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Abstract

Scott showed that for every countable structure A, there is a sentence of the infini-
tary logic Lω1ω, called a Scott sentence for A, whose models are exactly the isomorphic
copies of A. We say that the Scott complexity of a structure is the least complexity of
a Scott sentence for that structure. This is a measure of the complexity of describing
the structure up to isomorphism.

A finitely generated structure has Scott complexity at most Σ3, and many finitely
generated structures—e.g. all fields, vector spaces, and abelian groups—have Scott
complexity at most d-Σ2. We show that finitely generated commutative rings and
finitely generated modules over Noetherian rings have d-Σ2 Scott sentences. We also
give a purely group-theoretic characterization of the finitely presented groups with a
d-Σ2 Scott sentence, and use this characterization to prove that almost all finitely
presented groups have a d-Σ2 Scott sentence. We use the characterization to show
that the Baumslag-Solitar groups BS(m,n) have d-Σ2 Scott sentences.

Finally we answer a question of Alvir, Knight, and McCoy by showing that there is
a computable finitely generated group with a d-Σ2 Scott sentence, but no computable
d-Σ2 Scott sentence.

1 Introduction

Given a countable structure A, Scott [Sco65] showed that we can describe A up to isomor-
phism among countable structures by a sentence of the infinitary logic Lω1ω. This logic
is more expressive than elementary first-order logic and allows countable conjunctions and
disjunctions. For example, the group Z is the only rank 1 torsion-free abelian group with an
element that has no non-trivial divisibilities, and this description can be expressed in Lω1ω.
For example, to say that a group is rank 1, we write:

∀g, h ⩔
(n,m)≠(0,0)

ng =mh.

To measure the complexity of the structure A, we want to write down the simplest
possible description of A. There is a hierarchy of sentences depending on the number of
quantifier alternations, and counting infinite conjunctions the same as universal quantifiers
and infinite disjunctions as existential quantifiers. The Σn sentences have n alternations of
quantifiers, beginning with existential quantifiers; the Πn sentences have n alternations of
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quantifiers, beginning with a universal quantifier; and the d-Σn sentences are the conjunction
of a Σn and a Πn sentence. The hierarchy is ordered as follows, from the simplest formulas
on the left, to the most complicated formulas on the right:

Σ1
##

Σ2
##

Σ3
##

Σ0

==

!!

d-Σ1

;;

##

d-Σ2

;;

##

d-Σ3
// ⋯

Π1

;;

Π2

;;

Π3

;;

The hierarchy continues through the transfinite. The description of Z given above is d-Σ2,
as the group axioms are Π2, saying that a group is rank 1 torsion-free is Π2, and saying that
there is an element with no non-trivial divisibilities is Σ2.

We say that the Scott complexity of a structure is the complexity of its simplest Scott
sentence. Though there are other complexities of Lω1ω formulas (such as disjunctions of a
Σα and Πα formula), the Scott complexity of a structure will always be one of Σα, Πα, and
d-Σα [AGHTT].

In this paper, we consider the Scott complexity mostly of finitely presented algebraic
structures (and sometimes related finitely generated but not finitely presented structures).
This is part of a recent program of analysing the Scott complexity of finitely generated
structures [CHKM06, CHK+12, KS18, Ho17, HTH18, HTH]. This began with the analysis
of several examples in group theory, and in all cases the groups were shown to have d-Σ2 Scott
sentences. Calvert, Harizanov, Knight, and Miller [CHKM06] showed that finitely generated
abelian groups—such as Z, as described above—all have d-Σ2 descriptions, and Carson et
al. [CHK+12] showed that finitely generated free groups have d-Σ2 descriptions. Knight and
Saraph [KS18] remarked that every finitely generated structure has a Σ3 description. If A
is generated by a tuple ā, then a Σ3 Scott sentence for A is:

there is a tuple x̄, satisfying the same atomic formulas as ā (i.e., for all atomic formulas
true of ā, the formula is true of x̄), such that every element is generated by x̄ (i.e., for all
y, there is a term t in the language such that y = t(x̄)).

They asked the natural question of whether every finitely generated group has a d-Σ2 Scott
sentence. Ho [Ho17] gave many more examples of groups with d-Σ2 Scott sentences, including
polycyclic groups (which include nilpotent groups and abelian groups) and the Baumslag-
Solitar groups B(1, n). The author finally resolved this question together with Ho [HTH18]
by showing that there is a finitely generated group with no d-Σ2 Scott sentence, and hence
with Scott complexity Σ3. These methods were generalized in [HTH] to show that finitely
generated groups are universal among finitely generated structures, and to study pseudo
Scott sentences (i.e., unique descriptions of a structure within the class of finitely generated
structures).

Moving to general results, there are several nice characterizations of when a finitely
generated structure has a d-Σ2 Scott sentence.

Theorem 1.1 (A. Miller [Mil83], Harrison-Trainor and Ho [HTH18], Alvir, Knight, and
McCoy [AKM]). Let A be a finitely generated structure. The following are equivalent:

1. A has a d-Σ2 Scott sentence.
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2. A has a Π3 Scott sentence.

3. A is the only model of its Σ2 theory.

4. Some generating tuple of A is isolated by a Π1 formula.

5. Every generating tuple of A is isolated by a Π1 formula.

6. A does not contain a copy of itself as a proper Σ1-elementary substructure.

(2) is due to A. Miller [Mil83], (3) is due to the author and Ho [HTH], (4) and (5) are due
to Alvir, Knight, and McCoy [AKM], and (6) is due to the author and Ho [HTH18]. Alvir,
Knight, and McCoy also have a nice characterization of when a structure has a computable
d-Σ2 Scott sentence.

Theorem 1.2 (Alvir, Knight, and McCoy [AKM]). Let A be a finitely generated structure.
The following are equivalent:

1. A has a computable d-Σ2 Scott sentence.

2. Some generating tuple of A is isolated by a computable Π1 formula.

3. Every generating tuple of A is isolated by a computable Π1 formula.

There are indeed computable structures with a d-Σ2 Scott sentence, but no computable d-Σ2

Scott sentence; see Theorem 2.8 in this paper for one such example.
Though the focus so far has mostly been on groups or general algebraic structures, there

are a few known results on other particular classes of structures [HTH18]: every finitely
generated field and vector space has a d-Σ2 Scott sentence, reflecting the strong structure
theorems for these classes; and on the other hand there is a (non-commutative) ring with no
d-Σ2 structure.

Some of the main open questions in this area are:

Question 1 (Question 1.7 of [HTH18] and Question 1 of [AKM]). Does every finitely pre-
sented group have a d-Σ2 Scott sentence?

Question 2 (Question 2 of [AKM]). Is there a precise sense in which most finitely generated
groups have a d-Σ2 Scott sentence?

Question 3 (Question 3 of [AKM]). Is there a computable finitely generated group with a
d-Σ2 Scott sentence but no computable d-Σ2 Scott sentence?

Question 4 (Question 1.8 of [HTH18]). Does every finitely generated commutative ring
have a d-Σ2 Scott sentence?

Question 5 (Question 5.7 of [HTH18]). Give a characterization of the finitely generated
structures which have a d-Σ2 quasi Scott sentence.

Question 6 (See Section 5.3 of [HTH]). Is there a finitely generated structure with a d-Σ2

quasi Scott sentence, but no d-Σ2 Scott sentence?
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In this paper, we look at various types of structures with finite presentations—such as finitely
presented groups as well as finitely generated rings and modules over Noetherian rings—and
prove a number of results, including answering Questions 2, 3, and 4 positively. Some of
the results can be summarized by the following table, with the new results from this paper
marked *:

Class of finitely generated structures Every structure has a d-Σ2 Scott sentence?
Abelian groups yes
Free groups yes
Torsion-free hyperbolic groups yes*
Finitely presented groups ?
Groups no
Vector spaces yes
Fields yes
Commutative rings yes*
Rings no
Modules over Noetherian rings yes*
Modules no*

On the topic of finitely presented groups, we do not resolve the question of whether every
finitely presented group has a d-Σ2 Scott sentence. We do however get a completely group-
theoretic characterization, not involving any notions from logic, of when a finitely presented
group has a d-Σ2 Scott sentence.

Theorem 1.3. Let G be a finitely presented group. Then the following are equivalent:

1. G does not have a d-Σ2 Scott sentence,

2. G contains a proper subgroup H ≅ G with the property that for every finite set of non-
identity elements a1, . . . , an ∈ G, there is a normal subgroup H ′ ⊆ G such that G =H ′⋊H
and a1, . . . , an ∉H ′.

It is already known that a finitely generated group which is coHopfian—which means that it
is not isomorphic to any proper subgroup—has a d-Σ2 Scott sentence. This was first proven
by Ho [Ho17] and is a consequence of (6) in Theorem 1.1. The notion of a coHopfian group
is the dual to the notion of a Hopfian group, which means that the group is not isomorphic
to any proper quotient. From Theorem 1.3, we get the following corollary:

Corollary 1.4. Every finitely presented Hopfian group has a d-Σ2 Scott sentence, including:

� any finitely generated abelian group,

� any finitely-generated free group,

� any finitely presented residually finite group,1

� B(1, n),

1The fact that such groups are Hopfian is due to Mal’cev [Mal40].
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� any torsion-free hyperbolic group.2

This unifies many of the known results about groups with d-Σ2 Scott sentences, dividing
such results into a group-theoretic component (arguing that they are Hopfian) and a logical
component encapsulated by the corollary. Moreover, almost all finitely presented groups are
torsion-free hyperbolic, and so almost all finitely presented groups have a d-Σ2 Scott sentence,
answering Question 2. There are various senses in which almost all finitely presented groups
are torsion-free hyperbolic; one such sense is the few-relator model with various lengths:

Definition 1.5 (Gromov [Gro87]). Given positive integers m, k, and `1, . . . , `k, let Rk,`1,...,`k
be the set of group presentations of the form

⟨a1, . . . , am ∣ r1, . . . , rk⟩

where the ri are reduced and of length `i. We say that almost all groups have property P if
for any ε > 0, there is an ` such that whenever mini `i ≥ `, the proportion of presentations in
Rk,`1,...,`k with property P is greater than 1 − ε.

Gromov stated without proof that almost all groups are torsion-free hyperbolic in this sense,
and a proof was later given by Ol’shanskĭı [Ol’92].

There are known examples of finitely presented non-Hopfian groups. The simplest exam-
ples are the Baumslag-Solitar groups BS(m,n) = ⟨a, t ∣ tamt−1 = an⟩, some of which, such as
BS(2,3), are non-Hopfian [BS62]. We use Theorem 1.3 and known results about the struc-
ture of Baumslag-Solitar groups to prove that all such groups have d-Σ2 Scott sentences.
The purely group-theoretic nature of Theorem 1.3, as opposed to the more logical nature
of Theorem 1.1, makes it possible to make use of the existing group-theoretic results. See
Theorem 4.3.

Finally, we show in Theorem 2.8 that there is a computable module over a PID which
has no computable d-Σ2 Scott sentence; by Theorem 2.2, every such module has a d-Σ2

Scott sentence. So there is a computable structure with a d-Σ2 Scott sentence but no
computable d-Σ2 Scott sentence. By the universality among finitely generated structure of
finitely generated groups [HTH18], there is also such a computable finitely generated group.
This answers Question 3.

2 Modules

We begin the algebraic portion of this paper with modules over a ring R. The language for
such structures is the same as the usual vector space language: a binary addition operator
and for each r ∈ R a unary operator for scalar multiplication.

When R is a PID, there is a strong structure theorem for finitely generated R-modules:
they can all be written in a unique way as a direct sum of a free module and of proper
quotients of R. One can use this to show that every such module has a d-Σ2 Scott sentence.
It turns out that we do not even need to use the fact that R is a PID, but just that it is

2Any hyperbolic group is finitely presented.
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Noetherian. This is surprising because we do not know of a good characterization theorem
of modules over Noetherian rings, other than that they are finitely presented. The two
main ingredients that go into the proof are the fact that every finitely generated module
over a Noetherian ring is finitely presented (as a quotient of a free module by a finitely
generated submodule) and the fact that every Noetherian R-module is Hopfian. These are
both well-known facts, but we will remind the reader of the proof of the latter fact.

Theorem 2.1 (Well-known). Noetherian R-modules are Hopfian: every epimorphism is an
isomorphism.

Proof. Suppose that f ∶M →M is a surjective homomorphism. Then ker f ⊆ ker f 2 ⊆ kerf 3 ⊆
⋯ is an ascending chain of ideals, and so ker fn = ker f 2n for some n. Let x ∈ ker fn; we claim
that x = 0, so that kerf ⊆ kerfn = 0. Since fn is surjective, there is y such that fn(y) = x.
Then f 2n(y) = fn(x) = 0, so y ∈ ker f 2n = ker fn, and so x = fn(y) = 0.

We now argue that every finitely generated module over a Noetherian commutative ring
has a d-Σ2 Scott sentence.

Theorem 2.2. Let R be a Noetherian commutative ring and M a finitely generated R-
module. Then M has a d-Σ2 Scott sentence.

Proof. Suppose that N ⪯1 M where N ≅M . We will argue below that there is an R-linear
map g∶M → N ≅ M which admits the inclusion N → M as a section. Since M is Hopfian,
g must be injective and so N = M . By Theorem 1.1 this implies that M has a d-Σ2 Scott
sentence.

First, we fix a finite presentation ofM overN . LetM be generated by elements x1, . . . , xn.
Consider the surjection N ⊕ Rn → M which maps N → N ⊆ M and the ith basis element
ei of Rn to xi. Let A be the kernel of this map. Then A is finitely generated, say by
a1, . . . , a` ∈ N ⊕ Rn. Each ai can be considered as a tuple (âi, a1

i , . . . , a
n
i ) with âi ∈ N and

a1
i , . . . , a

n
i ∈ R.

Now as witnessed by x1, . . . , xn,

M ⊧ (∃u1, . . . , un)
`

⋀
i=1

âi + a
1
iu1 +⋯ + ani un = 0

where the âi are parameters from N and the aji are the unary scalar multiplication operators
in the language. So, as N ⪯1 M ,

N ⊧ (∃u1, . . . , un)
`

⋀
i=1

âi + a
1
iu1 +⋯ + ani un = 0

Let b1, . . . , bn ∈ N be witnesses to this. Then the surjection N ⊕Rn → N which maps N to
N and ei to bi has A in its kernel and so factors through M ≅ N ⊕Rn/A. Note that this map
admits the inclusion N → N ⊕Rn/A as a section.

The fact that the ring R is Noetherian is important, as we can find a finitely generated
R-module over a non-Noetherian ring R with no d-Σ2 Scott sentence. We use perhaps the
most natural choice of R, R = Z[X1,X2, . . .].
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Theorem 2.3. There is a finitely generated Z[X1,X2, . . .]-module with no d-Σ2 Scott sen-
tence.

Proof. Let M be the free abelian group on

{ai ∣ i ∈ ω} ∪ {bi,σ ∣ i ∈ ω,σ ∈ Z<ω, ∣σ∣ ≥ 1}.

Let R = Z[X,Yi ∣ i ∈ Z]. Make M into an R-module by having X act as

X ⋅ ai = ai+1, X ⋅ bi,⟨`⟩ = ai, and for ∣σ∣ ≥ 2 X ⋅ bi,σ = bi,σ−

where σ− is σ with the last entry removed, and having Y act as

Yj ⋅ ai = bi,⟨j⟩ and Yj ⋅ bi,σ = bi,σ ⟨̂j⟩.

This module is finitely generated by a0.
Let N be the group generated by a1; this is exactly the free abelian group on

{ai ∣ i ≥ 1} ∪ {bi,σ ∣ i ≥ 1, σ ∈ Z<ω}.

Note that N ≅ M via the map induced by ai ↦ ai+1 and bi,σ ↦ bi+1,σ. Moreover, N ≠ M as
a0 ∉ N . We claim that N ≺1 M .

Suppose that ū ∈M and v̄ ∈ N , and ϕ(x̄, ȳ) is a quantifier-free formula with

M ⊧ ϕ(ū, v̄).

There is k such that ū and v̄ are in the subgroup of M generated by

{ai ∣ i ∈ ω} ∪ {bi,σ ∣ i ∈ ω,σ ∈ {−k, . . . , k}<ω}

and ϕ is a formula in the language of Rk = Z[X,Y−k, . . . , Yk]-modules. Note that M is also
an Rk-module, and let Mk denote the subgroup containing ū and v̄ mentioned previously as
an Rk-submodule of M .

Consider also the subgroup of M generated by

{ai ∣ i ≥ 1} ∪ {bi,σ ∣ i ≥ 1, σ ∈ {−k, . . . , k}<ω} ∪ {b1,⟨k+1⟩̂ σ ∣ σ ∈ Z<ω}.

This subgroup is also an Rk-submodule of M ; denote it by Nk. Note that Nk ⊆ N .
Now consider the isomorphism f ∶Mk → Nk of Rk-modules which maps

a0 ↦ b1,⟨k+1⟩ ai ↦ ai, for i ≥ 1

b0,σ ↦ b1,⟨k+1⟩̂ σ bi,σ ↦ bi,σ, for i ≥ 1

It is easy to check that this is in fact an isomorphism and that it fixes v̄ ∈ N . Note that
ū, v̄ ∈Mk and f(ū), v̄ ∈ Nk ⊆ N . So

N ⊧ ϕ(f(ū), v̄).

This shows that N ≺1 M .
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On the other hand, it is surprising that we seem to get nothing out of the assumption that
R is a PID. Indeed, Z (as a Z-module, i.e., an abelian group) has no Scott sentence simpler
than d-Σ2. We do not know of any computability-theoretic way to use the classification of
finitely generated modules over PIDs to obtain a result that one could not obtain for modules
over Noetherian rings.

Question 7. Is there a computability-theoretic way in which modules over PIDs are simpler
than modules over Noetherian rings?

One possible approach is to consider computable structures and computable Scott sentences,
but there seems to be nothing here to differentiate PIDs from Noetherian rings. When R is
a nicely computable Noetherian ring, we can get a computable Scott sentence. On the other
hand, there are PIDs which are not “nicely computable”, and there are finitely generated
modules over those PIDs with no computable d-Σ2 Scott sentence.

The desired notion of “nicely computable” has been called submodule computable.

Definition 2.4. Let R be a Noetherian ring. A finitely generated R-module M is sub-
module computable if there exist computable procedures which when applied to a finite set
{v1, . . . , vp} of words in M yield

1. a finite presentation of the submodule L ⊆M generated by v1, . . . , vn, and

2. an algorithm to decide membership in L.

A ring R is submodule computable if every finitely presented R-module is submodule com-
putable.

Baumslag, Cannonito, and Miller showed that there are many examples of such rings:
any finitely generated commutative algebra over Z or over any computable field is submodule
computable.

Theorem 2.5 (Baumslag, Cannonito, and Miller, Theorem 2.7 of [BCM81]). Z, Q, and
all other computable fields are submodule computable. If R is a commutative submodule
computable ring and A is a finitely generated commutative R-algebra, then A is submodule
computable.

Furthermore, over such a ring, we can computably analyse homomorphisms, finding their
kernels and determining whether they are injective or surjective.

Theorem 2.6 (Baumslag, Cannonito, and Miller, Lemma 2.3 of [BCM81]). Let R be a
submodule computable ring, and let L and M be finitely presented R-modules given by finite
presentations. Then there is a recursive procedure to determine of an arbitrary function f
from the given generators of M to words of L whether or not f defines an R-module homo-
morphism; if so the procedure yields a set of generators for the kernel of f and determines
whether f defines a monomorphism or an epimorphism (hence also an isomorphism). The
procedure is uniform in the given data.
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Over such a ring, we can come up with a computable d-Σ2 Scott sentence for any finitely
generated R-module. Note that all such R-modules are computable structures. We use the
characterization in Theorem 1.2 due to Alvir, Knight, and McCoy; it says that it suffices
to show that a generating tuple is defined by a computable Π1 formula. The argument
essentially explicitly identifies the formulas we used before in Theorem 2.2.

Theorem 2.7. Let R be a finitely generated submodule computable commutative ring and
M finitely generated R-module. Then M has a computable d-Σ2 Scott sentence.

Proof. Let x̄ = (x1, . . . , xn) be a set of generators for M . We claim that the orbit of x̄ is
defined by a computable Π1 formula, which implies that M has a computable d-Σ2 Scott
sentence. Since R is submodule computable, M has a computable copy. So the atomic type
of x̄ is computable. Fix a generating set x1, . . . , xn for M .

Suppose that y1, . . . , yn ∈M generate a proper submodule N of M with (N, ȳ) ≅ (M, x̄).
Let R2n be the free module on generators a1, . . . , an, b1, . . . , bn. Consider the map which takes
ai ↦ yi and bi ↦ xi. Let A be the kernel of this map, so that it induces an isomorphism
R2n/A → M . Note that the map N → R2n/A which takes yi ↦ ai is an embedding. Let
w1(a1, . . . , an, b1, . . . , bn), . . . ,w`(a1, . . . , an, b1, . . . , bn) generate A. Then

M ⊧ ∃v1, . . . , vn⋀
k

wk(y1, . . . , yn, v1, . . . , vn) = 0.

On the other hand, as argued previously in Theorem 2.2, there is no map R2n/A → N
induced by ai ↦ yi and bi ↦ zi for any zi. (If there was such a map, then the argu-
ment in Theorem 2.2 shows that N = M .) So for each z̄, there is some i such that
wi(y1, . . . , yn, z1, . . . , zn) ≠ 0. Thus

N ⊧ ¬∃v1, . . . , vn⋀
k

wk(y1, . . . , yn, v1, . . . , vn) = 0

or equivalently
N ⊧ ∀v1, . . . , vn⋁

k

wk(y1, . . . , yn, v1, . . . , vn) ≠ 0.

Call this formula ϕȳ. Note that as (N, ȳ) ≅ (M, x̄),

M ⊧ ϕȳ(x̄)

but as seen above,
M ⊭ ϕȳ(ȳ).

Let χ be the Π1 formula which is the conjunction of the atomic type of x̄. Consider the
Π1 formula

χ(ū) ∧ ⩕
⟨ȳ⟩≅M,⟨ȳ⟩≠M

ϕȳ(ū).

This defines the orbit of x̄; indeed, if it holds of a tuple ȳ, then since M ⊧ χ(ȳ), ȳ generates
a submodule N of M with (N, ȳ) ≅ (M, x̄); and since M ⊧ ϕȳ(ȳ), N = M . The formula is
computable by Theorems 2.5 and 2.6.
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On the other hand, when R is not submodule computable, it may be possible to have a
computable R-module with no computable d-Σ2 Scott sentence. We give an example when
R is even a PID, and the R-module is free (in fact, the R-module is R itself).

Theorem 2.8. There is a computable PID R which does not have a computable d-Σ2 Scott
sentence as a module over itself.

Proof. We will define below a c.e. set S. Let (pi)i∈ω be a computable listing of the primes,
and let U be the multiplicative set generated by {pn ∣ n ∈ S}. Let R be the localization
R = ZU . The R-module M will be R itself.

Let (ϕi(x))i∈ω be a listing of the computable Σ1 formulas. We will construct S stage-
by-stage while simultaneously constructing R stage-by-stage. We can produce a computable
copy of R uniformly from an enumeration of S, so we do not have to explicitly construct R.
Begin with S0 = ∅. At stage s+ 1, we will already have constructed Ss and produced Rs ⊆ R
from it. Find the least i ∉ S, i ≤ s, with Rs ⊧ ϕi(pi) (by this, we mean that we can already
tell in Rs that that pi satisfies one of the first s disjunctions of ϕ). If we find such an i, put
i ∈ Ss+1.

This construction ensures that for every i, R ⊧ ϕi(pi) if and only if pi is in the same
orbit as 1 (the automorphism taking pi to 1 being the multiply-by- 1

pi
map). So no single

computable Π1 formula can define the orbit of 1 in R.

3 Rings and Algebras

The situation for rings and algebras is quite similar to that of modules, and the proofs use
similar ideas.

Fix a commutative ring R, and consider the finitely generated commutative R-algebras
in the language with a constant for each element of R. The case of finitely generated
commutative rings is exactly the case of Z-algebras. The language is the standard language
of rings together with, for each r ∈ R, a unary operator for scalar multiplication by r. In the
case R = Z, this adds no new expressive power to the language of rings.

First suppose that R is Noetherian, so that every finitely generated R-module is also
Noetherian. We are in a similar situation to that of modules over R: every finitely generated
R-algebra is finitely presented and Hopfian. We can show that every such R-algebra has a
d-Σ2 Scott sentence.

Theorem 3.1. Let R be a Noetherian commutative ring, and A a finitely generated R-
algebra. Then A has a d-Σ2 Scott sentence.

Proof. Suppose that B ⪯1 A where B ≅ A. We will argue below that there is a surjection
of rings g∶A → B ≅ A which admits the inclusion B → A as a section. Since A is Hopfian,
g must be injective and so B = A. By Theorem 1.1 this implies that A has a d-Σ2 Scott
sentence.

Let A be generated by elements x1, . . . , xn over R. Write A ≅ B[X1, . . . ,Xn]/I, identifying
xi with the image of Xi in the quotient. Here I is a finitely generated ideal with generators
I = (f1, . . . , f`) with each fi a polynomial over B. Then

A ⊧ (∃u1, . . . , un)[f1(u1, . . . , un) = ⋯ = f`(u1, . . . , un) = 0].
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So, as B ⪯1 A and each fi is a polynomial over B,

B ⊧ (∃u1, . . . , un)[f1(u1, . . . , un) ∧⋯ ∧ f`(u1, . . . , un)].

Let a1, . . . , an ∈ B be such that fi(a1, . . . , an) = 0 for i = 1, . . . , `. Then the surjection
B[X1, . . . ,Xn] → B which maps Xi ↦ ai has I = (f1, . . . , f`) in its kernel and so factors
through A ≅ B[X1, . . . ,Xn]/I. Note that this map admits the inclusion B → B[X1, . . . ,Xn]/I
as a section.

Once again, this fails if the ring R is not Noetherian.

Theorem 3.2. There is a finitely generated Z[X1,X2, . . .]-algebra with no d-Σ2 Scott sen-
tence.

Proof. Let A be the polynomial ring over Z in indeterminates

{X} ∪ {Yi ∣ i ∈ Z} ∪ {ai ∣ i ∈ ω} ∪ {bi,σ ∣ i ∈ ω,σ ∈ Z<ω, ∣σ∣ ≥ 1}.

Let R = Z[X,Yi ∣ i ∈ Z]. Let B be A modulo the ideal generated by

X ⋅ ai − ai+1, X ⋅ bi,⟨`⟩ − ai, X ⋅ bi,σ − bi,σ− , Yj ⋅ ai − bi,⟨j⟩, Yj ⋅ bi,σ − bi,σ ⟨̂j⟩

where for the third element, ∣σ∣ ≥ 2 and σ− is σ with the last entry removed. So, in B, we
have

X ⋅ ai = ai+1, X ⋅ bi,⟨`⟩ = ai, and X ⋅ bi,σ = bi,σ−

as well as
Yj ⋅ ai = bi,⟨j⟩ and Yj ⋅ bi,σ = bi,σ ⟨̂j⟩.

Note that B is an R-algebra, and indeed, the inclusion R → B is an injection. B is finitely
generated by a0.

Let C be the sub-algebra generated by

{X} ∪ {Yi ∣ i ∈ Z} ∪ {ai ∣ i ≥ 1} ∪ {bi,σ ∣ i ≥ 1, σ ∈ Z<ω, ∣σ∣ ≥ 1}.

Note that a0 ∉ C and that B ≅ C by the map

X ↦X, Yi ↦ Yi, ai ↦ ai+1, bi,σ ↦ bi+1,σ.

We claim that C ≺1 B.
Suppose that ū ∈ B and v̄ ∈ C, and ϕ(x̄, ȳ) is a quantifier-free formula with

B ⊧ ϕ(ū, v̄).

Since R ⊆ C, we may include the elements of R that appear in the formula ϕ as elements of
v̄ to assume that ϕ is just a formula in the language of rings. There is k such that ū and v̄
are in the subring of B generated by

{X} ∪ {Yi ∣ −k ≤ i ≤ k} ∪ {ai ∣ i ∈ ω} ∪ {bi,σ ∣ i ∈ ω,σ ∈ {−k, . . . , k}<ω}.
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Let Bk denote this subring.
Consider also the subring of B generated by

{X}∪{Yi ∣ −k ≤ i ≤ k}∪{ai ∣ i ≥ 1}∪{bi,σ ∣ i ≥ 1, σ ∈ {−k, . . . , k}<ω}∪{b1,⟨k+1⟩̂ σ ∣ i ∈ ω,σ ∈ Z<ω}.

This is a subring of C; denote it by Ck.
Now consider the isomorphism f ∶Bk → Ck which maps

X ↦X Yi ↦ Yi, for −k ≤ i ≤ k

a0 ↦ b1,⟨k+1⟩ ai ↦ ai, for i ≥ 1

b0,σ ↦ b1,⟨k+1⟩̂ σ bi,σ ↦ bi,σ, for i ≥ 1

It is easy to check that this is in fact an isomorphism and that it fixes v̄. Note that ū, v̄ ∈ Bk

and f(ū), v̄ ∈ Ck ⊆ C. So
C ⊧ ϕ(f(ū), v̄).

This shows that C ≺1 B. So B has no d-Σ2 Scott sentence.

As for computable Scott sentences, we can use an argument similar to Theorem 2.7. We
will need the following facts:

Theorem 3.3 (Corollary 2.9 of [BCM81]). Suppose the commutative ring R is submodule
computable. There is a computable procedure which, when applied to a finite presentation of a
commutative R-algebra A and a finite set u1, . . . , u` of words of A yields a finite presentation
on the given generators for the R-subalgebra of A generated by u1, . . . , u`.

Theorem 3.4 (Corollary 2.11 of [BCM81]). Suppose the commutative ring R is submodule
computable. Let A and B be finitely generated commutative R-algebras given by finite pre-
sentations. Then there is an effective procedure to determine of an arbitrary function ψ from
the given generators of A to words of B whether ψ defines a homomorphism and, if so, find
a set of generators for the kernel of ψ and determine whether ψ defines a monomorphism.
The procedure is uniform in the given data.

Theorem 3.5 (Corollary 6.45 of [BW93]). Given R either a computable field or Z, there is
an algorithm to decide, given f, g1, . . . , g` ∈ R[x1, . . . , xn], whether f is in R[g1, . . . , g`].

Proof. Corollary 6.45 of [BW93] contains the proof when R is a computable field. The proof
goes through for Z as well, see [KRK84].

Then we prove:

Theorem 3.6. Let A be a finitely generated algebra over a computable field k or over Z.
Then R has a computable d-Σ2 Scott sentence.

Proof. Let ā = (a1, . . . , an) be a set of generators for A over k. We claim that the orbit of ā
is defined by a computable Π1 formula, which implies that A has a computable d-Σ2 Scott
sentence. Since k is submodule computable, A has a computable copy. So the atomic type
of ā is computable.
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Suppose that b1, . . . , bn ∈ A generate a proper subalgebra B of A which is isomorphic to
A. Let k[x̄, ȳ] = k[x1, . . . , xn, y1, . . . , yn] be the polynomial ring on 2n variables. Consider
the map which takes xi ↦ ai and yi ↦ bi. Let I be the kernel of this map, so that it induces
an isomorphism k[x̄, ȳ]/I → A. Note that the map B → k[x̄, ȳ]/I which takes bi ↦ xi is an
embedding. Let p1(x̄, ȳ), . . . , p`(x̄, ȳ) generate I. Then

M ⊧ (∃v̄)[p1(b̄, v̄) = ⋯ = p`(b̄, v̄) = 0].

On the other hand, as argued previously

A ⊧ (∀v̄)[p1(b̄, v̄) ≠ 0 ∨⋯ ∨⋯ = p`(ā, v̄) ≠ 0].

Call this formula ϕb̄.
Let χ be the Π1 formula which is the conjunction of the atomic type of ā. Consider the

Π1 formula
χ(ū) ∧ ⩕

⟨b̄⟩≅A,⟨b̄⟩≠A

ϕb̄(ū).

This defines the orbit of ā. It is computable by the theorems cited above.

4 Groups

For finitely generated algebras and modules over Noetherian rings, we used the fact that
all such structures are finitely presented and Hopfian to show that they have d-Σ2 Scott
sentences. It is not true that every non-abelian group is finitely presented, Hopfian, or has
a d-Σ2 Scott sentence. It is not even true that every finitely presented group is Hopfian,
e.g., the Baumslag-Solitar group B(2,3). But we can still get something by applying the
methods used above for finitely presented groups. We will use the following consequence of
(the proof of) the splitting lemma for non-abelian groups.

Lemma 4.1 (Splitting Lemma). Let A and B be groups. Given a surjection f ∶A → B, the
following are equivalent:

1. There exists a morphism g ∶ B → A such that fg is the identity on B,

2. B splits as a semidirect product B = ker(f) ⋊ g(B).

Now we prove the following characterization of when a finitely presented group has a
d-Σ2 Scott sentence. The equivalence of (1) and (2) was already known for finitely gen-
erated structures in general (see Theorem 1.1); the new content is (3), which is a purely
group-theoretic characterization and relies specifically on the assumption that G is finitely
generated.

Theorem 1.3. Let G be a finitely presented group. Then the following are equivalent:

1. G does not have a d-Σ2 Scott sentence,

2. G contains a proper subgroup H ≅ G as a 1-elementary substructure,
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3. G contains a proper subgroup H ≅ G with the property that for every finite set of non-
identity elements a1, . . . , an ∈ G, there is a normal subgroup H ′ ⊆ G such that G =H ′⋊H
and a1, . . . , an ∉H ′.

Proof. (1) is equivalent to (2) by Theorem 1.1. We will show that (2) implies (3) and that
(3) implies (2). Only the fact that (2) implies (3) uses the fact that G is finitely presented
as opposed to just finitely generated.

To see that (3) implies (2), we will argue that the subgroup H in (3) is a 1-elementary
substructure of G. Let ϕ be a quantifier-free formula and let ḡ ∈ G and h̄ ∈H be such that

G ⊧ ϕ(ḡ, h̄).

By writing ϕ in disjunctive normal form, we may assume that ϕ is a conjunction of atomic
formulas. By expanding the tuple ḡ and h̄, we may assume that ϕ is a conjunction of formulas
of the following forms, where ti, tj, and t` are elements of ḡ, h̄:

ti = tj, ti ≠ tj, ti + tj = t`.

We may also remove any conjunct that only involves h̄ and not ḡ, as h̄ will be fixed. After
doing this, we can write

ϕ(x̄, h̄) ≡ ψ(x̄, h̄) ∧

⎡
⎢
⎢
⎢
⎢
⎣
⋀
(i,j)∈I

gi ≠ gj

⎤
⎥
⎥
⎥
⎥
⎦

∧

⎡
⎢
⎢
⎢
⎢
⎣
⋀
(i,j)∈J

gi ≠ hj

⎤
⎥
⎥
⎥
⎥
⎦

for some sets of indices I and J , where ψ contains all of the formulas of the first and third
type above (i.e., all of the positive formulas which are maintained under homomorphism).
By (3), there is a normal subgroup H ′ ⊆ G such that:

� G =H ′ ⋊H,

� for (i, j) ∈ I, gig−1
j ∉H ′, and

� for (i, j) ∈ J , gih−1
j ∉H ′.

Let π∶G → H be the projection of G onto H. Let g′i = π(gi) and ḡ′ be the tuple of g′i. We
claim that H ⊧ ϕ(ḡ′, h̄). As π is a homomorphism, H ⊧ ψ(ḡ′, h̄). For (i, j) ∈ I, we also have
that g′i ≠ g

′

j as g′ig
′−1
j ∉ H ′. Similarly, for (i, j) ∈ J , we have that g′i ≠ h

′

j. Thus H ⊧ ϕ(ḡ′, h̄)
and so H ⪯1 G.

We will now argue that (2) implies (3). Suppose that H ≅ G, H ⪯1 G, and fix a1, . . . , ak ∈
G − {e}. We will argue below that there is a surjective homomorphism g∶G → H ≅ G which
admits the inclusion f ∶H → G as a section, and moreover so that a1, . . . , ak ∉ ker f . The
splitting lemma for non-abelian groups says that in this case G = ker f ⋊H.

Let G = ⟨x1, . . . , xn ∣ r1, . . . , r`⟩ be a finite presentation. Let Fn be the free group on
x1, . . . , xn and let b1, . . . , bn be generators of H. (Recall that H ≅ G, so we can just take
b1, . . . , bn to be the isomorphic images of the n generators of G.) Let v1, . . . , vk ∈ Fn and
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w1, . . . ,wn ∈ Fn be words whose images under the quotient map Fn → G are a1, . . . , ak and
b1, . . . , bn, i.e., such that ai ≡ vi (mod r1, . . . , r`) and bi ≡ wi (mod r1, . . . , r`). Then

G ≅ ⟨H ∗ Fn ∣ b1 = w1, . . . , bn = wn; r1, . . . , r`⟩.

Let A be the kernel of the quotient map H ∗ Fn → G. Now as witnessed by x1, . . . , xn,

G ⊧ (∃u1, . . . , un) [(
n

⋀
i=1

bi = wi(u1, . . . , un)) ∧ (
`

⋀
i=1

ri(u1, . . . , un) = 0) ∧ (
n

⋀
i=1

vi(u1, . . . , un) ≠ 0)] .

So, as H ⪯1 G, the same is true of H. Let c1, . . . , cn ∈ H be witnesses to this. Then the
surjection H ∗ Fn → H which maps H to H and xi to ci has A in its kernel and so factors
through G ≅H ∗Fn/A. Note that this map admits the inclusion H →H ∗Fn/A as a section.
Finally, ai ∈ G maps to vi(c1, . . . , cn) ≠ 0, so ai is not in the kernel of this map.

It was remarked in the introduction—see Corollary 1.4—that every finitely presented
Hopfian group has a d-Σ2 Scott sentence. There are examples of finitely presented non-
Hopfian groups, such as the Baumslag-Solitar group B(2,3). But (3) in our characterization
is much stronger than simply being non-Hopfian, and so we can apply our characterization
to show that B(2,3) has a d-Σ2 Scott sentence.

Originally introduced by Baumslag and Solitar [BS62] to provide examples of non-Hopfian
groups, the Baumslag-Solitar groups B(m,n) are now important counter-examples and test
cases in combinatorial group theory. The group B(m,n) is the one-relator group with
presentation

⟨a, t ∣ tamt−1 = an⟩.

Baumslag and Solitar proved:

Theorem 4.2 (Baumslag and Solitar [BS62]). B(m,n) is Hopfian if and only if m = 1,
n = 1, or m and n have the same prime divisors.

In particular, B(2,3) is non-Hopfian; the map a↦ a2, t↦ t an epimorphism which is not an
isomorphism.

Theorem 4.3. Every Baumslag-Solitar group B(m,n) has a d-Σ2 Scott sentence.

Proof. If BS(m,n) is Hopfian, then we are done. So we may assume that ∣m∣, ∣n∣ ≠ 1. Let
G = BS(m,n) and suppose to the contrary that G = H ′ ⋊H, where H ≅ BS(m,n). We use
the following lemma:

Lemma 4.4 (See Lemma 2.1 of [KRK12] or Propositions 1 and 2 of [Mol91]).

1. If x ∈ BS(m,n) and two powers of x are conjugate, then x is conjugate to a power of
a.

2. The elements ap and aq are conjugate in BS(m,n) if and only if m ∣ p and n ∣ q, or
m ∣ q and n ∣ q.
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Let f ∶G→H be an isomorphism. Then f(a) is conjugate to a power of itself in G, so by
the lemma, f(a) is conjugate to a power of a, say f(a) = uaku−1. Without loss of generality,
replacing H by {u−1hu ∣ h ∈ H}, by we may assume that f(a) = ak. Writing b = ak = f(a)
and t = f(s) we have H = ⟨b, s ∣ sbms−1 = bn⟩.

By the splitting lemma, let g∶G → H be a homomorphism which is the identity on H.
Now g(a) is conjugate to a power of itself in H, so by the lemma applied in H, it is conjugate
in H to a power of b; we can write g(a) = vb`v−1 with v ∈ H. We also have g(ak) = g(b) = b
since ak = b ∈H. So

b = g(ak) = g(a)k = vbk`v−1.

Now b and bk` are conjugate in H, and so either m or n divides 1. This contradicts the fact
that ∣m∣, ∣n∣ ≠ 1.
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[Ol’92] A. Yu. Ol’shanskĭı. Almost every group is hyperbolic. Internat. J. Algebra
Comput., 2(1):1–17, 1992.

[Sco65] Dana Scott. Logic with denumerably long formulas and finite strings of quan-
tifiers. In Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), pages
329–341. North-Holland, Amsterdam, 1965.

17


	Introduction
	Modules
	Rings and Algebras
	Groups

