. So there is an edge from each of these to yk. Thus (5) is
satisfied. This contradicts our assumption that we never leave Step One. �

Step Two. Wait for a stage s such that

RAs [mn−1 + 1, . . . , un] ≠ R
A
sn[mn−1 + 1, . . . , un] = R

A
sn+1[mn−1 + 1, . . . , un]. (4.9)

Let qn be the ⪯A-greatest element in [mn−1+1, . . . , un]; note thatNs(qn) > Nsn+1(qn).
Set Cs+1(pn) = 0.

In the previous step, we broke the computation

Csn[0, . . . , pn] = Φ
RAsn
i,sn

[0, . . . , pn].

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 63

In order for this computation to again hold at some s, RA must change below the
use un of that computation. That means that some element must be enumerated
in A ⪯A-below one of 0, . . . , un (in fact, it will have to be enumerated below one
of mn−1 + 1, . . . , un). We let q be the ⪯A-greatest such element, so we know that
some an element has been enumerated below qn. At the end of this stage, we set
Cs+1(pn) = 0 (so that Cs+1 = Csn) to restore the computation above and force RA

to return to the way it was before.

Proof of Lemma 4.21 for Step Two. Suppose that the construction does
not leave Step Two. Then for all t > sn+1, Ct(an) = Csn+1+1(an) ≠ Csn+1(an) =

Csn(an). Since C = ΦR
A

i , at some stage t > sn+1, we have a true computation

Ct[0, . . . , an] = Φ
RAt
i .

By (4.8) of the previous repetition, and since Ct(an) ≠ Csn(an), we have

RAs [0, . . . , un] ≠ R
A
sn[0, . . . , un]. (4.10)

Since Ct[0, . . . ,wn−1] = Csn[0, . . . ,wn−1], by (4.5) we have

RAs [0, . . . ,mn−1] = R
A
sn[0, . . . ,mn−1].

Thus

RAs [mn−1 + 1, . . . , un] ≠ R
A
sn[mn−1 + 1, . . . , un].

This contradicts our assumption that we never leave Step Two. �

Step Three. Wait for a stage s and ρ > un+1 such that

(1) we have

RAs [0, . . . , un+1] = R
A
sn+1[0, . . . , un+1], (4.11)

(2) among the elements [0, . . . , ρ] of As, there is a matching pair of `+1-cycles
(for some `) σ̄ = (σ0, . . . , σ`) and τ̄ = (τ0, . . . , τ`) in As with σ` ≺As qn and
z ≺As τ0 for each z ∈ [mn + 1, . . . , un+1] (and an edge from σ0 to τ0 but
not vice versa witnessing that the ` + 1-cycles are matching),

(3) we have the computation

RAs [0, . . . , ρ] = ΦCsj,s[0, . . . , ρ] (4.12)

with use ν.

Set ρn+1 = ρ and νn+1 = ν. Return to Step One for Rep n + 1.

In this step, we wait for the computation (4.11) to be restored. Now, this forces
RA to be the same as it was during Step One:

RAs [0, . . . , un+1] = R
A
sn[0, . . . , un+1].

At Step One, there was a matching pair of k + 1-cycles x̄ and ȳ in [0, . . . ,mn]
which contained qn ⪯A-between them. Since RA[0, . . . ,mn] is the same at this
stage as it was at that stage, x̄ and ȳ are still a matching pair of k + 1-cycles. But
some element has been enumerated ⪯A-below qn since then, and by Remark 4.20,
it must be enumerated below x̄. So x̄ and ȳ are not the ⪯A-least matching pair of
k + 1-cycles. Thus, they correspond to some elements in an interval [b`, c`) from
(ω,<) for some `. The σ̄ and τ̄ in (2) above are intended to be (a`, . . . , a` + `)
and (c`, . . . , c` + `) respectively. Since, in Step One, there was an edge from each
z ∈ [mn+1, . . . , un+1] to yk, each such z must also correspond to some element from

64 4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS

the interval [b`, c`) (one can see from the definition of the relation R that there are
no such edges from an element z ≥ c` to some y ∈ [b`, c`)).

This establishes the desired “link”. By Remark 4.20, since the interval [σ0, τ`]
is of a fixed length determined by `, no new elements can be enumerated between
σ0 and τ`. So if some new element is enumerated below one of [mn + 1, . . . , un+1],
it must be enumerated below σ0 and hence below qn.

Proof of Lemma 4.21 for Step Three. Suppose that the construction never
leaves Step Three. Suppose that the construction entered Step Three at stage s.
For t ≥ s, we have Ct = Csn+1 = ∅. Since RA = ΦCj , and using (4.7), for sufficiently
large t > s we have

RA[0, . . . , un+1] = R
A
t [0, . . . , un+1] = R

A
sn+1[0, . . . , un+1]. (4.13)

Since qn ∈ [mn−1+1, . . . , un], at stage sn+1, there was a matching pair of k+1-cycles
x̄ = (x0, . . . , xk) and ȳ = (y0, . . . , yk) among the elements [0, . . . ,mn] as in (5) of
Step One with x0 ⪯A qn ⪯A yk. Since

RA[0, . . . , un+1] = R
A
sn+1[0, . . . , un+1],

x̄ and ȳ are actually k + 1-cycles in A, and there is actually an edge from x0

to y0. Also, Nt(qn) > Nsn+1(qn). By Remark 4.20, Nt(x0) > Nsn+1(x0). Let
x̄′ ∈ (ω,<) be (Nsn+1(x0), . . . ,Nsn+1(xk)) and similarly for ȳ′. Let x̄′′ ∈ (ω,<) be
(Nt(x0), . . . ,Nt(xk)) and similarly for ȳ′′. Then in (ω,<) we know that x̄′ and ȳ′

are a matching pair of k +1-cycles, and so are x̄′′ and ȳ′′. So x̄′′ and ȳ′′ are not the
first matching pair of k+1-cycles, and so they are contained in some interval [b`, c`)
for some `. Moreover, in RA, each element z of [mn, . . . , un+1] has an edge from it
to x0. This is only possible if Nt(z) ∈ [b`, c`) for each such z. Let σ̄ and τ̄ be the
matching pair of ` + 1-cycles in A whose images in (ω,<) under the isomorphism
N are (a`, . . . , a` + `) and (c`, . . . , c` + `) respectively. Then σ̄ and τ̄ the required
` + 1-cycles in Step 3. We get the computation for (4.12) because RA = ΦCj . This
contradicts our assumption that we never leave Step Three. �

This ends the construction. In the process, we have proved Lemma 4.21. The
next two lemmas complete the proof that the construction works as desired.

Lemma 4.22. C is a d.c.e. set and the approximation Cs is a d.c.e. approxi-
mation

Proof. We change the approximation Cs(x) at most twice for each x—since
x = pn for at most one n, we change Cs(x) at most once in Step One and once in
Step Two. �

Lemma 4.23. If the construction does not get stuck in any step, then A is not
isomorphic to (ω,<).

Proof. In the construction above we remarked that Nsn+2(qn) > Nsn+1(qn).
We claim that for all n ≥ 1, Nsn+1(q0) > Nsn(q0). This would imply that A is not
isomorphic to (ω,<), as qn ∈ A would have infinitely many predecessors.

The key to the proof will be to use the “links” that we created during the
construction. We will show that if, for n′ > n + 1, Nsn′+1(qn+1) > Nsn′ (qn+1) then
Nsn′+1(qn) > Nsn′ (qn). This will suffice to prove the lemma.

During Step Three of the nth repetition, we saw that among the elements
[0, . . . , ρn+1], there is a matching pair of ` + 1-cycles σ̄ = (σ0, . . . , σ`) and τ̄ =

4. DEGREE SPECTRA OF RELATIONS ON THE NATURALS 65

(τ0, . . . , τ`) in As with σ` ≺A qn and z ≺A τ0 for each z ∈ [m + 1, . . . , v]. More-
over, by (4.3), at every stage sn′ for n′ > n + 1, σ̄ and τ̄ are ` + 1-cycles in Asn′ .

Then qn+1 ∈ [m + 1, . . . , v], so qn+1 ≺A τ0. Thus if Nsn′+1(qn+1) > Nsn′ (qn+1),
then Nsn′+1(τ0) > Nsn′ (τ0). Since σ̄ and τ̄ are a matching pair of ` + 1-cycles
at stages sn′ and sn′+1, by Remark 4.20 no new elements are added between σ̄
and τ̄ in between these stages. So Nsn′+1(σ0) > Nsn′ (σ0), and since σ0 ⪯A qn,
Nsn′+1(qn) > Nsn′ (qn). �

If A is an isomorphic copy of (ω,<), then Lemma 4.21 and Lemma 4.23 combine
to show that

C ≠ ΦR
A

i or RA ≠ ΦCj .

This completes the proof of Theorem 4.17. �

One can view the proof as a strategy for satisfying a single requirement Re,i,j .
For a fixed e0, it does not add too much difficulty to satisfy multiple requirements
of the form Re0,i,j at the same time—since these requirement are all working with
the same structure Ae, only one requirement has to force Ae to not be isomorphic
to (ω,<). However, if one tries to satisfy every requirement Re,i,j for different e’s
at the same time, one runs into a problem. Each requirement tries to restrain
infinitely much of ω, and in order to build pn+1, the requirement must move pn.
Thus if pn+1 is injured, pn may injure other requirements.

CHAPTER 5

A “Fullness” Theorem for 2-CEA Degrees

In this section, we will prove Theorem 1.5. Recall that a set A is 2-CEA in a
set B if there is C such that A is c.e. in and above C and C is c.e. in and above B.

We will prove the theorem in the following form:

Theorem 5.1. Let C be a computable structure, and let R be an additional
computable relation on C. Suppose that R is not formally ∆0

2(0
′′′).1 Then for all

degrees d ≥ 0(ω+1) and sets A 2-CEA in d there is an isomorphic copy D of C with
D ≡T d and

RD ⊕D ≡T A.

Our construction will actually build D ≤T d. We can use Knight’s theorem on
the upwards closure of the degree spectrum of a structure (see [Kni86]) to obtain
D ≡T d as follows. Suppose that we have built D ≤T d as in the theorem. There
is an isomorphic copy D∗ ≡T d of D. Moreover, D∗ is obtained by applying a

permutation f ≡T d to D. Then f ⊕D ≡T f ⊕D
∗ ≡T D∗ and f ⊕RD ≡T f ⊕R

D∗
.

Hence

A ≡T D
∗ ⊕RD

∗
.

Theorem 1.5 is obtained from Theorem 5.1 by relativizing the proof. Given
any structure C and relation R on C, we can build a d-computable copy D ≡T d
as in Theorem 5.1 for any d in the cone above (C ⊕ R)(ω+1). We could also give
effectiveness conditions on computable C and R which would suffice to take d = 0,
but these would be quite complicated.

Finally, the simplest way to state the theorem is as follows:

Corollary 5.2. Let C be a structure and R a relation on C. Then either

dgSprel(C,R) ⊆ ∆0
2

or

2-CEA ⊆ dgSprel(C,R).

The proof of the theorem will use free elements as in Barker’s proof that for-
mally Σα is the same as intrinsically Σα [Bar88]. It will probably be helpful to
understand the proof of that result at least for the case α = 2.

Definition 5.3. We say that ā ∉ R is 2-free over c̄ if for all ā1, there are ā′ ∈ R
and ā′1 such that

c̄, ā, ā1 ≤1 c̄, ā
′, ā′1.

1Note that formally ∆0
2(0

′′′
) does not mean the same thing as formally ∆0

5; R is formally

∆0
2(0

′′′
) means that R can be defined by 0′′′-computable Σ2 and Π2 formulas, whereas R is

formally ∆0
5 means that R can be defined by computable Σ5 and Π5 formulas.

67

68 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

Recall that ≤0 and ≤1 are the first two back-and-forth relations; ā ≤0 b̄ if all of the
quantifier-free formulas with Gödel number less than ∣ā∣ which are true of ā are
true of b̄, while ā ≤1 b̄ if every Σ0

1 formula true of b̄ is true of ā (see Chapter 15 of
[AK00]). If F ∶ {0, . . . ,m} → C and G ∶ {0, . . . , n} → C are functions with n > m,
then F ≤i G means that

F (0), . . . , F (m) ≤i G(0), . . . ,G(m).

If R is not formally ∆0
2(0

′′′), then either R is not defined by a 0′′′-computable
Π0

2 formula or ¬R is not defined by a 0′′′-computable Π0
2 formula. We may suppose

without loss of generality that it is R which is not defined by a 0′′′-computable
Π0

2 formula. We will relativize Proposition 16.1 of [AK00] to show that for any

tuple c̄, there is a tuple ā which is 2-free over c̄. Moreover, using 0(4) we can check
whether a tuple is 2-free, and hence find these 2-free tuples.

Proposition 5.4. Let C be a computable structure, and let R be a further
computable relation on C. Suppose that c̄ is a tuple over which no ā ∉ R is 2-free.
Then there is a 0′′′-computable Σ2 formula ϕ(c̄, x̄) defining ¬R.

Proof. We have x̄ ≤1 ȳ exactly when all ∃1 formulas true of ȳ are true of x̄;
so x̄ ≤1 ȳ if and only if

⩕
ϕ a ∃1 formula

[ϕ(ȳ) ⇒ ϕ(x̄)].

This is a computable Π2 formula. In particular, C is 2-friendly relative to 0′′. By
Theorem 15.2 of Ash-Knight, for each ā ∉ R and ā1 there is (uniformly in ā and ā1)
a 0′′-computable Π1 formula ϕc̄,ā,ā1(c̄, x̄, ū) which says that c̄, ā, ā1 ≤1 c̄, x̄, ū.

Since there are no tuples in ¬R which are 2-free over c̄, for each ā ∉ R there is
ā1 such that for every ā′ ∈ R and ā′1, c̄, ā, ā1 ≰1 c̄, ā

′, ā′1. Since ≤1 is computable in
0′′, we can find such an ā1 for each ā ∉ R using 0′′′. For each ā, using this ā1, define

ψā(c̄, x̄) = (∃ū)ϕc̄,ā,ā1(c̄, x̄, ū).

This formula is true of ā, but it is not true of any element of R. Thus ¬R is defined
by

⩔
ā∈R

ψā(c̄, x̄).

This is a 0′′′-computable Σ2 formula. �

The proof of Theorem 5.1 is quite complicated and will take the rest of this
chapter.

5.1. Approximating a 2-CEA Set

Let B be c.e. and let A be c.e. in and above B. As A is Σ0
2, there is a computable

approximation f(x, s) for A such that x ∈ A if and only if f(x, s) = 1 for sufficiently
large s, and x ∉ A if and only if f(x, s) = 0 for infinitely many s. However, if A is
an arbitrary Σ0

2 set, and x ∈ A, then A cannot necessarily compute a stage s after
which f(x, t) = 1. We will begin this section by showing that A in fact has such an
approximation by virtue of computing B. Everything in this section relativizes.

Lemma 5.5. Let B be c.e. and let A be c.e. in and above B. There is a
computable approximation f ∶ ω2 → {0,1} such that x ∈ A if and only if f(x, s) = 1
for sufficiently large s, and x ∉ A if and only if f(x, s) = 0 for infinitely many s.
Moreover, A can compute uniformly whether for all t ≥ s, f(x, t) = 1.

5.1. APPROXIMATING A 2-CEA SET 69

Proof. As B is c.e., it has a computable approximation Bs. Let e be such that
A =WB

e . Set f(x,0) = 0. Suppose that we have defined f(x, s). If x ∉WBs
e,s , then

let f(x, s + 1) = 0. If x ∈WBs
e,s , and f(x, s) = 0, set f(x, s + 1) = 1. If x ∈WBs

e,s and

f(x, s) = 1, then x ∈WBs−1
e,s−1 with some use u (where by the use of the computation,

we mean the length of the initial segment of the oracle which the computation
looked at before it halted). We set f(x, s+ 1) = 1 if the computations x ∈WBs

e,s and

x ∈WBs−1
e,s−1 are the same (that is, if Bs and Bs−1 agree up to the use u). Otherwise,

set f(x, s + 1) = 0. It is easy to see that this construction works as desired. �

We want to put an approximation like the one in the previous lemma on a
tree so that the true path is the leftmost path visited infinitely often, while still
maintaining the ability of A to compute stages at which it stabilizes. We will also
keep track of how many separate times a particular node in 2<ω is visited. Let ω+

be {∞} ∪ ω (with ∞ viewed as being to the left of each element of ω). Let T be
the tree (ω+)<ω. If σ ∈ T , we write v(σ) for the string in 2<ω of the same length
as σ which replaces each ∞ in σ with 0, and each other entry with 1. For f ∈ [T],
v(f) is defined similarly. We denote by T∞ the set of nodes which end in ∞, and
by Tω the set of nodes which end in an element of ω. For σ ∈ T , we denote by σ−

the proper initial segment of σ of length one less. We denote by `(σ) the last entry
of σ.

Lemma 5.6. Let B be c.e. and A be c.e. in and above B. There is a computable
approximation (σs)s∈ω ∈ Tω such that there is a unique g ∈ [T] with ρ ⊂ g if and
only if ρ ⊂ σs for infinitely many s. From A we can compute g, and v(g) = A.
Moreover,

(i) for each τ ∈ T of length n, if s0, s1, . . . are the stages s at which τ ⊂ σs,
then σs0 = τ and the sequence a0 = σs1(n), a1 = σs2(n), . . . has the property
that a0 = ∞ and if ai ∈ ω, then ai counts the number of j < i − 1 such that
aj = ∞ and aj+1 ∈ ω, and

(ii) if s < t are such that σs and σt are compatible, then σt is a strict extension
of σs, and if σs is the largest initial segment of σt which has appeared before
stage t, then σt extends σs by a single element.

It is a consequence of (i) that if we visit some node σ, and then move further
left in the tree than σ, we will never again return to σ. We may however return to
a node further to the right of σ. For example, if f(0) = 0, f(1) = 1, f(2) = 0, and
f(3) = 1 then we might have σ0 = ∞, σ1 = 0, σ2 = ∞∞, and σ3 = 1. Since σ2 is to
the left of σ1, we can no longer visit σ1; instead, we visit σ3 which is further to the
right.

Proof sketch. Begin with the approximation f from the previous lemma.
The approximation (σs)s∈ω is built in a similar way as the outcomes (on a tree) of
an infinite injury priority argument. The true path g is the leftmost path visited
infinitely often.

We will give a quick sketch of how to go about defining the σs. The first entry
σs(0) of each σs is defined following f : σs(0) = ∞ if f(0, s) = 0, and if f(0, s) = 1
then σs(0) counts the number of t < s − 1 such that σt(0) = ∞ and σt+1(0) ∈ ω.
Then, to define the second entry σs(1) of σs for some s, we find the previous
stages s0 < ⋯ < sn < s which agree with stage s about the first entry (i.e., with
σt(0) = σs(0)) and follow the approximation f along those stages in the sense that

70 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

σsi(1) corresponds to f(1, i). We can continue in this way, with (ii) determining
the length of each σs. �

The lemma relativizes as follows.

Corollary 5.7. Let A be 2-CEA relative to d. There is a d-computable ap-
proximation (σs)s∈ω ∈ Tω and a unique g ∈ [T] as in the lemma with A ≥T g and
v(g) = A.

5.2. Basic Framework of the Construction

In this section, we will describe what we are building during the construction
and eight properties that we will maintain at each stage (the ninth and final property
will come later). Let C, d, R, and A be as in Theorem 5.1: C is a computable

structure, R is an additional computable relation on C, d is a degree above 0(ω+1),
and A is 2-CEA in d. For simplicity, assume that R is unary.

We will build a model D ≤ d with domain ω. The construction will be by stages,
at each of which we define increasing finite portions Ds of the diagram. At each
stage we will define a finite partial isomorphism Fs. This partial isomorphism will
map {0, . . . , n} into C for some n. These partial isomorphisms will not necessarily
extend each other; however, they will all be consistent with the partial diagram Ds
we are building. Moreover, there will be a bijective limit F ∶ ω → C along the true
stages of the construction. Then D will be given by the pullback, along F , of the
diagram of C. D will be computable because its diagram will be ⋃Ds. To simplify
the notation, denote by Fs(a1, . . . , a`) the tuple Fs(a1), . . . , Fs(a`).

Here is the basic idea. To code that some element x is not in A, we will put
an element a ∉ R which is 2-free into the image of F (there may already be some
elements in the range of F ; a should be free over them as well). At following stages,
we may add more elements ā1 into the image of F . If, at some later stage, we think
that x ∈ A then we will replace a, ā1 with a′, ā′1 where a′ ∈ R and so that every
existential formula true of a′, ā′1 is true of a, ā1 (thus the finite partial diagram
of D at this stage is maintained even though we changed F). Then it is possible
that at some later stage we again think that x ∉ A. We can replace a′, ā′1 with
a, ā1, returning to the previous stage in the construction at which we thought that
x ∉ A while still maintaining the partial diagram. We have probably added some
more elements to the image of F while we thought that x ∈ A, but the fact that
a, ā1 ≤1 a

′, ā′1 means that we can find corresponding witnesses over a, ā1. Using RD,
we can figure out what happened during the construction, and hence whether or
not x ∈ A. Now we know how to code a single fact.

Now we will describe how to code two elements x < y. To code the fact that
x ∉ A, add to the range of F an element a ∉ R which is 2-free. To code that y ∉ A,
add to the range of F another element b ∉ R which is 2-free over a. Now if at
some later stage, we think that y ∈ A, we can act as above. But if we think that
x ∈ A, then we replace a, b with some a′, b′ with a′ ∈ R and ab ≤1 a

′b′. Now b′ is not
necessarily 2-free; so to code that y ∉ A while we think that x ∈ A, we need to add a
new element c which is 2-free over a′b′. At some later stage, we might think again
that x ∉ A, so we need to return to ab; we can do this because ab ≤1 a

′b′ (and c is
replaced by some c′ which is not necessarily 2-free over ab, but that does not matter
because now b is doing the coding again). So far, this is essentially describing the
argument for Theorem 2.1 of [AK97]. This succeeds in coding A into RD, but we

5.2. BASIC FRAMEWORK OF THE CONSTRUCTION 71

require d′ in order to decode it. The problem is the following situation. Suppose
that we have done the construction as described above, coding whether x or y is
in A, and we currently think that neither is. Our function F looks like abc′ so far.
But then at some later stage we might think for a second time that x ∈ A. We
replace abc′ by a′′b′′c′′, with a′′ ∈ R and abc′ ≤1 a

′′b′′c′′. Now c′′ may not be 2-free
over a′′b′′, so we need to add a new element d which is 2-free over a′′b′′c′′, and use
d to code whether y ∈ A. Using just RD and d, we cannot distinguish between
the case a′b′c where y is being coded by the third element, or a′′b′′c′′d where it is
being coded by the fourth element (a′ and a′′ are both in R, and we cannot control
whether or not b′, b′′, or c′′ are in R). We can differentiate between the two cases
using d′, which is the basis of the proof by Ash and Knight.

What we do to solve this is the first time we think that x ∈ A, after choosing a′

and b′, we add a new element a0 before adding c which is 2-free over a′b′a0. When
we later believe that x ∉ A again, we return to aba′0c

′ for some a′0; and then later
when we believe that x ∈ A once more, we choose a′′0 as well as a′′, b′′, and c′′. The
trick will be to ensure that a0 ∈ R if and only if a′′0 ∉ R. Thus R can differentiate
between the two cases. The argument as to why we can choose an appropriate a0 is
complicated, and is the main difficulty in this proof. The element a0 will actually
need to be a finite list of elements. For now, we do not need to worry about how
we choose a0—this will be done in the following sections.

In the previous section we had a computable approximation for A which kept
track of how many times we switched between believing an element was in A and not
in A. We will assign labels from the tree T to positions in the partial isomorphism
to say what those positions are coding. In the situation above, we will assign to
the position of a is label ∞; it codes whether or not ∞ (i.e. x ∉ A) is the correct
approximation to A. The position of b would code ∞∞ since it codes, if the correct
approximation for whether or not x ∈ A is ∞ (or x ∉ A), that y ∉ A. The position of
a0 codes 0, since it represents the first time that we think that x ∈ A. The position
of c codes 0∞ since, if 0 is the correct approximation for x, it tries to code y ∉ A.
When we add in d after a′′b′′a′′0c

′′, we will actually first add another element a1,
playing a similar role as a0; if, at a later stage, we think that x ∉ A, and then later
think that x ∈ A for a third time, a1 will signal that d is no longer actively coding,
just as a0 did for c. Thus a1 will code 1, and d will code 1∞.

To keep track of these labels, we will define a partial injection Ls ∶ T → dom(Fs).
While Ls is dependent on the stage s, once we set Ls(σ) at some stage s, we will
never change the image of σ. So if s < t, we will have Ls ⊆ Lt.

Let σs and f be as in Corollary 5.7 with (σs)s∈ω ≤ d and A ≡T f . At each
stage, we will increase the domain of Ls by a finite amount to add coding locations
for σs, and so the domain of each Ls will be finite (in fact, the domain of Ls will
be {σi ∶ 0 ≤ i ≤ s}). Newer coding locations will always come after older ones: if
s < t, then we will have Ls(σs) = Lt(σs) < Lt(σt). Also, because the domain of
Ls is {σi ∶ 0 ≤ i ≤ s}, the domain will satisfy two closure properties. First, if Ls is
defined at some string, then it is defined at every initial segment; and second, if Ls
is defined at some string σˆb ending in b, and a < b in ω+, then Ls is defined at σˆa.

Each σ ∈ Tω will label not just Ls(σ), but a whole tuple Ls(σ), . . . , Ls(σ)+k−1
where k = ks(σ) > 0 is a value defined at stage s. For each σ ∈ dom(Ls) ∩ Tω, we
will also maintain a valuation ms(σ) ∈ {−1,1}k which represents a choice of R or

¬R for the k elements labeled by σ. We will write ā ∈ Rms(σ) if ai ∈ R whenever

72 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

ms(σ)(i) = 1 and ai ∉ R whenever ms(σ)(i) = −1. Like Ls, once we set ks(σ) or
ms(σ), the value will be fixed.

We will take a moment to show how we will compute f from RD and d. Let
L be the union of all the Ls, and similarly for m and k. The domain of L contains
each initial segment of f . These are partial d-computable functions. We will build
D in such a way that

(C1*): if σ ∈ T∞ and σ ⊂ f then L(σ) ∉ RD;

(C2*): if σ ∈ T∞ and σ ⊄ f but σ− ⊂ f , then L(σ) ∈ RD;

(C3*): if σ ∈ Tω and σ ⊂ f then (L(σ), . . . , L(σ) + k(σ) − 1)) ∈ (RD)m(σ); and

(C4*): if σ ∈ Tω and σ ⊄ f but σ− ⊂ f then (L(σ), . . . , L(σ)+k(σ)−1) ∉ (RD)m(σ).

In the cases of (C1*) and (C2*), i.e. when σ ∈ T∞, we will always have k(σ) = 1

and m(σ) = 1 (and hence we write (C1*) and (C2*) without reference to k or m).
We will use RD to recursively compute longer and longer initial segments of f .

Suppose that we have computed τ ⊂ f . First, check whether L(τˆ∞) ∉ RD; if it

is not in RD, then by (C2*) we must have τˆ∞ ⊂ f . Otherwise, by (C1*) there
is some x ∈ ω such that τˆx ⊂ f . For each of x = 0,1, . . ., let ax = L(τˆx) and

check whether (ax, ax + 1, . . . , ax + k(τˆx)) ∈ (RD)m(τˆx); if so for some x, then by

(C4*), τˆx ⊂ f ; otherwise, continue searching. By (C3*), we will eventually find
the correct initial segment of f . Thus we will have f ≤T R

D ⊕L ≤T R
D ⊕ d.

Now we will describe some properties which the partial isomorphisms Fs will
have. We required above that dom(L) consisted of σ0, σ1, σ2, So at each stage
s, we must make sure that σs is assigned a coding location:

(CLoc): dom(Ls) contains σs.

We also need to make sure the four properties (C1*), (C2*), (C3*), and (C4*)
of L and RD are true by doing the correct coding during the construction. At each
stage s and for each σ ∈ dom(Ls), we will ensure that:

(C1): if σ ∈ T∞ and σ ⊂ σs then Fs(Ls(σ)) ∉ R;
(C2): if σ ∈ T∞ and σ ⊄ σs but σ− ⊂ αs, then Fs(Ls(σ)) ∈ R;

(C3): if σ ∈ Tω and σ ⊂ σs then Fs(Ls(σ), . . . , Ls(σ) + ks(σ) − 1)) ∈ Rms(σ); and
(C4): if σ ∈ Tω and σ ⊄ σs but σ− ⊂ σs then Fs(Ls(σ), . . . , Ls(σ) + ks(σ) − 1) ∉

Rms(σ).
The Fs will maintain the same atomic diagram, even if they do not agree on par-
ticular elements. If s < t then

(At): Fs ≤0 Ft.

However, if two stages s and t agree on some part of the approximation, then they
will also agree on how that part of the approximation is being coded. This will
ensure that we can construct a limit F by looking at the values of the Fs at stages
where the approximation is correct.

(Ext): If α ⊂ σs and α ⊂ σt, then for all x ≤ L(α) + k(α) − 1, Fs(x) = Ft(x); if
σs ⊂ σt, then in fact Fs ⊂ Ft.

We want the final isomorphism F to be surjective. To do this, we need to ensure
that we continue to add new elements into its image.

(Surj): The first ∣σs∣ − 1 elements of C appear in ran(Fs ↾Ls(σs)).
It may be helpful to remember what the labels stand for: (CLoc) for coding lo-
cation; (C1), (C2), (C3), and (C4) for coding 1, coding 2, coding 3, and coding

5.3. AN INFORMAL DESCRIPTION OF THE CONSTRUCTION 73

4 respectively; (At) for atomic agreement ; (Ext) for extension; and (Surj) for
surjective.

There is one last condition which ensures that we can complete the construction
while still satisfying the above conditions. Before stating it in the next section, we
have already done enough to describe the A-computable isomorphism F ∶ D → C
and see that A ≥T RD. Recall that f is the path approximated by the σs as in
Corollary 1.3. Let s1, s2, . . . be the list of stages sn such that σsn ⊂ f . Then
σs1 ⊊ σs2 ⊊ ⋯ is a proper chain and f = ⋃σsn . As before, let L = ⋃Ls and similarly
for k and m. Now L(αs1), L(αs2), . . . is a strictly increasing sequence in ω, and for
each i < j, Fsi ⊆ Fsj by (Ext). Define F = ⋃Fsi ; this is a total function because
the Fsi are defined on increasingly large initial segments of ω. By (Surj), F is
onto as ∣σsi ∣ ≥ i and so the first i− 1 elements of C appear in the range of Fsi below
G(σsi), and hence appear in the range of F . F is injective since each Fs is; and
the pullback along F gives an isomorphic structure D whose diagram is the union
of the diagrams of the Fs, and these diagrams agree with each other because of
(At). So the atomic diagram of D is computable in d. The sequence s1, s2, . . . can
be computed by A because A can compute f ; and, knowing the sequence s1, s2, . . .,
we can compute F . Hence A can compute F and so A ≥T R

D (recall that C and R

were computable). Also, (C1), (C2), (C3), and (C4) imply respectively (C1*),

(C2*), (C3*), and (C4*). Earlier we argued that as a consequence, f ≤T R
D ⊕d.

Hence A ≡T R
D ⊕ d as required.

5.3. An Informal Description of the Construction

Recall the intuitive picture of how the coding is done in the previous section,
but now using some of the more precise notation just developed. We will begin by
looking at coding a single element, but now choosing the element a0 which we had
to add when we were coding two or more elements. Things will start to get more
complicated than they were before, so Figure 5.1 shows the isomorphism Fs as it
changes. We began by choosing an element a ∉ R which is 2-free. We labeled a
with ∞, coding that 0 ∉ A. Now, at some stage, we might think that 0 ∈ A, so we
replace a by a′ with a′ ∈ R. At this point, we must choose some a0 to code 0. We
are now concerned with the issue, which we ignored before, of how to choose a0.
What properties does a0 need to have? If at some later stage after we have added b̄
to the image of F , we think that it is actually the case that 0 ∉ A, we replace a′a0b̄
by aa′0b̄

′. Then, if at some further later stage after we have added more elements
c̄ to the image of F , we once more think that 0 ∈ A, we replace aa′0b̄

′c̄ by a′′a′′0 b̄
′′c̄′

where

aa′0b̄
′c̄ ≤1 a

′′a′′0 b̄
′′c̄′

and a′′ ∈ R. We need to have a0 ∈ R if and only if a′′0 ∉ R. So what we need to know
is that, no matter what elements b̄ are added to the image of F , we can choose
a′0 so that no matter which elements c̄ are then added to the image of F , we can
choose a′′, a′′0 and so on such that a0 ∈ R if and only if a′′0 ∉ R. This is a sort of
game where each player gets two moves—we are choosing a′0, a′′, a′′0 , etc. satisfying
the required properties while both we and our opponent together choose the tuples
b̄ and c̄. By this, we mean that we choose a tuple, and then the tuple b̄ (or c̄) that
our opponent plays must extend the tuple which we chose. We can do this because
at any point, we can add any elements we want to the isomorphism. We want to
know that we have a winning move in this game.

74 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

Coding locations
σs ∞ 0 1

A
p

p
ro

x
im

at
io

n ∞ [a]
0 ⌞a′⌟ [a0]
0⋯ ⌞a′⌟ [a0] b̄
∞ [a] a′0 b̄′

∞⋯ [a] a′0 b̄′ c̄
1 ⌞a′′⌟ ⌞a′′0 ⌟ b̄′′ c̄′ [a1]

Figure 5.1. The values of the isomorphism Fs when coding a
single element of A. The column σs shows the approximation at
a particular stage, and the coding location shows an indexing via
L. An entry is surrounded by brackets “[]” to show that it is
coding “yes” (i.e., if it is at coding location τ , then it is coding τ).
If an entry is “active” in the sense that it is of the form τˆx and τ
is being coded as “yes”, but τˆx is coding “no” then it is marked
as “⌞ ⌟.” Any other entries which are not active are unmarked.

Now let y ∉ R be 2-free over a′. So there is x ∈ R with a′x ≤1 a
′y. Now we can

try choosing a0 = y. If this works (in the sense that for a0 = y, no matter which b̄
and then c̄ our opponent chooses we can choose a′0 and a′′0 as required), then we
can just choose a0 = y and we are done. If this choice does not work, then we want
to argue that choosing a0 = x does work. If y does not work, that means that for
some b̄ which our opponent plays, every a′0 we choose puts us in a losing position.
This means that there is some existential formula ϕ(u, v) (which is witnessed by
the elements b̄) so that y satisfies ϕ(a′, v) but that every a′0 which satisfies ϕ(a, v)
puts us in a losing position. This means that for every such a′0 there is a tuple c̄
which our opponent can play so that any a′′, a′′0 , etc. we choose with

aa′0b̄
′c̄ ≤1 a

′′a′′0 b̄
′′c̄′

has a′′0 ∈ R since y was also in R. Now if we instead started with a0 = x, then that
same existential formula ϕ(u, v) which was true of a′, y is also true of a′, x since
a′x ≤1 a

′y. We can add to the isomorphism a tuple witnessing that ϕ(u, v) holds
of a′, x. So no matter which tuple b̄ our opponent actually plays, the existential
formula ϕ(a′, x)is witnessed by elements from b̄. Then, since a ≤1 a

′, there are
a′0 = x

′ and b̄′ such that a′xb̄ ≤0 ax
′b̄′; thus ϕ(a, a0) holds. But then this a′0 is one

which did not work for the choice a0 = y. Now we add to the isomorphism the tuple
which our opponent used to beat us at this point when we chose a0 = y and then
also chose this value of a′0. So no matter which tuple c̄ our opponent actually plays,
it contains the tuple which they used to win when a0 was y. Thus, for every a′′,
a′′0 , etc. we choose with

aa′0b̄
′c̄ ≤1 a

′′a′′0 b̄
′′c̄′

we have a′′0 ∈ R. This did not work for a0 = y, but since x ∉ R, it does work for
a0 = x.

What we have done is taken our opponent’s strategy from the case a0 = y,
and forced them to use it when a0 = x. Their strategy consists only of choosing
the tuples c̄ and d̄, and these tuples are chosen by us together with our opponent
(because we can add them to the isomorphism before our opponent does). So when

5.3. AN INFORMAL DESCRIPTION OF THE CONSTRUCTION 75

a0 = x we can force our opponent to play tuples c̄ and d̄ which extend the tuples
they played when a0 = y. But because y ∈ R and x ∉ R, the winning conditions
are different for the different choices of a0, so what won our opponent the game for
a0 = y now loses him the game for a0 = x.

Choosing a0 can begin to get more complicated when we are coding two ele-
ments. Figure 5.2 shows the isomorphism when coding two elements. For example,
suppose that we choose a and b, both not in R, with a 2-free and b 2-free over a.
We label a with ∞, coding 0 ∉ A, and b with ∞∞, coding 1 ∉ A. We think that
1 ∈ A, and replace b by some b′ with ab ≤1 ab

′. Then we add a new element b̄0 which
is labeled by ∞0. At some later stage, we think that 0 ∈ A, and replace ab′b̄0 with
a′b′′b̄′0 with ab′b̄0 ≤1 a

′b′′b̄′0. Now we need to add a tuple ā0 which is labeled by 0,
followed by an element c which is 2-free over a′b′′b̄′0ā0.

Coding locations
σs ∞ ∞∞ ∞0 0 0∞ 1
∞ [a]
∞∞ [a] [b]

∞0 [a] ⌞b′⌟ [b̄0]
0 ⌞a′⌟ b′′ b̄′0 [ā0]
0∞ ⌞a′⌟ b′′ b̄′0 [ā0] [c] d̄

∞0 [a] ⌞b′⌟ [b̄0] ā′0 c′ d̄′ ē

First case: opponent plays 1 immediately
1 ⌞a′′⌟ b′′′ b̄′′0 ⌞ā′′0 ⌟ c′′ d̄′′ ē′ [ā1]

Second case: opponent plays ∞∞ then 1
∞∞ [a] [b] b̄′′0 ā′′0 c′′ d̄′′ ē′ f̄
1 ⌞a′′⌟ b′′′ b̄′′′0 ⌞ā′′′0 ⌟ c′′ d̄′′′ ē′′ f̄ ′ [ā1]

Figure 5.2. The values of the isomorphism Fs when coding two
elements of A. Two possibilities are shown, depending on what the
opponent in the game described plays as the approximation—1, or
∞∞ followed by 1.

Now, as before, we need to see what properties we want to be true of ā0. The
tuple ā0 will have two entries. Suppose that we have added some tuple d̄ to the
isomorphism, and then we believe that 0 ∉ A and 1 ∈ A, so now we want to code
∞0. We make our isomorphism ab′b̄0ā′0c

′d̄′ for some ā′0, c′, and d̄′, and then an
additional tuple ē gets added to the isomorphism. Now at some later stage, we
believe that 0 ∈ A once again, so we find a′′ ∈ R, b′′′, b̄′′0 , ā′′0 , c′′, d̄′′, and ē′ such that

ab′b̄0ā′0c
′d̄′ē ≤1 a

′′b′′′b̄′′0 ā
′′′
0 c

′′d̄′′ē′.

In order to do our coding, for any d̄, we must be able to choose our elements so
that for any ē, we can find such a′′ ∈ R, b′′′, etc. with the first entry of ā′′0 in R if
and only if the first coordinate of ā is not in R.

On the other hand, the approximation might turn out to be different. After
adding d̄ to the isomorphism, and again believing that 0 ∉ A and 1 ∈ A, and making
our isomorphism ab′b̄0ā′0c

′d̄′, we add a new tuple ē to the isomorphism. In the
previous case, the approximation next told us that 0 ∈ A once again; it might

76 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

instead be the case that first, the approximation says that 0 ∉ A and 1 ∉ A. Then
we must change the isomorphism to abb̄′′0 ā

′′
0 c̄

′′d̄′′ē′. After we add some tuple f̄ to
the isomorphism, then we later believe that 0 ∈ A, and so we must code 1. Now we
need to find a′′ ∈ R, b′′′, b̄′′′0 , ā′′′0 , c̄′′, d̄′′′, ē′′, and f̄ ′ such that

abb̄′′0 ā
′′
0c

′′d̄′′ē′f ≤1 a
′′b′′′b̄′′′0 ā

′′′
0 c̄

′′d̄′′′ē′′f̄ ′.

To do our coding, we must have the second element of ā′′′0 in R if and only if the
second element of a0 is not in R.

When we choose the tuple ā0, we do not know which case we will be in, and so
we must be able to handle both cases. There are actually more possibilities than
this (for example, we could think that 1 ∉ A, then 1 ∈ A, then 1 ∉ A, then 1 ∈ A,
and so on), but it will turn out that we get these possibilities for free, and so for
now we will just consider the two possibilities outlined above.

Looking at this as a game again, in addition to adding tuples to the range of
the isomorphism, our opponent can now choose whether the first possibility for the
approximation of A described above will happen, or whether the second possibility
will happen (he chooses the approximation stage by stage—so he chooses, at the
same time as choosing the tuple ē, which possibility we must respond to). We will
choose a pair ā0 = (a1

0, a
2
0) to defeat our opponent: a1

0 to defeat our opponent when
he chooses to first possibility for the approximation, and a2

0 for the second. We can
choose a1

0 exactly as before when we were only coding a single element, in order to
defeat our opponent if he uses the first possibility; that is, if he chooses d̄ and ē,
and the approximation says that 0 ∉ A, and then 0 ∈ A (while saying that 1 ∈ A the
whole time), we can choose a1′′

0 which is in R if and only if a1
0 is not. Now we have

to argue that we can choose a2
0 so that not only do we defeat our opponent if he

uses the second possibility for the approximation of A, but that we still beat our
opponent if he uses the first possibility. Choose y ∉ R which is 2-free over a′b′′b̄′0a

1
0,

and x ∈ R such that a′b′′b̄′0a
1
0x ≤1 a

′b′′b̄′0a
1
0y. Suppose that we cannot beat our

opponent if we choose a2
0 = y, so that he has some winning strategy for this game.

Call our opponent’s winning strategy for a2
0 = y their y-strategy.

Then we will choose a2
0 = x. We will use our winning strategy for the first

approximation to ensure that the only way in which we can lose is if our opponent
uses the second approximation (∞∞ followed by 1) and forces us to have a2′′′

0 ∈ R
(recall that a2

0 = x ∈ R). Now, other than choosing the approximation, the only plays
our opponent can make are to choose d̄, ē, and f̄ . Now these tuples are played by
us together with our opponent, so we can force our opponent to use their y-strategy
by forcing them to play tuples extending those they used in the y-strategy (note
that if our opponent plays a larger tuple, it puts more of a restriction on what we
can play, and so even though our opponent is not, strictly speaking, using his y-
strategy, he is using a strategy which is even stronger). We had a winning strategy
when our opponent could only choose the first approximation. We will still follow
this winning strategy, playing against the tuples our opponent plays which extend
the tuples which we add to the isomorphism.

If our opponent uses the first approximation, then we will win because we used
the strategy that we already had to beat them in this case. If they use the second
approximation, then we force them to play their winning strategy from the case
a2

0 = y. So no matter what we play, we are forced to choose a′′′0 ∉ R because this is
the only way that our winning strategy from before with just the first approximation
could lose in this new game. But now x ∈ R, so we win.

5.4. THE GAME GS AND THE FINAL CONDITION 77

Now we said above that we do not have to worry about more complicated
possibilities for the approximation, like if we think that the approximation is ∞0,
then 1, then ∞0, then 2, then ∞0, and so on. This is because every time that we
think that the approximation is ∞0, our partial isomorphism looks like ab′b̄0ā′0c

′d̄′ē
for some additional tuple ē. Because our opponent can play any tuple they like,
and also we can respond in the same way whether the approximation becomes 1,
2, and so on, these are all essentially the same position in the game—we can play
from any of these positions in the same way that we would play from any other.
The values 1, 2, etc. are effectively the same for our purposes in the games above
because we have not added a coding location for 1, 2, etc. and so they all put only
the requirement that 0 not be coded as “yes.” If, for example, 1, 2, and 3 all had
coding locations as well, then it would be 4, 5, and so on that were all equivalent.
We play the game starting at a stage s only for those coding locations that exist
at the stage s. If we are only worrying about coding finitely many elements of A,
then after some bounded number of steps, the approximation our opponent plays
will have to repeat in this way. So there is some bound N such that if we can beat
our opponent when he plays only N stages of the approximation, then we can beat
him when he plays any number of stages.

The process starts to get more complicated when we are coding more than
two elements. There become even more possibilities for what could happen with
the coding which our opponent could play. If we are only coding finitely many
elements of A, the tuple ā0 will be exactly as long as the number of possibilities
which we have to consider. Viewing the requirements on ā0 as a game means that
we can ignore the exact details of all of the possibilities for the approximation,
while keeping the important properties, like the fact that there are finitely many
possibilities. In the next section, we will formally define the game which we have
used informally throughout this section.

Now in general, we are trying to code all of the elements of A. At each stage s,
we code only finitely many facts, each labeled by the function Ls, and we add only
finitely many new coding locations at each stage. We will maintain the property, at
each stage s, that we can win the game described above for those coding locations
(by which we mean that we must maintains properties (C1), (C2), (C3), and
(C4) for those coding locations). Then whenever we add new coding locations, we
must show that our winning strategy for the game at the previous stage gives rise
to a winning strategy which includes these new coding locations. In this way, even
though there are infinitely many coding locations which we will have to deal with
eventually, at each point we only consider a game where we deal with finitely many
of them. The choice of the new coding locations will have to take into account the
winning strategy for the game at the previous stage.

5.4. The Game Gs and the Final Condition

We return to giving the last condition (WS). So far, we have put no require-
ment on the construction to reflect the fact that some of the elements have to be
chosen to be 2-free, or that we can mark how many separate occasions we have
believed that some x is in A. At each stage s of the construction, we will associate
a game Gs with two players, I and II. Condition (WS) will simply be

(WS): I has an arithmetic winning strategy for Gs.

This stands for winning strategy.

78 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

In the game Gs, I goes first. On their turns, I plays a partial injection G ∶ ω → C,
interpreted as a partial isomorphism D → C; on the first turn, I is required to play
a partial isomorphism extending Fs. In response to G, II plays some elements c̄ ∈ C
which are not in the range of G, viewed as elements in the range of an extension of
G, and a string α which is a possible value for σt for t > s. The string α must either
be a string in dom(L) which has no proper extensions in dom(L), or σˆη where
σˆx ∈ dom(L) for some x ∈ ω+. Let dom(L)∗ be the set of these strings. Here, η
is a symbol which we can think of as representing some k ∈ ω for which σˆk has
not yet been visited, but we do not want to differentiate between different values
of k. Thus σˆη should be viewed as being to the right of every extension of σ in
dom(L). By convention, σˆη is not in T . The approximation (σt)t∈ω must satisfy
the properties from Lemma 5.6. So we also restrict II and force him to play strings
which form subsequences of sequences with the properties from the lemma. So if II
plays some string to the left of τ after playing τ , then II can never play any string
extending τ again. Also, for any string τ and x ∈ ω, if II plays a string τˆy for
y > x (or y = η), then II can never again play a string extending τˆx. Note that
this does not apply to strings which end with η (conceptually, II should be thought
of as playing σˆk for increasingly large values of k).

At stage s, we do not yet know the actual values of the approximation (σt)t∈ω
after stage s. We could compute finitely many future stages, but not all of them. In
playing the α ∈ dom(L)∗, II plays a possible future value of the approximation which
we have to be able to handle. When I plays a partial isomorphism G in response, it
is an attempt to continue the construction assuming that the approximation is as
II has played it. But I only has to continue the construction in a limited manner:
they must maintain the coding given by Ls, but they do not need to add more
coding locations to Ls. Since we will not be adding new elements to Ls, we will let
L = Ls, k = ks, and m =ms for the rest of this section and the next.

Now during the construction there will be certain elements which we will have
to add to our partial isomorphism. For example, condition (Surj) requires us to
add elements in order to make the isomorphism bijective. We will also have to add
free elements in order to code new strings; we have some control over these in that
we can choose which free element we choose, but not total control in that we are
restricted to the free elements. This is the role of the tuples c̄ which are played
by II in response to a play G by I: they are elements which I is required to add to
G before continuing the construction. They will also be useful for more technical
reasons in the next section.

Now we will state the ways in which I can lose. If I does not lose at any finite
stage, then they win (thus it is a closed game). First, there are some conditions on
the coding by G. If I plays G in response to α, then I must ensure that for each
σ ∈ dom(L):

(C1�): if σ ∈ T∞ and σ ⊂ α then G(L(σ)) ∉ R;
(C2�): if σ ∈ T∞ and σ ⊄ α but σ− ⊂ α, then G(L(σ)) ∈ R;

(C3�): if σ ∈ Tω and σ ⊂ α then G(L(σ), . . . , L(σ) + k(σ) − 1)) ∈ Rm(σ); and

(C4�): if σ ∈ Tω and σ ⊄ α but σ− ⊂ α then G(L(σ), . . . , L(σ) + k(σ) − 1) ∉ Rm(σ).

These are conditions which ensure that G codes α using the coding locations given
by L; they are the equivalents of conditions (C1), (C2), (C3), and (C4) respec-
tively for the Fs.

5.5. BASIC PLAYS AND THE BASIC GAME GbS 79

Now we also have global agreement conditions which are the equivalents of
(At) and (Ext). There is a slight modification to (At) and (Ext), which is that
if I plays G, and II responds by playing c̄ and α, then we use Gˆc̄ rather than G
because the c̄ are elements that must be added to the image of G before the next
move. Suppose that so far, I has played G0 ⊃ Fs,G1, . . . ,Gn and II has played
(c̄0, α1), . . . , (c̄n, αn+1). Note that the two indices of a move by II differ by one, so
that II plays (c̄i, αi+1) rather than (c̄i, αi). This will turn out to be more convenient
later. By convention, we let α0 = σs and c̄n+1 the empty tuple (or, if II plays the
strings βi, then β0 = σs, and so on). Now I must play a partial isomorphism Gn+1

which codes αn+1. In addition to the four requirements above, I must also ensure
that:

(At�): Giˆc̄i ≤0 Gi+1,
(Ext1�): for each 0 ≤ i < n + 1, if σ ∈ T (so σ does not end in η), σ ⊂ αi, and

σ ⊂ αn+1, then for all x ≤ L(σ) + k(σ) − 1, Gi(x) = Gn+1(x); if αi = αn+1

and they do not end in η, then in fact Giˆc̄i ⊂ Gn+1, and
(Ext2�): for each t ≤ s and 0 ≤ i < n + 1, if σ ∈ T (so σ does not end in η), σ ⊂ σt,

and σ ⊂ αn+1, then for all x ≤ L(σ), Ft(x) = Gn+1(x); if σt = αn+1 and
they do not end in η, then in fact Ft ⊂ Gn+1.

A winning strategy for I is a just way to continue the construction, but without
having to add any new strings to Ls. Because II can play any appropriate string α,
the strategy is independent of the future values σs+1, σs+2, . . . of the approximation.

5.5. Basic Plays and the Basic Game Gbs

The game Gs requires I to play infinitely many moves in order to win. However,
II has only finitely many different strings in dom(L)∗ which they can play, and so
if they extend the approximation for infinitely many stages, they must repeat some
strings infinitely many times. In this section, we will define a game which is like Gs,
except that II is not allowed to have the approximation loop more than once. The
main lemma here will be that if I can beat II when II is restricted to only playing
one loop, then I can win in general. The idea is that at the end of a loop in the
approximation, the game ends up in essentially the same place it was before the
loop. So if I does not lose to any single loop, they do not lose to any sequence of
loops. These plays with only one loop will be called the basic plays, and the game
with no loops the basic game Gbs .

Whether or not a play by II is a basic play depends only on the strings α in the
play, and is independent of the tuples c̄. We say that a play (c̄0, α1), . . . , (c̄`−1, α`)
by II is based on the list α1, . . . , α`. A play based on α1, . . . , α` is a basic play (and
the list of strings it is based on is a basic list) if it satisfies:

(B1): for i < ` − 1, αi ≠ αi+1 (we allow α`−1 to be equal to α`), and
(B2): if for some i < j there is some τ ∈ T such that τˆ∞ ⊂ αi, τˆ∞ ⊂ αj , and for

all k with i < k < j, αk = τˆη, then j = ` and αi = αj .

These conditions include α0 = σs; so, for example, if α1 = σs, then ` = 1 by (B1).
Note that all of these definitions are dependent on the stage s. So really, we are
defining what it meas to be a basic play at stage s.

The first of two important facts about the basic plays is the following lemma.

Lemma 5.8. There are finitely many basic lists.

80 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

Proof. The domain of L is finite, and hence dom(L)∗ is finite. Since II can
only play strings from dom(L)∗, there are only finitely many different σ which can
appear as one of the αi in a basic list. Let α1, . . . , α` be a basic list. We will show
that ` is bounded, and hence there are only finitely many basic lists. Let M be
the size of dom(L)∗. In any sufficiently long basic list, say α1, . . . , αN of length at
least N (depending on M), there must be three indices i1 < i2 < i3 < N such that
αi1 = αi2 = αi3 . Since i3 < N , by (B1) there must be j1 and j2 with i1 < j1 < i2,
i2 < j2 < i3, αj1 ≠ αi1 , and αj2 ≠ αi2 . Let τ1 and τ2 be the greatest common initial
segments of the j with i1 ≤ j ≤ i2 and i2 ≤ j ≤ i3 respectively. Let x be such that
τ1ˆx ⊆ αi1 = αi2 . Since there is j1 with i1 < j1 < i2 and τ1ˆx ⊈ αj1 , we cannot have
x ∈ ω. So x = ∞ or x = η. First, suppose that x = ∞. Then for all j1 with i1 < j1 < i2,
we cannot have τ1ˆz ⊆ αj1 for some z ∈ ω, since for any such z with τ1ˆz ∈ L, some
string τ ′ ⊇ τ1ˆz appeared before i1 and hence τ1ˆz can never appear again. So, by
decreasing i2 and increasing i1, we may assume that τ1ˆ∞ ⊆ αi1 , τ1ˆ∞ ⊆ αi2 , and
for all j1 with i1 < j1 < i2, τ1ˆη ⊆ αj1 (though we may no longer have αi1 = αi2).
This contradicts (B2). So we must have x = η, and so τ1ˆη = αi1 = αi2 . Similarly,
we must have τ2ˆη = αi3 = αi2 . Thus τ1 = τ2—call this τ . Then there are j1 and j2
with i1 < j1 < i2 < j2 < i3 and τˆ∞ ⊆ αj1 and τˆ∞ ⊆ αj2 . For all i with j1 < i < j2,
we have τ ⊆ αi. Thus, increasing j1 and decreasing j2, we may assume that for all
such i, τˆη = αi. This contradicts (B2). So there is no basic list of length greater
than N . �

The basic game Gbs is the same as the game Gs, except that we add a new
requirement for II: any play by II must be a basic play. If, at any point in the
game, II has violated one of the conditions of the basic plays, then II loses. The
next lemma is the second important fact about the basic plays; it says that they
are the only plays which I has to know how to win against.

Lemma 5.9. If I has a winning strategy for the basic game Gbs, then I has a
winning strategy for the game Gs. Moreover, if I has an arithmetic winning strategy
for Gbs, then they have an arithmetic winning strategy for Gs.

Proof. Let Sb be a winning strategy for I in the basic game Gbs . We must
give a winning strategy S for I in the game Gs. To each play P by II in the game
Gs, S must give I’s response S(P). To each play P , we will associate a basic play
P ∗. I will respond to P in the same way that they responded to the corresponding
basic play P ∗; that is, S(P) will be Sb(P ∗). If P is (c̄0, α1), . . . , (c̄m−1, αm) and
P ∗ is (d̄0, β1), . . . , (d̄n−1, βn) then we will have αm = βn. Thus since (C1�), (C2�),
(C3�), (C4�), and (Ext2�) hold for I playing Sb(P ∗) in response to P ∗, they will
also hold for I playing S(P) = Sb(P ∗) in response to P .

The general strategy to construct P ∗ from P will be to build P ∗ up inductively.
If P is not a basic play, it is because it fails to satisfy (B1) and (B2). In the first
case, this means that for some i, αi = αi+1, and so in P ∗ we will omit αi. In the
second case, we will be able to omit everything between the i and j witnessing the
failure of (B2). The difficulty is to do this in a well-defined way, so that we have
a nice relationship between Q∗ and P ∗ when P is a longer play which includes Q.
This is necessary to ensure that Sb(Q) and Sb(P) are related in the correct way,
e.g. by (Ext1�) and (Ext2�). It will be sufficient to build up P ∗ inductively from
the definition of Q∗ in a natural way, but there are a number of things to check.

5.5. BASIC PLAYS AND THE BASIC GAME GbS 81

There is a condition (∗) relating P and P ∗ which, intuitively, says that P ∗

captures the essence of P (i.e., P ∗ omits only non-essential plays from P). Let
G0 ⊃ Fs,G1, . . . ,Gm be I’s response to P and H0 ⊃ Fs,H1, . . . ,Hn be I’s response
to P ∗. Let F̃ ∶ ω → C be a partial isomorphism and γ ∈ dom(L)∗. Then denote by

Φ(P ∗, F̃ , γ, i) the statement:

● for all σ ∈ T , if σ ⊂ βi and σ ⊂ γ, then for all x ≤ L(σ), Hi(x) = F̃ (x). If

βi = γ and they do not end in η, then in fact Hiˆd̄i ⊂ F̃ ,

and by Ψ(P, F̃ , γ, j) the statement:

● for all σ ∈ T , if σ ⊂ αj and σ ⊂ γ, then for all x ≤ L(σ), Gj(x) = F̃ (x). If

αj = γ and they do not end in η, then in fact Gjˆc̄j ⊂ F̃ .

Then (∗) says that for any F̃ and γ such that for all i with 0 ≤ i ≤ n the statement

Φ(P ∗, F̃ , γ, i) holds, then for the same F̃ and γ and for all j with 0 ≤ j ≤ m the

statement Ψ(P, F̃ , γ, j) holds.
Now suppose that (∗) holds for P and P ∗, and that we want to check (Ext1�)

and (Ext2�) for the response Hn = Gm = S(P) = Sb(P ∗) to P . Choose F̃ = Hn =
Gm and γ = αm = βn. We know that Sb is a winning strategy in the basic game,
and so I does not lose by playing Hn. Thus (Ext1�) and (Ext2�) must hold in the
basic game. We immediately get (Ext1�) for the full game. Also, (Ext2�) for the
basic game implies, for all i ≤ n, the statement Φ(P ∗,Hn, γ, i). Then by (∗), we
know that for all i ≤ m, we have Ψ(P,Gm, γ, i). This implies (Ext2�) for the full
game at P . Thus, instead of checking (Ext1�) and (Ext2�), it suffices to check
property (∗).

We will define the operation P → P ∗ by induction on the length of P . At the
same time, we will show that the strategy S for I does not lose at any finite point
in the game (and hence, it must win), and also that P and P ∗ have (∗). If we show
(∗), then the only thing remaining to see that I does not lose is to check (At�). Let
P be (c̄0, α1), . . . , (c̄`, α`+1) and suppose that the operation Q → Q∗ is defined for
plays of length up to `. Let Q be first ` plays in P , that is, (c̄0, α1), . . . , (c̄`−1, α`),
so that Q∗ has already been defined. We have three possibilities.

Case 1. Q∗ followed by (c̄`, α`+1) is a basic play.

Let P ∗ be Q∗ followed by (c̄`, α`+1); this is already a basic play.

First we check (∗). Fix γ and F̃ . Let H0,H1, . . . ,Hn be I’s response to Q∗ and
G0,G1, . . . ,G` be I’s response to Q. Let Hn+1 = G`+1 = Sb(P ∗) = S(P). Suppose

that, for each i ≤ n + 1, we have Φ(P ∗, F̃ , γ, i). Then, from Φ(P ∗, F̃ , γ, i) for i ≤ n

and (∗) for Q and Q∗, we get Ψ(P, F̃ , γ, j) for i ≤ `. Note that Φ(P ∗, F̃ , γ, ` + 1)

is the same as Ψ(P, F̃ , γ, n + 1) since Hn+1 = G`+1. So, for all j ≤ ` + 1, we have

Ψ(P, F̃ , γ, j). Thus we have (∗).
Now we need to check (At�) to see that I does not lose Gs by responding to

P with Sb(P ∗) = H. So we need to show that S(Q)ˆc̄` ≤0 Hn+1. Since I does
not lose Gbs when responding to P ∗ with Hn+1, we have Sb(Q∗)ˆc̄` ≤0 Hn+1. But
Sb(Q∗) = S(Q), so (At�) holds for S.

Case 2. Q∗ followed by (c̄`, α`+1) does not satisfy (B1).

Let Q∗ be (d̄0, β1), . . . , (d̄n−1, βn). It must be the case that βn−1 = βn. Let
H0,H1, . . . ,Hn be I’s response to Q∗; then Hn−1ˆd̄n−1 ⊂ Hn. Let ē be a tu-
ple of elements from C such that Hn−1ˆd̄n−1ˆē = Hn and let P ∗ be the play

82 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

(d̄0, β1), . . . , (d̄n−2, βn−1), (d̄n−1ˆēˆc̄`, α`+1). Since Q∗ satisfied (B2) and βn−1 = βn,
P ∗ satisfies (B2) and hence is a basic play.

Now we will check (∗). Fix γ and F̃ . Recall that H0,H1, . . . ,Hn is I’s response
to Q∗ in the basic game, and let G0,G1, . . . ,G` be I’s response to Q; let G`+1 =H

′
n

be Sb(P ∗) = S(P). Then H0,H1, . . . ,Hn−1,H
′
n is I’s response to P ∗. Suppose

that for each i ≤ n we have Φ(P ∗, F̃ , γ, i). Then since G`+1 = H ′
n and α`+1 is the

last play by II in both P and P ∗, we immediately have Ψ(P, F̃ , γ, ` + 1). To show

Ψ(P, F̃ , γ, j) for j ≤ `, it suffices to show Ψ(Q, F̃ , γ, j) for j ≤ `, and hence (by (∗)

for Q and Q∗) to show Φ(Q∗, F̃ , γ, i) for i ≤ n.

Now P ∗ and Q∗ agree on (d̄0, β1), . . . , (d̄n−2, βn−1), so we have Φ(Q∗, F̃ , γ, i) for

i ≤ n− 2. Now Φ(P ∗, F̃ , γ, n− 1) says that: for all σ ∈ T , if σ ⊂ βn−1 and σ ⊂ γ, then

for all x ≤ L(σ), Hn−1(x) = F̃ (x); and moreover, if βn−1 = γ and they do not end in

η, then in fact Hn−1ˆd̄n−1ˆēˆc̄` = Hnˆc̄` ⊂ F̃ . This implies both Φ(Q∗, F̃ , γ, n − 1)

and Φ(Q∗, F̃ , γ, n) since Hn−1 ⊂ Hn. Thus, for all i ≤ n, we have Φ(Q∗, F̃ , γ, i).
This completes the proof of (∗).

Now we need to check (At�). Since I does not lose Gbs when responding to P ∗

with H ′
n = G`+1, by (At�) we have that Hn−1ˆd̄n−1ˆēˆc̄` ≤0 H

′
n. But Hn−1ˆd̄n−1ˆē =

Sb(Q∗) = S(Q), so S(Q) ≤0 S(P). So (At�) holds for S.

Case 3. Q∗ followed by (c̄`, α`+1) satisfies (B1) but does not satisfy (B2).

Let Q∗ be (d̄0, β1), . . . , (d̄n−1, βn). Now Q∗ satisfies (B2), so there are two
possible reasons that Q∗ followed by (c̄`, α`+1) might fail to satisfy (B2).

Subcase 3.1. τˆ∞ ⊂ βm = βn but for each k with m < k < n, βk = τˆη

Choose m to be least with the above property. For any k with m < k < n,
βk = τˆη. Let H0,H1, . . . ,Hn be I’s play in response to Q∗. We have Hm ⊂
Hn. Let ē be a tuple of elements of C such that Hmˆē = Hn. Then let P ∗ be
(d̄0, β1), . . . , (d̄m−1, βm), (ēˆc̄`, α`+1). This is a basic play since Q∗ was. Note that
I’s play in response to P ∗ is H0,H1, . . . ,Hm,H

′ for some partial isomorphism H ′.
Now we will check (∗). Let G0,G1, . . . ,G` be I’s response to Q, so that I’s

response to P is G0,G1, . . . ,G`,G`+1 = H ′. Fix γ and F̃ . Suppose that for each
i ≤ n we have Φ(P ∗, F̃ , γ, i). Since both P and P ∗ end in α`+1, Φ(P ∗, F̃ , γ, i) implies

Ψ(P, F̃ , γ, ` + 1). Now for j ≤ `, Ψ(Q, F̃ , γ, j) implies Ψ(P, F̃ , γ, j), and so by (∗)

for Q and Q∗, it suffices to show that for all i ≤ n, we have Φ(Q∗, F̃ , γ, i).
For the first m turns, Q∗ and P ∗ agree, and so for i ≤m, Φ(P ∗, F̃ , γ, i) implies

Φ(Q∗, F̃ , γ, i). So we have established Φ(Q∗, F̃ , γ, i) for i ≤m.

For m < i < n, we have βi = τˆη. To show Φ(Q∗, F̃ , γ, i), it suffices to check that

if σ ∈ T has σ ⊂ τ and σ ⊂ γ, then for all x ≤ L(σ), Gj(x) = F̃ (x). Now σ ⊂ τ ⊂ αi,

so Gi(x) = F̃ (x) for all x ≤ G(σ). By (Ext1�), for all x ≤ L(σ), Gi(x) = Gj(x),

and hence Gj(x) = F̃ (x).
Finally, we have the case i = n. We have βn = βi. If σ ∈ T has σ ⊂ βn and

σ ⊂ γ, then σ ⊂ βi and so for all x ≤ L(σ), Gn(x) = Gi(x) = F̃ (x). We also need

to consider the case where γ = βn. By Φ(P ∗, F̃ , γ, i), we have that Giˆē ⊂ F̃ ; but

Giˆē = Gn and so Gn ⊂ F̃ as desired. Thus we have Ψ(Q∗, F̃ , γ, n). This completes
the proof of (∗).

So I responds to P with Sb(P ∗) = H. To see that this does not lose the game
for I, we just need to check (At�). Since I does not lose Gbs when responding to P ∗

5.6. THE CONSTRUCTION 83

with H, by (At�) we have Giˆēˆc̄`+1 ≤0 H. But Giˆē = Gn, so Gnˆc̄`+1 ≤0 H as
required.

Subcase 3.2. There is i ≤ n and τ ∈ T such that τˆ∞ ⊂ βi and τˆ∞ ⊂ α`+1 but
for each k with i < k ≤ n, τˆη = βk. Also, βi ≠ α`+1.

Let Q̂ be (d̄0, β1), . . . , (d̄n−1, βn), (c̄`, βi). We can now use the same argument

as in the previous subcase, with Q̂ being extended by (∅, α`+1).

The whole construction of S from Sb by transforming plays P into basic plays
P ∗ is arithmetic. �

Now any winning strategy for I in Gs is also a winning strategy in Gbs ; in partic-
ular, if I has an arithmetic winning strategy for Gs, then they have an arithmetic
winning strategy in Gbs . However, it would be nice if we did not have to worry
about the computability-theoretic properties of the winning strategy during our
arguments. The following lemma lets us do exactly that.

Corollary 5.10. The following are equivalent:

(1) I has a winning strategy for Gs.
(2) I has an arithmetic winning strategy for Gs.
(3) I has a winning strategy for Gbs.
(4) I has an arithmetic winning strategy for Gbs.

Proof. We have (4) ⇒ (2) from the previous lemma. (2) ⇒ (1) is immediate.
(1) ⇒ (3) is because any winning strategy for I in Gs is a winning strategy for
Gbs . So it remains to prove (3) ⇒ (4). In Gbs , each player makes only finitely many
moves in every play of the game, and there is a computable bound on the number
of moves. Any such game with a winning strategy for I has an arithmetic winning
strategy for I. �

So in order to check (WS), it suffices to show that I has a winning strategy
without worrying about whether it is arithmetic.

5.6. The Construction

Begin at stage s = −1 with F−1 = L−1 = ∅.
At each subsequent stage s + 1, we will first update the partial isomorphism

from the previous stage according to the new approximation. To do this, we will
use the winning strategy from the game Gs which we had at the previous stage.
Then we will add new elements to the image of the isomorphism, and add a new
coding location. We must add these new elements so that all of the properties from
Section 5.2 are satisfied.

At stage s + 1, σs+1 ∉ dom(Ls) but σ−s+1 ∈ dom(Ls). (Recall that σ−s+1 is σs+1

with the last entry removed.) We begin by using our winning strategy for Gs to
code σ−s+1 correctly. If there is some x ∈ ω+ such that σ−s+1ˆx ∈ dom(Ls), then
`(σs+1) ∈ ω; let τ = σ−s+1ˆη. Otherwise, let τ = σ−s+1. I has an arithmetic winning
strategy S for the game Gs from the previous stage. Consider these first couple
moves of the game where I uses the strategy S: I plays G0 ⊃ Fs, II plays (∅, τ), and
I responds with G according to their winning strategy S. Fs+1 will be an extension
of G. Since G was part of the winning strategy for I, it did not lose the game.
So, automatically, Fs+1 will satisfy (C1), (C2), (C3), and (C4) for σ ∈ dom(Ls),
(At), and (Ext) since G already satisfies these.

84 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

Suppose that the domain of G is {0, . . . , n}. Let t < s+ 1 be the previous stage
at which σt = σ

−
s+1. Then by (Surj) at stage t, the first ∣σt∣−1 elements of C appear

in ran(Ft ↾Lt(σt)). By (Ext), Ft ⊂ G. If the first ∣σs+1∣ − 1 elements of C do not
appear in ran(G), then it is because the (∣σs+1∣ − 1)th element is not in ran(G); let
this element be a, and define G′ extending G by G′(n + 1) = a. Set Ls+1 to be the
extension of Ls with Ls+1(σs+1) = n + 2. Then any Fs+1 extending G′ will satisfy
(Surj). Also, since σs+1 ∈ dom(Ls+1), we satisfy (CLoc).

While we have set Ls+1(σs+1) = n+ 2, we have not yet added an element to the
range of G in that position. What remains to be done is to add some element in
the position n + 2 (or a tuple in the positions n + 2, n + 3, . . . if σs+1 ∈ Tω) to satisfy
(C1), (C2), (C3), and (C4) for σ = σs+1 and also to give a winning strategy
witnessing (WS). There are two cases depending on the last entry of σs+1. The
first is relatively easy while the second is much harder.

5.6.1. The case σs+1 ∈ T∞. Let b ∉ R be an element which is 2-free over
ran(G′). Let Fs+1 extend G′ with Fs+1(n + 2) = b. Define ms+1(σs+1) = −1 and
ks+1(σs+1) = 1. Then Fs+1 satisfies (C1), (C2), (C3), and (C4) for σ = σs+1,
which was the last remaining case of those properties.

We must show that I has a winning strategy in the game Gbs+1. The only
difference between Gbs+1 and Gbs is that in Gbs+1 we have added a new coding location
σs+1 to L, and Gbs starts a turn earlier than Gbs+1. We can accommodate the latter
by considering plays in Gbs which begin with (∅, σs+1), thus making I play G as
their first play. So every part of the approximation that our opponent plays in Gbs+1

is an approximation that our opponent could have played in Gbs , except that in Gbs+1

II can also play σs+1 and σ−s+1ˆη.
As a first approximation, we could use the strategy S from the previous stage

(and when our opponent plays σs+1 or σ−s+1ˆη, we respond instead to σ−s+1). This
works except for one thing, which is that when our opponent plays either σs+1 or
σ−s+1ˆη, we are not guaranteed to code σs+1 correctly. Now, when our opponent
plays σs+1, our response using S will extend Fs+1 = Gab with b ∉ R coding σs+1

(this is because by (Ext1�) and (Ext2�) our response must extend our response
at the previous stage where the approximation was σ−s+1). The only problem is that
when our opponent plays σ−s+1ˆη, S will also have us respond with an extension of
Fs+1 = Gab, but now b is coding the wrong thing. This is relatively easy to fix. Say
S has us respond with Gabc̄. Since b is 2-free over Ga, we can find b′ ∈ R and c̄′

with Gabc̄ ≤1 Gab
′b̄′. Then we will play Gab′c̄′.

In order to continue to follow the strategy S at later stages, we cannot tell S
that our opponent plays σs+1 or σ−s+1ˆη because this is an illegal play in Gbs . However,
we can tell S that our opponent played σ−s+1 and pretend that we responded with
Gabc̄. We will keep track of these corresponding plays for the purposes of using S.

So along with defining the strategy T for Gbs , we will describe a for each play
by II in Gbs+1 a corresponding play in Gs (note the corresponding play is in the full
game, rather than the basic game). If II plays (c̄0, α1), . . . , (c̄n−1, αn) in Gbs+1, the
corresponding play in Gbs will be of the form (∅, σ−s+1), (abd̄0, β1), . . . , (d̄n−1, βn) in
Gs. Note that the length of the play in Gs is one more than of that in Gbs+1; this
is because Gs begins at the previous stage, and so we need to begin by playing G
and adding a and b to the image of the isomorphism. Thus the first play using the
strategy S will be G, and before the second play I will be forced to add ab to G,
and thus I is essentially playing Fs+1. We can already define β1, . . . , βn−1, but the

5.6. THE CONSTRUCTION 85

d̄i will be defined at the same time as we define T . If αi is in dom(Ls)
∗, then βi

and αi will be equal. Otherwise, αi is either σs+1 or σ−s+1ˆη, and βi will be the
longest initial segment which is in dom(Ls)

∗, which is βi = σ
−
s+1.

Now we will define T and the d̄i by an alternating inductive definition. Suppose
that so far we have defined I’s response G0 ⊃ Fs+1,G1, . . . ,Gn−1 when II plays
(c̄0, α1), . . . , (c̄n−2, αn−1). We will also have defined a corresponding play by II
in Gbs , (∅, σ−s+1), (abˆd̄0, β1), . . . , (d̄n−2, βn−1). Let F ′ ⊃ Fs,G,H1, . . . ,Hn−1 be I’s
response to this using S. We will have ensured that if αi = σ

−
s+1ˆη then Hi ≤1 Gi,

and otherwise that Hi = Gi and for each i and d̄i = c̄i. Recall that Gˆab = Fs+1.
It is now II’s turn, and suppose that II plays (c̄n−1, αn), and that this is a

basic play by II. We must define d̄n−1 and then define I’s response Gn. Note that
if αi = αi+1 = σ

−
s+1ˆη, then i + 1 = n by (B1).

There are four cases depending on the values of αn−1 and αn. When neither of
αn−1 nor αn are σ−s+1η, then we can just follow S. Then we have three more cases
depending on whether one (or both) of αn−1 and αn are σ−s+1η.

Case 1: αn−1, αn ≠ σ−s+1ˆη. In this case we can simply follow S. Let d̄n−1 = c̄n−1.
Let Gn =Hn be I’s response, using S, to

(∅, σ−s+1), (abˆd̄0, β1), . . . , (d̄n−1, βn).

Case 2: αn−1 = σ
−
s+1ˆη and αn ≠ σ

−
s+1ˆη. We have Hn−1 ≤1 Gn−1. Let d̄n−1 be such

that Gn−1c̄n−1 ≤0 Hn−1d̄n−1. Now let Gn =Hn be I’s response, using S, to

(∅, σ−s+1), (abˆd̄0, β1), . . . , (d̄n−1, βn).

Case 3: αn−1 ≠ σ−s+1ˆη and αn = σ−s+1ˆη. Let d̄n−1 = c̄n−1. Now let Hn be I’s
response, using S, to

(∅, σ−s+1), (abˆd̄0, β1), . . . , (d̄n−1, βn).

Note that since αn = σ−s+1ˆη, βn = σ−s+1. Then Hn ⊇ Fs+1 = Gab, say
Hn = Gabē. Then using the fact that b is free over Ga, choose b′ ∈ R and
ē′ such Hn ≤1 Gab

′ē′. Then set Gn = Gab
′ē′.

Case 4: αn−1 = αn = σ−s+1ˆη. Set Gn = Gn−1c̄n−1. Since αn−1 = αn, there are no
longer basic plays than this, and so we do not need to define d̄n−1.

It is tedious but easy to see that none of these plays by I is a losing play. Hence
I has a winning strategy T in Gbs+1.

5.6.2. The case σs+1 ∈ Tω. By Lemma 5.8, there are only finitely many basic
lists on which II’s basic plays are based. Let b1, . . . ,bm be these basic lists, where
bi is the list βi1, β

i
2, . . . , β

i
`i

.

We must add a tuple b̄ to the image of our partial isomorphism, setting Fs+1 =
Gb̄. The tuple b̄ will be made up of tuples b̄1, . . . , b̄m from C. Let ε̄1, . . . , ε̄m be
tuples of elements in {−1,1} be such that b̄j ∈ R

ε̄j . If we set ms+1(σ) = ε̄1ˆ⋯ˆε̄m
and ks+1(σs+1) = ∣̄b1∣ + ⋯ + ∣̄bm∣, then (C1)-(C4) will be satisfied. So we just have
to make sure that b̄1, . . . , b̄m are chosen such that (WS) is satisfied, that is, I has
a winning strategy for the game Gs+1 (or, equivalently, Gbs+1).

To choose the tuples b̄1, . . . , b̄m, we will define a new class of games. For each
r ≤m, b̄1, . . . , b̄r tuples of elements of C, and tuples ε̄1, . . . , ε̄r which are tuples of 1s
and −1s (with εi the same length as b̄i), we have a game H(b̄1, ε̄1; . . . ; b̄r, ε̄r). We do
not require, for the definition of the game, that b̄j ∈ R

ε̄j . We allow the case r = 0;

that is, H(∅) is a game. H(∅) will be essentially the game Gbs , and we will be able

86 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

to easily turn a winning strategy for I in Gbs into a winning strategy for I in H(∅).
Then we will use the winning strategy for H(∅) to show that we can choose b̄1 and
ε̄1 so that we have a winning strategy for I inH(b̄1, ε̄1), and we will use that winning
strategy to show that we can choose b̄2 and ε̄2 so that we have a winning strategy
for I in H(b̄1, ε̄1; b̄2, ε̄2), and so on. Eventually we will be able to choose b̄1, . . . , b̄m
and ε̄1, . . . , ε̄m so that we have a winning strategy for H(b̄1, ε̄1; . . . ; b̄m, ε̄m). We will
choose the tuples so that if we make the definition of Fs+1, ms+1, and ks+1 above,
this winning strategy will immediately yield a winning strategy for I in Gbs+1.

Here are the rules for the game H(b̄1, ε̄1; . . . ; b̄r, ε̄r). I begins by playing a
partial isomorphism G0 which extends Gab̄1⋯b̄i. Then, II and I alternate, with
II playing a tuple of elements from C and a string in dom(Ls+1)

∗, and I playing
a partial isomorphism. As in Gbs+1, II must make a play which is based on one of
the basic lists. I can lose by violating one of (C1�)-(C4�) for σ ∈ dom(Ls)

∗ (not
dom(L∗s+1), since we have not yet defined ms+1(σs+1) and ks+1(σs+1)). I can also
lose by violating (At�)-(Ext2�) using L = Ls+1. Finally, I must ensure that

(CB�): whenever I is responding with a partial isomorphism H to a basic play
(c̄0, β

i
1), . . . , (c̄`i−1, β

i
`i
) based on bi for i ≤ r, and β`i = σ

−
s+1ˆη, then

H(n + ∣̄b1∣ + ⋯ + ∣̄bi−1∣ + 1), . . . ,H(n + ∣ā1∣ + ⋯ + ∣̄bi−1∣ + ∣̄bi∣) ∉ R
ε̄i .

This condition (CB�) will be what is required to ensure (C4�) for σ = σs+1.
The choice of b̄1, . . . , b̄m involves three lemmas. We will begin by stating the

first two lemmas and using them to prove the induction step of the third lemma
before returning to the proofs of the first two.

Lemma 5.11. Suppose that I wins H(b̄1, ε̄1; . . . ; b̄r, ε̄r). Let c̄ be such that I’s
first play using their winning strategy for this game is Gab̄1⋯b̄r c̄. Let ν̄ be such that
c̄ ∈ Rν̄ . Let x ∈ C. Then for one of ι = 1 or ι = −1, I wins H(b̄1, ε̄1; . . . ; b̄r, ε̄r; c̄x, ν̄ι).

Lemma 5.12. Let c̄ and ν̄ be as above. Let ι = 1 or ι = −1. If I wins the game
H(b̄1, ε̄1; . . . ; b̄r, ε̄r; c̄x, ν̄ι) and

Gab̄1⋯b̄r c̄x ≤1 Gab̄1⋯b̄r c̄y,

then I wins H(b̄1, ε̄1; . . . ; b̄r, ε̄r; c̄y, ν̄ι).

Lemma 5.13. There are b̄1, . . . , b̄m ∈ C and ε̄1, . . . , ε̄m such that I wins the game
H(b̄1, ε̄1; . . . ; b̄m, ε̄m) and (b̄1, . . . , b̄m) ∈ R(ε̄1,...,ε̄m).

Proof. The proof is by induction on r. The first step is to show that I has
a winning strategy for the game H(∅). Recall that I has a winning strategy S for
Gs, and S responds to (∅, σ−s+1ˆη) with G. To any play P = (d̄0, α1), . . . , (d̄`−1, α`)
by II in H(∅), associate the play P ∗ = (∅, σ−s+1ˆη), (ad̄0, α1), . . . , (d̄`−1, α`) in Gs.
A response Fs,G,H1, . . . ,H` to P ′ according to S which does not lose Gs gives rise
to a response Ga,H1, . . . ,H` which does not lose H(∅) (the conditions for I losing
in each game are essentially the same; the only difference is that Gs involves an
additional turn at the beginning). So the winning strategy S for Gs gives rise to a
winning strategy for H(∅).

Now for the induction step, suppose that we have tuples b̄1, . . . , b̄r and ε̄1, . . . , ε̄r
such that I wins H(b̄1, ε̄1; . . . ; b̄r, ε̄r) and b̄i ∈ R

ε̄i . Let c̄ and ν̄ be as in the previous
lemmas, that is, I’s winning strategy begins by playing Gab̄1⋯b̄r c̄. Now choose an
element x ∉ R which is 2-free over Gab̄1⋯b̄r c̄. Then choose y ∈ R such that

Gab̄1⋯b̄r c̄x ≤1 Gab̄1⋯b̄r c̄y

5.6. THE CONSTRUCTION 87

Now by Lemma 5.11, I wins H(b̄1, ε̄1; . . . ; b̄r, ε̄r; c̄x, ν̄ι) for either ι = 1 or ι = −1. If
x ∈ Rι (i.e., ι = −1), then we are done. Otherwise, if ι = 1, then by Lemma 5.12,
I also wins H(b̄1, ε̄1; . . . ; b̄r, ε̄r; c̄y, ν̄ι). But y ∈ R and ι = 1, so this completes the
induction step. �

The winning strategy for H(b̄1, ε̄1; . . . ; b̄m, ε̄m) is a winning strategy for Gbs+1.
We need to check that this strategy satisfies (C3�) and (C4�) for σs+1. The first
follows from the choice of ms+1, and the fact that once II plays some string other
than σs+1, they can never again play σs+1. The second is because the winning
strategy for H(b̄1, ε̄1; . . . ; b̄m, ε̄m) satisfies (CB�) for each basic list.

Now we return to the omitted proofs.

Proof of Lemma 5.11. In order to simplify the notation, denote by G the
game H(b̄1, ε̄1; . . . ; b̄r, ε̄r) and by G(ι) the game H(b̄1, ε̄1; . . . ; b̄r, ε̄r; c̄x, ν̄ι) for ι = 1
and ι = −1. We must show that I has a winning strategy for either G(−1) or G(1).

Suppose that I does not have a winning strategy for G(1). Then II has a
winning strategy for G(1). We also know that I has a winning strategy in G. We
will show that I has a winning strategy for G(−1).

The strategy for I will try to do two things. First, it will try to be the same
as I’s winning strategy for G. Then the only way for II to lose while using such a
strategy will be for II to use a basic play based on br+1, the r+1st basic list, and to
have I fail to satisfy (CB�) for this basic list. The second thing that I will try to do
is, if II follows the basic list br+1, to try and force II to use their winning strategy
from G(1). Since this is a winning strategy for II, I will fail to satisfy (CB�) in
G(1) for br+1. But failing to satisfy (CB�) in G(1) for some basic list is the same
as satisfying (CB�) in G(−1) for that basic list. So I will win G(−1).

Let S be I’s winning strategy for G, and T be II’s winning strategy for G(1).
We will define S ′, a winning strategy for I in G(−1).

I must play first. The first move in G according to S is H0 = Gab̄1⋯b̄r c̄. Let
(d̄0, β1) be II’s response to H0x according to their winning strategy T for G(1).
Then the strategy S ′ for G(−1) will play G0 = H0bd̄0 as I’s initial play. Note that
II has not actually played (d̄0, β1); I has just looked ahead at what II would play
if they were following the strategy T .

Now II must actually respond to G0. Suppose that they respond with (ē0, α1).
If α1 ≠ β

r+1
1 , then since α1 is not part of the basic list βr+1, the winning and losing

conditions are the same as in G; have I respond to (ē0, α1) as they would, using S,
to (d̄0ē0, α1) in G. After this, I just continues to use S to win.

If instead α1 = β
r+1
1 , then let H1 be I’s response, using S, to (d̄0ē0, β

r+1
1). Let

(d̄1, β2) be II’s response to H1 using the strategy T . Then once again the strategy
S ′ will tell I to play G1 =H1d̄1.

If I ever plays an αi ≠ β
r+1
i , then II can win by following the strategy S. Oth-

erwise, S ′ will have I play G0,G1, . . . in response to II playing (ē0, β1), (ē1, β2)
There will be H0,H1, . . . which are plays according to S in response to II playing
(d̄0ē0, β1), (d̄1ē1, β2), Moreover, we will have Hi ⊂ Gi.

Since H0,H1, . . . is a winning play against (d̄0ē0, β1), (d̄1ē1, β2), . . . in G, we can
see that because all for the conditions (C1�)-(Ext2�) are satisfied for H0,H1, . . .,
they are also satisfied for G0,G1, . . . (the extra elements d̄i in Gi but not Hi are
included in (At�), (Ext1�), and (Ext2�) as the tuples which II plays). Also,
(CB�) is satisfied for the basic lists b1, . . . ,br.

88 5. A “FULLNESS” THEOREM FOR 2-CEA DEGREES

So the only way G0,G1, . . . could be a losing play against (ē0, β1), (ē1, β2) . . . is
if β1, β2, . . . is the basic play br+1 and (CB�) fails for this basic play. H0,H1, . . . is
a play by I against which II wins in G(1) using the strategy T . Then (CB�) fails
in G(1) for the basic list br+1, and so (CB�) must be satisfied in G(−1) for this
basic list.

So I wins this play of G(−1), and S ′ is a winning strategy. �

To prove Lemma 5.12, we first need a quick technical lemma.

Lemma 5.14. Suppose that x̄ ≤1 x̄
′. Let ȳ be a tuple so that for no y ∈ ȳ is

there a y′ with x̄y ≤1 x̄
′y′. Then for each tuple z̄′, there is z̄ such that x̄′z̄′ ≤0 x̄z̄

and moreover z̄ is disjoint from ȳ.

Proof. For each y ∈ ȳ, and each y′ ∈ C, there is some existential fact true about
y′ which is not true of y. Let ū′ be tuple of elements witnessing these existential
formulas for each z′ ∈ z̄′. Then there are z̄ and ū such that x̄′z̄′ū′ ≤0 x̄z̄ū. So
x̄′z̄′ ≤0 x̄z̄ and each z ∈ z̄ satisfies an existential formula which no y ∈ ȳ satisfies.
Hence z̄ is disjoint from ȳ. �

Proof of Lemma 5.12. Once again we will simplify the notation. For z = x
or z = y, let G(z) be the game H(b̄1, ε̄1; . . . ; b̄r, ε̄r; c̄z, ν̄ι).

Let T be a winning strategy for I in G(x). We need to find a winning strategy
S for I in G(y). We will use the fact that

Gab̄1⋯b̄r c̄x ≤1 Gab̄1⋯b̄r c̄y

to convert T into the desired strategy S.
Let H0 ⊃ Gab̄1⋯b̄r c̄x be the initial play for I according to T . Let ū be the tuple

of elements such that H0 = Gab̄1⋯b̄r c̄xū.
Let I = {i1, . . . , in} be a maximal set of indices in ū such that there is a tuple

v̄ such that

Gab̄1⋯b̄r c̄xūI ≤1 Gab̄1⋯b̄r c̄yv̄

where ūI is (ui1 , . . . , uin). Let J be the rest of the indices.
The first play according to S will be G0 = Gab̄1⋯b̄r c̄yv̄. We have HI

0 ≤1 G0

where HI
0 denotes H0 with the entries at indices in J removed.

Now suppose that II responds with (d̄0, α1). If α1 = σs+1, then I can play G0d̄0

in response to win (by property (B1) of basic lists). Otherwise, α1 ≠ σs+1.
Using the fact that HI

0 ≤1 G0, choose ē0 such that G0d̄0 ≤0 HI
0 ē0. By the

previous lemma, ē0 is disjoint from H0. Let H1 be the response, according to T ,
to (ē0, α1). Let s be the permutation which moves those entries of H1 with indices
in J to the end (the permutation s fixes anything not in the domain of H1, so that
for example if H ′ ⊃ H1, then applying the permutation s to H ′ does not move the
indices J to the end of H ′, but rather to somewhere in the middle). Then S will
tell I to respond to (d̄0, α1) with Hs

1 , the application of the permutation s to H1.
To any further play (c̄1, α2), (c̄2, α3), . . ., S will respond in the same way as T ,

except that it will again apply the permutation s.
The games G(x) and G(y) are the same, except for the initial move; otherwise,

the ways in which I can lose are the same. The permutation s does not affect
any of the conditions, since it only permutes indices which do not do any coding
(i.e. above everything in the image of Ls, and also above the position of x and y
in G0 and H0 respectively). Since G0d̄0 ≤0 H

I
0 ē0 ≤0 H

s
1 , and if Hi ≤0 Hi+1 then

5.6. THE CONSTRUCTION 89

Hs
i ≤0 H

s
i+1, (At�) still holds. And as none of α1, . . . , α` are σs+1, (Ext1�) is not

affected by changing the change from H0 to G0, and (Ext2�) is also not affected by
the application of the permutation s. Thus I has a winning strategy for G(y). �

CHAPTER 6

Further Questions

In this section we will list some of the unresolved questions from our investiga-
tion. This is a new investigation and so there are many questions to be answered.
We have seen that there are many nice properties that degree spectra on a cone
must have. Many degree spectra are well-known classes of degrees and satisfy many
“fullness” properties. But on the other hand, there are some interesting degree
spectra that are not so nicely behaved, like the incomparable degree spectra from
Theorem 1.6 and the relation on (ω,<) from 4.17. The general question is: to what
extent do the degree spectra avoid pathological behaviour? Of course, there are
many specific questions about particular types of pathological behaviour and many
questions arising directly out of results in this paper. We will take the opportunity
to list some of them here.

In Chapter 3 we gave a condition, involving d-free tuples, which was equivalent
to being intrinsically of c.e. degree, but the equivalence only held for relations
which are relatively intrinsically d.c.e. (see Proposition 3.5). A relation which is
not intrinsically ∆0

2 cannot be intrinsically of c.e. degree. We ask:

Question 6.1. Which intrinsically ∆0
2 but not relatively intrinsically d.c.e.

relations are intrinsically of c.e. degree?

Also in Chapter 3, we gave an example of two relations with incomparable
degree spectra on a cone, but whose degree spectra are strictly contained within
the d.c.e. degrees and strictly contain the c.e. degrees (see Theorem 1.6, Proposition
3.11, and Proposition 3.13). We ask whether it is possible to find other such degree
spectra:

Question 6.2. How many different possible degree spectra on a cone are there
strictly containing the c.e. degrees and strictly contained in the d.c.e. degrees? How
are they ordered?

Many of the degree spectra on a cone have a “name,” that is, some sort of
description of degrees which relativizes. For example, the ∆0

α degrees, the Σ0
α

degrees, α-c.e. degrees, and α-CEA degrees. We do not know of any such description
of the degree spectra from Proposition 3.11 and Proposition 3.13. In general, one
would hope that any degree spectrum on a cone has a nice description of some
form.

Question 6.3. Is there a good degree-theoretic description of the degree spec-
tra from Examples 3.9 and 3.10?

If one can give a good degree-theoretic description of these degree spectra, then
one would have added a new natural class of degrees.

In Chapter 4, we show that every relation on (ω,<) which is intrinsically α-c.e.
is intrinsically of c.e. degree (see Propositions 4.12 and 4.13). It might, however, be

91

92 6. FURTHER QUESTIONS

possible to have a relation which is intrinsically of α-c.e. degree but not intrinsically
α-c.e.

Question 6.4. Is there a computable relation on the standard copy of (ω,<)
which is not intrinsically of c.e. degree, but is intrinsically of α-c.e. degree for some
fixed ordinal α?

In Theorem 4.17, we show that there is a relation R on (ω,<) such that either
the degree spectrum of R on a cone is strictly contained between the c.e. degrees
and the ∆0

2 degrees, or R has degree spectrum ∆0
2 but not uniformly. It would be

interesting to know if either of these behaviours is possible.

Question 6.5. Is there a relation on (ω,<) whose degree spectrum on a cone
is strictly contained between the c.e. degrees and the ∆0

2 degrees?

Question 6.6. Is there a relation with dgSprel = ∆0
2 but not uniformly? Is

there such a relation on (ω,<)?

In Chapter 5 we proved a “fullness” result by showing that any degree spectra
on a cone which strictly contains the ∆0

2 degrees contains all of the 2-CEA degrees.
Fullness results are very interesting because they show that degree spectra must
contain all of the degrees of a particular type, and hence can provide a good de-
scription of the degree spectrum. Our result for 2-CEA degrees is an answer to
a question of Ash and Knight from [AK95] and [AK97]. The general question,
when stated in our framework, is as follows:

Question 6.7. If a degree spectrum on a cone strictly contains the ∆0
3 degrees,

must it contain the 3-CEA degrees? What about for general α?

Recall that a positive answer to this question implies a positive answer to the
following questions of Montalbán which first appeared in [Wri13]:

Question 6.8 (Montalbán).

(1) Is it true that for any relation R, for all degrees d on a cone, dgSp(R)≤d
has a maximal element?

(2) Does the function which takes a degree d to the maximal element of
dgSp(R)≤d satisfy Martin’s conjecture?

We also add the question:

(3) Is this function uniformly degree invariant (in the sense of the footnote at
the end of Chapter 2)?

In [Sla05], Slaman defines a Σ-closure operator to be a map M ∶ 2ω → 22ω such
that:

(1) for all X, X ∈M(X),
(2) for all X and Y,Z ∈M(X), Y ⊕Z ∈M(X),
(3) for all X and Y ∈M(X), if Z ≡T Y then Z ∈M(X),
(4) for all X ≤T Y , M(X) ⊆M(Y).

Note that for any relation R on a structure A, the map which takes a set X
to dgSp(A,R)≤d (where d is the degree of X) satisfies (1), (3), and (4) of this
definition.

Slaman shows:

6. FURTHER QUESTIONS 93

Theorem 6.9 (Slaman [Sla05, Theorem 5.2]). Let M be a Borel Σ-closure
operator. If, on a cone, M(X) ⊈ ∆0

2(X), then there is a cone on which M(X)
contains all of the sets which are CEA in X.

One can see this as an analogue of Harizanov’s Theorem 1.2. We ask whether
the degree spectrum on a cone is a Σ-closure operator:

Question 6.10. On a cone, do the degree spectra form an upper semi-lattice
under joins?

In Chapter 2, we defined the alternate degree spectrum

dgSp∗(A,R)≤d = {d(RB) ∶ (B,RB) is an isomorphic copy of (A,R) with B ≤T d}

and used this to define the alternate degree spectrum on a cone, dgSp∗rel. In Ap-
pendix A, we showed that Harizanov’s Theorem 1.2 on c.e. degrees (in the form of
Corollary 2.7) holds for dgSp∗rel. The general question is whether anything we can
prove about dgSprel is also true of dgSp∗rel. More formally:

Question 6.11. Is it always the case that restricting dgSp∗(A,R)≤d to the
degrees above d gives dgSp(A,R)≤d?

Bibliography

[AK95] C. Ash and J. Knight, Possible degrees in recursive copies, Ann. Pure Appl. Logic 75

(1995), no. 3, 215–221. MR 1355133 (96j:03058)
[AK96] , Recursive structures and Ershov’s hierarchy, Math. Logic Quart. 42 (1996),

no. 4, 461–468. MR 1417841 (98g:03090)

[AK97] , Possible degrees in recursive copies. II, Ann. Pure Appl. Logic 87 (1997),
no. 2, 151–165, Logic Colloquium ’95 Haifa. MR 1490052 (99b:03060)

[AK00] , Computable structures and the hyperarithmetical hierarchy, Studies in Logic

and the Foundations of Mathematics, vol. 144, North-Holland Publishing Co., Ams-
terdam, 2000. MR 1767842 (2001k:03090)

[AKMS89] C. Ash, J. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures,
Ann. Pure Appl. Logic 42 (1989), no. 3, 195–205. MR 998606 (90d:03065)

[AN81] C. Ash and A. Nerode, Intrinsically recursive relations, Aspects of effective alge-

bra (Clayton, 1979), Upside Down A Book Co. Yarra Glen, Vic., 1981, pp. 26–41.
MR 629248 (83a:03039)

[Bar88] E. Barker, Intrinsically Σ0
α relations, Ann. Pure Appl. Logic 39 (1988), no. 2, 105–130.

MR 955520 (89i:03087)
[Chi90] J. Chisholm, Effective model theory vs. recursive model theory, J. Symbolic Logic 55

(1990), no. 3, 1168–1191. MR 1071322 (91i:03072)

[DKMY09] R. Downey, B. Khoussianov, J. Miller, and L. Yu, Degree spectra of unary relations
on (ω,<), proceedings of the International Congress in Logic, Methodology and Phi-

losophy of Science, Beijing, 2007 (2009), 36–55.

[EHK81] R. Epstein, R. Haas, and R. Kramer, Hierarchies of sets and degrees below 0′, Logic
Year 1979–80 (Proc. Seminars and Conf. Math. Logic, Univ. Connecticut, Storrs,

Conn., 1979/80), Lecture Notes in Math., vol. 859, Springer, Berlin, 1981, pp. 32–48.
MR 619859 (82k:03073)

[Erš68a] Y. Eršov, A certain hierarchy of sets. I, Algebra i Logika 7 (1968), no. 1, 47–74.

MR 0270911 (42 #5794)
[Erš68b] , A certain hierarchy of sets. II, Algebra i Logika 7 (1968), no. 4, 15–47.

MR 0270912 (42 #5795)

[Erš70] , A certain hierarchy of sets. III, Algebra i Logika 9 (1970), 34–51.
MR 0299478 (45 #8526)

[GK97] S. Goncharov and B. Khusainov, On the spectrum of the degrees of decidable relations,

Dokl. Akad. Nauk 352 (1997), no. 3, 301–303. MR 1445858 (98b:03062)
[GS53] D. Gale and F. Stewart, Infinite games with perfect information, Contributions to the

theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University
Press, Princeton, N. J., 1953, pp. 245–266. MR 0054922 (14,999b)

[Har87] V. Harizanov, Degree spectrum of a recursive relation on a recursive structure, Pro-
Quest LLC, Ann Arbor, MI, 1987, Thesis (Ph.D.)–The University of Wisconsin -
Madison. MR 2635809

[Har91] , Some effects of Ash-Nerode and other decidability conditions on degree spec-

tra, Ann. Pure Appl. Logic 55 (1991), no. 1, 51–65. MR 1134916 (93b:03055)
[Har93] , The possible turing degree of the nonzero member in a two element degree

spectrum, Annals of Pure and Applied Logic 60 (1993), no. 1, 1 – 30.
[Hir00] D. Hirschfeldt, Degree spectra of relations on computable structures, Bull. Symbolic

Logic 6 (2000), no. 2, 197–212. MR 1781623 (2002d:03063)
[Jec03] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin,

2003, The third millennium edition, revised and expanded. MR 1940513 (2004g:03071)

95

96 BIBLIOGRAPHY

[Kni86] J. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic 51 (1986), no. 4,

1034–1042. MR 865929 (88j:03030)

[Kni98] , Coding a family of sets, Ann. Pure Appl. Logic 94 (1998), no. 1-3, 127–142,
Conference on Computability Theory (Oberwolfach, 1996). MR 1640266 (99f:03061)

[Kno09] C. Knoll, Degree spectra of unary relations on ω and ζ, Master’s thesis, University of

Waterloo, 2009.
[Kru72] J. Kruskal, The theory of well-quasi-ordering: A frequently discovered concept, J.

Combinatorial Theory Ser. A 13 (1972), 297–305. MR 0306057 (46 #5184)

[KS98] B. Khoussainov and R. Shore, Computable isomorphisms, degree spectra of relations,
and Scott families, Ann. Pure Appl. Logic 93 (1998), no. 1-3, 153–193, Computability

theory. MR 1635605 (99g:03046)

[Mar68] D. Martin, The axiom of determinateness and reduction principles in the analytical
hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687–689. MR 0227022 (37 #2607)

[Mar75] , Borel determinacy, Ann. of Math. (2) 102 (1975), no. 2, 363–371.
MR 0403976 (53 #7785)

[McC02] C. McCoy, On ∆0
3-categoricity for linear orders and Boolean algebras, Algebra Logika

41 (2002), no. 5, 531–552, 633. MR 1953178 (2003k:03050)
[McN00] T. McNicholl, Intrinsic reducibilities, MLQ Math. Log. Q. 46 (2000), no. 3, 393–407.

MR 1774681 (2001f:03078)

[Mon09] A. Montalbán, Notes on the jump of a structure, Mathematical theory and compu-
tational practice, Lecture Notes in Comput. Sci., vol. 5635, Springer, Berlin, 2009,

pp. 372–378. MR 2545911 (2011h:03059)

[Sco65] D. Scott, Logic with denumerably long formulas and finite strings of quantifiers, The-
ory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam,

1965, pp. 329–341. MR 0200133 (34 #32)

[Sla05] T. Slaman, Aspects of the Turing jump, Logic Colloquium 2000, Lect. Notes Log.,
vol. 19, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 365–382. MR 2143887

(2006b:03049)
[SS88] T. Slaman and J. Steel, Definable functions on degrees, Cabal Seminar 81–85, Lecture

Notes in Math., vol. 1333, Springer, Berlin, 1988, pp. 37–55. MR 960895 (89m:03033)

[Ste82] J. Steel, A classification of jump operators, J. Symbolic Logic 47 (1982), no. 2, 347–
358. MR 654792 (84i:03085)

[Wri13] M. Wright, Computability and structures, ProQuest LLC, Ann Arbor, MI, 2013, The-

sis (Ph.D.)–The University of Chicago. MR 3167353

Index of Notation and Terminology

≤0, 68

≤1, 68

α-c.e., see also Ershov’s hierarchy, 7

α-friendly, 4

back-and-forth relations, 4, 68

basic game, 79

basic play, 79

CEA

α-CEA, 7

n-CEA, 3, 7

computable copy, see also computable

presentation, 8

computable infinitary formula, 8

computable presentation, 8

cone, see Turing cone

degree spectrum, 1, 9

on a cone, 2, 10

determined game, 10

dgSprel, 11

dgSp∗(A,R), 11

dom(L)∗, 78

Ershov’s hierarchy, 7

formally α-c.e., 47–48

formally c.e., 8

formally Σ1, see also formally c.e., 8

free

α-free (arithmetic hierarchy), 4

α-free (Ershov’s hierarchy), 47

d-free, see difference-free

difference-free, 14–15

1-free, 14

2-free, 67

Gbs, see also basic game, 79

Gs, 77–79

infinitary formula, 8

infinitary logic, 8

intrinsically α-c.e., 8, 47

intrinsically α-c.e. on a cone, 48

intrinsically α-CEA, 8
intrinsically c.e., 8

intrinsically computable, 8

intrinsically ∆α, 8
intrinsically of c.e. degree, 5, 13

intrinsically of c.e. degree on a cone, 13

intrinsically Πα, 8
intrinsically Πα on a cone, 10

intrinsically Σα, 8

intrinsically Σα on a cone, 10
invariant relation, 8

`(ω), 69
Lω1ω , 8

m + 1-cycle, 56
matching pair of m + 1-cycles, 56

ω+, 69
on a cone, 2, 10

Πc
α, 8

Πin
α , 8

relatively intrinsically of c.e. degree, 13

relatively intrinsically Πα, 9
relatively intrinsically Π0

α on a cone, 10

relatively intrinsically Σα, 9

relatively intrinsically Σ0
α on a cone, 10

Σc
α, 8

Σin
α , 8

Σ-closure operator, 92

T∞, 69

Tω , 69
Turing cone, 9

Turing invariant collection of sets, 9

uniformly equal on a cone, 53–54

v(σ), 69

well-quasi-order, 45–46

97

APPENDIX A

Relativizing Harizanov’s Theorem on C.E. Degrees

Theorem 1.2 had, as a consequence, Corollary 2.7 which said that for any
structure A and relation R, either dgSprel(A,R) = ∆0

1 or dgSprel(A,R) ⊇ Σ0
1. Now

dgSprel(A,R) was defined using the behaviour, on a cone, of the degree spectrum
relativized to a degree d:

dgSp(A,R)≤d = {d(RB)⊕d ∶ (B,RB) is an isomorphic copy of (A,R) with B ≤T d}.

In Chapter 2, we briefly considered the alternate definition

dgSp∗(A,R)≤d = {d(RB) ∶ (B,RB) is an isomorphic copy of (A,R) with B ≤T d}

from which one could define an alternate degree spectrum on a cone, dgSp∗rel(A,R).
The relativization of Theorem 1.2 does not suffice to prove that dgSp∗rel(A,R) = ∆0

1

or dgSp∗rel(A,R) ⊇ Σ0
1. This is because, as we will see later, the relativization to a

degree d only shows that RB ⊕ d ≡T C ⊕ d (for C c.e. in d).
Our goal in this appendix is to give a new proof of Theorem 1.2 whose revital-

ization is strong enough to apply to the alternative degree spectrum dgSp∗rel(A,R).
We will show that it is possible, though the proof is significantly more complicated.
The reader may skip this appendix without any impact on their understanding of
the rest of this work. The results in this section are in a similar style, but much
easier, than Theorem 5.1 and hence may be read as an introduction to the proof of
that result.

Theorem A.1. Suppose that A is a computable structure and R is a computable
relation which is not intrinsically computable. Suppose that A satisfies the follow-
ing effectiveness condition: the ∃1-diagram of (A,R) is computable, and given a
finitary existential formula ϕ(c̄, x̄), we can decide whether there are finitely many
or infinitely many solutions. Then for any sets X ≤T Y with Y c.e. in X, there is
an X-computable copy B of A with

RB ≡T Y

Moreover, Y can compute the isomorphism between A and B.

From this theorem, we get the following corollary:

Corollary A.2. Suppose that A is a structure and R is a relation on A
which is not intrinsically computable on a cone. Then dgSp∗rel(A,R) contains the
c.e. degrees.

Our goal in proving Theorem A.1 is to give evidence towards two ideas. First,
we want to give evidence that results that can be proved for dgSprel can also be
proved for dgSp∗rel. Second, we will see that if we try to prove results for dgSp∗rel,
we have to deal with many complications which distract from the heart of the proof.

99

100 A. RELATIVIZING HARIZANOV’S THEOREM ON C.E. DEGREES

We will begin by describing Harizanov’s proof of Theorem 1.2. This will both
show us why it does not relativize in the way we desire, and also guide us as to
what we need to do. Let A be a structure and R a computable relation which is
not intrinsically computable, say R is not intrinsically Π0

1. Harizanov’s construction
uses the following definition from Ash-Nerode [AN81].

Definition A.3. Let c̄ be a tuple from A. We say that ā ∉ R is free over c̄ if
for any finitary existential formula ψ(c̄, x̄) true of ā in A, there is ā′ ∈ R which also
satisfies ψ(c̄, x̄).

If A is assumed to have an effectiveness condition—namely that for each c̄ in
A and finitary existential formula ϕ(x̄, c̄), we can decide whether there is ā ∉ R
such that A ⊧ ϕ(ā, c̄)—then for any tuple c̄, we can effectively find a tuple ā ∉ R
which is free over c̄. Harizanov uses these free elements to code a c.e. set C into a
computable copy B of A. Building B via a ∆0

2 isomorphism, for each x ∈ ω, there
is a tuple from B which codes, by being in R or not in R, whether or not x is in C.
For a given x, she fixes a tuple b̄x from B and maps it to a tuple ā from A which
is free; the fact that ā ∉ R codes that x ∉ C. If, at a later stage, x ∈ C, then using
the fact that ā is free, she modifies the ∆0

2 isomorphism to instead map b̄ to a tuple
ā′ ∈ R, coding that x ∈ C. The argument involves finite injury. Given RB, one can
compute b̄0 and decide whether or not 0 ∈ C; then, knowing this, we can wait until
a stage at which 0 enters C (if necessary) and can compute b̄1. We need to wait,
since the choice of b̄1 may be injured before this stage. Once we know b̄1, we can
use RB to decide whether or not 1 ∈ C, and so on. On the other hand, given C, one
understands the injury from the construction and can compute the isomorphism
between A and B.

Now consider the relativisation to a degree d. Let C be CEA in d and try
to use the same construction (building B computable in d). Given C, we can
once again run the construction and compute the isomorphism between A and B.
However, given RB, we can not necessarily compute d, and hence do not necessarily
have access to the enumeration of C. Without this, we cannot run through the
construction and compute the coding locations b̄i. We do, however, get that RB ⊕
d ≡T C.

To prove Theorem A.1, we need a strategy to divorce the coding locations from
the construction of B. The trick we will use is as follows. Fix beforehand tuples
from B to act as coding locations, and number them in increasing order using ω.
Choose a computable infinite-to-one bijection g ∶ ω → 2<ω. A coding location may
either be “on” or “off” depending on whether or not it is in RB (though whether
“on” means in RB and “off” means out of RB, or vice versa, will depend on the
particular structure and relation). We will show that we make two choices for a
coding location: we can either choose for them to be permanently off no matter
what happens with the other coding locations, or we can choose to have a coding
location start on and later turn off (after which we not longer have control of the
coding location—if some earlier location turns from on to off, the later coding
location may turn back on again).

We will ensure that there is a unique increasing sequence k0 < k1 < k2 < ⋯ of
coding locations which are “on” such that g(k0) has length one, and g(ki+1) extends
g(ki) by a single element. Thus ⋃i∈ω g(ki) will be a real, and we will ensure that
it is the set C which we are trying to code. We call such a sequence an active
sequence. Since this sequence is unique, we can compute it using RB by looking

A.1. FRAMEWORK OF THE PROOF 101

for the first coding location k0 with g(k0) of length one which is on, then looking
for the next coding location k1 with g(k1) an extension of g(k0) of length two and
which is on, and so on.

We will illustrate how we build the sequence using the following example where
we code whether two elements 0 and 1 are in C. To code that 0 ∉ C, start by
choosing a coding location k0 with g(k0) = 0 and have k0 be on. Set every smaller
coding location to be permanently off. Then, to code that 1 ∉ C, find a coding
location k1 > k0 with g(k1) = 00 and have k1 be on, while every coding location
between k0 and k1 is off. Now if 0 enters C, switch k0 off; k1 might be on, but every
other coding location less than k1 is permanently off. Because there is no coding
location i < k1 with g(i) of length one and g(i) ≺ g(k1), k1 can never be part of
an active sequence even if it is on. Find some k′0 which has no appeared yet with
g(k′0) = 1 and set k′0 to be on, while every coding location between k1 and k′0 is
permanently off. Thus k′0 will be the first coding location in the active sequence.

In the remainder of this chapter, we give the proof of Theorem A.1.

A.1. Framework of the Proof

Let A, R, X, and Y be as in the theorem. Note that the effectiveness condition
is robust in the following sense: if Q is definable from R via both a finitary exis-
tential formula and a finitary universal formula, then the effectiveness conditions
holds for Q as well.

The proof of the theorem is by induction on the arity r of R. We will argue that
we can make three assumptions, (I), (II), and (III). Let ⟨A⟩r denote the tuples in
Ar with no duplicate entries and let Ari=j denote the set of tuples from Ar with ith

entry equal to the jth entry. Note that ⟨A⟩r and Ari=j are defined by both finitary
existential and universal formulas. If the restriction R ∩ Ari=j of R to some Ari=j
is not intrinsically computable, then as the restriction is essentially an (r − 1)-ary
relation, by the induction hypothesis, there is an X-computable copy B of A with
RB ∩Bri=j ≡T Y . Now the set Y computes the isomorphism between A and B, and

since R is computable in A, Y computes RB. Also, RB ∩ Bri=j ≤T RB and hence

RB ≡T Y and we are done. So we may assume that the restrictions R ∩ Ari=j are
intrinsically computable and hence are defined by finitary existential and universal
formulas. Since

R = (R ∩ ⟨A⟩r) ∪ ⋃
i≠j

(R ∩Ari=j)

and R ∩ ⟨A⟩r is disjoint from ⋃i≠j(R ∩ Ari=j), we must have that R ∩ ⟨A⟩r is not

intrinsically computable. So we may replace R by R∩⟨A⟩r. This is assumption (I):
that R ⊆ ⟨A⟩r. When we say ā ∈ R or ā ∉ R, we really mean that ā ∈ ⟨A⟩r as well.

An important aspect of the proof will be whether we can find “large” formally
Σ0

1 sets contained in R or its complement. Let us formally define what we mean
by large. We say that two tuples ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) are disjoint if
they do not share any entries, that is, ai ≠ bj for each i and j. We say that a set
S ⊆ An is thick if it contains an infinite set of pairwise disjoint tuples; otherwise,
we say that S is thin.

Lemma A.4. If S ⊆ Ak is a thin set, there is a bound on the size of sets of
pairwise disjoint tuples from S.

102 A. RELATIVIZING HARIZANOV’S THEOREM ON C.E. DEGREES

Proof. Suppose that there is no such bound. We claim that S is thick. Let
ā1, . . . , ān be a maximal pairwise disjoint subset of S. Since there is no bound
on the size of sets of pairwise disjoint tuples form S, we can pick b̄1, . . . , b̄n⋅k+1 all
pairwise disjoint. There are k ⋅ n distinct entries that appear in ā1, . . . , ān; since
each entry can only appear in a single b̄i, some b̄i must be disjoint from each āj .
This contradicts the maximality of ā1, . . . , ān. �

We’ll argue that we may assume that R is thick. Suppose that R is not thick.
Then there are finitely many tuples ā1, . . . , ān such that no more elements of R
are disjoint from ā1, . . . , ān. Write āi = (a1

i , . . . , a
r
i). Let Ri,j,k be the set of tuples

b̄ = (b1, . . . , bn) in R with bj = aki . Then

R = ⋃
i,j,k

Ri,j,k.

Then one of theRi,j,k is not intrinsically computable, or elseR would be intrinsically
computable. But Ri,j,k is essentially an (r − 1)-ary relation and Ri,j,k ≤T R. So we
can use the induction hypothesis as above to reduce to the case where R and ¬R
are both thick. This is assumption (II).

Let c̄ be any tuple. By a similar argument as above, we may assume that
R, when restricted to tuples not disjoint from c̄, is intrinsically computable, and
that R restricted to tuples disjoint from c̄ is not intrinsically computable. This is
assumption (III).

Now we have three cases to consider.

(1) R is not intrinsically Π0
1, but R contains a thick set defined by a Σc

1

formula.
(2) R is not intrinsically Σ0

1, but ¬R contains a thick defined by a Σc
1 formula.

(3) Neither R nor ¬R contains a thick set defined by a Σc
1 formula.

These exhaust all of the possibilities. If we are not in the third case, then either
R or ¬R must contain a thick set defined by a Σc

1 formula. If neither R nor ¬R are
definable by a Σc

1 formula, then we must be in one of the first two cases. Finally,
it is possible that R is definable by a Πc

1 or Σc
1 formula. In the first case, R is not

definable by a Σc
1 formula, but ¬R is (and, as ¬R is thick, (2) holds). In the second

case, R is definable by a Σc
1 formula, but not by any Πc

1 formula, and so (1) holds.
Note that cases one and two include the particular cases where R is intrinsically

Σ0
1 but not intrinsically Π0

1 and intrinsically Π0
1 but not intrinsically Σ0

1 respectively.

A.2. The First Two Cases

The second case is similar to the first, but with R replaced by ¬R. We will just
consider the first case.

We assume that R satisfies (I), (II), and (III). Now we have the following lemma
which applies to R (since our effectiveness condition is strong enough to imply the
condition in the lemma, as well as to find the free elements from the lemma).

Lemma A.5 (Ash-Nerode [AN81]). Suppose that R is not defined in A by Πc
1

formula. Furthermore, suppose that for each tuple c̄ in A and finitary existential
formula ϕ(c̄, x), we can decide whether there exists ā ∉ R such that A ⊧ ϕ(ā, c̄).
Then for each tuple c̄ ∈ A, there is ā ∉ R disjoint from c̄ and free over c̄.

A.2. THE FIRST TWO CASES 103

Let c̄ be a tuple from A. We say that ā ∈ ⟨A⟩r is constrained over c̄ if there is a
finitary existential formula ψ(c̄, x̄) true of ā in A such that for any ā′ ∈ ⟨A⟩r which
also satisfies ψ(c̄, x̄), ā′ ∈ R if and only if ā ∈ R.

Let d̄ be a tuple in A and ϕ(d̄, x̄) a Σc
1 formula defining a thick subset of R.

Now there are infinitely many disjoint tuples b̄ ∈ ⟨A⟩r satisfying ϕ(d̄, x̄) and hence
in R. Each of these tuples satisfies a finitary existential formula which is a disjunct
in ϕ(d̄, x̄), and hence is constrained over d̄. We may find such tuples computably.

The following proposition completes the theorem in the first case.

Proposition A.6. Suppose that there is a tuple d̄ such that for any c̄ ⊇ d̄, we
can compute new elements ā ∉ R and b̄ ∈ R disjoint from c̄ such that ā is free over
c̄ and b̄ is constrained over d̄. Then for any sets X ≤T Y with Y c.e. in X there
is an X-computable copy B of A with RB ≡T Y . Moreover, Y can compute the
isomorphism between A and B.

Proof. We may assume that the constants d̄ are part of the language, and
hence ignore them.

Let c̄ be a tuple. Suppose that ā ∉ R is free over c̄, and b̄1, . . . , b̄m ∈ R are con-
strained, and ē any elements. Let ϕ(c̄, ū, v̄1, . . . , v̄m, w̄) be a quantifier-free formula
true of ā, b̄1, . . . , b̄m, ē. We claim that there is ā′ ∈ R, b̄′1, . . . , b̄

′
m ∈ R constrained,

and ē such that A ⊧ ϕ(c̄, ā′, b̄′1, . . . , b̄
′
m, ē

′). For i = 1, . . . ,m choose ψi(d̄, v̄i) an
existential formula true of b̄i in A such that for any b̄′i ∈ A which also satisfies ψi,
b̄′i ∈ R; note that any such b̄′i is also constrained over d̄ since it satisfies ψi. Then
consider the existential formula

φ(c̄, u) = ∃v̄1, . . . , v̄m, w̄(ϕ(c̄, ū, v̄1, . . . , v̄m, w̄) ∧ ⋀
i=1,...,m

ψi(d̄, v̄i))

Since ā is free over c̄, there is ā′ ∈ R with A ⊧ φ(c̄, ā′). Then let b̄′1, . . . , b̄
′
m ∈ R and

ē be the witnesses to the existential quantifier. These are the desired elements.
Let Ys be the enumeration of Y relative to X. Using X we will construct by

stages a copy B of A with RB ≡T Y . Let B be an infinite set of constants disjoint
from A. We will construct a bijection F ∶ B → A and use F −1 to define the structure
B on B. At each stage, we will give a tentative finite part of the isomorphism F . It
will be convenient to view B as a list of r-tuples B = {b̄0, b̄1, . . .}; that is, if B = ω,
then b̄0 = (0, . . . , r − 1), b̄1 = (r, . . . ,2r − 1), and so on.

Fix a computable infinite-to-one bijection g ∶ ω → 2<ω ∪ {∅}. We will code Y
into RB in the following way. We will ensure that if k1 < ⋯ < kn are such that
b̄k1 , . . . , b̄kn ∉ RB and ∣g(ki)∣ = i and g(k1) ≺ g(k2) ≺ ⋯ ≺ g(kn) then g(kn) ≺ Y .
Moreover, we will ensure that there is an infinite sequence k1, k2, . . . with this
property. Thus RB will be able to compute Y by reconstructing such a sequence.
On the other hand, since Y will be able to compute the isomorphism, it will be
able to compute RB. Note that the empty string ∅ has length zero, so it can never
appear in such a sequence, and thus marks a position that never does any coding.

We will promise that if at some stage we are mapping some tuple b̄ ∈ B to a
constrained tuple in R, b̄ will be mapped to a constrained tuple of R at every later
stage.

At a stage s+1, let Fs ∶ {b̄0, . . . , b̄`} → A be the partial isomorphism determined
in the previous stage, and let Bs be the finite part of the diagram of B which has
been determined so far. We will also have numbers i1,s, . . . , ins,s with i1,s < ⋯ < ins,s
which indicate tuples b̄ik,s . For each k, g(ik,s) will code a string of length k. We

104 A. RELATIVIZING HARIZANOV’S THEOREM ON C.E. DEGREES

are trying to ensure that if g(ik,s) ≺ Yt for every stage t ≥ s, then we keep b̄ik,s ∉ R
B,

and otherwise we put b̄ik,s ∈ R
B. Once the first k entries of Y have stabilized, ik,s

will stabilize.
We define a partial isomorphism G extending Fs which, potentially with some

corrections, will be Fs+1. Let G(b̄i) = Fs(b̄i) for 0 ≤ i ≤ `. We may assume, by
extending G by adding constrained tuples, that g(` + 1) = ∅. Let ā`+1 be the
first r new elements not yet in the image of Fs. Now let k > ` be first such that
g(k) = Ys+1 ↾ns+1. Find new tuples ā`+2, . . . , āk ∈ R which are constrained. Also
Find āk+1 ∈ ¬R which is free over G(b̄0), . . . ,G(b̄`), ā`+1, . . . , āk. Set G(b̄i) = āi for
` + 1 ≤ i ≤ k.

Let Bs+1 ⊇ Bs be the atomic formulas of Gödel number at most s which are
true of the images of b̄0, . . . , b̄k in A.

Now we will act to ensure that for each m, g(im,s+1) ≺ Ys+1. Find the first m, if
any exists, such that g(im,s) ⊀ Ys+1. If such an m exists, using the fact that g(im,s)
is free over the previous elements, choose ā′m, . . . , ā

′
k such that:

(1) G(b̄0), . . . ,G(b̄m−1), ā
′
m, . . . , ā

′
k satisfy the same existential formula that

b̄0, . . . , b̄k does in Bs+1,
(2) for any m′ >m such that ām′ ∈ R is constrained, so is ā′m′ ∈ R, and
(3) ā′im,s ∈ R.

Set Fs+1(b̄j) = G(b̄j) for j < m and Fs+1(b̄j) = ā′j for m + 1 ≤ j ≤ k. Also set
ns+1 =m − 1 and i0,s+1 = i0,s, . . . , im−1,s+1 = im−1,s.

On the other hand, if no such m exists, set Fs+1 = G, set ns+1 = ns+1, ins+1,s+1 =
k, and ij,s+1 = ij,s for 0 ≤ j ≤ ns.

This completes the construction. It is a standard finite-injury construction and
it is easy to verify that the construction works as desired. �

A.3. The Third Case

We may suppose that, for each n and restricting to tuples in ⟨A⟩rn, no thick
subset of Ri1 ×⋯ ×Rin (where i1, . . . , in ∈ {−1,1}) is definable by a Σc

1 formula or
a Πc

1 formula. Moreover, we may assume that the same is true for particular fibers
of such a set; we may assume that for any c̄2, . . . , c̄n, the fiber

S = {(x̄, ȳ2, . . . , ȳn)∣x̄ ∈ R
i1 , ȳj c̄j ∈ R

ij}

has no thick subset. If there was a thick subset, then since R is not definable by any
Σc

1 or Πc
1 formula, S is not definable by any Σc

1 or Πc
1 formula (if it was definable in

such a way, then as either R or its complement is a projection of S onto the initial
coordinates, R would be definable by either a Σc

1 or Πc
1 formula as well). Since we

considered only tuples of Arn with no repeated entries, S satisfies assumption (I).
As R and ¬R are thick by assumption (II), S and ¬S are also thick. Moreover, the
restriction of S to those tuples which are disjoint from some particular tuple c̄ is not
intrinsically computable as the restriction of R is not. So S satisfies assumptions
(I), (II), and (III), and falls under either case one or case two. Note that we are
not using the induction hypothesis here (and indeed it does not apply since S is
possibly of higher arity than R) because S is already understood as a relation on
tuples with no repeated entries satisfying the assumptions, so we can appeal directly
to Proposition A.6. Thus we may make the assumption that each such set S has
no thick subset.

A.3. THE THIRD CASE 105

Now the remainder of the proof is an analysis of the definable sets in order to
run the construction in the previous case even without constrained elements.

Lemma A.7. Let c̄ be a tuple. Suppose that every tuple ā ∈ ⟨A⟩r satisfies some
finitary existential formula ϕ(c̄, ū) with ϕ(c̄, ⟨A⟩r) = {b̄ ∈ ⟨A⟩r ∶ A ⊧ ϕ(c̄, b̄)} thin.
Then there is a tuple d̄ over which every ā ∈ ⟨A⟩r satisfies a finitary existential
formula with only finitely many solutions.

First, we need another lemma.

Lemma A.8. If ϕ(c̄, u) is a finitary existential formula such that S = ϕ(c̄, ⟨A⟩n)
is a thin set, and ā ∈ S where ā = (a1, . . . , an), then for some i, ai satisfies a finitary
existential formula over c̄ with finitely many solutions.

Proof. The proof is by induction on n. For n = 1, a thin set is just a finite set
and the result is clear. Now suppose that we know the result for n. Let ϕ(c̄, ū) be
a finitary existential formula with ∣ū∣ = n+1, and suppose that ϕ(c̄, ⟨A⟩n+1) is thin.
Let k be maximal such that there are k pairwise disjoint tuples satisfying ϕ(c̄, ū).
Write ū = v̄, w with ∣v̄∣ = n.

If ∃v̄ϕ(c̄, v̄,A) is finite (including the case where ϕ(c̄, ⟨A⟩n+1) is finite) then we
are done. If the set of solutions of ∃wϕ(c̄, v̄, w) is thin, then we are done by the
induction hypothesis.

We claim that there are only finitely many (in fact at most k) elements d
with ϕ(c̄, ⟨A⟩n, d) containing n ⋅ k + 1 or more disjoint tuples. If not, then choose
d1, . . . , dk+1 distinct. Then, for d1, choose ē1 satisfying ϕ(c̄, v̄, d1). Now d2 has at
least n + 1 disjoint tuples satisfying ϕ(c̄, v̄, d2), so it must have some tuple disjoint
from ē1. Continuing in this way, we contradict the choice of k by constructing
k + 1 disjoint solutions diēi of ϕ(c̄, ū, v̄). So there are finitely many d such that
ϕ(c̄, ⟨A⟩n, d) contains n ⋅ k + 1 or more disjoint tuples, and the set of such d is
definable by an existential formula. If for our given tuple ā, an+1 is one of these d,
then we are done.

Otherwise, since the set is finite, say there are exactly m such d, the set of
v̄, w with ϕ(c̄, v̄, w) and w not one of these d is also existentially definable and
thin. Add to ϕ(c̄, v̄, w) the existential formula which says that there are d1, . . . , dm
with ϕ(c̄, ⟨A⟩n, di) containing n ⋅ k + 1 or more disjoint tuples, and that w is not
one of the di. So we may assume that for all d, ϕ(c̄, ⟨A⟩n, d) contains at most
n ⋅ k many disjoint tuples and that the set ∃wϕ(c̄, v̄, w) is not thin. Choose ē1, d1

satisfying ϕ(c̄, v̄, w). Choose f̄1, . . . , f̄n⋅k pairwise disjoint from each other and also
disjoint from ē1, and g1, . . . , gn⋅k with f̄i, gi satisfying ϕ. Then we cannot have
g1 = ⋯ = gn⋅k = d1, so we can choose ē2, d2 pairwise disjoint and disjoint from from
ē1, d1. Now choose f̄1, . . . , f̄2n⋅k disjoint from ē1, ē2, and g1, . . . , g2n⋅k. Then some
gi must be distinct from d1 and d2. Continue in this way; we contradict the fact
that ϕ(c̄, ⟨A⟩n+1) is thin. This exhausts the possibilities. �

We return to the proof of Lemma A.7.

Proof of Lemma A.7. There must be fewer than r elements of A which do
not satisfy some existential formula over c̄ with finitely many solutions. If not, then
there are a1, . . . , ar ∈ A that are not contained in any such existential formula. Let
ϕ(c̄, ū) define a thin set containing (a1, . . . , ar); then by the previous lemma one of
a1, . . . , ar must be contained in some existential formula over c̄ with finitely many
solutions.

106 A. RELATIVIZING HARIZANOV’S THEOREM ON C.E. DEGREES

Let d̄ be c̄ together with these finitely many exceptions. Then every tuple
ā ∈ ⟨A⟩r satisfies some existential formula ϕ(d̄, ū) with ϕ(d̄, ⟨A⟩) finite. �

Lemma A.9. For each tuple c̄, there is a tuple ā such that the set of solutions
of each existential formula over c̄ satisfied by ā is thick.

Proof. Suppose not. Then Lemma A.7 applies. For each ā ∈ ⟨A⟩m, let ϕā be
such that ϕā(d̄, ⟨A⟩m) is finite and as small as possible and contains ā. Suppose
that b̄ ∈ ⟨A⟩m and A ⊧ ϕā(d̄, b̄). Also suppose that A ⊧ ψ(d̄, b̄) but A ⊭ ψ(d̄, ā)
where ψ is existential. Let n = ∣ϕā(d̄, ⟨A⟩m) ∩ ψ(d̄, ⟨A⟩m)∣. Then

A ⊧ ϕā(d̄, ā) ∧ ∃≥nū(ϕā(d̄, ū) ∧ ψ(d̄, ū) ∧ ū ≠ ā)

but this formula has fewer solutions than ϕ(d̄, x̄) since b̄ is not a solution. So every
tuple ā in ⟨A⟩m has some existential formula ϕā it satisfies over d̄, with the property
that each pair of tuples satisfying ϕā satisfy all the same existential formulas. By
Proposition 6.10 of [AK00], Φ = {ϕā ∶ ā ∈ ⟨A⟩m,m ∈ ω} is a Scott family. In
particular, ϕā(d̄, ⟨A⟩r) ⊆ R or ϕā(d̄, ⟨A⟩r) ⊆ ¬R for each ā ∈ ⟨A⟩r, and so R is
defined by both a Σc

1 formula and a Πc
1 formula. This is a contradiction. �

Corollary A.10. For each tuple c̄, there is a tuple ā ∈ ⟨A⟩r such that the set
of solutions of each existential formula over c̄ satisfied by ā is thick. Also, ā is free
over c̄.

Proof. Let c̄ be a tuple. We know that there is some ā1 such that every
existential formula over c̄ satisfied by ā1 is thick. If ∣ā1∣ ≥ r, then we can just
truncate ā1. Otherwise, if ∣ā1∣ < r, we can find ā2 such that every existential
formula over c̄ā1 satisfied by ā2 is thick. Let ϕ(c̄, x̄, ȳ) be an existential formula
satisfied by ā1, ā2. We claim that the set of solutions of ϕ is thick. Suppose not, and
say that there are at most k disjoint solutions. Now the solution set of ϕ(c̄, ā1, ȳ)
is thick, so there is an existential formula ψ(c̄, x̄) true of ā1 over c̄ which says that
there are at least (k + 1) ⋅ (∣ā1∣ + ∣ā2∣) + 1 disjoint solutions ȳ to ϕ(c̄, x̄, ȳ). Then the
solution set of ψ(c̄, x̄) is thick, so we can choose k+1 disjoint solutions b̄1, . . . , b̄k+1.
Then choose d̄1 a solution to ϕ(c̄, b̄1, ȳ). Now there are 2∣ā1∣ + ∣ā2∣ entries in b̄1d̄1,
so one of the (k + 1) ⋅ (∣ā1∣ + ∣ā2∣) + 1 solutions to ϕ(c̄, b̄2, ȳ) is disjoint from b̄1, d̄1,
and b̄2. We can pick some such solution d̄2. Continuing in this way, we get k + 1
disjoint solutions b̄1d̄1, . . . , b̄k+1, d̄k+1 to ϕ(c̄, x̄, ȳ), a contradiction.

Now let ā ∈ ⟨A⟩r be such that every existential formula over c̄ satisfied by ā is
thick. If ā is not free over c̄, then there is some existential formula ϕā(c̄, x̄) true of
ā and not true of any ā′ ∉ R. Then ϕ(c̄, ⟨A⟩r) is a Σ0

1-definable subset of R, and
hence thin, a contradiction. �

We also want another pair of corollaries of the above lemma.

Corollary A.11. Let S be any existentially defined set, and ā ∈ S. Then there
is an existentially defined S′ ⊆ S containing ā and ϕ(c̄, ū, v̄) defining S′ such that
∃ūϕ(c̄, ū, v̄) is thick and ∃v̄ϕ(c̄, ū, v̄) is finite.

Proof. Let ā = ā′ā′′ where ā′ is contained in some finite existentially definable
set over c̄, and no entry of ā′′ is. Let ψ(c̄, ū) be a defining formula of this finite
set, and let χ(c̄, ū, v̄) define S. Let S′ be the set of solutions to χ(c̄, ū, v̄) ∧ψ(c̄, ū).
Then by Lemma A.8 since no entry of ā′′ is in a finite existentially definable set
over c̄, ∃ū(χ(c̄, ū, v̄) ∧ ψ(c̄, ū)) is thick. �

A.3. THE THIRD CASE 107

Corollary A.12. Let S be any existentially defined set, and ā ∈ S. Then we
can write ā = ā′ā′′ where ā′ is in an existential formula over c̄ with finitely many
solutions and there is an existential formula ϕ(c̄, ā′, ū) which is thick and contains
ā′′.

Proof. Let ā = ā′ā′′ be as in the previous corollary, and let χ(c̄, ū, v̄) define S.
Now, let ψ(c̄, ū) be the formula defining the finite set containing ā′; we may choose
ψ so that every solution has the same existential type over c̄ by the argument on the
previous page. Since ∃ū(χ(c̄, ū, v̄) ∧ ψ(c̄, ū)) is thick, and is the union of χ(c̄, b̄, v̄)
for each b̄ satisfying ψ(c̄, ū), χ(c̄, b̄, v̄) is thick for some b̄. This is witnessed by
(a family of) existential formulas about b̄ saying that there are arbitrarily many
disjoint solutions to χ(c̄, b̄, v̄). But all such formulas are true of each other solution
of ψ(c̄, ū), and in particular of ā′. So χ(c̄, ā′, v̄) is thick. �

Lemma A.13. Let c̄ be a tuple, and ā, b̄1, . . . , b̄n ∈ ⟨A⟩, and ā is contained in no
thin set over c̄. Let ϕ(c̄, ū, v̄1, . . . , v̄n) be an existential formula true of ā, b̄1, . . . , b̄n.
Then there are ā′, d̄1, . . . , d̄n satisfying ϕ with ā′ ∈ R⇔ ā ∉ R and d̄i ∈ R⇔ b̄i ∈ R.

Proof. Using the above lemma, for each i write b̄i = b̄
′
ib̄
′′
i be contained in finite

definable sets over c̄ with ϕ(c̄, ū, b̄′1, v̄1, . . . , b̄
′
n, v̄n) defining a thick set. Note that

ā is not contained in any thin set over c̄, and in particular, none of its entries are
in any finite existentially definable sets over c̄. Using the fact that R × S (where S
is a fiber over some tuple of a product of R and ¬R) has no thick subset, we can
choose d̄′i = b̄

′
i for 1 ≤ i ≤ m and choose ā′ and d̄ = d̄′id̄

′′
i to satisfy ā′ ∈ R⇔ ā ∉ R

and d̄i ∈ R⇔ b̄i ∈ R. �

These lemmas are exactly what is required for the construction in Proposition
A.6. Instead of choosing elements which are free, we choose elements which are not
contained in any thin set, and use the above lemma to move them into R while
keeping later elements from R in R. We need to know that we can effectively find
such elements. We can do this using the effectiveness condition and Lemma A.8.

	Chapter 1. Introduction
	Chapter 2. Preliminaries
	2.1. Computability Theory
	2.2. Computable Structure Theory
	2.3. Relativizing to a Cone

	Chapter 3. Degree Spectra Between the C.E. Degrees and the D.C.E. Degrees
	3.1. Necessary and Sufficient Conditions to be Intrinsically of C.E. Degree
	3.2. Incomparable Degree Spectra of D.C.E. Degrees

	Chapter 4. Degree Spectra of Relations on the Naturals
	Chapter 5. A ``Fullness'' Theorem for 2-CEA Degrees
	5.1. Approximating a 2-CEA Set
	5.2. Basic Framework of the Construction
	5.3. An Informal Description of the Construction
	5.4. The Game Gs and the Final Condition
	5.5. Basic Plays and the Basic Game
	5.6. The Construction

	Chapter 6. Further Questions
	Bibliography
	Index of Notation and Terminology
	Appendix A. Relativizing Harizanov's Theorem on C.E. Degrees
	A.1. Framework of the Proof
	A.2. The First Two Cases
	A.3. The Third Case

