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Abstract. A set is introreducible if it can be computed by every infinite
subset of itself. Such a set can be thought of as coding information very
robustly. We investigate introreducible sets and related notions. Our two
main results are that the collection of introreducible sets is Π1

1-complete, so
that there is no simple characterization of the introreducible sets; and that
every introenumerable set has an introreducible subset.

1. Introduction

What information can be coded into all infinite subsets of some set of natural
numbers? In one extreme, Soare [Soa69] constructed a set which is computable from
none of its coinfinite subsets. In the other extreme, an infinite1 set is introreducible
if it is computable from all of its infinite subsets. In some sense, introreducibility
captures a property of having redundant information content.

Introreducible sets were introduced by Dekker and Myhill [DM58] as a property
of retraceable sets, but have perhaps surpassed the latter in importance. The
simplest example of introreducible sets are the Dekker sets: given a set A of natural
numbers, view A as an infinite binary sequence (with Apiq “ 1 ðñ i P A), and
form the set DekpAq of all initial segments of this binary sequence. From A one
can compute DekpAq and vice versa, so that A ”T DekpAq. Moreover, given any
infinite subset B of DekpAq, B may be missing certain initial segments of A, but
nevertheless it contains arbitrarily long initial segments of A. So from B we can
still recover A and hence DekpAq. Thus DekpAq is introreducible; and every Turing
degree contains an introreducible set.

A second simple example of introreducible sets arises from self-moduli. If g : ω Ñ
ω is an increasing self-modulus—meaning that every f dominating g computes g—
then the range of g is introreducible. The simplest example of such a g is the
settling time of a computably enumerable set A. Such a set A has a computable
approximation pAsqsPω and the settling time function is gpnq “ s for the least stage
s such that the computable approximation to A has settled on the first n numbers:
As æn“ A æn. That is, if some i ă n is going to enter A, it must have done so by
stage gpnq. Given g we can compute A, and vice versa; moreover, given any other
function f that dominates g, f can compute A (and hence g), because to compute
A æn we can run the approximation As æn up to stage fpnq ě gpnq. So g is an
increasing self-modulus. Now let B be the range of g. Since g is increasing, the
nth element of B is gpnq. B is introreducible because given any infinite subset C
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infinite sets, sometimes without otherwise mentioning the fact, when talking about introreducible
sets and related notions.
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of B, the nth element of C is greater than the nth element gpnq of B, and so the
principal function fpnq of C (where fpnq is the nth element of C) dominates gpnq;
this f computes g and B.

Perhaps the key question is: What makes a set introreducible? Are all introre-
ducible sets built by some combination of the two methods we just described?

Introreducible sets were studied in detail by Jockusch [Joc68], who introduced the
notion of uniformly introreducible sets: infinite sets which are computable from each
of their infinite subsets via a single reduction procedure. Lachlan (see [Joc68]) con-
structed an example of an introreducible set which is not uniformly introreducible.
Jockusch showed that in several ways, the uniform notion is more tractable. For
example, he showed that if a set and its complement are both uniformly introre-
ducible, then it is computable; in contrast, he was only able to show that if a set
and its complement are introreducible, then it is ∆1

2. Solovay [Sol78] improved this
bound to ∆1

1. It was only much later when Seetapun and Slaman [SS95] showed, us-
ing Seetapin’s results on Ramsey’s theorem together with an argument of Jockusch,
that if a set and its complement are both introreducible, then it is computable.

Jockusch left open a number of other questions about introreducible sets, but
since Seetapun and Slaman’s work, the study of introreducible sets has been some-
what dormant. Recently there has been great interest in a number of related
concepts which involve computing with all of the subsets of a given set, and so it
seems an appropriate time for introreducible sets to make a return. We answer
several key questions that were left open for the fifty years since [Joc68].

This paper has two main themes. First, can we give a simple characterization
of introreducible sets? Perhaps we can show that every uniformly introreducible
set can be constructed as some combination of initial segments and self-moduli.
Jockusch asked whether the collection of (uniformly) introreducible sets is Π1

1-
complete, which would give a strong negative answer. In this paper we give an
answer to Jockusch’s question by showing that the collection of (uniformly) in-
troreducible sets is indeed Π1

1-complete. In doing so, we introduce new ways of
constructing introreducible sets which offer much more flexibility than the two
methods described above; in essence, our proofs show that in general, one must
understand introreducibility via ordinals and paths through trees.

The second line of enquiry considers strengthening introreducibility properties by
passing to subsets. For example, we can ask whether every infinite introreducible
set has an infinite uniformly introreducible subset. This kind of question arises
from Jockusch’s investigation of the related notion of introenumerable sets, namely
infinite sets which are c.e. relative to each of their infinite subsets. Every c.e. set
has a computable subset, and so if A is uniformly introenumerable, then we can
imagine that from the subsets of A we could somehow compute some fixed subset
of A. Thus, Jockusch asked whether every infinite uniformly introenumerable set
has an infinite uniformly introreducible subset. We answer this question in the
affirmative.

Introreducibility is related in spirit to the Ramsey-type problems which have
been at the forefront of recent reverse mathematics. Problems such as Ramsey’s
theorem or the pigeonhole principle have the property that any infinite subset of a
solution is itself a solution, and a key step in their analysis has been to look at what
can be computed by every solution. (Indeed, introreducibility can be thought of
as similar to a one-sided version of the pigeonhole principle.) Indeed as mentioned
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above Seetapun and Slaman’s [SS95] that an introreducible and co-introreducible
set is computable was from Seetapun’s work on Ramsey’s theorem, namely that
one can find solutions to Ramsey’s theorem which avoid computing a particular
set. More recently, what can be computed from all subsets of a given set played a
key role in Monin and Patey’s completion of the last step in the 40-year old program
of the computability-theoretic analysis of Ramsey’s theorem [MP19], namely the
separation of SRT2

2 from RT2
2.

Introreducibility is not the only approach to studying information redundancy.
Another recent strand of work has been on coarse and generic computability, e.g.
[JS12, Igu13, Ast15, HJMS16, JS17, Hir20], where for example a set A is generically
reducible to a set B if there is a Turing functional Φ that given any density-1
partial oracle for B (i.e., an oracle that does not always answer, but when it does
answer it gives the correct answer), computes A on a subset of density one, and is
always correct when it answers. The set A must be coded redundantly in B, as the
computation has to work no matter which parts of the oracle B we lose access to.

Introreducible sets (usually the Dekker set) have also proved useful in construc-
tions, most famously in the work of Slaman and Woodin on definability in the
Turing degrees [SW86] but also e.g. in [FRSM19]. These are not deep applications
of the theory of introreducible sets, but they show that introreducibility is a natural
and useful notion.

1.1. Binary relations. Introreducibility was defined as a property of a single set,
but our investigations lead us to consider the following notions between two infinite
sets.

Definition 1.1. Let B be an infinite set.
(a) A set A is introcomputable from a set B if every infinite subset of B com-

putes A. We write A ďi
T B.

(b) A set A uniformly introcomputable from B if there is a fixed Turing reduc-
tion (functional) Φ such that for every infinite S Ď B we have ΦpSq “ A.
We write A ďui

T B.

Thus, a set A is introreducible if it is self-introcomputable, that is, if A ďi
T A;

similarly, it is uniformly introreducible if A ďui
T A. In some ways, it appears that

these binary relations are more fundamental, certainly more tractable, than the
reflexive notions of introreducibility. For example, we will show that uniformity
can be achieved by passing to a subset:

Theorem 1.2. If A ďi
T B, then there is some infinite C Ď B such that A ďui

T C.

On the other hand, we still do not know whether every introreducible set has a
uniformly introreducible subset; the issue is that when A “ B is introcomputable,
by passing to a set C Ď A “ B, we are changing both the set we are trying to
compute and the set doing the computing at the same time.

Definition 1.1 can be extended to binary relations other than Turing reducibil-
ity. For example, for enumerability, we write A ďi

c.e. B if A is c.e. relative to
every infinite subset of B, and A ďui

c.e. B if a single enumeration procedure enu-
merates A from every infinite subset of B. Considering the question of improving
introenumerability to introreducibility, we show:
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Theorem 1.3.
(a) There are sets A and B such that A ďui

c.e. B, but there is no infinite C Ď B
such that A ďi

T C.
(b) There are sets A and B such that A ďui

c.e. B, but there is no infinite C Ď A
such that C ďi

T B.

We were thus surprised to obtain our first main result, namely:

Theorem 1.4. If A ďui
c.e. A and A is infinite then there is some infinite B Ď A

such that B ďui
T B. That is, every uniformly introenumerable set has a uniformly

introreducible subset.

En route to proving this result, we show certain limitations of Theorem 1.3(a):

Theorem 1.5. Suppose that A ďi
c.e. B, and that either

(a) ωB1 “ ωck
1 , or

(b) A is introenumerable.
Then there is some infinite C Ď B such that A ďui

T C.

Finally, we turn to completeness. We show:

Theorem 1.6. Uniformly, given a linear ordering L, we can construct a set A,
co-c.e. in L, such that:

‚ If L is well-founded, then A is uniformly introreducible; and
‚ If L is ill-founded, then A is not introreducible.

Immediately, this shows that the collection of introreducible sets is Π1
1-complete

(for sets of reals) under Borel reductions, witnessed by a Baire class 1 function; the
same holds for the collection of uniformly introreducible sets. As mentioned above,
this answers one of Jockusch’s questions from [Joc68]. Restricted to the computable
realm, Theorem 1.6 shows that the collection of Π0

1 indices for (uniformly) introre-
ducible co-c.e. sets is Π1

1-complete, under many-one reducibility. Indeed, using
Soare’s notation (see [Soa87]), it shows that the pair pN,Uq is pΣ1

1,Π1
1q-m-complete,

where N is the collection of Π0
1 indices of co-c.e. sets which are not introreducible,

and U is the set of Π0
1 indices of co-c.e. uniformly introreducible sets. Informally,

what this result means is that there is no characterization of the introreducible or
uniformly introreducible sets that is simpler than the naive definition: the simplest
way to decide whether a set is introreducible is to check whether it is computable
from all of its infinite subsets.

The paper is organised as follows. In Section 2, we fix notation, establish basic
properties of the relations we investigate, and prove some lemmas that are useful
later on. The rest of the paper is organised by technique. In Section 3 we use
Cohen and Mathias forcing, to prove, for example, Theorem 1.2 and related results,
as well as answer another question of Jockusch’s: we show that an introreducible
set cannot be co-hyperimmune. In Section 4 we prove Theorem 1.6. This proof
involves a technique for building introreducible sets which is also used in the proof
of Theorem 1.3(b); we therefore provide that proof in the same section. Finally, in
Section 5 we prove Theorems 1.4 and 1.5. The proof of Theorem 1.3(a) is relatively
short but is unrelated to other proofs, and so we place it in Section 2.

As mentioned above, we regard the following as the main question which is left
open:
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Question 1.7. Does every infinite introreducible set have an infinite uniformly
introreducible subset? Does every infinite introenumerable set have an infinite uni-
formly introenumerable subset?

Related is the question of whether every introenumerable set has an introre-
ducible subset. Of course a positive answer to the second part of Question 1.7
implies a positive answer to this question.

Another question is about the type of reduction used for the completeness of the
set of introreducible sets. We have shown that the completeness is witnessed by a
Baire class 1 function. Analytic determinacy implies that this completeness can be
witnessed by a continuous function; we do not know if this is true in general.

2. Basics

2.1. Notation. Our notation is fairly standard. Following Ramsey theory (and
set theory in general), for a set A, we let rAsω denote the collection of all infinite
subsets of A, while we let rAsăω denote the collection of all finite subsets of A.
For the most part, unless otherwise noted most of the sets that appear are infinite.
For a Turing functional Φ and a set X, we write ΦpXq to denote the set computed
from X using Φ; we write ΦpX,nq to denote the output of the procedure Φ on
input n with oracle X. If f, g P ωω then we write f ě g if fpnq ě gpnq for all n. If
f P ωω and σ P ωăω then we write σ ď f if σpnq ď fpnq for all n ă |σ|. For any
infinite set A, pA is the principal function of A: the increasing enumeration of A.

2.2. Enumeration reducibility. For any binary relation r on rωsω, we write A ďi
r

B if ArC holds for every C P rBsω. If there is a countable family C of partial
functions which determines r — meaning that ArB if and only if there is some
Φ P C such that ΦpBq “ A — then we write A ďui

r B if there is some Φ P C
such that A “ ΦpCq for all C P rBsω. We have already seen this notation with r
being either Turing reducibility, or the relation “c.e. in”. We apply it to one more
reducibility, namely, enumeration reducibility [FR59]. Recall that A ďe B if there is
a procedure which outputs positive information about A using positive information
about B. Formally, if there is a c.e. collection Ψ of pairs of finite sets such that
A “ ΨpBq “

Ť

tF : pDE Ď Bq pE,F q P Ψu. We call Ψ an enumeration reduction
or an enumeration functional. Then A ďi

e B if A is enumeration reducible to every
C P rBsω, and A ďui

e B if there is an enumeration reduction Ψ such that A “ ΨpCq
for all C P rBsω.

The interest in these relations stems from the following:

Proposition 2.1. For infinite sets A and B, we have A ďui
e B if and only if

A ďui
c.e. B.

To avoid confusion, we will call procedures which enumerate a set using both
positive and negative information from the oracle relative c.e. operators.2

Proof. One direction is immediate: every enumeration reduction can be turned
into a relative c.e. operator (which ignores negative information). Suppose that
A ďui

c.e. B via a relative c.e. operator Θ. Define an enumeration reduction Ψ by
forgetting the negative information: for a finite set F , enumerate a number n in

2Formally, these are c.e. sets of pairs pσ, xq P 2ăω ˆ ω; for such a set Θ and τ P 2ďω , we let
Θpτq be the set of x P ω for which there is some σ ď τ such that pσ, xq P Θ.
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ΨpF q if there is some axiom in Θ which enumerates n using an initial segment σ
of an oracle, and F is the finite set tk : σpkq “ 1u. To see that this works, it is
clear that for any subset C P rBsω we have A Ď ΨpCq. On the other hand, suppose
that n P ΨpCq, given by some F Ď C which comes from an axiom pσ, nq in Θ. It
is possible that σ is not an initial segment of C, but it is an initial segment of an
infinite subset D of C, and A “ ΘpDq, whence n P A. �

The transitivity of ďe, in contrast with the relation “c.e. in”, means that it is of-
ten easier to work with the relation ďui

e rather than ďui
c.e.. Note that Proposition 2.1

implies that A ďui
T B if and only if there is a functional which computes A from all

of B’s infinite subsets using only positive information; this is because A ďui
T B if

and only if A‘A ďui
c.e. B.

2.3. Subsets of hyperarithmetic sets. The following is the binary-relation ver-
sion of Jockusch’s result (from [Joc68]) that every hyperarithmetic set has a uni-
formly introreducible subset.

Lemma 2.2. Suppose that A ďui
T B and B P ∆1

1pAq. Then there is some C P rBsω
such that C ďui

T C.

The proof gives C P ∆1
1pAq.

Proof. Let α ă ωA1 be an A-computable ordinal such that B ďT Apαq. The set
Apαq has a uniform self-modulus relative to A: there is a function f ”T Apαq and a
functional Φ such that for every g ě f , ΦpA, gq “ Apαq. Let C Ď B be the subset
whose principal function is pB ˝ f , that is, the collection of fpnqth elements of B
(for n P ω). Then C ďT Apαq. Any infinite D Ď C can uniformly compute A,
and its principal function majorizes f , and so using Φ, D can (uniformly) compute
Apαq, and hence C. �

2.4. Proof of Theorem 1.3(a). Toward proving Theorem 1.3(a), we first observe
a positive-sided version of Solovay’s result [Sol78] that the hyperarithmetic sets are
those sets with uniform moduli. The following proposition says that a set is Π1

1 if
and only if it has a uniform c.e. modulus (which is a function f as in (1) below).

Proposition 2.3. The following are equivalent for a set A Ď ω:
(1) There is a function f P ωω and a relative c.e. operator Θ such that for all

g ě f , Θpgq “ A.
(2) A is Π1

1.

Proof. p2q ñ p1q: As A is Π1
1, there is a uniformly computable sequence pTnqnPω

of trees in Baire space such that Tn is well-founded if and only if n P A. For each
n R A, fix a path fn P rTns. Let

fpxq “
ÿ

nRA
nďx

fnpx´ nq.

We claim that f is a uniform c.e. modulus for A, i.e., as required for (1).
Given g ě f , let Cn “ th P ωω : @x rhpxq ď gpx ` nqsu. Then for each ill-

founded Tn, fnpxq ď fpx ` nq ď gpx ` nq, so fn P Cn. Further, Cn is effectively
compact relative to g. So n P A if and only if rTns “ H if and only if rTnsXCn “ H,
and the latter is a Σ0

1pgq question. Finally, this process is uniform, so f is a uniform
c.e. modulus for A.
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p1q ð p2q: Suppose there is some f and a relative c.e. operator Θ such that
A “ Θpgq for all g ě f . Then the following is a Π1

1 description of A:
x P AØ p@h P ωωqpDσ P ωăωqrpσ ě hq & px P Θpσqqs.

If x P A, then for any h, fix a g with g ě h and g ě f . Then A “ Θpgq by
assumption, and so there is some σ ă g with x P Θpσq, and thus x satisfies the
righthand side.

If x satisfies the righthand side, then in particular it satisfies it for h “ f . Pick
a witnessing σ, and extend it to a function g ě f . Then x P Θpσq Ď Θpgq “ A. �

The proof of Theorem 1.3(a) relies on the notion of computable encodability
investigated by Solovay [Sol78]. A set A is computably encodable if every infinite set
has a subset which computes A. Every hyperarithmetic set A has a modulus, which
implies that it is computably encodable (given any set, thin it to a subset sufficiently
sparse so that its principal function majorizes the modulus of A). Solovay showed
that the computably encodable sets are precisely the hyperarithmetic ones.

Proof of Theorem 1.3(a). Fix any Π1
1 setA which is not ∆1

1 (for example Kleene’s O).
Then by Proposition 2.3, there is a function f P ωω and a relative c.e. operator Θ
such that A “ Θpgq for every g ě f . Since A R ∆1

1, as mentioned, it is not com-
putably encodable: there is a set D P rωsω such that for every B P rDsω, B ğT A.
Let B P rDsω be such that pB ě f . Then A ďui

c.e. B, but A ęT B, so certainly
A ęi

T B. �

Note that in light of Theorem 1.5(a), it is not surprising that the sets A and B
produced are quite complicated.

3. Forcing methods

3.1. Cohen subsets of an infinite set. Let A be an infinite set. We let PA be
the collection of all Cohen conditions σ P 2ăω which are characteristic functions of
finite subsets of A, ordered by extension. For our notation, it will be convenient to
identify finite nonempty sets with finite binary strings as follows: a set F is identified
with its characteristic function of length maxF ` 1. Thus, for finite sets E and F ,
we write E ď F if F is an end-extension of E: E Ď F and minpF zEq ą maxE.
The collection of all Cohen conditions which correspond to finite subsets of A is
dense in PA.

It is clear that since A is infinite, a sufficiently generic filter gives (a characteristic
function of) an infinite subset G of A.

Transitivity of introreduction relations. It is clear that the relations ďi
T and ďui

T
are transitive; indeed if A ďT B and B ďi

T C then A ďi
T C, and the same holds

for ďui
T . Proposition 2.1 implies that the relation ďui

c.e. is transitive as well. The
relation “c.e. in” is not transitive; nonetheless, we can prove:

Theorem 3.1. The relation ďi
c.e. is transitive.

Proof. Suppose that A ďi
c.e. B ď

i
c.e. C. Since every generic G Ă B enumerates A,

there is a condition σ P PB and a relative c.e. operator Θ such that σ , ΘpGq “ A.
This means:

‚ For every n P A there is some τ P PB extending σ such that n P Θpτq; and
‚ For every τ extending σ, Θpτq Ď A.
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Let X be a subset of C. Then B is c.e. in X. Of course this means that the
collection of finite subsets of B is X-c.e. We can then enumerate A using X as
follows:

A “
ď

tΘpF q : F P rBsăω & σ ď F u . �

The following generalises [Joc68, Theorem 5.3] (which also uses a finite extension
argument):

Corollary 3.2. If A ďi
T B and B ďi

c.e. C then A ďi
T C.

Proof. As mentioned above, A ďi
T X if and only if A‘A ďi

c.e. X. �

Suppose that B ďi
c.e. C but that A ęi

T C. The proof of Theorem 3.1 shows that
for no Turing functional Φ is there a condition σ P PB which forces that ΦpGq “ A.
Computably in A‘B1 we can then construct an infinite G Ă B which for every Φ,
either some σ ă G forces that ΦpGq is partial, or forces some disagreement between
ΦpGq and A. Thus, if B ďi

c.e. C but A ęi
T C then there is some G Ď B infinite

with G ďT A‘B1 such that A ęT G. By taking A “ B “ C, we obtain:

Theorem 3.3. If A is introenumerable, then A is introreducible if and only if A
is computable from all of its infinite subsets which are ∆0

2pAq.

A quick examination of the proof of Theorem 3.1 also shows that we can add
uniformity: if A ďi

c.e. B and B ďui
c.e. C then A ďui

c.e. C.

Hyperimmunity. Jockusch asks at the end of [Joc68] whether an introreducible set
can have a hyperimmune complement. We show it cannot. The following argument
is a straightforward modification of [HJKH`08, Proposition 4.4].

Proposition 3.4. Suppose that C is noncomputable and that A is co-hyperimmune.
Then there is an infinite subset G Ď A which does not compute C.

Proof. We will show that a G sufficiently generic for PA does not compute C. Sup-
pose, for a contradiction, that this is not the case. Then there is a functional Φ and
a finite set E Ă A which (thought of as an element of PA) forces that ΦpGq “ C.
First, we observe that for every k there is a pair pF0, F1q of finite sets satisfy-
ing: (i) For some n we have ΦpE Y F0, nqÓ“ 0 and ΦpE Y F1, nqÓ“ 1; and (ii)
minpF0 Y F1q ą k,maxE. Otherwise, if k ą maxE is sufficiently large so that no
such pair pF0, F1q exists, then we can compute C by outputting ΦpE Y F, nq for
finite sets F with minF ą k. Now, since A is hyperimmune, we see that there is
some pair pF0, F1q satisfying (i) with F0 Y F1 Ă A. Thus, both E Y F0 and E Y F1
are conditions in PA, both extending E. But then one of EYF0 and EYF1 forces
that ΦpGq ‰ C, a contradiction. �

By letting A “ C (and noting that hyperimmune sets cannot be computable),
we obtain:

Corollary 3.5. An introreducible set cannot be co-hyperimmune.

3.2. Global Mathias forcing. The conditions of Mathias forcing are pairs pF,Xq
where F is finite, X is infinite, and maxF ă minX. A condition pF,Xq extends a
condition pE, Y q if X Ď Y and E Ď F Ă EYY . In computability, the reservoirs X
are often restricted to some countable collection of sets, such as the low sets, or
sets in a Turing ideal. Here, however, we use the unrestricted version, allowing all
possible reservoirs.
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Recall that a condition pF,Xq forces some statement ϕpGq if the statement holds
for every sufficiently generic G compatible with pF,Xq (where G is compatible with
pF,Xq if F Ď G Ď F YX). We say that a condition pF,Xq strongly forces ϕpGq if
the statement holds for every infinite set G compatible with pF,Xq.

The main combinatorial tool used is the Galvin-Prikry theorem [GP73] which
states that Borel subsets of rωsω are Ramsey, namely: they or their complements
contain rAsω for some infinite set A. This gives the strong Prikry property of
Mathias forcing:

Proposition 3.6. If pF,Xq is a Mathias condition and U Ď rωsω is Borel, then
there is an infinite set Y Ď X such that the condition pF, Y q strongly decides the
statement G P U .

Proof. The set tZ P rXsω : F Y Z P Uu has the Ramsey property (relative to the
space rXsω). �

Uniformization. Mathias forcing helps uniformise introcomputations and enumer-
ations.

Proposition 3.7. If A ďi
c.e. B then there is some C P rBsω such that A ďui

c.e. C.

Note that again by considering A‘A, Theorem 1.2 follows.

Proof. The Mathias condition pH, Bq strongly forces that A is c.e. in G, where G
denotes the generic. Thus, there is some relative c.e. operator Θ and a condition
pF,Xq extending pH, Bq (so X Ď B) which forces that ΘpGq “ A. By the strong
Prikry property (Proposition 3.6), by shrinking X we may assume that pF,Xq
strongly forces that ΘpGq “ A. Then A ďui

c.e. X: the map Z ÞÑ ΘpF YZq sends all
infinite subsets of X to A. �

We note that there is nothing special about Turing, indeed the proof applies to
any reducibility defined by a countable collection of partial Borel functions.

Sets without introreducible subsets. Much of our focus is on finding introreducible
subsets, but Mathias forcing also allows us to construct sets without introreducible
subsets.

Proposition 3.8. Every infinite set has an infinite subset B satisfying: for all
C,D P rBsω, C ęui

T D.

Proof. We claim that a sufficiently Mathias generic G has the desired property; it is
important to note that meeting only countably many dense sets suffices. (To get G
to be a subset of a given set A, we can start with the condition pH, Aq.) Let Φ be
a Turing functional. Given any condition pF,Xq, we will find an extension which
strongly forces that for all C,D P rGsω, there is some Z P rDsω such that ΦpZq ‰ C,
and so that Φ does not witness that C ďui

T D.
For each n ą maxF let Un “ tZ P rXsω : ΦpZ, nqÓ“ 0u. There are two cases.

First, suppose that for some n ą maxF there is some Y P rXsω such that rY sω X
Un “ H. Then pF, Y ztnuq is the desired extension, as in fact for all G compatible
with pF, Y ztnuq, for all C,D P rGsω we have ΦpDq ‰ C. Otherwise, we claim
that pF,Xq itself is as required: suppose that G is compatible with pF,Xq, and let
C,D P rGsω. Let n P C be greater than maxF . Then DzF , which is an infinite
subset of X, has an infinite subset Z in Un, and so ΦpZq ‰ C. �
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Corollary 3.9. Every infinite set has an infinite subset B satisfying: for all C,D P
rBsω, C ęi

T D. In particular, every infinite set has an infinite subset B which has
no introreducible subset.

Proof. Theorem 1.2 implies that the set B given by Proposition 3.8 is as required.
�

Soare [Soa69] constructed a set without a subset of strictly higher degree. In fact,
his construction gives an infinite set B satisfying: for all C,D P rBsω, if C ďT D
then C Ď˚ D. This implies Corollary 3.9. We added a proof, since it is simpler than
Soare’s; indeed, the proof of Proposition 3.8 does not even use the Galvin-Prikry
theorem.

3.3. Mathias and Spector-Gandy. We describe a variant of restricted (count-
able) Mathias forcing which is also related to Spector-Gandy forcing (forcing with
nonempty Σ1

1 classes). The idea of modifying Mathias forcing to allow a collection
of possible reservoirs was used by Liu in his separation of Ramsey’s theorem for
pairs from weak König’s lemma [Liu12], and later also in [Liu15, Pat17]. Let S be
the following notion of forcing:

‚ Conditions are pairs pF, Cq, where F is finite and C Ď rpmaxF,8qsω is
nonempty, Σ1

1, and closed downwards under Ď: for all X P C, rXsω Ď C.
‚ A condition pE,Dq extends a condition pF, Cq if E extends F , and for all
X P D, X Y pEzF q P C.

If pE,Dq ďS pF, Cq then D Ď C. Note that pE,Dq ďS pF, Cq if and only if E
extends F and for all X P D there is some Y P C such that pE,Xq ďM pF, Y q,
where M is Mathias forcing.

If G Ă S is a sufficiently generic filter, then we let

GrGs “
ď

tF : pDCq pF, Cq P Gu .

It is not difficult to see that G is infinite: for any condition pF, Cq we can take any
n ą maxF such that n P X for some X P C; then pF Y tnu,Dq is an extension of
pF, Cq, where D “ tY Ď pn,8q : Y Y tnu P Cu.

We say that a set Z is compatible with a condition pF, Cq if Z extends F and
ZzF P C. We say that a condition pF, Cq strongly forces a statement ϕpGq if ϕpZq
holds for every infinite set Z which is compatible with it. The following lemma says
that if a condition strongly forces a statement then it forces that statement.

Lemma 3.10. Every condition forces that G is compatible with it.

The argument is similar to the argument that a generic filter for Spector-Gandy
forcing determines a generic real, that is, that the intersection of all the Σ1

1 sets in
the filter is nonempty. We give the proof for completeness of presentation.

Proof. For any class A Ď rωsω let AĚ “
Ť

XPArXs
ω be the downward closure of A

in rωsω. If A is Σ1
1 then so is AĚ.

Let pF, Cq be a condition; let T be a computable tree defining a closed subset
rT s Ď 2ω ˆ ωω such that C “ prT s. For pσ, τq P T let Tσ,τ be the subtree of T
consisting of all pairs compatible with pσ, τq, and let Cσ,τ “ prTσ,τ s.

For a finite set E extending F , let σE be the string (of length 1 ` maxE)
corresponding to the set EzF . We show:
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(˚): The collection of conditions pE,Dq ďS pF, Cq for which there is some τ such
that pσE , τq P T and pE,Dq ďS pF, pCσE ,τ qĚq is dense below pF, Cq.

To see this, let pE,Dq extend pF, Cq. Extension in S implies that D Ď pC X rσEsďq
Ě,

where rσEsď is the clopen subset of Cantor space determined by the string σE . Now
C X rσEsď “

Ť

tCσE ,τ : pσE , τq P T u, and so

D Ď

´

ď

tCσE ,τ : pσE , τq P T u
¯Ě

“
ď

tpCσE ,τ qĚ : pσE , τq P T u,

so there is some τ such that pσE , τq P T and D X pCσE ,τ qĚ is nonempty; it follows
that the condition pE,D X pCσE ,τ qĚq extends both pE,Dq and pF, pCσE ,τ qĚq.

To prove the lemma, we need to show that if G is sufficiently generic then GrGs
is compatible with every condition in G. Let pF, Cq be a condition, and let G be
a sufficiently generic filter containing pF, Cq; let G “ GrGs. Let T be as above.
By recursion, we build a strictly increasing sequence pσ0, τ0q ă pσ1, τ1q ă ¨ ¨ ¨ of
pairs in T such that

Ť

i σi “ GzF and for all i, pF, pCσi,τiqĚq P G. We start with
σ0 “ τ0 being the empty string. Suppose that we have already chosen pσi, τiq
as required. By (˚) applied to the condition pF, pCσi,τiqĚq (and the tree Tσi,τi),
since G is sufficiently generic, we find some pE,Dq P G with maxE ą |σi| extending
pF, pCσE ,τ qĚq for some τ such that pσE , τq P Tσi,τi . Thus, τ ą τi, so we choose
pσi`1, τi`1q “ pσE , τq, noting that σE ă GzF as pE,Dq P G. Letting f “

Ť

i τi, we
see that pGzF, fq P rT s, whence GzF P C, as required. �

Suppose that A ďi
c.e. B. The collection of sets C P rBsω witnessing Proposi-

tion 3.7 is Π1
1pAq, and since such a set was obtained by forcing with unrestricted

conditions, the argument does not give any reasonable bound on the complexity of
such C. Below, we will apply a basis theorem to the following stronger result.

Theorem 3.11. If A ďi
c.e. B then there is a nonempty Σ1

1pBq class of sets C P rBsω
satisfying A ďui

c.e. C.

Proof. We use SB , the notion of forcing discussed above relativised to B: the
conditions pF, Cq allow C to be Σ1

1pBq rather than merely Σ1
1.

The condition pH, rBsωq forces that G Ď B, and so forces that A is c.e. in G.
Therefore there is a condition pF, Cq extending pH, rBsωq which for some relative
c.e. operator Φ, forces that ΦpGq “ A.

For every n, let

Un “ tZ P 2ω : n P A ðñ n P ΦpZqu .

Claim 3.11.1. For every n, there is no Y P C such that the condition pF, Y q strongly
forces (in Mathias forcing) that G R Un.

Proof. Suppose, for a contradiction, that the claim fails for some n and Y .
There are two cases. First, suppose that n R A. Then pF, Y q strongly forces

(again in Mathias forcing) that n P ΦpGq. Let E be an initial segment of Y
extending F such that n P ΦpEq. Then

pE, tZ Ď pmaxE,8q : Z Y pEzF q P Cuq

is a condition in SB which extends pF, Cq and strongly forces (in SB) that ΦpGq ‰ A;
it therefore forces ΦpGq ‰ A, contradicting the assumption that pF, Cq forces the
opposite.
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Next, suppose that n P A. So pF, Y q strongly forces that n R ΦpGq. Then

D “ tZ P C : p@E P rZsăωq n R ΦpF Y Equ

is Σ1
1pBq and so pF,Dq is a condition in SB extending pF, Cq and strongly forcing

that ΦpGq ‰ A, which again is impossible. �

By the strong Prikry property of Mathias forcing, for every X P C and each n
there is some Y P rXsω such that pF, Y q strongly forces (with respect to Mathias
forcing) that G P Un. Iterating, starting with any X P C obtain a sequence X Ą

Y0 Ą Y1 Ą Y2 Ą ¨ ¨ ¨ with pF, Ynq strongly forcing that G P Un, and also ensure that
minYn`1 ą minYn. Let X̃ “ tminYn : n P ωu; then X̃ P rXsω and is an element
of the class E of sets Z P C satisfying: for all n, for every finite E Ă Z which omits
the first n elements of Z, if n P ΦpF Y Eq then n P A. This class is Σ1

1pBq (A is
c.e. in B, so is ∆1

1pBq).
We claim that for every C P E we have A ďui

c.e. C. Indeed, E is downward closed,
and we exhibit a uniform procedure for enumerating A from any C P E . For all C,
let ΘpCq be the collection of n such that for some finite E Ă C omitting the first n
elements of C, n P ΦpF Y Eq. Then for all C P E we have A “ ΘpCq. The fact
that C P E implies that ΘpCq Ď A. In the other direction, given n P A, let X be
the set obtained from C by removing the first n elements. Then X P C, so there
is some Y P rXsω such that pF, Y q strongly forces that n P ΦpGq; in particular,
n P ΦpF Y Y q, so some finite subset E of Y will witness that n P ΘpCq. �

As usual, we conclude:

Corollary 3.12. If A ďi
T B then there is a nonempty Σ1

1pBq class of sets C P rBsω
satisfying A ďui

T C.

Below we will use the following:

Corollary 3.13. If A ďi
c.e. B then there is some C P rBsω such that A ďui

c.e. C
and ωC1 ď ωB1 .

The proof is a simple application of the Gandy basis theorem [Gan60], which
in relativised form says that every nonempty Σ1

1pBq class contains a set C with
ωB‘C1 “ ωB1 . Note that ωB1 ě ωA1 since A is c.e. in B.

4. Completeness

In this section we prove Theorem 1.6. The argument is elaborate, and so we
approach it gradually: we prove two weaker theorems with proofs of increasing
complexity, each introducing another element of the final proof. Before we do this,
though, we use the basic technique to prove Theorem 1.3(b).

4.1. Flexibility in constructing introreducible sets. In the proof of Theo-
rem 1.3(b), we need to construct sets A and B with A ďui

c.e. B but C ęiT B for all
infinite C Ď A. By Proposition 2.1, this is equivalent to A ďui

e B. We do this by
fixing in advance the enumeration functional Φ witnessing A ďui

e B. This functional
is defined to be “maximally flexible”: no matter how we have already determined A
and B so far, we can extend them with freedom to behave with respect to Φ as we
wish.
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Proof of Theorem 1.3(b). As discussed, we build sets A and B such that A ďui
e B

but that C ęi
T B for all C P rAsω.

To define the enumeration functional Φ, we fix a sequence pXiqiPω of uniformly
computable sets satisfying the following:

‚ For every finite E Ă ω, the set
č

iPE

Xi X
č

iRE

pωzXiq

is infinite.
For example, we can choose Xi to be the collection of numbers divisible by the
pi` 1qth prime number.

We then define Φ as follows: the axioms of Φ say that for all i, the singleton
subsets of Xi suffice to enumerate i. That is, for all Z, i P ΦpZq if and only if
Z XXi ‰ H.

Now, to get sets A and B such that A ďui
e B via Φ, it suffices to ensure, for all i,

that:
(a) if i R A then B XXi “ H; and
(b) if i P A then B Ď˚ Xi.

We obtain such A and B by forcing with finite conditions: a pair pσ, τq determines
initial segments of A and B; it is admissible if it does not violate (a); and to
ensure (b), for all i which σ ensures are in A, all future additions to B beyond τ
must be in Xi. We then also construct a Cohen subset D of B and ensure that no
infinite subset of A is computable from both B and D.

Of course, we can construct all of these in one go, so the notion of forcing we
describe adds all sets at once. For strings σ, τ P 2ăω, we use σ ď τ to denote string
extension, but we also use the strings to denote the finite sets they determine: we
write i P σ if i ă |σ| and σpiq “ 1; we write σ Ď τ if for all i, i P σ implies i P τ ,
and so on.

The forcing notion P consists of triples pσ, τ, ρq P p2ăωq3 satisfying:
(i) for all i R σ, τ XXi “ H;
(ii) ρ Ď τ .

If p “ pσ, τ, ρq is a condition then we write σp “ σ, τp “ τ , and ρp “ ρ. A
condition q extends a condition p if:

(i) σp ď σq, τp ď τ q, and ρp ď ρq; and
(ii) for all i P σp, τ qzτp Ă Xi.

Observe that this is indeed a partial ordering. A sufficiently generic filter G de-
termines the sets ArGs “

Ť

tσp : p P Gu, BrGs “
Ť

tτp : p P Gu and DrGs “
Ť

tρp : p P Gu.
First, observe that the empty condition forces that A is infinite; for every condi-

tion p, pσp 1̂, τp, ρpq is an extension of p. The empty condition also forces that B
and D are infinite: for every condition p, the “freeness” property of the sets Xi al-
lows us to choose some k ą |τp| in Xi for all i P σp but outside Xi for all other i’s,
and so pσp, τp Y tku, ρp Y tkuq is an extension of p. Further, note that for every
condition p and every k, pσp 0̂k, τp 0̂k, ρpq is an extension of p.

As explained above, the empty condition forces that A ďui
e B via Φ. Now, given

two Turing functionals Ψ and Γ, we show that the empty condition forces that it
is not the case that ΨpBq “ ΓpDq are total and equal an infinite subset of A.
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To see this, let p be any condition; we may assume that p forces that:
(i) ΨpBq is total and infinite; and
(ii) ΓpDq is total and a subset of A.

By (i), there is some i ą |σp| and a condition q ďP p such that Ψpτ q, iq Ó“ 1.
Let k ą |τ q|, i; as mentioned, pσp 0̂k, τp 0̂k, ρpq is a condition extending p, and so
by (ii), we can find an extension r of that condition such that Γpρr, iqÓ“ 0, noting
that i R σr.

Because τ r X r|τp|, |τ q|q “ H, we can take a string τ˚ ě τ q such that τ˚ “
τ q Y τ r. It follows that ρr Ď τ˚. We also let σ˚ be a string extending σp satisfying
σ˚ “ σqYσr. Then pσ˚, τ˚, ρrq is a condition, extends p, and forces that ΨpB, iq ‰
ΓpD, iq. �

4.2. A first completeness result. We turn to the proof of Theorem 1.6. We
show the following:

Proposition 4.1. Uniformly, given a linear ordering L, we can construct a set A
which is Π0

1pLq, such that:
‚ If L is well-founded, then A is uniformly introreducible relative to L: there

is a functional Φ such that for every infinite Z Ď A, ΦpZ,Lq “ A.
‚ If L is ill-founded, then A is not introreducible relative to L.

This suffices:

Proof of Theorem 1.6, given Proposition 4.1. Given a linear ordering L, let A be
the set given by Proposition 4.1. Also, uniformly obtain a uniformly introreducible
set R Turing equivalent to L (for example, a Dekker set — the set of finite initial
segments of some real coding L). Let π : ω Ñ R be an L-computable bijection; let
B “ πrAs.

If L is ill-founded, then there is some infinite S Ď A such that A ęT S ‘ L;
then πrSs is an infinite subset of B which does not compute B (even relative to L).
On the other hand, if L is well-founded, then given an infinite S Ď B, we can first
uniformly compute R, and so L, and then with L compute π´1rSs, then A, and
then B. �

As we build toward the proof of Proposition 4.1, we will first give a proof of a
weaker completeness result, introducing important ingredients of the proof. For the
rest of the section, to avoid excessive notation, we assume that the linear ordering L
is computable; the argument fully rleativises.

Proposition 4.2. Given a computable, infinite linear ordering L we can effectively
obtain a ∆0

2 set A which is uniformly introreducible if and only if L is well-founded.

Thus, the set of ∆0
2-indices for introreducible sets is Π1

1-complete (with m-
reductions).

Proof. We may assume that the universe of L is ω, but we denote elements of L
with lowercase Greek letters.

We start with uniformly computable sets pXβqβPL and pYF qFPrωsăω satisfying:
(i) pXβqβPL forms a partition of ω, and so does pYF qFPrωsăω ;

(ii) For every β P L and F P rωsăω, Xβ X YF is infinite.
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For x P ω we let rpxq be the unique β such that x P Xβ (we think of rpxq as a
“rank” of x). We write x ďr y if rpxq ď rpyq, and x ăr y if rpxq ă rpyq. We then
define the functional Φ as follows:

‚ For a set Z and n P ω, if there are x, y P Z such that n ă x ă y and
x ďr y, then we set ΦpZ, nq “ F pnq, where F is the unique finite set such
that y P YF .

We will build a ∆0
2 set A such that if L is well-founded then A ďui

T A by Φ. The
first thing to notice is that Φ only uses positive information from its oracle. This is
not surprising, as Proposition 2.1 implies that A ďui

T B if and only if A‘A ďui
e B.

The second thing to notice is that there are many sets Z on which Φ is inconsistent:
for some n we have ΦpZ, nq “ 0 and ΦpZ, nq “ 1. In building A, we will need to
ensure that ΦpAq is consistent (and so ΦpZq is consistent for all Z Ď A). Thirdly,
we note that given a finite set E we can compute the partial (possibly multivalued)
function ΦpEq; we have dom ΦpEq Ă maxE by the requirement that a convergence
of ΦpE,nq can only be given by elements x, y P E with n ă x ă y.

We use a notion of forcing P “ PL: the conditions in P are finite sets E which
are self-consistent with respect to Φ, meaning that ΦpEq is consistent (uni-valued)
and agrees with E: for all n, if ΦpE,nqÓ then ΦpE,nq “ Epnq. The conditions
in P are ordered by end-extension. This notion of forcing is computable. It is not
empty: any singleton is an element of P, because Φptxu, nqÒ for all x and n.

The freeness property of the sets Xβ and YF implies:
Claim 4.2.1. If E P P and y ą maxE is in YE then E Y tyu P P.
Proof. Let E and y satisfy the assumption. Let n P ω and suppose that ΦpE Y
tyu, nqÓ“ i; we need to show that i “ pE Y tyuqpnq. Let w, z P E Y tyu cause the
convergence ΦpE Y tyu, nqÓ“ i: w, z P E Y tyu, n ă w ă z, w ďr z and z P YH
for some finite set H such that Hpnq “ i. Now w ď maxE, so n ă maxE, so
Epnq “ pE Y tyuqpnq. If z P E then ΦpE,nqÓ“ i and must equal Epnq, as E P P.
Otherwise z “ y and so H “ E. �

Let A “ ArGs be the subset of ω given by a filter G which is 1-generic for P
(meets or avoids each c.e. subset of P). Such A can be chosen to be ∆0

2, uniformly
in L. Since every YE is infinite, Claim 4.2.1 implies that A is infinite. Also, for all
W Ď A and all n, if ΦpW,nqÓ then ΦpW,nq “ Apnq.

If L is well-founded, then ΦpZq is total for all Z P rAsω. For let Z P rAsω.
The increasing enumeration of Z (or any of its tails) cannot be strictly decreasing
for ăr, so there are arbitrarily large x ă y in Z such that x ďr y. Such x and y
guarantee that ΦpZ, nqÓ for all n ă x.

Suppose that L is ill-founded. Fix some infinite L-decreasing sequence xβiyiPω.
The freeness property of the sets Xβ and YE , together with the 1-genericity of G
and Claim 4.2.1, imply that for every β P L, AXXβ is infinite. Thus, we can choose
a sequence x0 ă x1 ă ¨ ¨ ¨ of elements of A such that xi P Xβi . Let Z “ txi : i P ωu.
The point of course is that for x, y P Z with x ă y we have x ąr y and so tx, yu
does not give a Φ-computation; indeed, ΦpZq is defined on no input.

To show that A ęui
T A we need to consider functionals other than Φ. Suppose,

for a contradiction, that for some functional Ψ we have ΨpY q “ A for all Y P rAsω.
Consider the c.e. set

DΨ “ tF P P : pDnq ΨpF, nqÓ‰ F pnqu .
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If F P DΨ XG then as F ă A we get ΨpAq ‰ A. On the other hand, we show that
every condition in G is extended by some condition in DΨ, which will contradict the
1-genericity of G. Let E P G; let y “ minpZzEq (note that ZzE “ Z X pmaxE,8q
since Z Ď A and E ă A). Let Y “ EYZztyu. As Y Ď A, by the assumption on Ψ,
ΨpY, yqÓ“ Apyq “ 1. There is therefore some finite F ă Y such that ΨpF, yqÓ“ 1.
Since E ă Y we may assume that E ă F . Since y R Y we have ΨpF, yq ‰ F pyq.
So F is the desired extension of E in DΨ, once we show that F P P. Let n P ω, and
suppose that ΦpF, nqÓ, using a pair w, z P F with w ă z and w ďr z. Then w P E,
so n ă maxE, so as F Ă A we have ΦpF, nq “ Apnq “ Epnq “ F pnq as required.

We remark that the proof does not show that if L is ill-founded then for every
functional Ψ, G X DΨ is nonempty. After all, that would show that A ęT A.
That DΨ is dense along G was proved only under the assumption that Ψ witnesses
that A ďui

T A. �

4.3. Removing uniformity. To obtain the desired proposition, we need to im-
prove the proof above in the following ways:

(1) Make A co-c.e. rather than ∆0
2; and

(2) Ensure that if L is ill-founded, then A ęi
T A rather than only A ęui

T A.
We now explain how to do the second.

Proposition 4.3. Given a computable, infinite linear ordering L we can uniformly
obtain ∆0

2 set A such that:
‚ if L is well-founded then A is uniformly introreducible;
‚ if L is ill-founded then A is not introreducible.

Proof. We extend the technique of the previous proof. Given L, we will use the
same sets Xβ and YF and use them to define the same functional Φ. We again let P
denote the collection of finite sets E such that ΦpEq is consistent with E, ordered
by end-extension. The set A will again be 1-generic for P.

This time, if L is ill-founded, we need to find a single set Z P rAsω which does
not compute A. Recall that for x P ω, rpxq is the unique β such that x P Xβ . The
set Z will again be tx0 ă x1 ă x2 ă ¨ ¨ ¨ u where x0 ąr x1 ąr x2 ąr ¨ ¨ ¨ , and so will
be defined using some infinite decreasing sequence pβiq from L. Because we will
need to ensure that ΨpZq ‰ A, this time we will need greater control in the choice
of the sequence pβiq and the set Z. Indeed, to actively diagonalise, we will need
to work with initial segments of Z during the construction of A. This is difficult,
because any pβiq may be very complicated, certainly out of the grasp of H1. What
we do with H1 is to construct a tree of possible choices for initial segments of Z for
any possible initial segment of pβiq.

Another new ingredient is a use of an overspill argument to show that certain
conditions exist. For that, we will need the well-founded part of L to not be
hyperarithmetical. This is standard: given L, we can replace it by the linear
ordering obtained by the Kleene-Brouwer ordering of the tree of double descending
sequences, the tree of pairs pσ, τq where |σ| “ |τ |, σ is a descending sequence in L,
and τ is a descending sequence in some fixed Harrison linear ordering (a computable
ill-founded linear ordering with no hyperarithmetic descending sequences). If L is
well-founded then the tree of double descending sequences is well-founded; if L is
ill-founded then the tree is ill-founded but any path gives an infinite descending
sequence in the Harrison linear ordering and so cannot be hyperarithmetic.
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We extend the notion of forcing P to be a 2-step iteration that starts with P and
then adds a tree of subsets of the generic for P. Combined, we define the notion of
forcing Q as follows. The conditions are pairs pE,ϕq, where E P P, and ϕ is a finite
partial function satisfying:

(i) domϕ is a subtree of ωăω consisting of descending sequences in L.
(ii) For every σ “ xβ1, β2, . . . , βky P domϕ, ϕpσq is a finite set F Ď E, F “

tx1 ă x2 ă ¨ ¨ ¨ ă xku with rpxiq “ βi for i “ 1, 2, . . . , k.
(iii) For σ ď τ in domϕ, ϕpτq is an end-extension of ϕpσq.

The ordering on Q is given by extension in both coordinates: pF,ψq extends pE,ϕq
if E ă F , domϕ Ď domψ and ψædomϕ “ ϕ. This notion of forcing is computable.

Let G Ă Q be a 1-generic filter (computable from H1). We define A “ ArGs “
Ť

tE : pDϕq pE,ϕq P Gu and f “ f rGs “
Ť

tϕ : pDEq pE,ϕq P Gu. Both A and f
are ∆0

2, and A is 1-generic for P; it is therefore infinite. Similarly, dom f is the
tree TL of all finite descending sequences in L. We give the details. For every
σ P TL we show that the collection of conditions pF,ψq P Q such that σ P domψ is
dense in Q, and then appeal to the 1-genericity of G. We prove this by induction
on |σ|. Let σ P TL such that σ “ σ´ x̂βy. By induction, let pE,ϕq P Q such that
σ´ P domϕ. Choose some y P Xβ X YE with y ą maxE, y ą max rangeϕpσ´q;
then EYtyu P P (Claim 4.2.1). Define ψ by extending ϕ to be defined on σ, letting
ψpσq “ ϕpσ´qYtyu. Then the condition pEYtyu, ψq is an extension of pE,ϕq in Q.

If L is well-founded, then as in the previous proof, Φ shows that A ďui
T A.

Suppose then that L is ill-founded. Let S Ă TL be the subtree of σ P TL which
are entirely contained in the ill-founded part of L. We take an infinite descending
sequence pβiq in L which is sufficiently generic for the partial ordering S. Of
course, this partial ordering is complicated (may have degree O, the complete Π1

1
set) and pβiq will need a Turing jump or two beyond that. We let Z “ Zrpβiqs “
Ť

tfpσq : σ ă pβiqu. This is an infinite subset of A. We will show that Z ğT A.
Fixing a Turing functional Ψ, we need to show that ΨpZq ‰ A. We show that

,S ΨpZq ‰ A, and appeal to the genericity of pβiq. Let

D “ tτ P S : Ψpfpτqq K Au ,

where ΨpF q K A if ΨpF, nqÓ‰ Apnq for some n. Let σ P S and suppose that σ
forces in S that ΨpZq is total; we find an extension of σ in D. Let

E “ tpF, θq P Q : pDτ P dom θq τ P S & τ ě σ & Ψpθpτqq K F u .

We will show that G X E ‰ H. This suffices: if pF, θq P G X E , witnessed by τ ,
then τ is an extension of σ in D.

Claim 4.3.1. E is dense along G.

Proof. Let pE,ϕq P G; we find an extension of pE,ϕq in E . Let β ą σp0q “
max rangeσ (we may assume that L has no last element). Since G is 1-generic,
by extending (and by Claim 4.2.1), we may assume that there is some y ą maxE
in Xβ such that E Y tyu ă A.

Since σ ,S “ΨpZq is total”, there is some τ ě σ in S such that Ψpfpτq, yqÓ. If
Ψpfpτq, yq “ 0 then GXE is nonempty. Suppose, then, that Ψpfpτq, yq “ Apyq “ 1.

Let F “ EYfpτq. Note that β R range τ (as β ą σp0q “ τp0q and τ is descending
in L) so y R fpτq; so y R F . Also, since E ă A and fpτq Ă A, E ă F .
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We first argue that F P P. Let n such that ΦpF, nqÓ“ i; let z, w P F generate
this computation, so again w ă z, w ďr z. Since F Ă A, we have i “ Apnq. For
any s, t P fpτq we have s ă t Ñ s ąr t, so we cannot have w, z P fpτq. Hence
n ă w ď maxE; since E ă A and E ă F , we have Apnq “ Epnq “ F pnq.

Hence F extends E in P. Now define θ extending ϕ by setting θpρq “ fpρq for all
ρ ď τ . Note that θ indeed extends ϕ as f extends ϕ. To show that pE, θq P Q (and
so extends pE,ϕq) it suffices to check that for all ρ P dom θ, fpρq Ď F . If ρ ď τ
then this is by the definition of F . If ρ P domϕ, then as pE,ϕq is a condition, we
have fpρq Ď E Ď F .

Finally, since y R F and Ψpθpτq, yq “ 1, it is seen that pF, θq P E , and so is the
required extension. �

The set E is very complicated (as its definition refers to S, and so to the ill-
founded part of L), so we cannot directly appeal to the 1-genericity of G and
density of E along G to show that GXE is nonempty. We use overspill to overcome
this problem. For any β P L, let

Eβ “ tpF, θq P Q : pDτ P dom θq τ ě σ & Ψpθpτqq K F & min range τ ą βu .

If β is well-founded (is in the well-founded part of L), then E Ď Eβ , and so by
Claim 4.3.1, Eβ is dense along G. Each set Eβ is computable, and so for well-
founded β we have G X Eβ ‰ H. The property “Eβ X G ‰ H” is an arithmetic
property of β. Since the well-founded part of L is not even hyperarithmetic, it must
be the case that for some ill-founded β, Eβ XG ‰ H. But for ill-founded β we have
Eβ Ď E , which ends the proof. �

4.4. A priority argument. As discussed, to prove Proposition 4.1, we now need
to show how to make A co-c.e. rather than merely ∆0

2. We cannot expect to obtain A
from a 1-generic filter for P since 1-generics do not compute noncomputable c.e.
sets. However, we don’t need the full power of 1-genericity to push through the
preceding proof. We carefully list the specific dense sets that we aim to meet, and
using a priority argument, we construct a just sufficiently generic set A which can
be made co-c.e.

Proof of Theorem 1.6. Building on the previous proofs, we use all of the ingredients:
the sets Xβ and YF , the functional Φ, and the partial orderings P, Q and S. We
perform a finite-injury priority argument to build G (and hence A and f). There
are two types of requirements:
Pσ: For every σ P TL (the tree of finite L-descending sequences), ensure that σ P

dom f .
Qσ,β,Ψ: For every nonempty σ P TL, β P L and Turing functional Ψ, let

Eσ,β,Ψ “ tpF, θq P Q : pDτ P dom θq τ ě σ & Ψpθpτqq K F & min range τ ą βu .

The requirement aims to make GX Eσ,β,Ψ nonempty.
We computably order all requirements in order-type ω. We let Re denote the eth

requirement on our list. The stronger requirements are those which appear earlier
on the list. We index objects associated with a requirement by its location on the
list. For example, if Re is the requirement Pσ then we write σe “ σ. For brevity,
if Re is a Q-requirement then we write Ee for Eσe,βe,Ψe . We make sure to order
our requirements so that for every e, if Re is a P -requirement and |σe| ě 2 then
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there is some k ă e such that Rk is a P -requirement and σk “ pσeq´ (the sequence
obtained from σe by removing the last entry).

During the construction, at any stage s, a P -requirement may be either waiting
or satisfied; whereas a Q-requirement may be either waiting, ready or satisfied.

At each stage s we will define a sequence p0,s ěQ p1,s ěQ p2,s ěQ ¨ ¨ ¨ ěQ pmpsq,s
for some mpsq P ω; we will write pe,s “ pEe,s, ϕe,sq. At stage s we let

As “ Empsq,s Y pmaxEmpsq,s,8q.
We ensure that the following holds during the construction at every stage s:
(a) If Re is not waiting at stage s then pe`1,s is defined (i.e., e ă mpsq).
(b) If Re is a P -requirement and pe`1,s is defined, then σe P domϕe`1,s.

At stage s, a requirement Re requires attention if it is either waiting, or if it
is a Q-requirement which is ready, and there is some condition q “ pF, θq P Ee
extending pe,s which is discovered by stage s and such that F Ă As.

Here is the construction: we start with np0q “ 0 and p0,0 being the empty
condition (so A0 “ ω). At stage s, let Re be the strongest requirement which
requires attention at that stage. There is such a requirement since all but finitely
many requirements are waiting at stage s. Note that e ď mpsq, so pe,s is defined.
We set mps ` 1q “ e ` 1. For k ă e we let pk,s`1 “ pk,s, and the status of Rk at
stage s ` 1 is the same as its status at stage s. We define Ee`1,s`1 and set Re’s
new status as follows.

(i) Suppose thatRe is a P -requirement. If σe P domϕe,s then we set pe`1,s`1 “
pmpsq,s. Otherwise, write σe “ τ γ̂ with γ P L (recall that σe is nonempty).
Choose some y ą maxEmpsq,s in Xγ XYEe,s . We set Ee`1,s`1 “ Ee,sYtyu.
We define ϕe`1,s`1 extending ϕe,s by setting ϕe`1,s`1pσq “ ϕe,spτq Y tyu.
We set Re to be satisfied at stage s` 1.

(ii) Suppose that Re is a Q-requirement, and that Re is waiting at stage s.
Choose some y ą maxEmpsq,s with y P XγXYEe,s for some γ ą max rangeσe.
We set pe`1,s`1 “ pEe,sYtyu, ϕe,sq. We declare Re to be ready at stage s`1.

(iii) Suppose that Re is a Q-requirement, and that Re is ready at stage s. Let
q “ pF, θq witness that Re requires attention at stage s. By adding an
element to F , we may assume that maxF ą maxEmpsq,s. Set pe`1,s`1 “ q,
and declare Re to be satisfied at stage s` 1.

Finally, for all k ą e, we set Rk to be waiting. This completes the description of
the construction.

In beginning the verification, we check that the construction can be performed
as described. It is not difficult to verify, by induction on the stages, that (a) and (b)
above hold at every stage. We also observe that whenever defined, it is indeed the
case that pe,s P Q. For this, we mostly use Claim 4.2.1, to check that Ee`1,s`1 P P
(where Re receives attention at stage s). In case that Re is a P -requirement and
σe R domϕe,s, note that by our ordering of the requirements, and by (b), τ “ σe

´

is indeed in domϕe,s. Also, ϕe,spτq Ď Ee,s and y ą maxEmpsq,s ě maxEe,s so
ϕe`1,s`1pσeq is of the required form.

Next, we observe that for all s, As`1 Ď As. Mainly, this is because maxEmps`1q,s`1 ě

maxEmpsq,s. Also, in (i) and (ii), if Emps`1q,s`1 ‰ Empsq,s, then we have Emps`1q,s`1 “

Ee`1,s`1 “ Ee,sYtyu where y ą maxEmpsq,s (so y P As) and Ee,s Ď Empsq,s Ă As.
In (iii) the instructions require Ee`1,s`1 Ă As.
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The construction is finite injury; every requirement is eventually either perma-
nently satisfied, or is permanently ready but never later satisfied. For every e,
the sequence ppe,sqsPω stabilizes, and we denote the stable value by pe “ pEe, ϕeq.
We have pe`1 ďQ pe. We let G be the filter generated by the sequence ppeq, i.e.,
G “ tq P Q : pDeq q ěQ peu. We let A “ ArGs and f “ f rGs defined as in the
previous construction. We have A “

Ş

sAs.

Since A is obtained from a filter of P, for every Z Ď A and every n such that
ΦpZ, nqÓ we have ΦpZ, nq “ Apnq.

By the instruction, and the fact that every requirement is injured only finitely
many times, we see that every P -requirement is met. Hence dom f “ TL. This
also implies that A is infinite: For every γ P L, there are infinitely many sequences
σ P TL whose last element is γ, and so in fact AXXγ is infinite.

If L is well-founded, then the argument from the proof of Proposition 4.2 shows
that A ďui

T A via Φ. Suppose that L is ill-founded. We define S as in the pre-
vious proof, choose a sufficiently generic pβiq through S, and let Z “ Zrpβiqs “
Ť

tfpσq : σ ă pβiqu.
Let Ψ be a functional, let σ P S which forces that ΨpZq is total. As in the

previous proof, we find an extension τ of σ in S such that Ψpfpτqq K A.

Claim 4.3.2. For every well-founded β P L, GX Eσ,β,Ψ is nonempty.

Proof. Fix such β, and let e be such that Re “ Qσ,β,Ψ. Suppose, for a contradiction,
that GX Ee “ H.

Let s be the last stage at whichRe is waiting and receives attention. IfRe receives
attention after stage s then it chooses pe`1,s`1 P Ee; since it is not later initialised
(set back to a waiting state by some stronger Rk), we have pe`1 “ pe`1,s`1. Hence,
our assumption for contradiction implies that Re does not receive attention after
stage s. We will show that Re requires attention after stage s; this will contradict
the fact that Re is not initialised after stage s.

For all t ě s we have pe,t “ pe (so Ee,t “ Ee ă A). At stage s we define
Ee`1,s`1 “ Ee,s Y tyu for some y. Since σ ,S “ΨpZq is total”, there is some τ P S
extending σ such that Ψpfpτq, yqÓ. As in the previous proof, note that y was chosen
so that y R fpτq as it is ąr x for all x P fpτq.

Since Re does not receive attention after stage s, for all t ą s we have pe`1,t “
pe`1, so y P A. Let k ą e be sufficiently large so that τ P domϕk. If Ψpfpτq, yq “ 0
then pk P Ee; hence, by our assumption for contradiction, we have Ψpfpτq, yq “
Apyq “ 1.

We again let F “ Ee Y fpτq. Then F Ă A, so F Ă At for all t. Again define θ
by extending ϕe by setting θpρq “ fpρq for all ρ ď τ . Then the argument proving
Claim 4.3.1 shows that pF, θq P Q, extends pe, and is an element of Ee. At a large
enough stage t ą s we discover this condition, and as F Ă At, we see that Re
requires attention at stage t, which leads to the desired contradiction. �

We end the proof as above: since the well-founded part of L is not hyperarith-
metic, G intersects Eβ for some ill-founded β, which gives the desired extension
of σ in S; the genericity of pβiq yields ΨpZq ‰ A. This completes the proof of
Proposition 4.1, and so of Theorem 1.6. �
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5. Obtaining introreducible subsets

In this section we find introreducible subsets of given introenumerable sets. We
will start with a proof of Theorem 1.5(a), and then elaborate on its technique.

5.1. When all ordinals are computable. Suppose that A ďui
e B, via some

enumeration functional Φ. How can we tell if a given n is in A? Consider the
tree of finite subsets E of B which do not enumerate n using Φ, ordered by end-
extension. If n P A then this subtree must be well-founded, and so every subset has
an ordinal rank. Otherwise, it is the full infinitely-splitting tree of all finite subsets
of B. In the next proposition, we show that if the ordinal ranks are all computable,
then with the aid of a sufficiently fast-growing function and a subset of B, we can
use this to compute whether n is in A or not.
Proposition 5.1. Suppose that A ďui

e B and ωB1 “ ωck
1 . Then there is some

C P rBsω which is ∆1
1pBq and such that A ďui

T C.
Using this proposition we can prove Theorem 1.5, which weakens the hypothesis

A ďui
e B to the non-uniform A ďi

e B: if A ďi
e B and ωB1 “ ωck

1 , then there is an
infinite C Ď B such that A ďui

T C.

Proof of Theorem 1.5(a), given Proposition 5.1. Suppose that A ďi
c.e. B and ωB1 “

ωck
1 . By Corollary 3.13, find some D P rBsω with ωD1 ď ωB1 (so ωD1 “ ωck

1 ) and
A ďui

c.e. D. By Proposition 2.1, A ďui
e D. Now apply Proposition 5.1 to A and D.

�

This proposition also implies that if A is uniformly introenumerable and ωA1 “
ωck

1 , then A has a uniformly introcomputable subset. For if A is uniformly introenu-
merable, then by Proposition 2.1, A ďui

e A; apply Proposition 5.1 to A and A to get
some C P rAsω such that A ďui

T C and C P ∆1
1pAq; now apply Lemma 2.2. To get

Theorem 1.4, we will follow this argument, but will need to replace the assumption
ωB1 “ ωck

1 in Proposition 5.1 with the assumption that A is introenumerable, which
will take some work.

Proof of Proposition 5.1. Suppose that A ďui
e B via an enumeration functional Φ.

By a standard time-trick, we assume that the map E ÞÑ ΦpEq (for finite sets E)
is computable (if at a late stage s we see that n P ΦpEq, we instead enumerate n
with use all the extensions of E which have elements greater than s).

We introduce notation for the rank of a finite subset of E that will be modified
later in the paper. For n P ω, E P rBsăω and ordinal α we define the relation
λpn;Eq ě α by recursion on α. For all n and E we have λpn;Eq ě 0. Suppose that
α ě 1.

‚ λpn;Eq ě 1 if n R ΦpEq.
‚ For α ą 1, λpn;Eq ě α if for all β ă α there is some y P B, y ą maxE

such that λpn;E Y tyuq ě β.
We then let λpn;Eq “ α if λpn;Eq ě α but λpn;Eq ğ α ` 1; if λpn;Eq ě α for
every ordinal α, then we write λpn;Eq “ 8.

To unpack: λpn;Eq “ 0 if and only if n P ΦpEq; λpn;Eq “ β`1 if and only if for
every y P B greater than maxE we have λpn;E Y tyuq ď β but for some such y we
have λpn;EYtyuq “ β; for a limit ordinal γ, λpn;Eq “ γ if and only if for all y P B,
y ą maxE we have λpn;E Y tyuq ă γ but tλpn;E Y tyuq : y P B, y ą maxEu is
unbounded in α.
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We presented this inductive definition, because it is the one that will be modified
later; however we can also formalise this as a tree rank. For each n (thought of as
either an element of A or its compliment), let Tn be a subtree of the tree of finite
subsets E of B, ordered by end-extension, with the leaves of Tn being the minimal
sets E (again under end-extension) satisfying n P ΦpEq. If E P Tn (in particular,
if n R ΦpEq or E is a leaf of Tn) then λpn;Eq is the rank of E on the tree Tn.
Using the fact that Φ witnesses that A ďui

e B, it follows that Tn is well-founded
if and only if n P A. For completeness, we give an argument using the inductive
definition.

In fact, we observe that for all n, n P A if and only if λpn;Hq ă 8 if and only
if for all E P rBsăω, λpn;Eq ă 8. If n R A then by induction on α we show that
for all E P rBsăω, λpn;Eq ě α; the main step is showing this for α “ 1, which
follows from n R ΦpBq. In the other direction, suppose that λpn;Eq “ 8 for some
E P rBsăω; then there is some y ą maxE in B such that λpn;E Y tyuq “ 8, as
BzE is a set and not a proper class. Repeating, we build an infinite set Z such
that n R ΦpZq (as λpn;F q “ 8 ą 0 for all F ă Z) which shows that n R A.

Since A is c.e. in B, we have A P ∆1
1pBq, in particular ωA‘B1 “ ωB1 “ ωck

1 .
For every n P A, λpn;Hq ă ωck

1 as it is the tree rank of the tree Tn, which is
B-computable. Moreover, the set tλpn;Hq : n P Au is bounded below ωck

1 . To see
this, let TA be the tree which is the disjoint sum of the trees Tn for n P A (add a
root below the roots of all of these trees); the tree TA is B1-computable, and so its
rank is B-computable. We fix some computable ordinal δ such that for all n P A,
λpn;Hq ď δ.

Further, we fix some computable presentation of δ ` 1 which is notation-like,
and identify every ordinal β ď δ with the natural number coding this ordinal in
our computable presentation. Notation-like means: (i) The set of limit γ ď δ is
computable; (ii) The successor function on δ is computable. This implies that the
function taking a successor ordinal β ď δ to its predecessor is also computable,
and that for every limit γ ď δ we can (uniformly) compute a cofinal ω-sequence
γr0s ă γr1s ă ¨ ¨ ¨ in γ. For successor ordinals γ ď δ let γrks “ γ ´ 1 for all k.

We observe that after fixing the presentation of δ, the function λ is ∆1
1pBq; this

is because this is the ranking function for the tree TA.

We say that a function f : ω Ñ ω is a deficiency function if:
‚ For every nonzero γ ď δ, n P A and E P rBsăω,

λpn;Eq ă γ ùñ λpn;Eq ď γrfpγ, n,Eqs.

Since λ is ∆1
1pBq, there is a ∆1

1pBq deficiency function. Further (and this is the main
point), any function majorising a deficiency function is itself a deficiency function.
Now we choose some C P rBsω such that pC (the principal function of C) is a
deficiency function; since there is a ∆1

1pBq deficiency function, we can choose C to
be ∆1

1pBq. We show that A ďui
T C. Indeed, we show that if D P rBsω and pD is a

deficiency function, then A ďT D uniformly; this holds for every D P rCsω.
Fix such D. Given n P ω, by recursion on i “ 0, 1, . . . we compute a decreasing

sequence of ordinals β0 ą β1 ą ¨ ¨ ¨ as follows:
‚ β0 “ δ;
‚ if βi ą 0 then βi`1 “ βirpDpβi, n,Di`1qs, where Di consists of the first i

elements of D.
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This sequence must of course halt at some j such that βj “ 0. We claim that
n P A ðñ n P ΦpDjq, which shows how to compute A from D (recall that we
assumed that the relation n P ΦpEq is computable rather than merely c.e.).

Certainly, if n R A then n R ΦpDq so n R ΦpDjq. Suppose, then, that n P A.
We want to show that n P ΦpDjq, equivalently, that λpn;Djq “ 0. By induction on
i ď j we show that λpn;Diq ď βi.

For i “ 0, by choice of δ, we have λpn;D0q “ λpn;Hq ď δ “ β0.
For the induction step, suppose that i ă j and that λpn;Diq ď βi. We note that

Di`1 is a proper extension of Di, and so λpn;Di`1q ă λpn;Diq, so λpn;Di`1q ă
βi. Now since pD is a deficiency function, λpn;Di`1q ă βi implies λpn;Di`1q ď
βirpDpβi, n,Di`1qs “ βi`1. This ends the proof. �

5.2. The general case. As we discussed, we want to prove Proposition 5.1, but
remove the assumption that ωB1 “ ωck

1 . By Theorem 1.3(a), this cannot always
be done. It is instructive to think about what part of the proof of Proposition 5.1
fails without the assumption. What was special about the ordinal δ was that it
is computable, rather than merely B-computable. This was implicitly used in the
computation process we described using a sufficiently sparse set D P rBsω: it has
access to our computable copy of δ. Since there is no reason to assume that D
computes B, we may have ωD1 ă ωB1 ; but even if ωD1 ě ωB1 and δ is D-computable,
different subsets D of B may not be able to agree on a single copy of δ. The notion of
deficiency function was highly dependent on the choice of cofinal sequences pβrksq,
and so of our copy of δ.

Instead of the impossible, we will prove:

Proposition 5.2. Suppose that A ďui
e B. Then there are X P rAsω and Y P rBsω

such that X ďui
T Y . Further, we can choose X,Y P ∆1

1pBq.

Let us explain why this suffices. The proposition implies:

Proposition 5.3. Suppose that A is introenumerable and that A ďui
e B . Then

there is some C P rBsω such that C P ∆1
1pBq and A ďui

T C.

Note that this implies Theorem 1.5(b); we use the same argument proving The-
orem 1.5(a) from Proposition 5.1, except that we do not need the full power of
Corollary 3.13; Proposition 3.7 suffices.

Proof of Proposition 5.3, assuming Proposition 5.2. By Proposition 5.2, let X P

rAsω and Y P rBsω such that X ďui
T Y and such that X,Y P ∆1

1pBq. Since A
is introenumerable, it is c.e. in X. Let g be the modulus function for some X-
computable enumeration of A; so A is computable uniformly given X, and any
function majorising g. Note that g ďT X 1 and so it is ∆1

1pBq. Now let C P rY sω suf-
ficiently sparse so that pC ě g; since g, Y P ∆1

1pBq, we can choose such C P ∆1
1pBq.

Since X ďui
T C, given a subset of C we can compute both X and a function ma-

jorising g, and so compute A. �

We indicated above how this implies our main theorem, but for neatness, let us
state the proof. Recall that Theorem 1.4 says that every uniformly introenumerable
set has an infinite uniformly introreducible subset.

Proof of Theorem 1.4, assuming Proposition 5.2. Let A be uniformly introenumer-
able. By Proposition 2.1, A ďui

e A. Apply Proposition 5.3 to A and A to get some
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B P rAsω such that A ďui
T B and B P ∆1

1pAq; now apply Lemma 2.2 to get a
uniformly introcomputable subset of A. �

Let us now briefly explain how we can modify the proof of Proposition 5.1 into a
proof of Proposition 5.2. We give up on trying to obtain a common copy of δ, but
we still want to devise a decision procedure which resembles the one we gave in the
proof of Proposition 5.1. Given a very sparse set D P rBsω and n, suppose that we
have some other m which we know is in A, and suppose that further, we know that
λpn;Hq is either 8 or less than λpm;Hq. Again let Di be the first i elements of D.
We could then try to perform a comparison. The desirable situation is that if pD
grows sufficiently fast, then it will help us compute a sequence F0 ă F1 ă F2 ă ¨ ¨ ¨

of finite subsets of D such that for all i, if n P A then λpn;Diq ď λpm;Fiq. Then we
could keep going until we find some j such that m P ΦpFjq, which must eventually
happen as m P A; and then n P A if and only if n P ΦpDjq.

What this seems to require is a monotonicity of rank with 1-step extensions: if
F Ă D, y, z P D and maxF ă y ă z, then λpm;F Y tyuq ď λpm;F Y tzuq. In
general, there is no reason to believe that this is the case, and so we will need to first
thin B out sufficiently to get a subset for which this is the case. The process would
appear simple: if this fails, throw z out, assuming we chose y with λpm;F Y tyuq
sufficiently large so that we’re not forced to throw out too many elements like z.
However, this single step now affects λpm;Eq even for some E ă F , so we need to
be careful about this winnowing process. The way to do it is rank-by-rank, rather
than say from the root of the tree upwards.

In turn, what this implies is that this process of winnowing must be transfinite.
Which introduces a whole new complication: why would we be left with an infinite
set at a limit stage of the process? After all, it is very easy to devise a decreasing
sequence B0 Ą B1 Ą B2 Ą ¨ ¨ ¨ with Bω “

Ş

k Bk “ H. However we can always find
an infinite set Bω Ď˚ Bk for all k. The fact that our sequence of subsets ignores
finite differences, implies that we need to modify our ranking function as well, so
that it too ignores finite differences.

Those are some of the main ideas; we now give the proof.

Proof of Proposition 5.2. We start with sets A and B satisfying A ďui
e B, via some

enumeration functional Φ. As above, we assume that the relation n P ΦpEq is
computable.

For sets Z P rBsω, n P ω and E P rBsăω, we define a rank λ˚Zpn;Eq by defining
by recursion on ordinals α the relation λ˚Zpn;Eq ě α:

‚ λ˚Zpn;Eq ě 0 for all n and E.
‚ λ˚Zpn;Eq ě 1 if n R ΦpEq.
‚ For α ą 1, λ˚Zpn;Eq ě α if for all β ă α there are infinitely many y P Z

such that λ˚Zpn;E Y tyuq ě β.
As above, λ˚Zpn;Eq “ α if λ˚Zpn;Eq ě α but λ˚Zpn;Eq ğ α` 1; if λ˚Zpn;Eq ě α for
all α then we write λ˚Zpn;Eq “ 8. Note that we do not require E Ă Z to define
λ˚Zpn;Eq, only E Ă B.

Claim 5.3.1. For all n and all Z P rBsω, n P A if and only if λ˚Zpn;Hq ă 8.

Proof. Similar to the argument above. If n R A then by induction on α we see
that for all Z, n and E we have λ˚Zpn;Eq ě α. We use the fact that Z is infinite.
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If λ˚Zpn;Eq “ 8 then we inductively build an infinite subset of B which does not
enumerate n, so n R A.

For the second direction, we can alternatively show that λ˚Zpn;Eq ď λpn;Eq,
where the latter was defined in the previous proof: by induction on α, we show
that if λ˚Zpn;Eq ě α then λpn;Eq ě α. This clearly holds for α “ 0, 1, as the
conditions for these do not involve Z; For α ą 1, we use the fact that an infinite set
contains an element y ą maxE. It follows that if λ˚Zpn;Eq “ 8 then λpn;Eq “ 8
and so n R A. �

The fact that λ˚Zpn;Eq ď λpn;Eq shows that

tλ˚Zpn;Eq : Z P rBsω, n P A & E P rBsăωu

is bounded below ωB1 . We fix some δ˚ ă ωB1 which bounds all of these ordinals,
and for computation purposes, we fix some B-computable copy of δ˚. The modified
rank can be computed hyperarithmetically in B:

Claim 5.3.2. For all Z P rBsω, the relations λ˚Zpn;Eq ě α are uniformly computable
from pZ ‘Bqp2α`2q, and so the function pn,Eq ÞÑ λ˚Zpn;Eq is ∆1

1pZ ‘Bq.

We also need:

Claim 5.3.3. If Z,W P rBsω and W Ď˚ Z then for all n and E P rBsăω, λ˚W pn;Eq ď
λ˚Zpn;Eq.

In particular, if Z “˚ W then λ˚Zpn;Eq “ λ˚W pn;Eq for all n and E P rBsăω.

Proof. By induction on α we show that λ˚W pn;Eq ě α implies λ˚Zpn;Eq ě α. The
case α “ 1 does not depend on W or Z. For α ą 1, assuming the claim holds for
all β ă α, if λ˚W pn;Eq ě α then for all β ă α there are infinitely many y PW such
that λ˚W pn;EYtyuq ě β; all but finitely many of these y’s are in Z as well, and by
induction, λ˚Zpn;E Y tyuq ě β for these y’s; so λ˚Zpn;Eq ě α. �

Given Z P rBsω, when passing to a subset Ẑ of Z, the ranks λ˚
Ẑ
pn;Eq might go

down. This would cause an issue where we shrink Z to dominate a given function,
but in shrinking Z we change the ranking and so we also change the function we want
to dominate; we might thus be perpetually chasing our tail. We now introduce the
main tool we use, which is a property of such as set Z, called being rank-minimal,
which implies that the ranks do not decrease when passing to subsets.

‚ We say that Z P rBsω is rank-minimal if for every n, E P rBsăω and α, if
λ˚Zpn;Eq ě α then for all β ă α, for all but finitely many y P Z we have
λ˚Zpn;E Y tyuq ě β.

An equivalent condition is: for all n P A and E P rBsăω,

λ˚Zpn;Eq “ lim
yPZ

pλ˚Zpn;E Y tyuq ` 1q .

Our first task is the construction of a rank-minimal subset of B. As indicated
above, such a set will be approximated from above by a transfinite process. We
therefore need the following finer concept: For any ordinal γ, we say that Z P rBsω
is rank-minimal up to γ if for all α ď γ, for every n and E P rBsăω, if λ˚Zpn;Eq ě α
then for all β ă α, for all but finitely many y P Z we have λ˚Zpn;E Y tyuq ě β.
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Claim 5.3.4. Let γ be an ordinal. If Z P rBsω is rank-minimal up to γ then for
all W P rBsω such that W Ď˚ Z, for all α ď γ, for all n and all E P rBsăω,
λ˚W pn;Eq ě α if and only if λ˚Zpn;Eq ě α.

Proof. By Claim 5.3.3, for all n and E P rBsăω we have λ˚W pn;Eq ď λ˚Zpn;Eq.
So by induction on α ď γ we show that for all n and E, if λ˚Zpn;Eq ě α then
λ˚W pn;Eq ě α. As above, for α “ 0 and α “ 1 the definition of λ˚Xpn;Eq ě α is
independent of X. For α ą 1, take any n and E and suppose that λ˚Zpn;Eq ě α.
Let β ă α. Since Z is rank-minimal up to α, for all but finitely many y P Z we
have λ˚Zpn;E Y tyuq ě β; by induction, for all such y in W , λ˚W pn;E Y tyuq ě β.
Thus λ˚W pn;Eq ě α, as required. �

It follows that if Z is rank-minimal up to γ, then every W Ď˚ Z in rBsω is also
rank-minimal up to γ. Also note that the choice of δ˚ bounding λ˚Bpn;Hq for all
n P A implies that Z P rBsω is rank-minimal if and only if it is rank-minimal up
to δ˚.

We can now dispense with the existence proof.

Claim 5.3.5. There is a rank-minimal set R P rBsω which is ∆1
1pBq.

Proof. We define a sequence pRγqγďδ which is decreasing by Ď˚ (α ă γ implies
Rα Ě

˚ Rγ) such that each Rγ is rank-minimal up to γ. We can start with R1 “ B,
since every infinite subset of B is rank-minimal up to 1. At the end we let R “ Rδ˚ ;
as we just discussed, it being rank-minimal up to δ˚ implies that it is rank-minimal.

We first consider the limit case. Suppose that γ is a limit ordinal and that Rα
has been defined for all α ă γ. Since γ is countable, we can choose some infinite
Rγ such that Rγ Ď˚ Rα for all α ă γ: fix a cofinal ω-sequence pγrisq in γ and let
A “ ta0 ă a1 ă . . . u where ak P

Ş

iďk Aγris. The condition Rγ Ď˚ Rα for all α ă γ
ensures that Rγ is rank-minimal up to γ: for all α ă γ, the fact that Rγ Ď˚ Rα
implies that Rγ is rank-minimal up to α. But rank-minimality up to a level is a
continuous notion. Let n P ω and E P rBsăω and suppose that λ˚Rγ pn;Eq ě γ. Let
β ă γ. Then λ˚Rγ pn;Eq ě β ` 1, and so the condition λ˚Rγ pn;E Y tyuq ě β for
almost all y P Rγ holds because Rγ is rank-minimal up to β ` 1.

We next consider the successor case. Suppose that Rγ has been constructed; we
find Rγ`1 Ď

˚ Rγ , which is rank-minimal up to γ ` 1. To do this, list all the pairs
pn,Eq P ω ˆ rBsăω satisfying λ˚Rγ pn;Eq ě γ ` 1. We define a decreasing sequence
of sets Rγ “ C0 Ě C1 Ě C2 Ě ¨ ¨ ¨ as follows: given Ck, let pn,Eq be the kth pair
on our list.

‚ If λ˚Ckpn;Eq ě γ ` 1, then we let Ck`1 be the (infinite) set of y P Ck such
that λ˚Ckpn;E Y tyuq ě γ.

‚ Otherwise, let Ck`1 “ Ck.
We then choose Rγ`1 Ď

˚ Ck for all k (we can also get Rγ`1 Ď Rγ rather than just
Rγ`1 Ď

˚ Rγ if we want, but this is unimportant). Let us check that Rγ`1 is indeed
rank-minimal up to γ ` 1. Since Rγ`1 Ď

˚ Rγ , we know that it is rank-minimal up
to γ. Let n P ω and E P rBsω such that λ˚Rγ`1

pn;Eq ě γ ` 1. By Claim 5.3.3,
λ˚Rγ pn;Eq ě γ ` 1 as well, and so the pair pn,Eq was considered at some step k.
Since Rγ`1 Ď

˚ Ck, we have λ˚Ckpn;Eq ě γ ` 1; so for all y P Ck`1 (and so for
almost all y P Rγ`1), λ˚Ckpn;E Y tyuq ě γ. Since Rγ is rank-minimal up to γ and
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Ck Ď Rγ , Ck is also rank-minimal up to γ, and so by Claim 5.3.4, for almost all
y P Rγ`1, λ˚Rγ`1

pn;E Y tyuq ě γ, as required.

It remains to show that the sequence pRγqγďδ˚ can be chosen so that the entire
sequence is ∆1

1pBq (and so certainly R “ Rδ˚ is ∆1
1pBq). We can calculate a B-

computable sequence of ordinals pεγqγďδ˚ such that for all γ ď δ˚, Rγ ďT Bpεγq,
uniformly in γ. For limit γ, we can let εγ “ supαăγ εα; this is because uniformly
in γ, we can B-computably choose a cofinal ω-sequence pγrksq in γ; uniformly in k,
Bpεγq computes Bpεγrksq and so Rγrks and the construction of Rγ Ď˚ Rγrks for all k
can proceed computably from the sequence pRγrksqkPω. For the successor case, if εγ
has been determined, then we can find εγ`1 as the limit of an increasing sequence
pξkqkăω with Bpξkq computing Ck; we need an extra 2ξk ` 4 jumps to compute the
relations λ˚Ckpn;Eq ě γ`1 and λ˚Ckpn;EYtyuq ě γ, and then a couple more jumps
to know which case we are in.

Alternatively, we can avoid the precise calculations of these ordinals by work-
ing in the admissible set LωB1 rBs, and performing a recursive construction in that
structure; all steps are easily seen to be ∆1-definable in that structure. �

Henceforth, we fix a rank-minimal set R P rBsω which is ∆1
1pBq; for all n and E

we let λ˚pn;Eq “ λ˚Rpn;Eq. It is the case that we will only consider Z P rRsω, so
λ˚pn;Eq “ λ˚Zpn;Eq for all such Z, but this will not be important; this property
of rank-minimal sets is only used in their construction. Rather, we will use the
property of R stated in the definition of rank-minimality.

We no longer have a fixed presentation of the ordinals we are dealing with, so we
cannot have a deficiency function as defined before. Instead, the following functions
play a similar role: We say that a function f : ω Ñ ω is a comparative deficiency
function (for R) if:

(i) For all n P A and E P rBsăω, if λ˚pn;Eq ą 0 then for all y ě fpn,Eq in R
we have λ˚pn;E Y tyuq ă λ˚pn;Eq.

(ii) For all n,m P A and all E,F P rBsăω, if λ˚pn;Eq ă λ˚pm;F q then for all
y ě fpn,E;m,F q in R we have λ˚pn;Eq ď λ˚pm;F Y tyuq.

The definition of rank-minimality ensures that comparative deficiency functions
exist. Further, since the ranking function λ˚ is ∆1

1pB ‘ Rq “ ∆1
1pBq, there is a

∆1
1pBq comparative deficiency function. Every function majorising a comparative

deficiency function is also a comparative deficiency function.
We are almost ready to prove the proposition.

Claim 5.3.6. There are sets X,Y P ∆1
1pBq, X P rAsω and Y P rRsω such that:

(a) pY is a comparative deficiency function; and
(b) uniformly in Z P rY sω we can compute a function fZ : ω Ñ ω such that:

‚ For all n, fZpnq P A;
‚ For all n, n P X if and only if λ˚pn;Hq ď λ˚pfZpnq;Hq.

Proof. There are two cases, depending on the patterns in the set tλ˚pn;Hq : n P Au.
In the first case, for every n P A, for almost all m P A, λ˚pn;Hq ă λ˚pm;Hq.

In that case we let X “ A and Y P rRsω sufficiently sparse so that pY is a com-
parative deficiency function, and so that for all n P A, for all m ě pY pnq in A,
λ˚pn;Hq ď λ˚pm;Hq. We can choose Y P ∆1

1pBq since R P ∆1
1pBq, there is a

∆1
1pBq comparative deficiency function, and the relation λ˚pn;Hq ď λ˚pm;Hq for
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n,m P A is ∆1
1pBq. Given Z P rY sω, the function fZpnq is computed as follows:

since A ďui
e Y , with oracle Z we enumerate A until we find some m P A greater

than pZpnq, and set fZpnq “ m.
If the first case fails, there is some n˚ P A such that for infinitely many n P A

we have λ˚pn;Hq ď λ˚pn˚;Hq. We let X “ tn P A : λ˚pn;Hq ď λ˚pn˚;Hqu.
Again X P ∆1

1pBq as the ranking function is ∆1
1pBq. We let the function fZ be the

constant function with value n˚. We let Y P rRsω be sufficiently sparse so that pY
is a comparative density function. �

We can now prove the proposition. We claim that sets X and Y as given by
Claim 5.3.6 are as required: it remains to show that X ďui

T Y .
Let Z P rY sω, and let n P ω. To decide whether n P X, with oracle Z, we

perform the following procedure. Let m “ fZpnq. We define two sequences q0 ă
q1 ă q2 ă ¨ ¨ ¨ and r0 ă r1 ă r2 ă ¨ ¨ ¨ recursively; we let Ei “ tqj : j ă iu and
Fi “ trj : j ă iu (so E0 “ F0 “ H).

At step i ě 0, given Ei and Fi,
‚ First we choose qi P Z greater than pZpn,Eiq and pZpm,Fi;n,Eiq.
‚ Then we choose ri P Z greater than pZpm,Fiq and pZpn,Ei`1;m,Fiq.

The process halts at the least j such that m P ΦpFjq. There will be such a j because
otherwise, F “

Ť

j Fj is an infinite subset of B with m R ΦpF q, however m P A.
Now we verify that

n P X ðñ n P ΦpEjq.

First, suppose that n P X; we show that n P ΦpEjq. We prove by induction on i ď
j that λ˚pn;Eiq ď λ˚pm;Fiq; this suffices, as we would get λ˚pn;Ejq ď λ˚pm;Fjq “
0. The case i “ 0 is given by the properties of X and m “ fZpnq as specified
by Claim 5.3.6. For the inductive step, let i ă j and suppose that λ˚pn;Eiq ď
λ˚pm;Fjq. If λ˚pn;Eiq “ 0 then certainly λ˚pn;Ei`1q “ 0 ď λ˚pm;Fi`1q (and in
fact, n P ΦpEiq so n P ΦpEjq which is what we really want to prove). Suppose that
λ˚pn;Eiq ą 0. Since qi ą pY pn,Eiq is an element of R, we have λ˚pn;Ei`1q ă
λ˚pn;Eiq and so λ˚pn;Ei`1q ă λ˚pm;Fjq. Since ri ą pY pn,Ei`1;m,Fiq, we have
λ˚pn;Ei`1q ď λ˚pm;Fi`1q as required.

Next, suppose that n R X; we show that n R ΦpEjq. If n R A this is clear, so
we may assume that n P A. We show that λ˚pn;Ejq ą 0. By induction on i ď j
we show that λ˚pn;Eiq ą λ˚pm;Fiq; then we will have λ˚pn;Ejq ą λ˚pm;Fjq ě 0.
Again for i “ 0 this is by the choice of X and m “ fZpnq. Suppose that i ă j and
λ˚pn;Eiq ą λ˚pm;Fiq. Since qi ą pY pm,Fi;n,Eiq and is an element of R, we have
λ˚pn;Ei`1q ě λ˚pm;Fiq. Since i ă j, the minimality of j implies λ˚pm;Fiq ą 0,
and so since ri ą pY pm,Fiq we have λ˚pm;Fi`1q ă λ˚pm;Fiq ď λ˚pn;Ei`1q, as
required.

This completes the proof of Proposition 5.2. We remark that the computation
process just described can be simplified in the first case of Claim 5.3.6, because
that case gives X “ A; we only need to require that qi ą pY pn,Eiq and ri ą
pY pn,Ei`1;m,Fiq. In that case we get A ďui

T Y , that is, Proposition 5.3 (and so
Theorem 1.5) holds for A and B without the assumption that A is introenumerable.
That assumption is only used when we are at the second case of Claim 5.3.6, when
X ‰ A. Theorem 1.3(a) shows that this case does happen. �
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