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Abstract

Given a complete decidable theory T , say that T is relatively decidable if for every
countable model A of T , the atomic diagram of A can compute the elementary dia-
gram of A. We say that T is uniformly relatively decidable if there is a single Turing
functional witnessing all of these computations. Chubb, Miller, and Solomon showed
that T is uniformly relatively decidable if and only if it is model complete. They con-
jectured that T is relatively decidable if and only if there is a conservative extension of
T naming new constants which is model complete. We show that not only is this not
true, there is no simple classification of the relatively decidable theories. Formally, we
show that the index set of the relatively decidable theories is Π1

1 m-complete.

1 Introduction

Given a theory T , we say that T is model complete if whenever A and B are models of
T , and A is a substructure of B, A is an elementary substructure of B. Equivalently, T
is model complete if every formula is equivalent modulo T to an existential formula. This
paper follows up on work of Chubb, Miller, and Solomon [CMS] in exploring computability-
theoretic consequences of model completeness. Throughout, we generally assume that all
structures are countable with computable domains, and write ∆(A) for the atomic diagram
of A, and E(A) for the elementary diagram of A.

Suppose that T is model complete and c.e. Then given a formula ϕ(x̄), we can com-
putably search for a quantifier-free formula ψ(x̄, ȳ) and a proof from T that

T ⊧ ϕ(x̄)←→ ∃ȳ ψ(x̄, ȳ).

If A is a countable model of T , and ā is a tuple from A, then we can decide, using just
the atomic diagram of A, whether A ⊧ ϕ(a): Search as above for quantifier-free formulas
ψϕ(x̄, ȳ) and ψ¬ϕ(x̄, z̄) such that

T ⊧ ϕ(x̄)←→ ∃ȳ ψϕ(x̄, ȳ)

and
T ⊧ ¬ϕ(x̄)←→ ∃ȳ ψ¬ϕ(x̄, ȳ),
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and then simultaneously search for a tuple b̄ such that A ⊧ ψϕ(ā, b̄) and a tuple c̄ such
that A ⊧ ψ¬ϕ(ā, c̄). In the former case, we have A ⊧ ϕ(ā), and in the latter case we have
A ⊧ ¬ϕ(ā). Since ψϕ and ψ¬ϕ are quantifier-free, we can recognize such a tuple b̄ or c̄
computably using the atomic diagram, and this search always terminates. So for any model
A of T , the atomic diagram ∆(A) of A computes the elementary diagram E(A) of A. (In
particular, every computable model of T is decidable.)

We recall the following definitions from [CMS]:

Definition 1.1.

• A theory T is relatively decidable if every A ⊧ T has E(A) ≤T ∆(A).

• A theory T is uniformly relatively decidable if there is a single Turing function Γ such
that every A ⊧ T has E(A) ≤T ∆(A) via Γ.

Any c.e. model complete theory T is uniformly relatively decidable because the algorithm
described above is the same for each model of T . Chubb, Miller, and Solomon show that
this is an exact characterization.

Theorem 1.2 (Chubb, Miller, and Solomon [CMS]). Let T be a c.e. theory. Then T is
model complete if and only if it is uniformly relatively decidable.

Now consider the relatively decidable theories. An excellent motivating example from
[CMS] is the theory of ω with a unary successor relation S. Th(ω,S) is not model complete,
because the formula (∀y) S(y) ≠ x describing the initial element is not equivalent to an
existential formula. However, Th(ω,S) proves that there is a unique element satisfying this
formula:

Th(ω,S) ⊧ (∃!x)(∀y) S(y) ≠ x.
Moreover, after naming such an element with a new constant symbol c, the theory Th(ω,S)∪
{(∀y) S(y) ≠ c} is model complete. For any model A ⊧ Th(ω,S), we can find the unique
element a with A ⊧ (∀y) S(y) ≠ a, and then use the model completeness of Th(ω,S) ∪
{(∀y) S(y) ≠ c} to compute the elementary diagram of A from the atomic diagram of A.
This is not a uniform procedure, because it depends on the choice of the element a in the
model A. So Th(ω,S) is relatively decidable but not uniformly relatively decidable. Chubb,
Miller, and Solomon proved:

Theorem 1.3 (Chubb, Miller, and Solomon [CMS]). Let T be a c.e. theory. Then T is
relatively decidable if and only if for each A ⊧ T , there is ā ∈ A such that Th(A, ā) is model
complete.

However this is in many ways not a satisfactory characterization because it requires quan-
tification over all models of T , and it does not say anything about how the tuple ā should be
chosen. We would like a characterization that looks only at the theory T , and not at models
of T .

In the example of Th(ω,S), there was more going on: the choice of element to make
the theory model complete was uniform across the models in the sense that we wanted to
choose an element satisfying a particular formula. Chubb, Miller, and Solomon suggested
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that there might be a characterization along the following lines. Let us restrict our attention
to complete theories; recall that a c.e. theory which is also complete is decidable. Suppose
that T is complete decidable theory, that T ⊧ ∃x̄ ϕ(x̄), and that T ∪{ϕ(c̄)} is model complete
where c̄ is a new tuple of constant symbols. Then T is relatively decidable. Could this—or
something in a similar vein—be a characterization of the relatively decidable theories? If
so, it would be a satisfactory characterization as it involves only looking at the theory T
without quantifying over models of T .

We prove that a characterization along these lines is too much to hope for: there is no
characterization of relative decidability that is simpler than the definition given above. (The
characterization in Theorem 1.3 is the same complexity as the definition.) More precisely:

Theorem 1.4. The index set

IRelDec = {i ∶ the ith complete decidable theory is relatively decidable}

of the complete decidable theories which are relatively decidable is Π1
1 m-complete.

What this means is that any characterization of the relatively decidable theories must involve
at least one universal quantifier over subsets of ω (e.g. a universal quantifier over models or
types). The suggested characterization given above—that T is relatively decidable if and
only if there is a formula ϕ such that T ⊧ ∃x̄ ϕ(x̄) and T ∪ {ϕ(c̄)} is model complete—is
arithmetic, and hence there must be relatively decidable theories T without this property.

This technique of using index sets was first introduced by Goncharov and Knight [GK02]
and has also been used in [DKL+15], where it was shown that there is no reasonable char-
acterization of computable categoricity, and in [DM08], where it was shown that there is
no reasonable classification of torsion-free abelian groups. See also [LS07, Fok07, CFG+07,
FGK+15, GBM15a, GBM15b, HT18, BHTK+].

Finally, we would like to highlight the following related open problem of Goncharov:

Question (Goncharov). Characterize the decidable theories T such that every computable
model of T is decidable.

The corresponding index set is Σω+2; we conjecture that it is Σω+2 m-complete. However,
the methods from this paper are not applicable to this problem, as (by index set complexity
calculations) to prove that the index set is Σω+2 m-complete one would have to build decidable
models A of T such that for no ā ∈ A is Th(A, ā) model complete.

2 Marker Extensions

We will have to use several Marker extensions. In this section, we describe the particular
kinds of Marker extension that we will use and prove several results about them.

Let L be a relational language including relation symbols U1, U2, . . . and V1, V2, . . . of arity
p1, p2, . . . and q1, q2, . . . respectively. We will define the Marker extension making U1, U2, . . .
into Σ1 relations and V1, V2, . . . into Σ2 relations. (When we take a Marker extension, we will
always have relations U1, U2, . . ., but sometimes we will not have relations V1, V2, . . .. We can
either make small modifications to all of the proofs, or just assume that we have relations
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V1, V2, . . . which are always trivial.) This will transform the language L into a language L∗,
each L-structure A into an L∗ structure A∗, and each L-theory T into an L∗-theory T ∗.

The language L∗ will consist of the symbols L − {U1, U2, . . . , V1, V2, . . .}, a new unary
relation symbol W , for each i a pi-tuple of unary function symbols f̄i, and for each i a
qi-tuple ḡi of unary function symbols and a unary function symbol hi.

Given an L-structure A, we define an L∗ structure A∗ as follows. The domain of A∗ will
consist of the disjoint union of the domain of A, satisfying the unary relation W , together
with new elements not satisfying the relation W :

• for each ā ∈ A with A ⊧ Ui(ā), an element bi,ā with f̄i(bi,ā) = ā;

• for each ā ∈ A of arity qi, infinitely many elements cni,ā and dni,ā with ḡi(cni,ā) = ā and
hi(dni,ā) = cni,ā;

• for each ā ∈ A of arity qi with A ⊧ Vi(ā), an element c∗i,ā with ḡi(c∗i,ā) = ā.

Whenever we have not defined it otherwise, the functions f , g, and h map an element to
itself. Essentially we want the functions to all be partial functions, but we code in partiality
by having the function be the identity.

Lemma 2.1. For each i ∈ ω:

(1) there is an ∃ L∗-formula ϕi(x̄) such that given an L-structure A and ā ∈ A,

A ⊧ Ui(ā)⇐⇒ A∗ ⊧ ϕi(ā).

(2) there is an ∃∀ L∗-formula ψi(x̄) such that given an L-structure A and ā ∈ A,

A ⊧ Vi(ā)⇐⇒ A∗ ⊧ ϕi(ā).

Proof. We have
A ⊧ Ui(ā)⇐⇒ A∗ ⊧ ā ∈W ∧ (∃x ∉W )f̄i(x) = ā

and
A ⊧ Vi(ā)⇐⇒ A∗ ⊧ ā ∈W ∧ (∃x ∉W )(∀y ∉W,y ≠ x)[ḡi(x) = ā ∧ hi(y) ≠ x].

Now given an L-theory T , we will define an L∗-theory T ∗. For each L-formula ϕ, let ϕ∗

be ϕ with each instance of Ui or Vi in that formula replaced by the corresponding L∗-formula
from Lemma 2.1, and each quantifier restricted to W . T ∗ consists of:

• ϕ∗ for each ϕ ∈ T ;

• each relation from L − {U1, U2, . . . , V1, V2, . . .} holds only of elements from W ;

• if x ∈W , then f ji (x) = g
j
i (x) = hi(x) = x for all i, j;

• if x ∉W , and f ji (x) ≠ x, then:

– f̄i(x) ∈W pi ;
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– f j
′

i′ (x) = x for all i′ ≠ i and j′;

– gj
′

i′ (x) = x for all i′ and j′;

– hi′(x) = x for all i′;

• if x, y ∉W and x ≠ y then f̄i(x) ≠ f̄i(y).

• if x ∉W , and gji (x) ≠ x, then:

– ḡi(x) ∈W qi ;

– gj
′

i′ (x) = x for all i′ ≠ i and j′;

– f j
′

i′ (x) = x for all i′ and j′;

– hi′(x) = x for all i′;

• given x̄ ∈W of arity qi, there are infinitely many y ∉W with ḡi(y) = x̄.

• if x ∉W , and hi(x) ≠ x, then:

– hi(x) ∉W ;

– ḡi(hi(x)) ∈W qi ;

– gj
′

i′ (x) = x for all i′ and j′;

– f j
′

i′ (x) = x for all i′ and j′;

– hi′(x) = x for all i′ ≠ i.

• if x, y ∉W and hi(x) ≠ x, hi(y) ≠ y, then hi(x) ≠ hi(y).

• given x̄ ∈ W of arity qi, there is at most one element y ∉ W with ḡi(y) = x̄ such that
there is no element z ≠ y with hi(z) = y.

Lemma 2.2. Given A ⊧ T , A∗ ⊧ T ∗.

Proof. Given ϕ ∈ T , A∗ ⊧ ϕ∗ by Lemma 2.1 and a simple induction argument. The other
sentences in T ∗ are immediate by definition of A∗.

We would like to prove that if B ⊧ T ∗, there is A ⊧ T such that B ≅ A∗. This is not
quite true because of compactness and the fact that we have taken the Marker extension
with respect to infinitely many relations. Instead, given A and L-structure, define A∗n, for
n ∈ ω∪{ω}, to be A∗ together with n new elements not in W , with f ji (x) = g

j
i (x) = hi(x) = x

for all i, j.

Lemma 2.3. Given B ⊧ T ∗, there is A ⊧ T and n ∈ ω ∪ {ω} such that B ≅ A∗n.

Proof. Let A be the structure with domain WB, and define the relation Ui and Vi on A using
the formulas in Lemma 2.1. A inherits the other relations in L from B. Since for each ϕ ∈ T ,
B ⊧ ϕ∗, we have that A ⊧ ϕ. Thus B ⊧ T .

Now we need to show that there is n ∈ ω ∪ {ω} such that B ≅ A∗n. Let X be the set of
elements x ∉WB with f ji (x) = x, gji (x) = x, and hi(x) = x for all i, j. Let n = ∣X ∣. Let B− be
B with these elements removed. The axioms of T ∗ and the fact that we defined A using the
definitions in Lemma 2.1 imply that B− ≅ A∗ so that B ≅ A∗n.
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We cannot distinguish A∗n from A∗ by first-order sentences.

Lemma 2.4. For each n ∈ ω ∪ {ω}, A∗n ≡ A∗.

Proof. For every k, if we restrict A∗ to the first k symbols, this is isomorphic to A∗n restricted
to the first k symbols; both have infinitely many elements x ∉W with f ji (x) = x, gji (x) = x,
and hi(x) for i ≤ k, and otherwise they are isomorphic.

Next we want to show that the elementary diagram of A∗ does not become too much
more complicated than the elementary diagram of A. For each i, define a unary relation
h∃i (x) if and only if (∃y ≠ x)hi(y) = x.

Lemma 2.5. Let T ∗ be the Marker extension of T . T ∗ has quantifier elimination in the
language

L∗ ∪ {h∃i ∶ i ∈ ω} ∪ {ϕ∗ ∶ ϕ an L-formula}.
Moreover, a formula ϕ involving only the symbols associated with U,U1, . . . , Uk and V,V1, . . . , Vk
is equivalent to a quantifier-free formula involving only symbols associated with U,U1, . . . , Uk
and V,V1, . . . , Vk.

Note that if ϕ is a sentence, then ϕ∗ is a 0-ary relation. So even though we have no
constant symbols, there are quantifier-free L+-sentences.

Proof. Let
L+ = L∗ ∪ {h∃i ∶ i ∈ ω} ∪ {ϕ∗ ∶ ϕ an L-formula}.

We use the following quantifier elimination test: Let B be an L+-substructure of bothM ⊧ T ∗

and N ⊧ T ∗, ā ∈ B, and b ∈M be such that M ⊧ ϕ(ā, b) for ϕ a quantifier-free L+-formula.
We want to show that there is b′ ∈ N such that N ⊧ ϕ(ā, b′).

By writing it in disjunctive normal form, we may assume that ϕ is a conjunction of atomic
and negated atomic formulas. We may also assume that there is only a single conjunct of
the form ψ∗ for ψ an L-formula. Then write

ϕ(ā, x) ≡ ψ∗(s̄(a), t̄(x)) ∧⋯

where s̄ and t̄ are terms and the ⋯ is a conjunction of atomic and negated atomic formulas
in the language L∗∪{h∃i ∶ i ∈ ω}. We may also assume that ⋯ does not include any equalities
or inequalities between elements of W , as these can be included in ψ∗. Suppose that only
fi, gi, hi, and h∃i for i ≤ n appear in ϕ. Note that since ψ∗ holds only of elements in W , each
term appearing in s̄ or t̄ can be assumed to be either the identity, f ji , gji , or gji ○ hi.

First, suppose that b ∈ WM so that t(b) = b. We may assume that b ∉ A as this case is
easy. If b is the image of some element of ā under a function f , g, or h, then b ∈ A. So we
may assume that b is not in the image of some such element. Then since M ⊧ ψ∗(s̄(ā), b)
and M ⊧ Th(A∗), M ⊧ (∃y ψ(x̄, y))∗(s̄(ā)). So N ⊧ (∃y ψ(x̄, y))∗(s̄(ā)) and N ⊧ (∃y ∈
W ) ψ∗(s̄(ā), y). Let b′ ∈ N witness this, so N ⊧ ψ∗(s̄(ā), b′). Since b and b′ are in W , the
rest of the atomic and negated atomic formulas in “⋯” above are trivially satisfied.

Now suppose that b ∉WM. Once again, we can assume that b is not equal to the image
of any element of ā under some term. Write ā′ = s̄(ā). We have a number of cases, in
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each of which we choose b′ such that N ⊧ ϕ(ā, b′). Essentially we need to make sure that
N ⊧ ψ∗(s̄(a), t̄(b′)), and that if b′ ∉ W , then b′ and hi(b′) satisfy the same equalities and
inequalities with ā and hi(a) ∉W for a ∈ ā. (Other terms applied to b′ or elements of ā are
either the identity, or are in W , and inequalities and inequalities in W are expressed in ψ∗.)
In the following, i ≤ n:

• If f̄i(b) ≠ b, let c̄ ∈M be f̄i(b). Then we may replace t̄(b) with c̄. Then

M ⊧ (∃ȳ ψ(x̄, ȳ) ∧Ui(ȳ))
∗(ā′)

as witnessed by c̄ and so

N ⊧ (∃ȳ ψ(x̄, ȳ) ∧Ui(ȳ))
∗(ā′).

Thus there is d̄ ∈ N with N ⊧ ψ∗(ā′, d̄) ∧U∗
i (d̄). Choose b′ ∈ N with f̄i(b′) = d̄. This b′

is unique, and since b ∉ ā, we can choose b′ ∉ ā.

• If ḡi(b) ≠ b, let c̄ ∈M be ḡi(b). Then we may replace t̄(b) with c̄.

If M ⊧ h∃i (b), then

M ⊧ (∃ȳ ψ(x̄, ȳ))∗(ā′)
and so

M ⊧ (∃ȳ ψ(x̄, ȳ))∗(ā′).
Thus there is d̄ ∈ N with N ⊧ ψ∗(ā′, d̄). Choose b′ ∈ N with ḡi(b′) = d̄ and such that
N ⊧ h∃i (b′). We may choose b′ ∉ ā since there are infinitely many choices for b′.

On the other hand, if M ⊧ ¬h∃i (b) then

M ⊧ (∃ȳ ψ(x̄, ȳ) ∧ Vi(ȳ))
∗(ā′)

and so
N ⊧ (∃ȳ ψ(x̄, ȳ) ∧ Vi(ȳ))

∗(ā′)
Thus there is d̄ ∈ N with N ⊧ ψ(ā′, d̄) ∧ Vi(d̄). Choose b′ ∈ N with ḡi(b′) = d̄ and such
that N ⊧ ¬h∃i (b′). This b′ is unique, so since b ∉ ā, we can choose b′ ∉ ā.

• If hi(b) ≠ b, hi(b) = a ∈ ā, then let b′ ∈ N be the unique b′ with N ⊧ hi(b′) = a.

• If hi(b) ≠ b, hi(b) ∉ ā, then ḡi(hi(b)) ≠ b. Let c̄ ∈M be ḡi(hi(b)). We may replace t̄(b)
with c̄. We have

M ⊧ (∃ȳ ψ(x̄, ȳ))∗(ā′)
and so

M ⊧ (∃ȳ ψ(x̄, ȳ))∗(ā′).
Thus there is d̄ ∈M with N ⊧ ψ(ā′, d̄). Choose b′ ∈ N , b′ ∉ ā, with ḡi(hi(b′)) = d̄ and
hi(b′) ∉ ā. We can do this as there are infinitely many b′ with ḡi(hi(b′)) = d̄.

• Otherwise, choose b′ ∉ ā to be some element with N ⊧ b′ ∉ W with f ji (b′) = g
j
i (b′) =

hi(b′) = b′ for all i ≤ n and j.
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The moreover clause is not hard to see using the same proof but restricting the language.

Corollary 2.6. Let T ∗ be the Marker extension of T making U1, U2, . . . into Σ1 relations
(but with no relations V1, V2, . . .). T has quantifier elimination in the language

L∗ ∪ {ϕ∗ ∶ ϕ an L-formula}.

Corollary 2.7. If T is complete, then so is T ∗.

Proof. Given an L∗-sentence ϕ, we can write ϕ as a boolean combination of atomic and
negated atomic formulas from

L∗ ∪ {h∃i ∶ i ∈ ω} ∪ {ϕ∗ ∶ ϕ an L-formula}.

with no free variables. The only atomic or negated atomic formulas with no free variables
are of the form ψ∗ or ¬ψ∗ for ψ and L-sentence. Since T is complete, T decides ψ, and so
T ∗ decides ψ∗. Thus T ∗ decides ϕ.

Now we want to define a notion of substructure for L-structures which is more relaxed
than the standard notion of substructure. The idea is that we want to view the relations
U1, U2, . . . as already being Σ1 in L-structures A, so that we can have A ⊆ B, A ⊧ ¬Ui(ā),
and B ⊧ Ui(b̄) because the Σ1 witness only appears in B.

Definition 2.8. For L-structures A and B, define A ⊆ B if and only if:

• A ⊆ B;

• For each Ui, if A ⊧ Ui(x̄) then B ⊧ Ui(x̄);

• For each R ∈ L − {U1, U2, . . . , V1, V2, . . .}, A ⊧ R(x̄) if and only if B ⊧ R(x̄).

There is no requirement on the relations V1, V2, . . ..

Lemma 2.9. Given L-structures A and B with A ⊆ B, and a Marker extension A∗ of A,
there is a Marker extension B∗ of B with A∗ ⊆ B∗. Moreover, suppose that ā = ā1ā2 ∈ A∗,
with ā1 ∈ A and ā2 ∈ A∗ −A; and suppose that ā is closed under the functions f , g, and h. If
B, ā1 ⊧ Th(A, ā1) then B∗, ā ⊧ Th(A∗, ā).

Proof. Given a copy of B∗, we will define an embedding A∗ → B∗ making A∗ a substructure
of B∗ as follows. Identify WA∗ with A and WB∗ with B, and use the inclusion A ⊆ B. Given
v ∈ A∗ with f̄i(v) = ū, we have A ⊧ Ui(ū), and so B ⊧ Ui(ū); then there is a unique v′ ∈ B∗
with f̄i(v′) = ū. Map v to v′.

Given ū ∈ A with ∣ū∣ = qi, there are four possibilities:

(1) A ⊧ Vi(ū) and B ⊧ Vi(ū). Each of A∗ and B∗ have infinitely many elements v with
ḡi(v) = ū, and each of these v has a w with hi(w) = v. Map these to each other in a
one-to-one way.
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(2) A ⊧ Vi(ū) and B ⊧ ¬Vi(ū). Each of A∗ and B∗ have infinitely many elements v with
ḡi(v) = ū, and in A∗, each such v has a w with hi(w) = v. In B∗ there is a unique v
with no such w. So map each pair v,w in A∗ to a corresponding pair in B∗, with this
unique v in B∗ being the only element not in the image of the map.

(3) A ⊧ ¬Vi(ū) and B ⊧ Vi(ū). Each of A∗ and B∗ have infinitely many elements v with
ḡi(v) = ū; in A∗ all but one such v have a w with hi(w) = v, and in B∗ every v has such
a w. So map the v’s to each other, so that there is a single pair v,w in B∗ with v in
the image of the map, but w is not.

(4) A ⊧ ¬Vi(ū) and B ⊧ ¬Vi(ū). Each of A∗ and B∗ have infinitely many elements v with
ḡi(v) = ū, and all but one of these v has a w with hi(w) = v. Map these to each other
in a one-to-one way, with the unique elements v with no w with hi(w) = v mapped to
each other.

Since A∗ ⊧ Th(A)∗ and Th(A)∗ is complete, we have that Th(A∗) = Th(A)∗. Similarly,
Th(B∗) = Th(B)∗. Since Th(A) = Th(B), we have Th(A∗) = Th(B∗). This theory also has
quantifier elimination to the language

L+ = L∗ ∪ {h∃i ∶ i ∈ ω} ∪ {ϕ∗ ∶ ϕ an L-formula}.

So to show that B∗, ā ⊧ Th(A∗, ā), it suffices to show that ā has the same atomic L+-type in
both A∗ and B∗.

Since B, ā1 ⊧ Th(A, ā1), for each L-formula ϕ(x̄),

A∗ ⊧ ϕ∗(ā1)⇐⇒ B∗ ⊧ ϕ∗(ā1).

Since ā is closed under the applications of the functions f , g, and h, for every tuple of terms
s̄,

A∗ ⊧ ϕ∗(s̄(ā))⇐⇒ B∗ ⊧ ϕ∗(s̄(ā)).
We define the embedding A∗ → B∗ specifically so that A∗ is an L∗-substructure of B∗. Finally,
we must argue that if b ∈ ā2, then

A∗ ⊧ h∃i (b)⇐⇒ B∗ ⊧ h∃i (b).

If A∗ ⊧ h∃i (b), then as h∃i is defined by an existential L∗-formula, B∗ ⊧ h∃i (b). Suppose that
A∗ ⊧ ¬h∃i (b). Let ū ∈ A be such that A∗ ⊧ f̄i(b) = ū. We have A ⊧ ¬Vi(ū). Since b ∈ ā and ā
is closed under the application of the functions f , ū ⊆ ā. So B ⊧ ¬Vi(ū), and we define the
image of b in B∗ using (4) above; we see that B∗ ⊧ ¬h∃i (b).

3 The Idea of the Construction

Fix a Π1
1 m-complete set S. We want to build a computable sequence of complete decidable

theories (Tn)n∈ω such that

n ∈ S ⇐⇒ Tn is relatively decidable.
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Recall from Theorem 1.3 that Tn is relatively decidable if and only if for each model A ⊧ Tn,
there is ā ∈ A such that Th(A, ā) is model complete. Whether or not Th(A, ā) is model
complete is reflected in the type of ā: Th(A, ā) is model complete if for every formula ϕ,
there is an existential formula ψ such that the type of ā says that ϕ and ψ are equivalent.

Consider the Stone space S1(Tn) of 1-types of Tn. This is compact, and we can think of
it as being isomorphic to Cantor space 2ω. We really want to think of it as being isomorphic
to Baire space ωω. Consider the following embedding of Baire space into Cantor space.

Definition 3.1. There is an embedding Γ of Baire space ωω into Cantor space 2ω:

Γ(π) = 0π(0)10π(1)10π(2)1⋯.

The image of Γ is the strings in 2ω which have infinitely many 1’s. We can also think of Γ
as a map ω<ω → 2<ω:

Γ(⟨n0, . . . , n`⟩) = 0n010n11⋯1⋯0n` .

Heavily abusing notation, we write S1(Tn) = 2ω and write Γ(ωω) ⊆ 2ω for the image of
Baire space under this embedding. Given a 1-type p(x) ∈ 2ω−Γ(ωω), we will ensure that p(x)
has an extension to a 2-type q(x, y) which is isolated over p(x) and such that T ∪ {q(c, d)}
is model complete. Thus any model A containing element a realizing p also contains an
element b with ab realizing q, and so Th(A, ab) is model complete.

Now consider the remaining 1-types from Γ(ωω) ≅ ωω. The set Pn of all types p ∈ Γ(ωω)
such that Tn ∪ {p(c)} is model complete is a Π0

2 subset of Γ(ωω) ≅ ωω. If the compliment
of Pn is dense, then we can hope to make a model A of Tn that realizes only 1-types in
Γ(ωω) − Pn, and Tn will not be relatively decidable. On the other hand, if the compliment
of Pn is not dense in Γ(ωω), then there is a formula ϕ(x) such that Tn ⊧ ∃x ϕ(x) and for
every type p ∈ Γ(ωω) extending ϕ(x), Tn ∪ {p(c)} is model complete. Then Tn is relatively
decidable, because every A ⊧ Tn contains an element a with A ⊧ ϕ(a), and either the type
of a is some p ∈ Pn and Th(A, a) is model complete, or the type of a is some p ∈ 2ω − Γ(ωω)
in which case A contains an element b such that Th(A, ab) is model complete.

We will prove that there is a computable sequence of Π0
2 sets Cn such that

n ∈ S Ô⇒ Cn = ωω

and
n ∉ S Ô⇒ ωω −Cn is dense in ωω.

Then we will construct Tn such that Pn corresponds to Cn, and prove that

n ∈ S ⇐⇒ Tn is relatively decidable.

This is the idea of the construction, the details of which will follow in the next section.

The following lemma gives the construction of the sets Cn, which must also have several
additional properties that we will use in the formal construction.
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Lemma 3.2. Let S be a Π1
1 set. There is a computable sequence of Π0

2 sets Cn such that

n ∈ S Ô⇒ Cn = ωω

and
n ∉ S Ô⇒ ωω −Cn is dense in ωω.

Moreover,
Cn =⋂

i

Un
i

with the Un
i being open sets Un

i = ⋃σ∈Wn
i
[σ]. The Ui are nested (Un

0 ⊇ Un
1 ⊇ Un

2 ⊇ ⋯), the
Wi are uniformly computable, and there are no σ,σ′ ∈ Wi with σ ⪯ σ′. We also have the
following properties:

(P1) for each σ ∈ ω<ω, either an initial segment of σ is in W n
i , or there is τ ⪰ σ with τ ∈W n

i ;

(P2) if n ∉ S, there is π ∈ ωω such that:

• for each σ ∈ ω<ω, σ̂ π ∉ Cn;

• for each i and σ ∈ [i + 2]≤i+2, σ̂ π ∉ Un
i ;

• for each i and σ ∈W n
i , σ̂ π ∉ Un

i+1.

(P3) There is no σ ∈W n
i with σ ∈ [i + 2]≤i+2.

(P4) If σ̂ k ∈W n
i , then σ̂ k′ ∈W n

i for all k′.

Proof. Let Tn be a computable sequence of trees such that

n ∉ S ⇐⇒ Tn has a path.

Fix n for which we will define
C = Cn =⋂

i

Ui

using T = Tn. We may assume that T ⊆ {1,2,3, . . .}<ω, i.e., that 0 does not appear as an
entry of any node on T . Define computable trees Vi inductively, starting with V0 = {∅}. Let

V̂i+1 = Vi ∪ [i + 3]≤i+3 ∪ ⋃
σ∈[i+3]≤i+3

{σ̂ τ ∶ τ ∈ T} ∪ ⋃
σ∈Vi,σ̂k∉Vi

{σ̂ k̂ τ ∶ τ ∈ T}

and let
Vi+1 = {σ̂ k ∶ σ ∈ V̂i+1, k ∈ ω}.

Let Wi = {σ̂ k ∈ ω<ω ∶ σ ∈ Vi, σ̂ k ∉ Vi} and let

Ui = ωω − [Vn] = ⋃
σ∈Wi

[σ].

It is easy to see that the Ui are nested (Un
0 ⊇ Un

1 ⊇ Un
2 ⊇ ⋯), the Wi are uniformly computable,

and there are no σ,σ′ ∈Wi with σ ⪯ σ′.
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If n ∈ S then T does not have a path, and we can argue inductively that for each i,
[Vi] = ∅. So Ui = ωω and Cn = ⋂iUi = ωω.

To see (P1), suppose that no initial segment of σ is in Wi; then σ ∈ Vi. Since T ⊆
{1,2,3, . . .}<ω, for some k, σ̂ 0k ∉ Vi, and so for some k we have σ̂ 0k ∈Wi.

If n ∉ S, then T has a path π. To see (P2):

• for each σ ∈ ω<ω, let i be sufficiently large that σ ∈ [i]<i. Then σ̂ π ∈ [Vi] and so
σ̂ π ∉ Cn;

• for each σ ∈ [i + 2]≤i+2, σ̂ π ∈ [Vi] and so σ̂ π ∉ Ui;

• if σ ∈ Wi, then σ ∉ Vi. Then we can write σ = τ k̂ with τ ∈ Vi but τ k̂ ∉ Vi. Then
τ k̂̂ π ∈ [Vi+1], and hence τ k̂̂ π ∉ Ui+1;

In particular, ωω −Cn is dense.

For (P3), note that [i + 3]≤i+2 ⊆ V2. Thus such a σ ∈ [i + 2]≤i+2 cannot be in Wi.

For (P4), if σ̂ k ∈ Wi but σ̂ k′ ∉ Wi, then σ ∈ Vi and so σ̂ k′ ∈ Vi. But then σ̂ k ∈ Vi, a
contradiction.

4 The Main Construction

We will now prove Theorem 1.4. Let S be a Π1
1 m-complete set. Fix a sequence of Π0

2 sets
Cn such that

n ∈ S Ô⇒ Cn = ωω

and
n ∉ S Ô⇒ ωω −Cn is dense in ωω

as in Lemma 3.2. We will define a sequence of complete first-order theories Tn such that

Cn = ωω ⇐⇒ Tn is relatively decidable.

Fix n for which we will define T = Tn using C = Cn. (In general we drop the subscript n
everywhere.) Write

C =⋂
i
⋃
σ∈Wi

[σ].

We have all the properties from Lemma 3.2.

We will define some intermediate theories and languages. We will begin by defining a
quite simple theory T0 in a language L0, and then we will take a Marker extension T ∗

0 of
T0. Then we will make a definitional expansion T1 of T ∗

0 , and our final theory T will be a
Marker extension T ∗

1 of T1.

Let L0 be the language containing the following symbols:

• unary relations U and Q;

• for each n ∈ ω, unary relations Un and Qn.

12



Let T0 be the theory which says that:

(1) U and Q partition the universe, and the relations Un can only hold of elements of U ,
and Qn of elements of Q;

(2) every possible finite combination of the Un occurs;

(3) the Qn are disjoint, and there are infinitely many elements satisfying each of them.

Claim 4.1. T0 is complete, decidable, and has quantifier elimination.1 Moreover, an L0-
formula involving the symbols Q, U , U0, . . . , Ui, and Q0, . . . ,Qi, is equivalent to a quantifier-
free formula with the same symbols.

Proof. The proof is simple using standard techniques.

Given a model A of T0 and u ∈ UA, we can think of having a binary string ρ2ω[u] ∈ 2ω

associated to u: ρ2ω[u](n) = 1 if A ⊧ Un(u) and ρ2ω[u](n) = 0 if A ⊧ ¬Un(u). Recall that we
defined an embedding Γ of Baire space ωω into Cantor space 2ω by

Γ(π) = 0π(0)10π(1)10π(2)1⋯.

The image of Γ is the set of strings which have infinitely many 1’s. If ρ2ω[u] is in the image
of Γ, define ρωω[u] to be the pre-image of ρ2ω[u] under Γ; that is, if

ρ2ω[u] = 0n010n110n21⋯

then ρωω[u] = ⟨n0, n1, n2, . . .⟩.
Consider the Marker extension T ∗

0 of T0 making the Un into Σ2 relations and the Qn into
Π1 relations (i.e., making ¬Qn into Σ1 relations). Let L∗0 be the language of this Marker
extension.

Claim 4.2. T ∗
0 is complete and decidable.

Proof. T ∗
0 is complete by Corollary 2.7. It is decidable because it is complete and has a

computable list of axioms.

Let (ϕi)i∈ω list the L∗0-formulas such that ϕi involves only the symbols U , Q, and the
symbols (the functions f , g, and h) associated to U0, . . . , Ui and Q0, . . . ,Qi in the Marker
extension. For each `, let (η`i)i∈ω list the elements of W`. Let L1 ⊇ L∗0 be the extended
language which includes:

• for each i ∈ ω and t ∈ ω, a relation αi,t(x, ȳ) where ∣ȳ∣ is the arity of ϕi;

• for each n ∈ ω and i ∈ ω, a relation βi,n(x, y, z̄) where ∣z̄∣ is the arity of ϕi.

Let T1 be the theory extending T ∗
0 which says:

1For technical reasons, because the language is relational, we need to include ⊺ and � in the language as
otherwise there are no quantifier-free sentences.
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(1) the relation αi,t(x, ȳ) can only hold of x ∈ U ;

(2) the relation βi,n(x, y, z̄) can only hold of x ∈ U and y ∈ Q;

(3) for each i and t, with τ` = Γ(ηi`) ∈ 2ω,

⋁
`=1,...,t

⎛
⎝ ⋀n<∣τ`∣

U
τ`(n)
n (x)

⎞
⎠

Ð→ (∀ȳ)[αi,t(x, ȳ)←→ ϕi(ȳ)]

and

⋀
`=1,...,t

⎛
⎝ ⋁n<∣τ`∣

¬U τ`(n)
n (x)

⎞
⎠

Ð→ (∀ȳ)[αi,t(x, ȳ)]

(4) for each i and n ∈ ω:

(Qn(y) ∧ ⋀
0≤m≤2i

¬Un+m(x)) Ð→ (∀z̄)[βi,n(x, y, z̄)←→ ϕi(z̄)]

and

(¬Qn(y) ∨ ⋁
0≤m≤2i

Un+m(x)) Ð→ (∀z̄)[βi,n(x, y, z̄)]

Let T ∗
1 be the Marker extension of T1 making the αi,t(x, ȳ) and βi,n(x, y, z̄) into Σ1 relations.

Note that T1 is a definitional extension of T ∗
0 .

Claim 4.3. T1 and T ∗
1 are also decidable and complete.

Proof. T1 is decidable and complete because it is a definitional extension of T ∗
0 , which is

decidable and complete. Then T ∗
1 is complete by Corollary 2.7 and decidable because it is

computably axiomatizable.

Lemma 4.4. Every L∗1-formula is equivalent, modulo T ∗
1 , to a boolean combination of L∗0-

formulas and quantifier-free L∗1-formulas. Here, we view an L∗0-formula as being restricted
to the main sort of a model of T ∗

1 .

Proof. By Corollary 2.6, each L∗1-formula is equivalent, modulo T ∗
1 , to the boolean combina-

tion of quantifier-free L∗1-formulas and L1-formulas. Each L1-formula is equivalent, modulo
T1, to an L∗0-formula as T1 is a definitional extension of T ∗

0 .

We are now ready to show that the theory T ∗
1 is the theory we wanted to build, i.e., that:

C = ωω ⇐⇒ T = T ∗
1 is relatively decidable.

Recall from Theorem 1.3 that T ∗
1 is relatively decidable if and only if for each model M of

T ∗
1 , there is a tuple ā ∈M such that Th(M, ā) is model complete.

Lemma 4.5. If C = ωω, andM is a model of T ∗
1 , then there are a, b ∈M such that Th(M, ab)

is model complete.
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Proof. Fix a ∈ UM. We have two possibilities:

Case 1. For some n, for every m ≥ 0, M ⊧ ¬Un+m(a).
Choose b ∈M such that M ⊧ Qn(b). We will show that Th(M, ab) is model complete.

Given an L∗1-formula ϕ, by Lemma 4.4 write ϕ in disjunctive normal form as a disjunction
of formulas each of which is the conjunction of an L∗0-formula ϕi and a quantifier-free L∗1-
formula ψ. To show that ϕ is equivalent to an existential formula, we just need to show that
ϕi is equivalent to an existential formula with parameters a, b. This is the case because

M ⊧ (∀z̄)[βi,n(a, b, z̄)←→ ϕi(z̄)].

Case 2. For every n, there is m ≥ n, such that M ⊧ Un+m(a).
We will show that Th(M, a) is model complete. Given an L∗1-formula ϕ, by Lemma 4.4

write ϕ in disjunctive normal form as a disjunction of formulas each of which is the conjunc-
tion of an L∗0-formula ϕi and a quantifier-free L∗1-formula ψ. To show that ϕ is equivalent to
an existential formula, we just need to show that ϕi is equivalent to an existential formula
with parameter a. Let π = ρωω[a]. Since

C =⋂
i
⋃
σ∈Wi

[σ] = ωω

there is σ ∈Wi such that σ ⪯ π. Let τ = Γ(σ); then

M ⊧ ⋀
n<∣τ ∣

U
τ(n)
n (a).

So
M ⊧ (∀ȳ)[αi,t(a, ȳ)←→ ϕi(ȳ)].

Lemma 4.6. If C ≠ ωω, there is a model M of T ∗
1 such that for no ā ∈ M is Th(M, ā)

model complete.

Proof. Since C ≠ ωω, ωω−C is dense in ωω. Build a model A0 of T0 such that for every x ∈ U ,
ρ2ω[x] has infinitely many 1’s, so that ρ2ω[x] is in the image of the embedding Γ∶ωω → 2ω,
and ρωω[x] is defined. Moreover, build A0 so that ρωω[x] ∉ C for each x ∈ U . We can do
this because ωω − C is dense. More specifically, for each σ ∈ ω<ω, by (P1) and (P2) choose
τσ ⪰ σ with τσ ∈ Wi. Then τσ̂ π ∉ ⋃σ∈Wi+1

[σ]. Have UA0 consist of an xσ for each σ ∈ ω<ω

with ρωω[xσ] = τσ̂ π.
This model A0 of T0 gives rise to a unique model M = A∗1 of T ∗

1 : first we take a Marker
extension to get a model A∗0 of T ∗

0 , then we take a definitional expansion to get a model A1

of T1, and then we take a Marker extension to get a model M = A∗1 of T ∗
1 .

Fix ā ∈M. We claim that Th(M, ā) is not model complete. We will do this by finding
an extension N ⊇M with N ⊧ Th(M, ā) that is not an elementary extension ofM. We will
build N by finding B0 ⊇ A0, B∗0 ⊇ A∗0, B1 ⊇ A1, and finally N = B∗1 ⊇ A∗1 =M. The notion of
substructure here is that of Definition 2.8.

Let ā consist of a1, . . . , an ∈ UA0 and b1, . . . , bm ∈ QA0 and... . We may assume that...

Let k be sufficiently large that:
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(1) for each i = 1, . . . ,m, if Q`(bi), then ` < k;

(2) for each i = 1, . . . , n, ρωω[ai] ∉ ⋃σ∈Wk
[σ]; and

(3) for each i = 1, . . . , n, there is j ∈ {k, . . . ,2k} such that A0 ⊧ Uj(ai).

To see why we can find k sufficiently large to make (3) true, let π ∈ ωω as chosen above be
such that for each i there is σi ∈ ω<ω such that ρωω[ai] = σî π. Then

A0 ⊧ U`+∣Γ(σi)∣(ai)⇐⇒ Γ(π)(`) = 1.

Choose k such that k ≥ ∣Γ(σi)∣ for each i, and such that Γ(π)(k) = 1.

Define B0 ⊇ A0 as follows:

• For each b ∈ QA0 :

– If ` < k, set
B0 ⊧ Q`(b)⇐⇒ A0 ⊧ Q`(b).

– If ` ≥ k, set
B0 ⊧ ¬Q`(b).

Note that for bi ∈ b̄ and any ` we have

B0 ⊧ Q`(bi)⇐⇒ A0 ⊧ Q`(bi).

• For each a ∈ UA0 :

– If a = a1, . . . , an, set
B0 ⊧ U`(a)⇔ A0 ⊧ U`(a).

– Otherwise, suppose that there is ` < k and σ ⪯ ρωω[a] with σ ∈ W`. Choose `
to be the greatest such. Let 0c010c110c21⋯10ct be the first k bits of ρ2ω[a]. Let
c0c1⋯ct−1d be the initial segment of ρωω[a] of length t+1, so that 0c010c110c21⋯10d

is an initial segment of ρ2ω[a].
Define µ ∈ ωω with Γ(µ) ⪰ 0c010c110c21⋯10ct1 according to the following cases.
Then set

B0 ⊧ U`(a)⇔ Γ(µ)(`) = 1.

Note that for ` < k,

B0 ⊧ U`(a)⇔ Γ(µ)(`) = 1⇔ A0 ⊧ U`(a).

We have ρB0ωω(a) = µ.

∗ Suppose that ` = k − 1. By (P3), since c0c1⋯ct ∈ [k + 1]≤k+1 we have c0c1⋯ct ∉
Wk−1. Let t be such that σ = ηk−1

t ∈Wk−1. By (P1) we can choose s ≥ t such
that c0⋯ct ⪯ ηk−1

s ∈Wk−1 (indeed, for each `, there is η ⪰ c0⋯ct` with η ∈Wk−1,
so for some ` this σ is ηk−1

s with s ≥ t). Then by (P2) there is µ ⪰ σs with
µ ∉ ⋃σ∈Wk

[σ].
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∗ Suppose that ` < k − 1 and σ ⪯ c0c1⋯ct. Then by construction of A0, ρωω[a] =
σ̂ π. Let µ = σ̂ π.

∗ Suppose that ` < k − 1 and σ = c0c1⋯ct−1d. Then by (P4), c0c1⋯ct ∈ W`. By
(P2) choose µ ⪰ c0c1⋯ct such that µ ∉ ⋃σ∈W`+1

[σ].
∗ Suppose that ` < k − 1 and σ ≻ c0c1⋯ct−1d. Then c0c1⋯ct−1d ∉ W` and by

(P4), c0c1⋯ct ∉ W`. Let t be such that σ = η`t ∈ W`. There is s ≥ t such that
η`s ⪰ c0c1⋯ct. By (P2) choose µ ⪰ η`s such that µ ∉ ⋃σ∈W`+1

[σ].
– Otherwise, let 0c010c110c21⋯10ct be the first k bits of ρ2ω[a]. Then c0c1⋯ct ∈

[k + 1]≤k+1. By (P2), we can choose µ ⪰ c0c1⋯ct such that µ ∉Wk. Set

B0 ⊧ U`(a)⇔ Γ(µ)(`) = 1.

Note that for ` < k,

B0 ⊧ U`(a)⇔ Γ(µ)(`) = 1⇔ A0 ⊧ U`(a).
Then ρB0ωω(a) = µ. Also, B0 ⊧ Uk(a).

• Add new elements to UB0 and QB0 to extend B0 to a model of T0.

Claim 4.7. B0, ā ⊧ Th(A0, ā).

Proof. We have that B0 ⊧ T0 and T0 has quantifier elimination. So we just need to note that
ā has the same atomic type in B0 that it has in A0.

Claim 4.8. B0 ⊇ A0.

Proof. We need to see that if A0 ⊧ ¬Q`(a) then B0 ⊧ ¬Q`(a); this can be immediately seen
from the definition of B0. There is nothing to check with the relations U` because we are
making these Σ0

2 in the Marker extension.

By Lemma 2.9, since A0 ⊆ B0, we can choose a Marker extension B∗0 ⊇ A∗0 of B0. Moreover,
we can choose B∗0 such that B∗0 , ā ⊧ Th(A∗0, ā).
Claim 4.9. For i < k and ā ∈ A∗0 ,

A∗0 ⊧ ϕi(ā)⇐⇒ B∗0 ⊧ ϕi(ā)
Proof. Recall that ϕi involves only the symbols U , Q, and the symbols (the functions f , g,
and h) associated to U0, . . . , Ui and Q0, . . . ,Qi in the Marker extension. We defined B0 such
that for x ∈ A0 and i < k

A0 ⊧ Ui(x)⇐⇒ B0 ⊧ Ui(x)
and

A0 ⊧ Qi(x)⇐⇒ B0 ⊧ Qi(x).
By Claim 4.1 (quantifier elimination), for any L0-formula ψ involving only U , Q, U0, . . . , Ui
and Q0, . . . ,Qi, and x̄ ∈ A0,

A0 ⊧ ψ(x̄)⇐⇒ B0 ⊧ ψ(x̄).
Now by Lemma 2.5 ϕi is equivalent to a boolean combination of L0-formulas (involving only
U , Q, U0, . . . , Ui and Q0, . . . ,Qi) and quantifier-free L∗0-formulas. So, as A∗0 ⊆ B∗0 ,

A∗0 ⊧ ϕi(ā)⇐⇒ B∗0 ⊧ ϕi(ā).
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Now let B1 be the definitional extension of B∗0 .

Claim 4.10. B1 ⊇ A1.

Proof. We have two claims to prove, each of which divides into a number of cases.

(1) Given x, ȳ ∈ A1, if A1 ⊧ αi,t(x, ȳ) then B1 ⊧ αi,t(x, ȳ).

• Suppose that x ∈ ā and i < k, then

B0 ⊧ U`(a)⇔ A0 ⊧ U`(a)

and by Claim 4.9, A1 ⊧ ϕi(ȳ) if and only if B1 ⊧ ϕi(ȳ).
• Suppose that x ∉ ā and i < k. Then by Claim 4.9, A1 ⊧ ϕi(ȳ) if and only if
B1 ⊧ ϕi(ȳ).
So the only case we have to worry about is if, with τ` = Γ(σ`) ∈ 2ω,

A0 ⊧ ⋀
`=1,...,t

⋁
n<∣τ`∣

¬U τt(n)
n (x)

but for some ` = 1, . . . , t,
B0 ⊧ ⋀

n<∣τ`∣
U
τ`(n)
n (x).

If it was the case that ρωω(a) ∉Wi, then we would have set

B0 ⊧ U`(a)⇔ A0 ⊧ U`(a).

So the only problem would be if ρωω(a) ∈Wi, but σ1, . . . , σt ⊀ ρωω(a). In this case,
we ensured that for some s > t we have σs ≺ ρB0ωω(a). So we cannot have

B0 ⊧ ⋀
n<∣τ`∣

U
τ`(n)
n (x)

for any ` = 1, . . . , t.

• Suppose that i ≥ k. then since ρBωω(x) ∉Wi, we have B1 ⊧ (∀z̄)αi,t(x, z̄).

(2) Given x, y, z̄ ∈ A1, if A1 ⊧ βi,n(x, y, z̄) then B1 ⊧ βi,n(x, y, z̄).

• Suppose that x ∈ ā, n < k, and i < k. Then by Claim 4.9, A1 ⊧ ϕi(z̄) if and only
if B1 ⊧ ϕi(z̄). Also A1 ⊧ Qn(y) if and only if B1 ⊧ Qn(y), and A1 ⊧ U`(x) if and
only if B1 ⊧ U`(x).

• Suppose that x ∈ ā, n < k, and i ≥ k. Then there is ` = k, . . . ,2k such that
A0 ⊧ U`(x). So

A0 ⊧ ⋁
0≤m≤2i

Un+m(x)

and so, since A1 ⊧ U`(x) if and only if B1 ⊧ U`(x),

B0 ⊧ ⋁
0≤m≤2i

Un+m(x).

Thus B1 ⊧ (∀ū)βi,n(x, y, ū).
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• Suppose that x ∉ ā, and n < k but i ≥ k. Then examining the definition of B0, we
have two possibilities:

– B1 ⊧ Uk(x). So B1 ⊧ ⋁j=n,...,n+2iUj(x). Thus B1 ⊧ (∀ū)βi,n(x, y, ū).
– A1 ⊧ U`(x) if and only if B1 ⊧ U`(x) and ρωω[x] = σ̂ π, with ∣σ∣ < k. Then

B0 ⊧ ⋁
0≤m≤2i

Un+m(x).

Thus B1 ⊧ (∀ū)βi,n(x, y, ū).
• Suppose that n < k and i < k. Then by Claim 4.9, A1 ⊧ ϕi(z̄) if and only if
B1 ⊧ ϕi(z̄). Also A1 ⊧ Qn(y) if and only if B1 ⊧ Qn(y). So our only problem can
occur if

A0 ⊧ ⋁
0≤m≤2i

Un+m(x)

but
B0 ⊧ ⋀

0≤m≤2i

¬Un+m(x).

But for m < k, A0 ⊧ Um(x) if and only if B0 ⊧ Um(x); and, examining all the cases
in the definition of B0, we can see that the least m ≥ k such that A0 ⊧ Um(x)
is ≥ the least m′ ≥ k such that B0 ⊧ Um′(x). So this problematic situation never
occurs.

• Suppose that n ≥ k. Then B1 ⊧ ¬Qn(y) and so B1 ⊧ (∀ū)βi,n(x, y, ū).

Claim 4.11. B1, ā ⊧ Th(A1, ā).

Proof. This is because B∗0 , ā ⊧ Th(A∗0, ā) and B1 and A1 are definitional extensions of B∗0 and
A∗0 respectively.

Let B∗1 ⊇ A∗1 be the Marker extension of B1. By Lemma 2.9 we can choose B∗1 such that
B∗1 , ā ⊧ Th(A∗1, ā). Note that B∗1 is not an elementary extension of A∗1; indeed, given b ∈ A∗1
with A∗1 ⊧ Qk(b), we have B∗1 ⊧ ¬Qk(b).
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