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Abstract. The back-and-forth relations M ≤α N are central to computable structure theory
and countable model theory. It is well-known that the relation {(M,N ) ∶ M ≤α N} is
(lightface) Π0

2α. We show that this is optimal as the set is Π0
2α-complete. We are also

interested in the one-sided relations {N ∶ M ≤α N} and {N ∶ M ≥α N} for a fixed M,
measuring the Πα and Σα types of M. We show that these sets are always Π0

α+2 and Π0
α+3

respectively, and that for most α there are structuresM for which these relations are complete
at that level. In particular, there are structures M such that there is no Πα (or even Πα+1)

sentence φ such that N ⊧ φ⇐⇒M ≤α N .
This is unfortunate as not all Πα+2 sentences are preserved under ≤α. We define a new

hierarchy of syntactic complexity closely related to the back-and-forth game, which can both
define the back-and-forth types as well as be preserved by them. These hierarchies of formulas
have already been useful in certain Henkin constructions, one of which we give in this paper,
and another previously used by Gonzalez and Harrison-Trainor to show that every Πα theory
of linear orders has a model with Scott rank at most α + 3.

1. Introduction

Originally used to prove that any two countable dense linear orders without endpoints are
isomorphic, the back-and-forth method is a classical tool in mathematical logic dating back
over one hundred years. A general viewpoint, beginning with Ehrenfeucht [Ehr61] and Fraïssé
[Fra50], is that by playing back-and-forth games between two first-order structures M and
N we can capture which sets of formulas they agree on. Generally two players, Spoiler and
Duplicator, take turns playing elements from the two structures, with Duplicator trying to
maintain atomic facts between the elements in M and the elements in N . In the Ehrenfeucht–
Fraïssé game most commonly used in model theory, both players play single elements, and (in
a finite language) the second player wins the game of length n if and only the two structures
M and N satisfy the same sentences with quantifier depth n. Other versions, such as pebble
games, can be used for finite variable logics.

In this paper, we work with the back-and-forth game that corresponds to infinitary logic,
and our main goal is to understand the complexity of deciding which player has a winning
strategy. The key features of this particular back-and-forth game are that (a) on their turn,
players play tuples of arbitrary size with the size chosen by Spoiler, (b) Spoiler must alternate
between playing in M and playing in N , with Duplicator alternating between playing in N
and playing in M, and (c) the games are played over a possibly infinite ordinal clock.

This back-and-forth game yields the back-and-forth relations. (For simplicity, we assume
that all languages in this paper are relational.)

Definition 1.1. The standard asymmetric back-and-forth relations ≤α, for a countable ordinal
α < ω1, are defined by:
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● (M, ā) ≤0 (N , b̄) if ā and b̄ satisfy the same quantifier-free formulas from among the
first ∣ā∣-many formulas.

● For α > 0, (M, ā) ≤α (N , b̄) if for each β < α and d̄ ∈ N there is c̄ ∈ M such that
(N , b̄d̄) ≤β (M, āc̄).

We define ā ≡α b̄ if ā ≤α b̄ and b̄ ≤α ā.
The interpretation of (M, ā) ≤α (N , b̄) is that in the back-and-forth game between M and N ,
starting with the partial isomorphism ā↦ b̄ and with the first player Spoiler to play next in N ,
the second player Duplicator can play without losing along an ordinal clock α. The content of
the classical back-and-forth argument is then that if Duplicator can continue playing forever,
and M and N are countable, then M ≅ N .

These back-and-forth relations are related to the infinitary logic Lω1ω which extends the
standard finitary first-order logic by allowing countably infinite disjunctions and conjunctions.
The formulas of Lω1ω are stratified in terms of their complexity as measured by counting the
number of alternations between existential and universal quantifiers. For an ordinal α < ω1:

● A formula is Σ0 and Π0 if it is finitary quantifier-free.
● A formula is Σα if it is of the form

⩔
i

∃x̄iψi(x̄i)

where each ψi is Πβ for some β < α.
● A formula is Πα if it is of the form

⩕
i

∀x̄iψi(x̄i)

where each ψi is Πβ for some β < α.
The back-and-forth relations ≤α characterize when two structures M and N satisfy the same
Σα/Πα sentences as in the following theorem of Karp [Kar65] (see, e.g., [Mon], Theorem II.36).

Theorem 1.2. For any non-zero ordinal α, structures M and N and tuples ā ∈M and b̄ ∈ N ,
the following are equivalent:

(1) (M, ā) ≤α (N , b̄).
(2) Every Πα formula true about ā in M is true about b̄ in N .
(3) Every Σα formula true about b̄ in N is true about ā in M.

Both these back-and-forth relations and the infinitary logic Lω1ω have proven to be very useful
in countable structure theory, the study of countable structures using tools from model theory,
descriptive set theory, and computability theory.

This paper is about the complexity of characterizing when it is that M ≤α N . One might
hope, because the α-back-and-forth relations are about preservation of Σα/Πα formulas, that
there would a characterization which is also on the level of α-many alternations of quantifiers.
While interesting in its own right, this question is motivated by certain appearances of the
back-and-forth relations in arguments in countable model theory. Before giving our main
results, we will talk about some of the motivation behind this question to set the stage.

Our main motivation has to do with Scott’s isomorphism theorem. Given a countable
L-structureM, the set of L-structures isomorphic toM is naively an analytic set in the Polish
space Mod(L) of countably infinite L-structures. It is a surprising result of Scott [Sco65] that
this set is actually always Borel and thus any countable structure admits a characterization up
to isomorphism. Scott’s argument uses the back-and-forth relations: He shows that for any
structure M there is a countable ordinal α such that for any countable structure N ,

M ≤α N Ô⇒M ≅ N .
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From this, one checks that the set {N ∶M ≤α N} is Π0
2α by writing out the definition of

the back-and-forth relations—each step of the inductive definition uses two quantifiers—and
concludes that {N ∶ M ≅ N} is Π0

2α and hence Borel. (The fact that the back-and-forth
relations ≤α have a Π2α definition is well-known and is used in various contexts. It appears
as Exercise VIII.6 in [Mon] and underlies, for example, Nadel’s [Nad74] observation that a
computable structure has a computable Scott sentence if and only if it has computable Scott
rank.)

For a given M, the Borel complexity of this set {N ∶M ≅ N}, as measured by Wadge
reducibility, is called the Scott complexity of M [AGHTT21]. By the Lopez-Escobar theorem
[LE66, Vau75], the Scott complexity of {N ∶M ≅ N} is the same as the least complexity of a
Scott sentence for M, that is, a sentence φ of the infinitary logic Lω1ω that characterizes M
up to isomorphism among countable structures: for any countable structure N ,

M ⊧ φÔ⇒ N ≅M.

Thus in the context of the mentioned proof of Scott’s isomorphism theorem, {N ∶M ≅ N} is
Π0

2α and so is defined by a Π2α sentence of Lω1ω. This gives an upper bound of Π2α on the
Scott complexity of M, but it is far from the lower bound of Πα.1

In this paper, we ask whether this upper bound can be improved, and if so by how much?
We work not just with Scott complexity but also with the problem of defining the back-and-
forth relations ≤α in general. Though we generally state our results in terms of structures,
considering sets such as {N ∶M ≤α N}, by naming constants our results also apply to tuples,
e.g., {(N , b̄) ∶ (M, ā) ≤α (N , b̄)}. Such a set represents the Πα-type of ā inM, and these types
are important objects in countable structure theory.

We show that the Π0
2α definition is the best definition of ≤α in terms of both of the structures

M and N , that is, the set {(M,N ) ∶M ≤α N} is Π0
2α-complete for most languages and α.

Fixing one of the structures, this gives a “schematic” Π0
2α definition of the sets {N ∶M ≤α N}

and {N ∶ M ≥α N} where we replace quantifiers over M by infinitary conjunctions and
disjunctions. However, this is not the best possible definition of these sets; we show that there
are simpler Π0

α+2 and Π0
α+3 definitions for {N ∶M ≤α N} and {N ∶M ≥α N} respctively. These

simpler definitions are not “schematic” in M and are non-effective. The exact complexities are
given by the following theorem and are proved to be best possible. There are exceptional cases
when α is too small or too close to a limit ordinal, but for the most part we have the same
bounds.

Theorem 1.3. For any language containing a relation symbol of arity ≥ 2,2 the set
{(M,N ) ∶M ≤α N}

is Π0
2α-complete. Moreover:

(1) The sets
{N ∶M ≤α N}

have the following complexities Γ depending on α, and there is a structure M such that
the set is Γ-complete.
(a) For α = 1, Γ =Π0

1 =Π0
α.

(b) For α = λ a limit ordinal, Γ =Π0
λ =Π0

α.

1We also note that this is related to the variations between different notions of Scott rank. There have been
many different non-equivalent definitions of Scott rank, some of them using the back-and-forth relations, and
some using the complexity of Scott sentences. See [Mon15] for a survey.
2Any language with a binary relation symbol can effectively bi-interpret any theory in any language. In
particular, these maps preserve properties regarding back-and-forth relations, so such languages exhibit all
properties exhibited in any language. See [Mon21] Section VI.3.2 and [Mon] Theorem XI.7 for more details.
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(c) For α = λ + 1 the successor of a limit ordinal, Γ =Π0
λ+2 =Π0

α+1.
(d) For α = β + 2, Γ =Π0

α+2.
(2) The sets

{N ∶M ≥α N}
have the following complexities Γ depending on α, and there is a structure M such that
the set is Γ-complete.
(a) For α = 1, Γ =Π0

2 =Π0
α+1.

(b) For α = 2, Γ =Π0
3 =Π0

α+1.
(c) For α = λ a limit ordinal, Γ =Π0

λ =Π0
α.

(d) For α = λ + 1 the successor of a limit ordinal, Γ =Π0
λ+2 =Π0

α+1.
(e) For α = λ + 2 the double successor of a limit ordinal, Γ =Π0

λ+4 =Π0
α+2.

(f) For α = β + 3, Γ =Π0
α+3.

The first part of the paper is devoted to proving this theorem. We note that while {(M,N ) ∶
M ≤α N} is (lightface) Π0

2α when α is computable, the other bounds where M is fixed are not
generally effective in M. That is, for example, if M is computable, we do not know whether
{N ∶M ≤n N} is (lightface) Π0

n+2. In [ACHT] Alvir, Csima, and Harrison-Trainor undertake
an analysis of the computability of Scott sentences for computable structures with Π2 Scott
sentences; it is shown that a computable structure M can have a Π2 Scott sentence but no
computable Σ4 Scott sentence. This implies that for this particular M the set {N ∶M ≤2 N}
is (boldface) Π0

2 but not (lightface) Σ0
4.

Question 1.4. Assuming that M is computable, what is the lightface complexity of the sets
from Theorem 1.3?

The fact that 2 + 2 = 2 ⋅ 2 means that in the case α = 2 the complexities Π0
2α and Π0

α+2 are the
same, and so we get no evidence about the behavior in general.

In the second part of the paper, we will consider the following question. What class of Lω1ω

formulas corresponds exactly with the back-and-forth relations? Namely, we want a class of
formulas Γα that has the properties:

(1) for each M and α there is a sentence φ ∈ Γα such that

N ⊧ φÔ⇒M ≤α N ,
(2) if M ≤α N , and M ⊧ φ, then N ⊧ φ.

While Πα formulas satisfy (2), above we saw that one requires Πα+2 formulas for (1). We will
introduce a new hierarchy of formulas, which we call the Aα/Eα hierarchy, which is better
suited for characterizing the back-and-forth relations. The definition is somewhat complicated,
but the essence is that when counting quantifiers, ∀⩔⩕∃ counts only as two alternations of
quantifiers, whereas in the Σα/Πα hierarchy, this would count for four alternations of quantifiers.
There are also associated Eα and Aα formulas which are the closure, under ⩕ and ⩔, of the
Aα and Eα formulas. We leave the full definition to Section 6. We prove that these classes of
formulas satisfy (1) and (2) above:

Proposition 1.5. For M a countable structure, ā ∈M, and α ≥ 1, there are a Eα formula
φā,M,α(x̄) and Aα formula ψā,M,α(x̄) such that for N any structure,

N ⊧ φā,M,α(b̄)⇐⇒ (M, ā) ≥α (N , b̄)
and

N ⊧ ψā,M,α(b̄)⇐⇒ (M, ā) ≤α (N , b̄).
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Proposition 1.6. Suppose that (M, ā) ≤α (N , b̄) for α ≥ 1. Then given a Eα formula φ(x̄)
and a Aα formula ψ(x̄),

N ⊧ φ(b̄)Ô⇒M ⊧ φ(ā)
and

M ⊧ ψ(ā)Ô⇒ N ⊧ ψ(b̄)
At first, we thought that these classes of formulas were only a curiosity, but they have

proved very useful. For example, they appear naturally in the proof of the upper bounds in
1(d) and 2(d) of Theorem 1.3. More importantly, they have been useful for certain Henkin
constructions. The most important example of this is in [GHT], where the proof of the main
result is a Henkin construction using formulas of complexity Eα. We will discuss briefly in
Section 7.1 the role that Eα formulas play in that construction. Finally, in Section 7.2, we
give a Henkin construction using Eα formulas to give an improved version of Montalbán’s
type omitting theorem for infinitary logic [Mon15]. This type omitting theorem was originally
due to Gonzalez but was unpublished; we give a new and easier proof here making use of the
Aα/Eα formulas.

Theorem 1.7. Let M be a countable structure. Let (Γi)i∈ω be a list of Πα-types which are not
Σα-supported in M. Let φ be a Πα+1 sentence true in M. Then there is N ≤αM such that
N ⊧ φ and N omits all of the Γi.

This adds the additional condition that N ≤αM to Montalbán’s type omitting theorem. In
particular, we maintain the entire Σα theory of M. It is still open whether we can have
N ≥αM or even stronger N ≡αM.

In Section 7.2, we state several consequences of this type-omitting theorem such as the
following.

Corollary 1.8. Let M be a countable structure.
(1) If, for all countable N ,

M ≤α N Ô⇒M ≅ N
then M has a Πα+2 Scott sentence.

(2) If, for all countable N ,
N ≤αMÔ⇒M ≅N

then M has a Πα+1 Scott sentence.

Item (1) simply follows from our general characterization of {N ∶M ≤α N} as a Π0
α+2 set for

any α. For (2), such an argument would yield a Πα+3 Scott sentence. Using the type omitting
theorem, we improve this to a Πα+1 Scott sentence, and this cannot be further improved; for
example, take M to be the infinite-dimensional Q-vector space. This has a Π3 Scott sentence
and no simpler, but if V ≤2 QN then V ≅ QN. Whether (1) is optimal remains open.

Question 1.9. Let M be a countable structure. Suppose that for all countable N
M ≤α N Ô⇒M ≅ N .

Must M have a Πα+1 Scott sentence? A Πα Scott sentence?

2. The definability of the back-and-forth relations in the Σ and Π hierarchies

We begin by demonstrating the lower bound of Π0
2n in the symmetrical case of the theorem

for finite values. In other words, we demonstrate that the set {(M,N ) ∶M ≤nM} is sometimes
as difficult to define as possible. Note that Π0

2n matches the classical upper bound, as the
definition of the back-and-forth game gives a Π0

2n description of the back-and-forth relations.
(We expand on this point regarding the classical upper bound in the proof below.)
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Lemma 2.1. For any language L containing a relation symbol of arity ≥ 2, the set

{(M,N ) ∶M ≤n N}
is Π0

2n-complete in Mod(L) ×Mod(L).

Proof. Any language containing a relation symbol of arity ≥ 2 can simulate, via effective bi-
interpretation, any other language. Thus, in showing completeness we can work with whichever
language is most useful.

The fact that this set is Π0
2n has been observed previously (see, e.g., Lemma VI.14 in

[Mon]). To be a bit more explicit, the Π0
2n definition follows directly from the definition of the

back-and-forth relations. In the product space, Mod(L) ×Mod(L), a universal quantifier over
the elements of the first coordinate (or second coordinate) naturally corresponds to a countable
intersection of sets. Dually, an existential quantifier naturally corresponds to a countable union.
The definition of ≤n alternates quantifiers (some over the first structure, some over the second
structure) 2n-times and begins with a universal quantifier, so it gives a Π0

2n definition.
We focus the rest of the proof on showing that the set is Π0

2n-hard. We will give an inductive
construction but we need a stronger statement to carry out the induction. For n ≥ 2, given a
Π0

2n−2 set U ⊆ 2ω × ω and x ∈ 2ω we will construct structures Ax,U and Bx,U
i such that

(1) if (x, i) ∈ U then Ax,U ≥n Bx,U
i , and

(2) if (x, i) ∉ U then Bx,U
i ≱n−1 Ax,U .

For a given value of n, the language of these structures will consist of equivalence relations
En, . . . ,E3 and unary relations Rn′

i,m for 2 ≤ n′ ≤ n and i,m ∈ ω. The equivalence relation Ei

will refine Ej if i < j. Inductively, in constructing these structures for n + 1, we may assume
that we know how to construct them for n.

Our base case is n = 2. We assume that we work relative to an oracle that makes a given Π0
2

set Π0
2 and note that our proof relativizes; we make a similar assumption as needed throughout

this proof. Given a Π0
2 set V ⊆ 2ω × ω, x ∈ 2ω, and k ∈ ω we must construct structures Ax,V

and Bx,V
i with the desired properties. Write

(x, i) ∈ V ⇐⇒ ∀m∃j (x, i,m, j) ∈ U,
where U is computable. We will have unary relations R2

i,m. Let Ax,V have infinitely many
elements as

i′,m,j . The elements as
i′,m,j will behave the same for fixed values of i′,m, j. In other

words, each element is infinitely replicated by the index s. Put as
i′,m,j ∈ R2

i′,m if (x, i′,m, j) ∈ U .
Let Bx,V

i have infinitely many elements bs
i′,m,j as well as elements b∗m. Put bs

i′,m,j ∈ R2
i′,m if

(x, i′,m, j) ∈ U and put b∗m ∈ R2
i,m. Informally, Bx,V

i is just the same as Ax,V except for the
fact that there is an additional element added to R2

i,m for each m. Then:

● If (x, i) ∈ V , then we can check that Ax,V ≅ Bx,V
i and hence Ax,V ≥2 Bx,V

i . We see that
Ax,V embeds into Bx,V

i . The elements not in the image are the b∗m. For each m there
is jm such that (x, i,m, jm) ∈ U and so b∗m satisfies the same relations as each as

i,m,jm

(for each s). Thus we can map, say b∗m ↔ a0
i,m,jm

and bs
i,m,j ↔ as+1

i,m,j .
● If (x, i) ∉ V then there is m such that for all j we have (x, i,m, j) ∉ U . Note that in
Bx,V

i there is always an element b∗m satisfying R2
i,m. In contrast, in Ax,V , any ai′,m′,j

satisfying R2
i,m must have i′ = i and m′ =m and (x, i,m, j) ∈ U . This cannot happen

by the choice of i and m, and so we have an existential formula true in Bx,V
i which is

not true in Ax,V . Thus Bx,V
i ≱1 Ax,V .

This finishes the case of n = 2.
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Now, suppose that we have a construction for n, and we will give a construction for n + 1.
Let V be a Π0

2n set, say
x ∈ V ⇐⇒ ∀m∃j (x, i,m, j) ∈ U

where U is Π0
2n−2. For each i,m, let

Ui,m = {(x, j) ∶ (x, i,m, j) ∈ U}.

By the inductive hypothesis, we have structures Ax,Ui,m and Bx,Ui,m

j such that

(1) if (x, j) ∈ Ui,m then Ax,Ui,m ≥n Bx,Ui,m

j , and
(2) if (x, j) ∉ Ui,m then Bx,Ui,m

j ≱n−1 Ax,Ui,m .
To be explicit, the above definitions and hypotheses immediately give that

(x, i) ∈ V ⇐⇒ ∀m∃j (x, j) ∈ Ui,m.

Therefore,

(x, i) ∈ V Ô⇒ ∀m∃j Ax,Ui,m ≥n Bx,Ui,m

j and (x, i) /∈ V Ô⇒ ∃m∀j Ax,Ui,m ≰n−1 Bx,Ui,m

j .

Define Ax,V and Bx,V
i as follows:

● Ax,V is split into sorts indexed by i,m by the relations Rn+1
i,m . Each sort is, in turn,

split into equivalence classes with respect to the equivalence relation En+1 with each
equivalence class being the domain of one of the structures from the previous inductive
case. The (i,m) sort has infinitely many equivalence classes: For each j ∈ ω there are
infinitely many classes containing a copy of Bx,Ui,m

j for each j ∈ ω, and there are no
other equivalence classes.

● Bx,V
i is similarly split into sorts indexed by i,m by the relations Rn+1

i,m . Again, each
sort is split into equivalence classes with respect to the equivalence relation En+1, and
each equivalence class is the domain of a structure. The (i′,m) sort has infinitely many
equivalence classes of the following types: For each j ∈ ω there are infinitely many
equivalence classes containing a copy of Bx,Ui′,m

j , and if i′ = i, there are also infinitely
many equivalence classes containing a copy of Ax,Ui,m ; there are no other equivalence
classes.

Informally, Bx,V
i is just the same as Ax,V except for the fact that there are infinitely many

additional copies of Ax,Ui,m added to Rn+1
i,m for each m. We now demonstrate that the Ax,V

and Bx,V
i have Properties (1) and (2) required to continue the induction.

Sublemma 2.1.1. Let A and B be structures in the relational language L ∪ {E} which consist
of an equivalence relation E with infinitely many equivalence classes, such that each equivalence
class is an L-structure (and no relations from L hold between different equivalence classes).
Write A = ⊔iAi and B = ⊔iBi as disjoint unions of equivalence classes, with the Ai and Bi

being L-structures. Suppose furthermore that each isomorphism type that appears does so
infinitely many times. If the following conditions hold, then (A, ā) ≥n (B, b̄):

(A) For each k, ℓ, akEaℓ if and only if bkEbℓ.
(B) Given (A), we may reorder ā and b̄ into subtuples ā1, . . . , āℓ and b̄1, . . . , b̄ℓ such that

there are i1, . . . , iℓ and j1, . . . , jℓ with āk ∈ Aik
and b̄k ∈ Bjk

. Then for k = 1, . . . , ℓ,

(Aik
, āk) ≥n (Bik

, b̄k).
(C) For each i there is j such that Ai ≥n Bj.
(D) For each j there is i such that Bj ≥n−1 Ai.
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Proof. We argue inductively on n, starting with the base case of n = 0. This case is immediate.
Supposing that (A), (B), and (C) hold, we see that these determine for each type of atomic
formula that it is true of ā in A if and only if it is true of b̄ in B.

Now we inductively assume we know the sublemma for n, and prove it for n + 1. We argue
that if (A), (B), (C), and (D) hold for n+ 1, then (A, ā) ≥n+1 (B, b̄). Suppose that we are given
ā′ ∈ A. First, since (A) holds, we may break up ā and b̄ as in (B) into tuples ā1, . . . , āℓ and
b̄1, . . . , b̄ℓ. We may break ā′ up into tuples ā′1, . . . , ā′ℓ such that ā′k ∈ Aik

, and further elements
ā1, . . . , ā

∗
s such that ā∗t ∈ Ai∗t

. By (B), for each k = 1, . . . , ℓ we have (Aik
, āk) ≥n+1 (Bik

, b̄k) and
so we may pick b̄′k ∈ Bik

such that (Bik
, b̄k b̄

′
k) ≥n (Aik

, ākā
′
k). By (C), for each t = 1, . . . , s we

may choose j∗t and b̄ ∈ Bj∗t
such that (Bj∗t

, b̄∗t ) ≥n (Ai∗t
, ā∗t ). Furthermore, as each isomorphism

type appears infinitely many times, we may choose each of the j∗t to be an index that we have
not yet chosen. Our goal is to argue that

(B, b̄1b̄
′
1, . . . , b̄k b̄

′
k, b̄
∗
1 , . . . , b̄

∗
s) ≥n (A, ā1ā

′
1, . . . , ākā

′
k, ā
∗
1 , . . . , ā

∗
s)

from which we can conclude that

(A, ā) = (A, ā1, . . . , āk) ≥n+1 (B, b̄1, . . . , b̄k) = (B, b̄).
To show the former, we will use the inductive hypothesis. (A) and (B) follow by choice of the
b̄′i and b̄∗i . (C) for n is exactly (D) for n + 1, and (D) follows from (C) as Ai ≥n+1 Bj implies
Ai ≤n Bj . □

Claim 2.1.2. If (x, i) ∈ V then Ax,V ≥n+1 Bx,V
i .

Proof. Ax,V and Bx,V
i are of the form specified by the previous claim. Furthermore, each sort

indexed by i′,m is of the specified form, so we may check that the conditions of the previous
claim are satisfied sort by sort. If i′ ≠ i, the (i′,m)th sort of Ax,V and Bx,V

i are isomorphic by
construction, so there is nothing non-trivial to check. Consider instead when i′ = i. (A) and
(B) are vacuously true since there are no tuples. (C) is due to the fact that each structure
Bx,Ui,m

j appearing as an equivalence class in Ax,V also appears as an equivalence class in Bx,V
i .

(D) is verified as follows. Within the (i,m)th sort, the structures appearing as equivalence
classes in Bx,V

i are the Bx,Ui,m

j , which are also equivalence classes of Ax,V , and also the Ax,Ui,m .
For each m, since (x, i) ∈ V , there is j such that (x, i,m, j) ∈ U , so that (x, j) ∈ Ui,m. Thus,
for each m there is j such that Ax,Ui,m ≥n Bx,Ui,m

j . Since we have checked (A), (B), (C), and
(D) of the previous claim, we conclude that Ax,V ≥n+1 Bx,V

i . □

Sublemma 2.1.3. Let A and B be structures in the relational language L ∪ {E} which consist
of an equivalence relation E with infinitely many equivalence classes, such that each equivalence
class is an L-structure (and no relations from L hold between different equivalence classes).
Write A = ⊔iAi and B = ⊔iBi as disjoint unions of equivalence classes, with the Ai and Bi

being L-structures. If there is some Bj such that for every Ai we have Ai ≱n−1 Bj, then B ≱n A.

Proof. Suppose to the contrary that B ≥n A. Choose b̄ ∈ Bj . There is ā ∈ A such that
(A, ā) ≥n−1 (B, b̄). But, as A ≱n−1 B, this yields a contradiction. □

Claim 2.1.4. If (x, i) ∉ V then Bx,V
i ≱n Ax,V .

Proof. Since (x, i) ∉ V , there is m such that for all j we have (x, i,m, j) ∉ U and so (x, j) ∉ Ui,m.
Thus, there is m such that for all j we have Bx,Ui,m

j ≱n−1 Ax,Ui,m . For this m, we will show that
Sublemma 2.1.3 applies when focusing on the (i,m)th sort of Bx,V

i and Ax,V
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Ax,Ui,m is one of the equivalence classes of Bx,V
i for this sort. The equivalence classes of

Ax,V for this sort are exactly the structures Bx,Ui,m

j . Note that for all j we have (x, j) ∉ Ui,m

and so by (2), Bx,Ui,m

j ≱n−1 Ax,Ui,m . Thus, we can apply Sublemma 2.1.3 to conclude that
Bx,V

i ≱n Ax,V on the sort indexed by i,m and indeed Bx,V
i ≱n Ax,V follows at once. □

Claims 2.1.2, and 2.1.4 finish the inductive argument. We now argue for the full statement
of the lemma. Consider a Π0

2m set V ⊆ 2ω. Note that U ∶= V × {0} is a Π2m subset of 2ω × ω.
The above inductive construction (with parameter n =m + 1) gives us structures Mx = Ax,U

and N x = Bx,U
0 such that

x ∈ V ⇐⇒ (x,0) ∈ U ⇐⇒ Ax,U ≤m Bx,U
0 ⇐⇒ Mx ≤m N x.

This gives the desired effective reduction from V to the sets of pairs of structures (M,N )
related by M ≤m N and completes the proof of the lemma. □

We delay giving a lower bound on the definability of the back-and-forth relations in the
infinite case until Section 5 where we use jump inversions. The finite cases contain the critical
combinatorics.

3. Upper bounds for the definability of the α-types of structures

The remaining statements of Theorem 1.3 are concerned with the case where we fix a structure
M and consider whether some other structure N satisfies N ≥αM or N ≤αM. In this section,
we will prove the needed upper bounds on the complexities of the sets {N ∶M ≤α N} and
{N ∶M ≥α N}. We begin with general bounds which hold for most α, followed by certain
exceptional cases where we can prove better bounds for small α or α near limit ordinals. All of
these results are optimal; we provide the corresponding proofs of the lower bounds in future
sections.

3.1. General bounds. The following two lemmas provide general bounds for the α-types of
structures that are superior to the Π0

2α bounds provided by the previous analysis.
Lemma 3.1. Let M be a fixed countable structure and let ā ∈M. For each α < ω1 there is a
Πα+2 formula φ such that N ⊧ φ(b̄) if and only if (N , b̄) ≥α (M, ā). Hence the set

{N ∶M ≤α N}
is Π0

α+2.
Proof. The classical analysis of the back-and-forth relations (see, e.g., Lemma VI.14 in [Mon])
gives several base cases for this claim. The formulas given there are Π2α, and for α = 1 or 2
and α = λ or λ + 1 for a limit level λ we have 2α ≤ α + 2 and so the claim is already shown. (In
fact, for α = 1, there is even a Π1 formula satisfying the lemma.)

We now complete the proof by proving the following inductive claim.
Claim. If for every ā ∈M there is a formula φα

M,ā(x̄) satisfying the claim for α ∈ ω1 then for
every ā ∈M there is a formula φα+2

M,ā(x̄) satisfying the claim for α + 2.

Proof. Suppose that for each M and q̄ ∈ M there is a Πα+2 formula φα
M,q̄(x̄) such that

N ⊧ φ(p̄) if and only if (N , p̄) ≥α (M, q̄). Given M and ā ∈M we must show that there is a
a Πα+4 formula φ(x̄) such that N ⊧ φ(p̄) if and only if (N , p̄) ≥α+2 (M, ā). For each b̄ ∈M,
there is a Πα formula θb̄(x̄, ȳ) defining the Πα type of āb̄ in M, i.e., such that M ⊧ θb̄(ā, c̄) if
and only if (M, āc̄) ≥α (M, āb̄) (see [Mon] Lemma II.62). Let

ψ(x̄) ∶=⩕
ℓ

∀y1, . . . , yℓ ⩕
b1,...,bℓ∈M

(θb̄(x̄, ȳ)Ð→ φα
M,āb̄
(x̄, ȳ))
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and let
χ(x̄) ∶=⩕

k

∀y1, . . . , yk ⩔
b1,...,bk∈M

⩕
c1,...,cℓ∈M

∃z1, . . . , zℓ θb̄c̄(x̄, ȳ, z̄).

Note that ψ is Πα+2 and χ is Πα+4, so that ψ ∧ χ is Πα+4. We claim that N ⊧ ψ(p̄) ∧ χ(p̄) if
and only if (N , p̄) ≥α+2 (M, ā) and therefore is our desired formula.

First, suppose that N ⊧ ψ(p̄) ∧ χ(p̄). Given q̄ ∈N , by N ⊧ χ(p̄) there is b̄ ∈M such that
N ⊧ ⩕

c1,...,cℓ∈M
∃z1, . . . , zℓ θb̄c̄(p̄, q̄, z̄).

Then for any c̄ ∈M, there is r̄ ∈ N such that
N ⊧ θb̄c̄(p̄, q̄, r̄).

By N ⊧ ψ(p̄), we get
N ⊧ φα

M,āb̄c̄
(p̄, q̄, r̄).

This implies that (N , p̄q̄r̄) ≥α (M, āb̄c̄). In particular, to win the (N , p̄) ≥α+2 (M, ā) game, the
Duplicator can play b̄ in response to q̄ on the first move, r̄ in response to c̄ on the second move,
and then play the winning strategy for (N , p̄q̄r̄) ≥α (M, āb̄c̄) to win the game, as desired.

On the other hand, suppose that (N , p̄) ≥α+2 (M, ā). We must argue that N ⊧ ψ(p̄) and
N ⊧ χ(p̄). First, we argue that M ⊧ ψ(ā) and M ⊧ χ(ā). The former is due to the definitions
of θb̄ and φα

M,āb̄
. The latter is because M ⊧ θb̄c̄(ā, b̄, c̄) for any b̄ and c̄ as the quantifiers and

conjunctions/disjunctions are essentially both over elements of M. Now since ψ is Πα+2, and
(N , p̄) ≥α+2 (M, ā), we have N ⊧ ψ(p̄). Though χ is Πα+4, we can also argue that because
(M, ā) ⊧ χ and (N , p̄) ≥α+2 (M, ā) we get N ⊧ χ(p̄). We can argue this by hand, but one
could also note that χ is Aα+2 and apply Proposition 1.6 (and indeed the complexity of the
argument below is one justification for considering this complexity class of formulas as we do
in Section 6). To show that N ⊧ χ(p̄), for all k and q̄ we must show that

N ⊧ ⩔
b1,...,bk∈M

⩕
c1,...,cℓ∈M

∃z1, . . . , zℓ θb̄c̄(p̄, q̄, z̄).

Choose ū ∈M such that (N , p̄q̄) ≤α+1 (M, āū). Since M ⊧ χ, we have
M ⊧ ⩔

b1,...,bk∈M
⩕

c1,...,cℓ∈M
∃z1, . . . , zℓ θb̄c̄(ā, ū, z̄).

So, for some disjunct b̄ (in fact for b̄ = ū) for every c̄ there are v̄c̄ ∈M such that
M ⊧ θb̄c̄(ā, ū, v̄c̄).

For each c̄ choose r̄c̄ such that (M, āūv̄c̄) ≤α (N , p̄q̄r̄c̄). Since θb̄c̄ is Πα we get
N ⊧ θb̄c̄(p̄, q̄, r̄c̄).

Thus there is b̄ such that for every c̄ there is r̄c̄ such that
N ⊧ ⩔

b1,...,bk∈M
⩕

c1,...,cℓ∈M
∃z1, . . . , zℓ θb̄c̄(p̄, q̄, z̄).

Since we have shown this for all k and q̄, we have that N ⊧ χ(p̄). □

This completes the proof of Lemma 3.1. □

Note that for α odd, finite, and greater than 1 we do not get a better complexity even
though the base case is stronger than required by the lemma. This is of no help in the inductive
steps—the complexity comes from the formula χ, which does not involve the formula given by
the inductive hypothesis.

We now prove the analog of Lemma 3.1 for {N ∶ N ≤αM}.
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Lemma 3.2. Let M be a fixed countable structure. For each α ∈ ω1 there is a Πα+3 formula φ
such N ⊧ φ(b̄) if and only if (N , b̄) ≤α (M, ā). Hence the set

{N ∶ N ≤αM}
is Π0

α+3.

Proof. If α is a limit ordinal, this claim follows at once from the classical description of
back-and-forth relations. Therefore, we can assume that α = β + 1. We note that

(N , b̄) ≤α (M, ā) ⇐⇒ N ⊧ ⩕
β<α
⩕

c̄∈M
∃x̄(N , b̄, x̄) ≥β (M, ā, c̄).

By Lemma 3.1 each formula (N , b̄, d̄) ≥β (M, ā, c̄) can be expressed in a Πβ+2 manner. This
means that, overall, the formula is Πα+3. □

One contrast between the formulas described in Lemmas 3.1 and 3.2 to capture the back-
and-forth relations and those described in the classical analysis of Lemma VI.14 in [Mon] lies in
the computability of the formulas. The method in Lemma VI.14 in [Mon] is always computable
in the simplest presentation of the structure M. On the other hand, Lemmas 3.1 and 3.2 rely
on Πα formulas that isolate the entire Πα-type of a tuple within a given structure (provided
by [Mon] Lemma II.62). Extracting such a formula given a tuple and a structure is not an
effective procedure. In sum, there is a tradeoff at play here. The formulas in Lemmas 3.1
and 3.2 may be far simpler in quantifier complexity when compared to the previously known
descriptions of back-and-forth relations, but they are less computable. We conjecture that this
tradeoff is necessary.

Conjecture 3.3.
(1) For n ≥ 2 even, there is a structure M such that

{N ∶ N ≥nM}
is Π0

2n but not Σ0
2n.

(2) For n ≥ 3 odd, there is a structure M such that
{N ∶ N ≥nM}

is Π0
2n−1 but not Π0

2n−1.
(3) For n ≥ 2 even, there is a structure M such that

{N ∶ N ≤nM}
is Π0

2n−1 but not Σ0
2n−1.

(4) For n ≥ 3 odd, there is a structure M such that
{N ∶ N ≤nM}

is Π0
2n but not Σ0

2n.
Moreover, each of these is witnessed by an index set result for countable structures, e.g., for
(1), the index set {i ∶ Ni ≤nM} is Π0

2n m-complete.

Note that the difference between the odd and even cases is due to the base case, and whether
the last case of the back-and-forth game is in M or N . See the difference between Lemma 3.5
and Lemma 3.6.

(1), for example, would be implied by the following conjecture from Scott analysis:

Conjecture 3.4. For each even n ≥ 2, there is a computable structure M with a Πn Scott
sentence but no computable Σ2n Scott sentence.
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Alvir, Knight, and McCoy [AKMC20] produce a structure with a Π2 Scott sentence but
no computable Π2 Scott sentence. Alvir, Csima, and Harrison-Trainor [ACHT] produce a
structure with a Π2 Scott sentence but no computable Σ4 Scott sentence. The general case
remains open.

3.2. Exceptional bounds. We now consider the simplest cases of Theorem 1.3 with α = 1,
α = 2, or α near a limit ordinal. These small values have improved descriptions for the α-type
when compared to the general results of the previous section.

Lemma 3.5. For any structure M the set

{N ∶ N ≥1M}
is Π0

1.

Proof. The conjunction of the finitary universal sentences true in M defines the set as all Π1
formulas are a conjunction of these formulas. □

Lemma 3.6. For any structure M the set

{N ∶ N ≤1M}
is Π0

2.

Proof. This is the same upper bound given previously, straight from the definition. Let θā(x̄)
be the finitary quantifier-free formula which says that x̄ and ā satisfy the same atomic formulas
(from among the first ∣ā∣-many formulas). Then

N ≤1M ⇐⇒ N ⊧ ⩕
ā∈Mn

∃y1, . . . , yn θā(y1, . . . , yn). □

Lemma 3.7. For any structure M the set

{N ∶ N ≤2M}
is Π0

3.

Proof. Note that
N ≤2M ⇐⇒ ⩕

ā∈M
∃x̄ (N , x̄) ≥1 (M, ā)

which is Π0
3 by the upper bound established in Lemma 3.5. □

Another place where the bounds are exceptional is near limit ordinals. Just like the small
finite values, we can improve the bounds for these ordinals. We consider these cases below.

Lemma 3.8. For any structure M we have the following.
(1) If α = λ where λ is a limit ordinal, the set {N ∶ N ≤αM} = {N ∶ N ≥αM} is Π0

α.
(2) If α = λ + 1 where λ is a limit ordinal, the set {N ∶ N ≥αM} is Π0

α+1.
(3) If α = λ + 1 where λ is a limit ordinal, the set {N ∶ N ≤αM} is Π0

α+1.

Proof. Each of these follows immediately from the classical description of the back-and-forth
relations from Lemma VI.14 in [Mon]. In particular, note that λ = 2λ and (λ + 1) + 1 =
2(λ + 1). □

Lemma 3.9. If λ is a limit ordinal the set

{N ∶M ≥λ+2 N}
is Π0

λ+3 for all M.
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Proof. For this proof, we let pā denote the Πλ-type of ā ∈M, and note that pā(x̄) can be
expressed as a Πλ formula (as the conjunction of the formulas φα

ā(x̄) for α < λ expressing that
(N , x̄) ≥α (M, ā)). First, if M ≥λ+2 N , then the Πλ-types realised in N are the same as the
Πλ-types realised in M. (Or, what is the same, M ≡λ+1 N ). This can be expressed by the
Πλ+2 sentence

ψ = ⩕
ā∈M

∃x̄ pā(x̄) ∧ ⩕
n
∀x1, . . . , xn ⩔

ā∈M
pā(x̄).

Now for each ā ∈M, let Pā be the set of all Πλ-types extending that of ā realized in the
structure M,

Pā = {pāb̄(x̄, ȳ) ∶ b̄ ∈M}.
Let Pā be the set of all Πλ types realised in M but not in Pā. Consider the sentence

θ = ⩕
ā∈M

∃x̄ ⩕
p∈Pā

¬∃ȳ p(x̄, ȳ).

Note that θ is true in M by construction and that it is a Πλ+3 formula. In particular, θ is
a conjunction of Σλ+2 formulas. If M ≥λ+2 N , then since θ is true in M, each of its Σλ+2
conjuncts is true in N . This means that θ is true in N . (Alternatively, one can note that θ is
Eα and appeal to Proposition 1.6 which we prove later.) Thus if M ≥λ+2 N then N ⊧ ψ ∧ θ.

On the other hand, suppose that N ⊧ ψ ∧ θ. Then M and N realise the same Πλ types.
Given ā ∈M, choose b̄ ∈ N such that

N ⊧ ⩕
p∈Pā

¬∃ȳ p(b̄, ȳ).

Now given b̄′ ∈ N , we have that
N ⊧ ⩕

p∈Pā

¬p(b̄, b̄′).

But the Πλ types realised in N are the same as the Πλ-types realised in M because N ⊧ ψ,
and so since b̄b̄′ does not realise one of the types in Pā it must realise one of the types in
Pā, say pāā′ . Then (M, āā′) ≡λ (N , b̄b̄′). Working backwards through the proof gives that
(M, ā) ≥λ+1 (N , b̄) and so M ≥λ+2 N . Thus if N ⊧ ψ ∧ θ then M ≥λ+2 N . □

4. Lower bounds for the definability of the α-types of structures

We now consider lower bounds for the complexity of the sets {N ∶M ≤α N} and {N ∶M ≥α

N}. We only consider particular values of α and will show how to use these results to prove
the complete characterization in Section 5. We begin by considering small finite values for
which the back-and-forth relations are very easy to define. We then look at slightly larger
finite values that exhibit more general behavior and are therefore suitable base cases for the
jump inversion argument in Section 5. Lastly, we analyze exceptional cases near limit ordinals.
In all cases, we have already shown that the sets are of the specified complexity, and so it is
just the hardness results that remain.

4.1. Lower bounds for small finite cases. The following three cases are too small to exhibit
general behavior, so they are treated separately.

Lemma 4.1. There is a structure M such that the set

{N ∶ N ≥1M}
is Π0

1-complete.
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Proof. Let M be a structure in the language of one unary relation U where U holds of exactly
one element. Given a Π0

1 set A, we can build for each x ∈ 2ω a structure N x such that U
holds of exactly one element in N x (and hence N x ≥1M) if x ∈ A and U holds of exactly two
elements in N x (and hence N x ≱1M) if x ∉ A. □

Lemma 4.2. There is a structure M such that the set
{N ∶ N ≤1M}

is Π0
2-complete.

Proof. Let M be the structure in the language of one unary relation U where U holds of
an infinite-coinfinite subset of the elements of M. The set Inf ⊆ 2ω of strings with infinitely
many 1’s is Π0

2-complete (see e.g., Section 23.A of [Kec95] for this and other examples of
complete sets), so we will reduce it to {N ∶ N ≤1M}. Given x ∈ 2ω we construct N x so that
x ∈ Inf ⇐⇒ N x ≤1 M. If N x has domain N, let N x ⊧ U(2i) if and only if x(i) = 1 (U will
never hold of any odd elements). If x has infinitely many 1’s then N x ≅M, so in particular
N x ≤1M. If x has finitely many 1’s, say n of them, then in M at least n + 1 distinct elements
satisfy the relation U , but in N x there are only n. Thus N x /≤1M as desired. □

Lemma 4.3. There is a structure M such that the set
{N ∶ N ≤2M}

is Π0
3-complete.

Proof. Identify (2ω)ω with all lists (ai)i∈ω of infinite binary strings. Let A ⊆ (2ω)ω be the set
of lists (ai)i∈ω such that every ai has finitely many 1’s. This set is Π0

3-complete.
Consider structures of the following type: they have countably many sorts, labeled by unary

relations Ri, each sort consisting of a linear ordering. Given a structure C of this form, we write
Ci to mean the linear ordering defined by the Ri points. We let M be the unique structure
of this form with Mi ≅ ω for all i. Given x = (xi)i∈ω we construct in a continuous way N x,
also a structure of the above form, so that x ∈ A ⇐⇒ N x ≤2M. Given i, we explain how to
construct N x

i the ith sort of N x. Start with a copy of ω. Whenever we see another 1 in the
string xi, add an element below all of the previously added elements. If xi has finitely many
1’s, then in N x

i we add only finitely many elements below the initial copy of ω, and so N x
i ≅ ω.

If ai has infinitely many 1’s, then N x
i = ω∗ +ω ≅ ζ. If x ∈ A, all of the xi have finitely many 1’s

and N x ≅M, so in particular N x ≤2 M. On the other hand, if x /∈ A, some xi has infinitely
many 1’s, so N x

i ≅ ζ. Let
φ ∶= ∃y [Ri(y) ∧ ∀z (Ri(z)Ð→ z ≥ y)] .

Note that M ⊧ φ, yet N x ⊧ ¬φ, so N x ≰2M as desired. □

4.2. Critical finite cases. The next two cases we consider are critical because they exhibit all
of the complexity of the behavior of the general case. In Section 5, we will use jump inversion
to obtain all of the other non-exceptional cases from these two.

Lemma 4.4. There is a structure M such that the set
{N ∶ N ≥2M}

is Π0
4-complete.

Proof. The structures we work with will be flower graphs (sometimes also called bouquet
graphs). Let S be a non-empty family of subsets of ω. (From now on, all of our families will
be assumed to be non-empty.) There is a corresponding flower graph GS . This flower graph
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will have, for each S ∈ S, infinitely many connected components (all isomorphic to each other)
consisting of a central vertex with, for each n ∈ S, a loop of length n.

This graph encodes what we will call positive enumerations of the family S. A positive
enumeration of S should be an object from which positive information about S can be obtained
positively, though one has to express this formally. There are many equivalent definitions, but
one is as follows. A positive enumeration of a family is a function f ∶ω × ω × ω → {0,1} such
that, for each x, y, f(x, y,0) = 0 and if f(x, y, s) = 1 then f(x, y, t) = 1 for all t ≥ s. We set

f̂(x, y) = lim
s→∞ f(x, y, s).

Let
Xi = {j ∶ f̂(i, j) = 1}.

Then f is a positive enumeration of the family {Xi ∶ i ∈ ω}. Note that the order in which the
subsets of ω appear does not matter, and sets can be repeated. The same set can show up
multiple times in the enumeration.

The idea is that GS has the property, easily verified, that (a) from any enumeration of S, we
can compute a copy of GS , and (b) from any copy of GS we can enumerate a copy of S. (In
particular, there is a continuous map that takes an enumeration of S to a presentation of GS ,
and a continuous map taking a presentation of GS to an enumeration of S.)

We say that a family S is closed under finite additions of elements if whenever S ∈ S and F
is finite, then S ∪ F ∈ S.

Claim 4.4.1. Let S and T be two families of subsets of ω, and suppose that both S and T are
closed under finite additions of elements. Then GS ≤2 GT if and only if for each T ∈ T there is
S ∈ S such that S ⊆ T .

Proof. Suppose that there is T ∈ T such that for all S ∈ S we have S ⊈ T . We describe a
winning strategy for Spoiler in the back-and-forth game to witness GS ≰2 GT . First, Spoiler
plays the central vertex u ∈ GT of a connected component corresponding to T . Say that
Duplicator responds with the central vertex v ∈ GS of a connected component corresponding
to S ∈ S. Since S ⊈ T , there is some n ∈ S with n ∉ T . Then Spoiler plays an n-cycle in GS
in the connected component of v, to which Duplicator cannot respond with an n-cycle in the
connected component of u. If Duplicator responds with a vertex v ∈ GS that is not a central
vertex, then Spoiler can play a path connecting v to its central vertex v′ along with an n-cycle
connected to v′. Again, Duplicator cannot respond with an n-cycle in the connected component
of u. Thus GS ≰2 GT .

Now suppose that for each T ∈ T there is S ∈ S such that S ⊆ T . We will describe a winning
strategy for Duplicator in the back-and-forth game to witness GS ≤2 GT . On their first play,
Spoiler plays elements of GT ; we may assume that they play central vertices u1, . . . , uk together
with, for each i, the elements of finitely many loops in the connected component of ui. For
each i, let Fi be the finite set of sizes of loops that Spoiler plays connected to ui. For each
i, let Ti ∈ T be the set coded by the connected component of ui, and choose in S a set Si

with Fi ⊆ Si ⊆ Ti. Duplicator will respond, in GS , with vertices v1, . . . , vk chosen such that the
connected component of vi codes Si ∈ S; using the fact that Fi ⊆ Si, Duplicator also responds to
each loop played by Spoiler on ui with a loop of the same size on vi. Now in the second round
of the game suppose that Spoiler plays, in GS , finitely many further loops on the vi, together
with new central vertices v′1, . . . , v′ℓ and finitely many loops in their connected components.
Since Si ⊆ Ti, Duplicator can respond to each loop on vi with a loop on ui of the corresponding
size. For each j let Gj be the set of sizes of loops played by Spoiler on v′j , and choose Tj ⊇ Gj .
Then Duplicator can respond to each v′j with a central vertex u′j coding Tj , and to the loops
played on v′j with loops of the same lengths on u′j . Thus GS ≤2 GT . □
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Let S = {Si ∪ F ∶ i ∈ N, F ∈ [N]<ω} where Si = {⟨i, j⟩}j∈ω.

Claim 4.4.2. The set of enumerations f of families T such that for all T ∈ T there is S ∈ S
with S ⊆ T is Π0

4-complete. Moreover, given any Π0
4 set A, there is a Wadge reduction x↦ fx

such that each fx is an enumeration of a family which is closed under finite additions of
elements.

Proof. Let A be the Π0
4-complete set of all lists f = (fu,v)u,v∈ω of graphs of functions fu,v ∶ ω → ω,

with
f ∈ A⇐⇒ ∀u∃v fu,v is total.

Given f = (fu,v), we produce an enumeration g of the family T = {Tu,F ∶ u ∈ N, F ∈ [N]<ω}
where

Tu,F = F ∪ {⟨v, j⟩ ∶ v ∈ N and fu,v(j) ↓}.
We must show that f ∈ A if and only if for all T ∈ T there is S ∈ S such that S ⊆ T .

Say that f ∈ A. In this case, we must show that there is a pair i ∈ N, F ′ ∈ [N]<ω such
that Tu,F ⊇ Si ∪ F ′. Let F = F ′ and take i to be the witness showing that fu,i is total. In
particular this means that fu,i(j) ↓ always holds so for all j, ⟨i, j⟩ ∈ Tu,F . It follows at once
that Tu,F ⊇ Si ∪ F ′ as desired.

Conversely say that there is an Si ∈ S such that Si ⊆ Tu,∅. This means that for all j, fu,i(j) ↓,
that is, fu,i is total. This holds for any u, so we have that f ∈ A, as desired. □

Together, these two claims finish the proof. We take M = GS . We reduce to {N ∶ N ≥2M}
any Π0

4 set B by producing, for each x, an enumeration fx of a family Tx which is closed under
finite additions of elements, and from this a presentation of GTx . Then GTx ≥2 GS if and only if
x ∈ B. □

Lemma 4.5. There is a structure M such that
{N ∶ N ≤3M}

is Π0
6-complete.

Proof. We will make use of the construction of Lemma 4.4. Let S = {Si ∪ F ∶ i ∈ N, F ∈ [N]<ω},
where Si = {⟨i, j⟩}j∈ω, be the family of subsets of ω defined in Lemma 4.4 and let Sfin be the
family of all finite subsets of ω.

In addition to what we proved earlier, we will need two additional facts. First, in Claim 4.4.2
we can replace the family T by T ∪ S to assume that T contains S. This modification does
not change whether for all T ∈ T there is S ∈ S with S ⊆ T . Second, under this assumption, we
can improve one direction of Claim 4.4.1 as follows.

Claim 4.5.1. Let S and T be two families of subsets of ω, and suppose that both S and T are
closed under finite additions of elements. Suppose that S ⊆ T and that for each T ∈ T there is
S ∈ S such that S ⊆ T . Then GS ≥3 GT .

Proof. We give a strategy for Duplicator in the back-and-forth game to witness GS ≥3 GT .
On their first play, Spoiler plays elements p̄ ∈ GS intersecting connected components coding
S1, . . . , Sk. Because S ⊆ T , there is a natural embedding ι ∶ GS → GT . Duplicator plays ι(p̄)
in response. We claim that (GS , p̄) ≤2 (GT , ι(p̄)), so this is a winning move. Duplicator will
play according to ι on the connected components coding S1, . . . , Sk in each structure. This
is a winning strategy as ι restricts to an isomorphism on these components. The remaining
connected components on each side only finitely differ from GS and GT . In particular, they
are isomorphic to the whole of GS and GT . This means that Duplicator can play a winning
strategy for GS ≤2 GT on these components to win the (GS , p̄) ≤2 (GT , ι(p̄)) game. Under the
assumptions provided, such a winning strategy is provided in Claim 4.4.1. □
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The following general claim will allow us to conclude the desired result.

Claim 4.5.2. Let M be a structure such that for all Π0
β sets C there is a continuous map

x↦ Nx such that:
(1) if x ∈ C then Nx ≤α+1M,
(2) if x /∈ C then Nx /≥αM, and
(3) there is a structure F such that for all x F ≤α Nx and F /≥αM.

Then there is a structure M̃ such that {Ñ ∶ Ñ ≤α+1 M̃} is Π0
β+2-hard.

Proof. Let A be a Π0
β+2 set, and write

x ∈ A⇐⇒ ∀m∃n (x,m,n) ∈ B
where B is Π0

β. By hypothesis for each m,n there is a structure N x
m,n such that

(x,m,n) ∈ B Ô⇒ N x
m,n ≤α+1M

and
(x,m,n) ∉ B Ô⇒ N x

m,n ≱αM.

Fix also the structure F . We must define a structure M̃ and build, for each x, a structure Ñ x

such that
x ∈ A⇐⇒ Ñ x ≤α+1 M̃.

We work in the language of M together with infinitely many fresh unary relations Ui and a
fresh equivalence relation E. Our structures M̃ and Ñ x will be divided by the Ui into infinitely
many distinguished sorts, each of which consists of infinitely many infinite E-equivalence
classes, with the equivalence classes refining the sorts. On each equivalence class, there will
be a structure in the language of M; the choice of structures that appear in each equivalence
class of each sort will be the only difference between the different structures. For M̃, in each
sort Un we have one equivalence class which is a copy of M and each other equivalence class is
a copy of F . For Ñ x, in each sort Um, we put as the 2nth equivalence class a copy of N x

m,n,
and as the 2n + 1th equivalence class a copy of F .

We claim that Ñ x ≤α+1 M̃ if and only if x ∈ A. First, suppose that Ñ x ≤α+1 M̃. Given m,
let u ∈ M̃ be an element of the sort Um and within Um of the equivalence class on which we
have a copy of M. There must be v ∈ Ñ x such that (Ñ x, v) ≥α (M̃, u); moreover, v must be
in the mth sort. If Gu is the structure on the equivalence class of u, and Gv is the structure
on the equivalence class of v, then Gv ≥α Gu. Then v cannot be in the 2n + 1th equivalence
class of the mth sort of Nx, since F /≥αM. Thus v must be in the 2nth equivalence class for
some n, and Gv ≅ N x

m,n ≥αM. By assumption, this implies that (x,m,n) ∈ B. So for each m
there is n such that (x,m,n) ∈ B, which implies that x ∈ A.

On the other hand, suppose that x ∈ A. For each m there is n such that (x,m,n) ∈ B, and
so for each m there is n such that N x

m,n ≤α+1M. We must show that Ñ x ≤α+1 M̃. Since M
is divided into sorts by the Ui, it suffices to show that this is true on each sort. Consider
the mth sort, and fix n such that N x

m,n ≤α+1 M. For each equivalence class of M̃ (with
induced structure G), there is an equivalence class of Ñ x (with induced structure H) such
that G ≥α+1 H; for the first equivalence class where G ≅M this is the 2nth equivalence class
with H ≅ N x

m,n, and for any other equivalence class with G ≅ F this is any of the infinitely
many equivalence classes with H ≅ F . Also, for each equivalence class of Ñ x (with induced
graph H ≅ N x

m,n or H ≅ F) there are infinitely many equivalence classes of M (with induced
structure G ≅ F) such that H ≥α G. This is enough to check that Ñ x ≤α+1 M̃ (see Sublemma
2.1.1). □
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We now complete the proof of the lemma by using Claim 4.5.2 with α = 2. By Claim 4.5.1
along with the construction in Lemma 4.4, there is a continuous map x↦ Nx satisfying the
first two conditions of Claim 4.5.2. Therefore, to finish the proof, we need only to construct
an F that satisfies the last condition of Claim 4.5.2 relative to this map. Let F = GSfin . Note
that Nx ≅ GT where T is always closed under finite additions of elements. This means that for
all finite sets F , there is a T ∈ T such that F ⊇ T . By Claim 4.4.1, this means that F ≤2 Nx.
Also, M = GS and S has only infinite sets; none of these sets are contained in any finite set, so
by Claim 4.4.1 M /≤2 F , as desired. This completes the proof of the lemma. □

4.3. Exceptional lower bounds at limit levels. The following cases are too close to a limit
ordinal to exhibit general behavior, so they are considered separately.

Lemma 4.6. If α is a limit ordinal, M ≤α N if and only if M ≥α N . There is a structure M
such that the set

{N ∶ N ≡αM}
is Π0

α-complete.

Proof. The first claim is well-known; see for example the proof of Lemma II.67 in [Mon].
To see the second claim, let δi → α be a fundamental sequence. By the Ash and Knight

Pair of Structures theorem [AK90] the set of models isomorphic to ωδi is Π0
δi

-hard. Let the
language of M be {<} along with infinitely many unary relations Ri. Let M contain exactly
one copy of each ωδi , where Ri holds exactly of the elements in ωδi .

Given a Π0
α set A, we can write A = ⋂iAi where Ai is Π0

δi
. For x ∈ 2ω, let N x

i ≅ ωδi if
and only if x ∈ Ai. Note that this can be done in a continuous fashion. N x contains exactly
a copy of each N x

i and Ri holds exactly of the elements in N x
i . As each component of N x

is constructed continuously, so is all of N x. If x ∈ A it is immediate that M ≅ N x and so
M ≡α N . If x /∈ A, then for some i N x

i /≅ ωδi . In particular, N x fails to satisfy the Π2δi+1 Scott
sentence of ωδi (give explicitly in [Mon] Lemma II.5) relativized to the predicate Ri. Thus,
N x /≡αM, completing the proof. □

For the next case, we need to make use of Montalbán’s tree of structures theorem as seen in
[Mon14], We only need a specific case of the theorem (namely, the one where the “tree” has
only one path that is the length of a limit ordinal), so we will only state the weak version
needed.

Theorem 4.7 (Montalbán [Mon14]). Given a limit ordinal λ and a fundamental sequence
δi → λ, let {Li}i∈ω and Lω be structures with Li ≡δi+1 Li+1 ≡δi+1 Lω for all i. Given a Π0

λ set
A = ⋂iAi where each Ai is Π0

δi
there is a continuous procedure that given x outputs Li if i is

the least such that x /∈ Ai and Lω if i ∈ A.

Note that examples of such Li with the additional property that Mi /≡δi+2 Li+1 always exist;
see for example, [Mon] Example IX.24 where the examples are linear orderings.

Lemma 4.8. If α = λ + 1 where λ is a limit ordinal, there is a structure M such that the set
{N ∶ N ≥αM}

is Π0
α+1-complete.

Proof. We first construct an example K such that {N ∶ N ≥α K} is Σ0
λ+1 complete; we will

use such a K as a piece of our final construction. Let {Li}i∈ω and Lω be linear orderings with
Li ≡δi+1 Li+1 ≡δi+1 Lω and Li /≡δi+2 Li+1 for all i. K will be a structure in the signature of two
equivalence relations E and F and an ordering <. The equivalence relation F will refine E.
Given some σ ∈ (ω + 1)ω, let Kσ be the structure in the language {F,<} with infinitely many
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F equivalence classes, each of which is a linear order. These linear orders will be infinitely
many copies of each Lσ(j) for each j ∈ ω. Then define K as follows with infinitely many E
equivalence classes, each of which is a structure Kσ. For each σ ∈ (ω + 1)ω with only finitely
many finite values, K will have infinitely many equivalence classes with a copy of Kσ.

Let B be a Σ0
λ+1 set. Let x ∈ B if and only if ∃m x ∈ Cm for a family of Π0

λ sets Cm.
Let Aj = C0 ∪ ⋯ ∪ Cj . For each j, write Aj = ⋂iAj,i where each Aj,i is Π0

δi
. Let Fj be the

continuous map from Theorem 4.7 with respect to the set Aj and let N x
j ∶= Fj(x). Note that

⊔j∈ωN x
j is isomorphic to Kτ0 for some τ0 ∈ (ω +1)ω. Let {τk}k∈ω enumerate the set of elements

in (ω + 1)ω that differ from τ0 on only finitely many inputs. Let N x contain infinitely many
E equivalence classes, countably many for each τk where the equivalence class corresponding
to each τk contains a copy of Kτk

. Note that N x is constructed by countably many disjoint
continuous modifications of Fj , and so in particular the map x↦ N x is continuous. (To modify
Fk, first designate countably many equivalence classes for each p ∈ (ω + 1)<ω; then on each
equivalence class corresponding to p put a copy of Lp(ℓ) for ℓ ≤ ∣p∣ and have Rℓ hold of those
points; for each r > ∣p∣ put a copy of Nx

r and have Rr hold of those points.)
We now show that x ∈ B if and only if N x ≥λ+1 K. If x ∈ B, eventually there is a witness m

such that x ∈ Cm. For j ≥m, this means that x ∈ Aj . In particular, τ0(j) for j ≥m is always ω.
This means that the set of elements of (ω + 1)ω that are finitely different from τ0 are exactly
those that have finitely many finite values. In particular, N x ≅ K, so N x ≥λ+1 K as required.
Now say that x /∈ B. This means that for any j, x /∈ Aj . Thus τ0 has only finite values. Consider
the formula ψ ∶= ∃z ⩕i∈ω φE

τ0(i)(z), where φE
τ0(i)(z) is the Π<λ sentence that expresses that in

the E-equivalence class of z there is an F -equivalence class δτ0(i) + 2-equivalent to Lτ0(i). By
construction, N x ⊧ ψ; any element of an equivalence class corresponding to τ0 is a witness.
However, M ⊧ ¬ψ; among the Lj the δτ0(i) + 2-type of Lτ0(i) isolates it up to isomorphism and
no E class ofM has all of the Lτ0(i) included (in fact, each such E class only has finitely many
Lj). As ψ is a Σλ+1 formula we see that N x /≥λ+1 K, as desired.

Finally, we construct the desiredM. Let D be a Π0
λ+2 set. Let x ∈D if and only if ∀n x ∈ Bn

for a family of Σ0
λ+1 sets Bn. For each n let Kn ≅ K and N x

n be the structures constructed
above for Bn. M will be a structure in the signature of <, the linear ordering within each
Li, two equivalence relations E and F along with infinitely many unary predicates {Sn}n∈ω
denoting sorts in the structure. M contains a copy of each Kn ≅ K, with the predicate Sn

holding exactly of the elements of Kn. Construct Ñx with a copy of each of the structures N x
n

for each n; let Sn hold exactly of the elements in N x
n . It is immediate that Ñ x ≥λ+1M exactly

when N x
n ≥λ+1 Kn for all n. By the above analysis, this happens exactly when ∀n x ∈ Bn, that

is, x ∈D, and this procedure is continuous as desired. □

5. Jump inversion

We now move the results from Lemmas 2.1, 4.2, 4.3, 4.4, and 4.5 up the Borel hierarchy.
To do this, we use the method of jump inversion following the methods and notation from
Chapter X.3 of [Mon], which itself follows Goncharov, Harizanov, Knight, McCoy, R. Miller,
and Solomon [GHK+05]. The results listed in that chapter are unsuitable for our direct use;
they lack uniformity in their statement and discuss constructions of computable reductions on
indices rather than continuous Wadge reductions. Nevertheless, the proof techniques presented
in Chapter X.3 of [Mon] do have the desired level of uniformity, even if the results are not stated
in that way, and the arguments relativize in a manner that is suitable for the construction of
a Wadge reduction. We provide a discussion of these techniques and the notation associated
with them.
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Fix α < ω1. In Chapter X.3 of [Mon], one works effectively, but as we are working non-
effectively, we generally do not need to worry about issues like ordinal presentations. However, if
we wanted, we could work relative to a presentation of α. Let L0 and L1 be rigid and uniformly
boldface ∆0

α+1 categorical (equivalently, Σα+1-atomic or having a Πα+2 Scott sentence; see
[Mon] Theorems II.23 and VII.21) structures with one binary relation S which are ≡α-equivalent
but with L0 ≰α+1 L1 and L1 ≰α+1 L0. Such structures L0 and L1 exist by Lemma X.14 of [Mon]
(but such examples were also constructed in [AK90]). It follows from the Ash and Knight pair
of structures theorem [AK90] that for any ∆0

α+1 set U , there is a continuous function x↦ Cx

such that
x ∈ U Ô⇒ Cx ≅ L0

and
x ∉ U Ô⇒ Cx ≅ L1.

This exact statement is not observed in the original paper of Ash and Knight, but it is a direct
corollary; the first explicit published reference known to the authors for a boldface version of
the theorem is [HM14] Theorem 2.2. (We also note that the boldface result follows with a
small amount of extra work from Louveau and Saint Raymond’s separation theorem [LR87].)

We can use these structures L0 and L1 to define the following map of structures.

Definition 5.1. Given a graph A = (A,E) construct Φα(A) = (C;A,R) as follows in the
language with a unary relation A and a 4-ary relation R. There is one A-point in Φα(A) for
each element in A, and we identify them. The non-A-points in Φα(A) are split into disjoint
infinite sets Ba,b for each pair of a, b ∈ A. Given a fixed a, b ∈ A, R(a, b, ⋅, ⋅) will be a binary
relation on Ba,b. If E(a, b) then (Ba,b,R(a, b, ⋅, ⋅)) will be isomorphic to L0 and if ¬E(a, b)
then (Ba,b,R(a, b, ⋅, ⋅)) will be isomorphic to L1.

Intuitively, one replaces each edge with a copy of L0 and non-edge with a copy of L1. In
Chapter X.3 of [Mon], it is proven that Φα is an infinitary Σ1 bi-interpretation with the
α-canonical structural jump of the image. We collect the relevant consequences of this claim
along with other observations about this construction in the theorem below.

Theorem 5.2. For each α ∈ ω1, the map Φα has the following properties:
(1) For every Πα+β formula φ there is a Πβ formula φ∗ such that A ⊧ φ∗ ⇐⇒ Φα(A) ⊧ φ.
(2) For every Πβ formula ψ there is a Πα+β formula ψ∗ such that A ⊧ ψ ⇐⇒ Φα(A) ⊧ ψ∗.
(3) A ≤β B if and only if Φα(A) ≤α+β Φα(B).

Proof. Using Karp’s theorem [Kar65], (3) follows directly from (1) and (2). Essentially, (1)
and (2) follow directly from the results in Section 2.2 of [MR23] along with Chapter X.3 of
[Mon]. To provide more detail, it follows from the existence of the Σ1 bi-interpretation and
the pull-back theorem (Theorem XI.7 of [Mon]) that

(1) For every Πβ formula φ there is a Πβ formula φ∗∗ such that

A ⊧ φ∗∗ ⇐⇒ Φα(A)(α) ⊧ φ.

(2) For every Πβ formula ψ there is a Πβ formula ψ∗∗ such that

A ⊧ ψ ⇐⇒ Φα(A)(α) ⊧ ψ∗∗.

From here, it is enough to show that
(1) For every Πβ formula φ∗∗ there is a Πα+β formula φ∗ such that

Φα(A) ⊧ φ∗ ⇐⇒ Φα(A)(α) ⊧ φ∗∗.
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(2) For every Πα+β formula ψ∗ there is a Πβ formula ψ∗∗ such that

Φα(A) ⊧ ψ∗∗ ⇐⇒ Φα(A)(α) ⊧ ψ∗.
The first item follows immediately by the definition of the α-canonical structural jump. The
second item is shown by transfinite induction, with the only interesting case being the base
case. We point out the uniformity in Montalbán’s proof in Chapter X.3 of [Mon]. In particular,
over every possible A he adds the same countably many Πα types to the language to Morleyize
Φα(A) and obtain Φα(A)(α). As a result, the translation of Πα+1 formulas about the α-
canonical structural jump into Π1 formulas about the base structure provided in [MR23]
Proposition 11 is uniform across all input structures and directly provides our desired base
case. □

The following lemmas are the key technical inputs needed to iterate our previous results
through the ordinals.
Lemma 5.3. Let X be a Polish space. Given a Σ0

α+1-measurable map F ∶X →Mod(E), there
is a continuous map Φα(F ) ∶X →Mod(A,R) such that Φα(F )(x) ≅ Φα(F (x)).
Proof. Consider a basic clopen set Um,n,i in Mod(E) for n,m ∈ ω and i ∈ {0,1}. If i = 0, then
this is the set of all structures with m /E n, and if i = 1, then it is the set of all structures
with m E n. Since F is Σ0

α+1-measurable, Cm,n,i = F −1(Um,n,i) must be ∆α+1. Let Gm,n be
a continuous map, coming from the pair of structures theorem, reducing (Cm,n,0,Cm,n,1) to
(L0,L1). That is, for each x ∈X,

m /EF (x) n⇐⇒ x ∈ Cm,n,0 ⇐⇒ Gm,n(x) ≅ L0

and
m EF (x) n⇐⇒ x ∈ Cm,n,1 ⇐⇒ Gm,n(x) ≅ L1.

We now define the map Φα(F ). Given x, Φα(F )(x) will be the structure in the language
{A,R} which has an infinite set A which we identify with N, and for m,n ∈ A we have disjoint
infinite sets Bm,n with R(m,n, ⋅, ⋅) defined on Bm,n so that Bm,n is isomorphic to Gm,n(x).
This is a continuous construction since each Gm,n is continuous, and Φα(F )(x) ≅ Φα(F (x))
by choice of the Gm,n. □

Lemma 5.4. If a class of graphs D is Π0
n hard as an invariant set in Mod(E) then the class

of structures
Φα(D) ∶= {M ∶M ≅ Φα(G) for some G ∈ D}

is Π0
α+n hard as an invariant set in Mod(A,R). Moreover, Φα(D) is Π0

α+n hard within the
image of Φα, that is, the maps witnessing these reductions always output structures isomorphic
to Φα(G) for some G.
Proof. Let S be a Π0

α+n subset of a Polish space X. We describe a continuous reduction from
S to Φα(D), which will immediately yield the desired result. Let S be Π0

α+n relative to the
parameter Y . Apply a change of topology to X to make all ∆0

α+1(Y ) sets clopen. In particular,
S is a Π0

n set in this new topology. Let G be the continuous map reducing S to D. Returning to
the viewpoint of the original topology, G ∶X →Mod(E) is a Σ0

α+1-measurable map. By Lemma
5.3, there is a continuous map Φα(G) ∶ X → Mod(A,R) such that Φα(G)(x) ≅ Φα(G(x)).
Note that

x ∈ S ⇐⇒ G(x) ∈ D ⇐⇒ Φα(G(x)) ∈ Φα(D) ⇐⇒ Φα(G)(x) ∈ Φα(D).
Therefore, Φα(G) is the required continuous map witnessing the reduction. □

We are now ready to generalize Lemmas 4.4 and 4.5 which give the general-case lower
bounds.
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Lemma 5.5. For α not a limit ordinal or successor of a limit ordinal, there is a structure M
such that the set

{N ∶ N ≥αM}
is Π0

α+2-complete.

Proof. LetM be the graph from Lemma 4.4 such that {N ∶ N ≥2M} is Π0
4-complete. If α = 2,

we are done; otherwise, if α = β + 2 > 2, we argue that for the jump inverse Φβ(M) we have
that {N ∶ N ≥α Φβ(M)} is Π0

α+2-hard.
In Mod(A,R) let Im(Φβ) be the (closure under isomorphisms) of the image of Φβ. By

Theorem 5.2 we have N ≥2M if and only if Φβ(N ) ≥α Φβ(M). Thus

{N ∶ N ≥α Φβ(M)} ∩ Im(Φβ) = {N ∗ ∶ N ∗ ≅ Φβ(N ) for some N ≥2M}.

By Lemma 5.4 this latter set is Π0
β+4 hard, and moreover it is Π0

β+4 hard within Im(Φβ). Thus

{N ∶ N ≥α Φβ(M)}

is Π0
β+4-hard or, equivalently, Π0

α+2-hard. □

Lemma 5.6. For α = β + 3, there is a structure M such that the set

{N ∶ N ≤αM}
is Π0

α+3-complete.

Proof. Let M be the structure from Lemma 4.5 such that {N ∶ N ≤3 M} is Π0
6-complete.

Abusing notation, we can assume that M is a graph up to effective bi-interpretation. If α = 3,
we are done; otherwise, if α = β + 3 > 3, we argue that for the jump inverse Φβ(M) we have
that {N ∶ N ≤α Φβ(M)} is Π0

α+3-hard. The argument is the same as in Lemma 5.5. □

We also generalize the exceptional cases Lemmas 4.2 and 4.3 to obtain lower bounds for the
remaining exceptional cases close to limit ordinals.

Lemma 5.7. If λ is a limit ordinal there is a structure M such that the set

{N ∶M ≥λ+2 N}
is Π0

λ+3-complete.

Proof. LetM be structure from Lemma 4.3 such that {N ∶ N ≥2M} is Π0
3-complete. Abusing

notation, we can assume thatM is a graph up to effective bi-interpretation. If α = λ+2 for our
limit ordinal λ, we argue that for the jump inverse Φλ(M) we have that {N ∶ N ≥α Φλ(M)}
is Π0

α+1-hard. This is argued exactly the same as in Lemma 5.5. □

Lemma 5.8. If α = λ + 1 where λ is a limit ordinal, there is a structure M such that the set

{N ∶ N ≤αM}
is Π0

α+1-complete.

Proof. Let M be the structure from Lemma 4.2 such that {N ∶ N ≤1 M} is Π0
2-complete.

Abusing notation, we can assume that M is a graph up to effective bi-interpretation. If
α = λ + 1 for limit ordinal λ, we argue that for the jump inverse Φλ(M) we have that
{N ∶ N ≤α Φλ(M)} is Π0

α+1-hard. This is argued exactly the same as in Lemma 5.5. □

To generalize Lemma 2.1, we need slightly more than Lemma 5.4, but the idea is essentially
the same. The only difference is that we are now considering pairs of structures.
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Lemma 5.9. For α not a limit ordinal, the set of pairs of structures

{(M,N ) ∶ M ≤α N}

is Π0
2α-complete.

Proof. For finite ordinals we have Lemma 2.1. So assume that α is infinite and write α = λ + n
for a limit ordinal λ and n ≥ 1. Note that 2α = λ + 2n. Consider the construction from Lemma
2.1 showing that the set {(M,N ) ∶ M ≤n N} is Π0

2n-complete. Abusing notation, we can
assume thatM and N are graphs up to effective bi-interpretation. We argue using the λ-jump
inversion that {(M,N ) ∶ M ≤α N} is Π0

λ+2n-hard.
Consider a Π0

λ+2n set A. In a manner analogous to the argument in Lemma 5.4, we
may refine the topology so that A is Π0

2n and find a map G that witnesses the hardness of
{(M,N ) ∶ M ≤n N} with respect to this map. With respect to the original topology, this
map G is Σ0

λ+1-measurable. Note that G(x) is a pair (Mx,Nx). The map G factors into two
Σ0

λ+1-measurable maps G1(x) =Mx and G2(x) = Nx. Lemma 5.3 gives us continuous maps
Φλ(Gi) such that Φλ(Gi)(x) = Φλ(Gi(x)). Note that by Theorem 5.2,

x ∈ A ⇐⇒ G1(x) ≤n G2(x) ⇐⇒ Φλ(G1(x)) ≤λ+n Φλ(G2(x)) ⇐⇒ Φλ(G1)(x) ≤λ+n Φλ(G2)(x).

Therefore, the map (Φλ(G1),Φλ(G2)) is a reduction from A to {(M,N ) ∶ M ≤α N}, so the
set is Π0

λ+2n hard. □

6. Eα and Aα formulas

As we have seen, the Σα/Πα hierarchy is not optimal for defining back-and-forth types. In
particular, for a fixed M, defining the set

{N ∶ N ≥αM}

requires a Πα+2 formula, but it is not true that if φ is Πα+2 and M ≤α N and M ⊧ φ then
N ⊧ φ. In this section, we define a hierarchy of complexity classes of Lω1ω formulas which more
precisely capture the back-and-forth relations. We call these the back-and-forth complexity
classes of Lω1ω formulas.

Definition 6.1. We define Aα and Eα (and simultaneously Aα and Eα) by mutual transfinite
recursion.

● A1 ∶= Π1
● E1 ∶= Σ1
● Aα ∶= closure of ⋃β<α Eβ under ∀ and ⩕i∈ω
● Eα ∶= closure of ⋃β<α Aβ under ∃ and ⩔j∈ω
● Eα ∶= closure of Eα under ⩔j∈ω,⩕i∈ω
● Aα ∶= closure of Aα under ⩔j∈ω,⩕i∈ω

Each Aα formula can be written in the form

⩕
i∈I

∀ȳiφi(x̄, ȳi)

where the formulas φi are Eβ for some β < α, and similarly a Eα formula can be written in the
form

⩔
i∈I

∃ȳiφi(x̄, ȳi)

where each φi is Aβ for some β < α.
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Σ1 Σ2 Σ3 ⋯ Σω Σω+1 ⋯

Π1 Π2 Π3 ⋯ Πω Πω+1 ⋯

E1 E2 E3 ⋯ Eω Eω+1 ⋯

E1 E2 E3 ⋯ Eω Eω+1 ⋯

A1 A2 A3 ⋯ Aω Aω+1 ⋯

A1 A2 A3 ⋯ Aω Aω+1 ⋯

⩔,∃ ⩕,∀

⩔,∃

⩕

∀

⩔,⩕

∀

∃

⩔,⩕

∀

∃

Figure 6.1. Hierarchies of Σα/Πα and Eα/Aα formulas. Solid arrows denote
inclusions. The dotted arrows show how syntactic operations affect the com-
plexity of formulas.

One could also make these definitions for L∞,ω formulas by allowing the conjunctions and
disjunctions to be over arbitrary sets; 1.6 still holds in this context. For simplicity we limit
ourselves to Lω1ω.

The following are some basic properties of these complexity classes that can all be confirmed
by straightforward induction arguments. The complexity classes ∃α and ∀α are defined by
counting alternations of quantifiers but not counting infinite conjunctions and disjunctions.

Proposition 6.2. Up to equivalence in countable structures:
● Σα ⊆ Eα ⊆ Eα ⊆ ∃α ∩Aα+1 ∩Eα+2
● ⩔Eα ⊆ Eα, ⩕Eα ⊆ Eα, ∃Eα ⊆ Eα, ∀Eα ⊆ Aα+1
● Eα ⊆ Eα+1, Aα ⊆ Aα+1, Eα ⊆ Eα+1, Aα ⊆ Aα+1
● ⩔Eα ⊆ Eα, ⩕Eα ⊆ Eα, ∃Eα ⊆ Eα+2, ∀Eα ⊆ Aα+1
● ¬Eα = Aα, ¬Aα = Eα, ¬Eα = Aα, ¬Aα = Eα.
● for limit α: Eα = Aα = closure of ⋃β<α(Eβ ∪Aβ) under ⩔⩕, thus Eα ⊆ Eα+1 (not Eα+2)
● Eα ⊆ arbitrary ⩕⩔ of Σα

See Figure 6.1 for a diagram summarizing the inclusions of these syntactic classes and a
diagram from the classical Σα hierarchy for comparison.

As indicated above, the key properties of this hierarchy lie in the way that it interacts with
the α back-and-forth relations. We show first that the α back-and-forth relations guarantee
agreement on Eα and Aα formulas the same way that they guarantee agreement on Σα and
Πα formulas even though there are more Eα and Aα formulas. In particular, we aim to extend
the following theorem of Karp [Kar65] (see e.g. [Mon], Theorem II.36).

Theorem 6.3. For any non-zero ordinal α, structures M and N and tuples ā ∈M and b̄ ∈ N ,
the following are equivalent:

(1) (M, ā) ≤α (N , b̄).
(2) Every Πα formula true about ā in M is true about b̄ in N .
(3) Every Σα formula true about b̄ in N is true about ā in M.
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Given this tight connection between the complexity classes of the hyperarithmetic hierarchy
and the back-and-forth game, one may wonder why these classes should not themselves be
considered the classes of “back-and-forth complexity”. As it turns out, the analog of Karp’s
theorem holds with Πα replaced by Aα and Σα replaced by Eα. Furthermore, the back-and-forth
complexity classes will enjoy many connections with the back-and-forth relations that ordinary
Πα and Σα formulas do not enjoy. We begin by demonstrating the analog of Karp’s theorem
for Aα and Eα. Because these classes are bigger than Πα and Σα, it is enough to demonstrate
that the back-and-forth relations also preserve all Aα and Eα in the appropriate manner.

Proposition 1.6. Suppose that (M, ā) ≤α (N , b̄) for α ≥ 1. Then given a Eα formula φ(x̄)
and a Aα formula ψ(x̄),

N ⊧ φ(b̄)Ô⇒M ⊧ φ(ā)
and

M ⊧ ψ(ā)Ô⇒ N ⊧ ψ(b̄)

Proof. We argue by induction on complexity. Our base case is α = 1 and A1 and E1 formulas,
which are just Π1 and Σ1 formulas. For these, the proposition follows directly from Theorem
6.3. Now, we have the inductive cases. In the inductive argument, we use the fact that we can
group the outside quantifiers in a Aα or Eα sentence.

Suppose that φ(x̄) is Eα, say φ(x̄) = ⩔i ∃ȳiθi(x̄, ȳi) where the θi(x̄, ȳi) are Aβ for some
β < α. Suppose that N ⊧ φ(b̄); then there is i and b̄′ such that N ⊧ θi(b̄, b̄′). Then there is ā′
such that (N , b̄b̄′) ≤β (M, āā′). By the induction hypothesis, M ⊧ θi(ā, ā′). Thus M ⊧ φ(ā)
as desired.

Suppose that φ(x̄) is Aα, say φ(x̄) = ⩕i∀ȳiθi(x̄, ȳi) where the θi(x̄, ȳi) are Eβ for some
β < α. This case is dual to the previous one. Suppose that M ⊧ φ(ā); then for every ā′ ∈M
and i, M ⊧ θi(ā, ā′). Suppose there is some b̄′ ∈ N and i such that N /⊧ θi(b̄, b̄′). Then there is
ā′ such that (N , b̄b̄′) ≤β (M, āā′). By the induction hypothesis, M /⊧ θi(ā, ā′), a contradiction.
Thus N ⊧ φ(b̄) as desired.

For the case of Eα, we induct on the number of infinitary conjunctions or disjunctions in front
of the base Eα formula. Suppose that φ(x̄) is Eα, and say φ(x̄) =⩔i θi(x̄) where each θi(x̄)
is Eα with fewer infinitary conjunctions or disjunctions in the front. Suppose that N ⊧ φ(b̄);
then for some i, N ⊧ θi(b̄), and so by the induction hypothesis, M ⊧ θi(ā). Thus M ⊧ φ(ā).
Similarly, suppose that φ(x̄) is Eα, and say φ(x̄) =⩕i θi(x̄) where each θi(x̄) is Eα. Suppose
that N ⊧ φ(b̄); then for all i, N ⊧ θi(b̄), and so by the induction hypothesis, M ⊧ θi(ā) for all
i. Thus M ⊧ φ(ā).

The cases where φ(x̄) is Aα, and either of the form φ(x̄) =⩔i θi(x̄) or φ(x̄) =⩕i θi(x̄) where
each θi(x̄) is Aα, is identical to the previous case. □

The following is immediate from the above lemma, along with Karp’s theorem.

Corollary 6.4. For any α ≥ 1, structuresM and N , and tuples ā ∈M and b̄ ∈ N , the following
are equivalent:

(1) (M, ā) ≤α (N , b̄).
(2) Every Πα formula true about ā in M is true about b̄ in N .
(3) Every Σα formula true about b̄ in N is true about ā in M.
(4) Every Aα formula true about ā in M is true about b̄ in N .
(5) Every Eα formula true about b̄ in N is true about ā in M.
(6) Every Aα formula true about ā in M is true about b̄ in N .
(7) Every Eα formula true about b̄ in N is true about ā in M.
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This means that when it comes to interactions with back-and-forth relations, our new notions
of complexity act at least as nicely as the classical notions. That said, our new notions have
properties that the classical ones do not. The key difference is distilled in the following result.
Classically, there may be no maximal Πα or Σα formula, i.e., one which captures the entire Πα

or Σα theory of a given structure or tuple (we give examples of such structures in the following
section). In the past, a Π2α formula was used to describe theories at this level (see [Mon]
Lemma VI.14), though we showed in Lemma 3.1 that Πα+2 is sufficient. Our larger classes
contrast with this; they are always able to capture an entire theory at level α with a formula
at that same level.

Proposition 1.5. For M a countable structure, ā ∈M, and α ≥ 1, there are a Eα formula
φā,M,α(x̄) and Aα formula ψā,M,α(x̄) such that for N any structure,

N ⊧ φā,M,α(b̄)⇐⇒ (M, ā) ≥α (N , b̄)

and
N ⊧ ψā,M,α(b̄)⇐⇒ (M, ā) ≤α (N , b̄).

Proof. We argue by induction, starting with α = 1. For ψā,M,1, for each m there are only
finitely many possible atomic m-types (using only the first m atomic formulas). Let θā(x̄) be
the finitary quantifier-free formula which says that x̄ and ā satisfy the same atomic formulas
(from among the first ∣ā∣-many formulas). In a finite relational language, like that of linear
orders, we can take θā(x̄) to say that ā and x̄ have the same atomic type, i.e., are ordered in
the same way. Then (N , b̄) ≥1 (M, ā) if and only if

N ⊧⩕
n∈N

∀ȳn ⩔
ā′∈Mn

θāā′(b̄, ȳ).

The inner disjunction looks like it is infinite, but in fact, it is not; this is because there are
only finitely many possible formulas θāā′(x̄). Thus, this formula is A1 (and in fact Π1). For
φā,M,1, we have (N , b̄) ≤1 (M, ā) if and only if

N ⊧ ⩕
ā′∈M

∃ȳθāā′(b̄, ȳ).

This is E1.
Now, given α > 1, suppose that we have Eβ formulas φā,M,β and Aβ ψā,M,β for β < α. Then

(N , b̄) ≤α (M, ā) if and only if

⩕
β<α
⩕

ā′∈M
∃ȳψāā′,M,β(b̄, ȳ)

and (N , b̄) ≥α (M, ā) if and only if

⩕
β<α
⩕
m∈N

∀ȳm ⩔
ā′∈M

φāā′,M,β(b̄, ȳ).

These define our desired Eα formulas φā,M,α and Aα formulas ψā,M,α. □

7. Henkin constructions

In countable model theory, Henkin constructions with restricted sets of formulas—often in
some countable fragment, or in a complexity class such as Σα—have proved useful, especially
for type omitting arguments. We will describe two applications of the Aα/Eα formulas in
Henkin constructions.
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7.1. Scott ranks of models of a theory of linear orders. In [GHT], Gonzalez and
Harrison-Trainor prove the following theorem:
Theorem 7.1 (Gonzalez and Harrison-Trainor [GHT]). Given a satisfiable Πα sentence T of
linear orders, there is a linear order B ⊧ T with a Πα+4 Scott sentence.

The proof is a Henkin construction using formulas of bounded complexity. One of the
two key facts about linear orders used in this proof is the well-known characterization of the
back-and-forth relations between tuples in linear orders which appears, for example, as Lemma
15.8 of [AK00].

Lemma 7.2. Given linear orders (A, ā) and (B, b̄) (with the tuples in increasing order),
(A, ā) ≥α (B, b̄) if and only if for each i = 0, . . . , n we have (ai, ai+1)A ≥α (bi, bi+1)B.

In other words, the α-back-and-forth type of a tuple “factors” into the back-and-forth types
of the intervals defined by the tuples. That said, this correspondence cannot necessarily be
performed on a formula-by-formula basis. In other words, given a Σα formula that holds of c̄, it
is not necessarily implied by a collection of Σα formulas about the intervals it defines. It turns
out, as proved in [GHT], that the Eα/Aα complexity classes are exactly the right complexity
classes to make this true. This lemma is provably false when Eα is replaced by Σα.
Lemma 7.3. Let A be a countable linear order and a1 < ⋯ < an elements of A. Suppose that
A ⊧ φ(a1, . . . , an) with φ a Eα formula in the language of linear orders. Then there are Eα

sentences θ0, . . . , θn such that (a) for every k = 0, . . . , n we have (ak, ak+1) ⊧ θk, and (b) if
B is any linear order and b1 < ⋯ < bn, if for every k = 0, . . . , n we have (bk, bk+1) ⊧ θk then
B ⊧ φ(b1, . . . , bn).
The Henkin construction for proving Theorem 7.1 is a Henkin construction where all of the
formulas are Eα+1.

7.2. Omitting types. In this section, we will demonstrate how the Eα/Aα formulas can be
used in a Henkin construction by proving Theorem 1.7. This theorem was already known to
Gonzalez (unpublished), but the proof given here is simpler than the original proof.

Scott’s isomorphism theorem states that infinitary sentences can always be used as isomor-
phism invariants for countable structures [Sco65]. Based on this, Montalbán defined his notion
of robust Scott rank in a way that robustly aligns with the hyperarithmetic hierarchy [Mon15].
In this section, we show that his notion of Scott rank also aligns well with our new notion
of syntactic complexity. This gives a new set of criteria equivalent to Montalbán’s notion of
Scott rank, showing that it is even more robust than we previously thought. In particular, the
addition of more infinitary conjunctions and disjunctions to our formulas does not increase
their expressive power too much when it comes to defining an isomorphism invariant. To
demonstrate these claims, we perform a type-omitting argument that extends and supersedes
that of Montalbán from [Mon15].

We begin by defining a new syntactic class closely related to the Eα hierarchy.
Definition 7.4. A formula is ∀Eα if it is of the form ⩕i∈ω ∀x̄iφi(xi) with φi ∈ Eα.

To be explicit, the difference between ∀Eα and Aα+1 is that Aα+1 adds universal quantifiers
and conjunctions to Eα formulas while ∀Eα only adds universal quantifiers and conjunctions
to the slightly more restricted class of Eα formulas. We begin with a helpful lemma and then
prove a type-omitting theorem for ∀Eα formulas.
Lemma 7.5. Given a countable structure M and any φ(x̄) ∈ Eα there is a Σα formula θ(x̄)
such that

M ⊧ ∀x̄(θ(x̄) ⇐⇒ φ(x̄)).
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Proof. Write the φ(x̄) as ⩔i∈ω ∃x̄iψi(x̄i, ȳ) where each ψi is Aβi
for βi < α. Consider S, the

set of witnesses to φ(x̄) in M (note that if S is empty, the statement of the lemma is trivial).
For each ā ∈M, one of the disjuncts holds, say M ⊧ ∃x̄jψi,ā(x̄j , ā). Let b̄ā be a witness giving
M ⊧ ψi(b̄ā, ā). By [Mon] Lemma II.62, there is a Πβi

formula φā that isolates the Πβi
type of

b̄ā, ā in M. Consider the formula,
θ(x̄) ∶=⩔

ā∈S
∃x̄φā(ȳ, x̄).

This is a Σα formula. If ā ∈ S then M ⊧ θ(ā) by construction. Moreover, if M ⊧ θ(c̄) then
there is some witness ā ∈ S and d̄ ∈M such that M ⊧ φā(d̄, c̄). This means that d̄, c̄ ≥βi

b̄ā, ā

and so M ⊧ ψi(d̄, c̄. In particular, this gives that c̄ ∈ S, or what is the same, M ⊧ φ(c̄) as
desired. □

We can now prove our type-omitting theorem.

Theorem 7.6. Let M be a countable structure. Let (Γi)i∈ω be a list of Πα-types which are not
Σα-supported in M. Let χ be a ∀Eα sentence true in M. Then there is N such that N ⊧ χ
and N omits all of the Γi.

We begin by noting that, by Lemma 7.5, if Γi is not Σα-isolated, then it is not Eα isolated
either. This is essentially the only step of this proof that differs from the proof of Montalbán’s
type omitting theorem from [Mon15]. The key point is that by expanding the class of formulas
considered, the same proof goes through but we obtain Theorem 1.7 as a consequence.

To obtain Theorem 1.7 from Theorem 7.6, we must note that in Proposition 1.5 we defined,
given M, a Eα sentence φM,α such that for any structure N ,

N ⊧ φM,α ⇐⇒ N ≤αM.

Looking at the proof, φM,α is actually a countable conjunction of Eα formulas and hence ∀Eα.
Then to obtain Theorem 1.7 we apply Theorem 7.6 with φM,α as χ. Gonzalez had previously
given a proof of Theorem 1.7 which differed significantly from Montalbán’s; by using the right
class of formulas, we obtain a simple proof of this stronger result. We include the full proof of
Theorem 7.6 for completeness (in part because it does not appear in full in [Mon15]).

Proof. Write χ as ⩕i∈ω ∀x̄iφi(x̄i) with φi ∈ Eα. We build a set of Eα formulas T over
the vocabulary of M enriched with countably many constants C to perform a Henkin-like
construction. We insist on the following properties:

(1) If ⩔ψi ∈ T , then for some i, ψi ∈ T .
(2) If ∃ȳψ(ȳ) ∈ T , then ψ(c̄) ∈ T for some constants c̄ ∈ C.
(3) If ⩕ψi ∈ T , then for all i, ψi ∈ T .
(4) If ∀ȳψ(ȳ) ∈ T , then ψ(c̄) ∈ T for all c̄ ∈ C.
(5) For every atomic sentence ψ over τ ∪C, either ψ ∈ T or ¬ψ ∈ T .
(6) For every i and tuple c̄ of length ∣x̄i∣, φi(c̄) ∈ T .
(7) For every tuple c̄ of length ∣z̄∣, there is a θ ∈ Φ(z̄) such that ¬θ(c̄) ∈ T .

Along the way, at each stage s, we will make sure that T is satisfiable in the sense that there
is some interpretation νs ∶ C →M that assigns the constants we have used so far to a set of
elements that satisfy all of the formulas in T that we have asserted about these constants. If
we can do this, the claim is shown, as the Henkin model will satisfy χ by item (6) and omit
Φ(z̄) by item (7).

We begin with empty sets T0, C0, and ν0. At each stage we are given Cs a finite subset of
C, Ts, a finite set of Eα formulas only mentioning constants Cs, and νs ∶ Cs →M with the
property that M ⊧ Ts(νs(Cs)). At each stage, we address one of the properties (1) − (7), one
instance at a time. We describe below how Ts, Cs, and νs are modified to achieve this.
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(1) Property (1). Given ⩔ψi ∈ Ts we know that M ⊧ ⩔ψi(νs(Cs))). Pick a j with the
property that M ⊧ ψj(νs(Cs))) and add ψj to Ts to make Ts+1. Let νs = νs+1 and
Cs+1 = Cs. It is straightforward to confirm that the desired properties are maintained.

(2) Property (2). Given ∃ȳψ(ȳ) ∈ Ts we know that M ⊧ ∃ȳψ(ȳ, νs(Cs))). Let ā ∈M have
the property thatM ⊧ ψ(ā, νs(Cs)). Take new constants d̄ ∈ C and let Cs+1 = Cs ∪ {d̄}
and Ts+1 = Ts ∪ {ψ(d̄)}. Extend νs by defining νs+1(d̄) = ā. It is straightforward to
confirm that the desired properties are maintained.

(3) Property (3). Given ⩕ψi ∈ Ts and i ∈ ω let Ts+1 = Ts ∪ {ψi}, Cs+1 = Cs and νs+1 = νs.
It is straightforward to confirm that the desired properties are maintained.

(4) Property (4). Given ∀ȳψ(ȳ) ∈ Ts and c̄ ∈ Cs of the appropriate length Ts+1 = Ts∪{ψ(c̄)},
Cs+1 = Cs and νs+1 = νs. It is straightforward to confirm that the desired properties
are maintained.

(5) Property (5). For any atomic sentence ψ and c̄ ∈ Cs of the appropriate length check if
M ⊧ ψ(νs(c̄)) or if M ⊧ ¬ψ(νs(c̄)). In the former case, add ψ(c̄) to Ts to obtain Ts+1
and in the later case add ¬ψ(c̄) to Ts to obtain Ts+1. Either way, let Cs+1 = Cs and
νs+1 = νs. It is straightforward to confirm that the desired properties are maintained.

(6) Property (6). Given φi and c̄ ∈ Cs of the appropriate length Ts+1 = Ts ∪ {φi(c̄)},
Cs+1 = Cs and νs+1 = νs. It is straightforward to confirm that the desired properties
are maintained.

(7) Property (7). This is the key property of the type omitting argument and the only
property that necessitates shifting νs from its already established action to obtain νs+1.
This step follows the standard type omitting playbook in a Henkin construction. Fix a
tuple c̄ ∈ Cs of length ∣z̄∣ and let d̄ be the elements of Cs that are not among c̄. We can
write ⋀Ts = ρ(c̄, d̄) where ρ is a Eα formula. Note that ∃ȳρ(c̄, ȳ) is also a Eα formula
that is satisfied in M by νs(c̄). In particular, because Φ(z̄) is not Eα supported, there
is some ā ∈M that satisfies ∃ȳρ(ā, ȳ) but does not have type Φ(z̄). Let Cs+1 = Cs and
let As+1 = As ∪ {¬θ(c̄)} where θ ∈ Φ(z̄) has the property that M ⊧ ¬θ(ā). Note that
¬θ ∈ Eα as θ ∈ Aα, so this is an allowable extension of T . Finally let νs+1(c̄) = ā and
let νs+1(d̄) = b̄ where M ⊧ ρ(ā, b̄). It is straightforward to confirm that the desired
properties are maintained.

With this, we can achieve a model with properties (1) − (7), and therefore the proof is
complete. □

We now show that having a ∀Eα Scott sentence is equivalent to having one that is Πα+1.
This adds to a long list of equivalent conditions for having SR(M) ≤ α (see Theorem 1.1 of
[Mon15]). Parts of the proof below, in particular (1) Ô⇒ (2) and (2) Ô⇒ (3), are very
similar to the corresponding parts of the proof of that theorem.

Theorem 7.7. The following are equivalent when the classes A and E are restricted to Lω1,ω:
(1) M has a ∀Eα Scott sentence.
(2) The Aα type of every tuple in M is supported by an Eα formula.
(3) Every automorphism orbit of every tuple in M is definable by a Eα formula.
(4) M has a Πα+1 Scott sentence, i.e., SR(M) ≤ α.

Proof. We begin by showing that (1) Ô⇒ (2). Say that M has a Aα type Φ(z̄) that is not
supported by any Eα formula. Note that an Aα type is determined by its Πα restriction by
Proposition 1.6. Also, note that Φ(z̄) is not supported by any Σα formula. By Theorem 7.6
any χ ∈ ∀Eα is also true of a model N that omits Φ and therefore is not isomorphic to N .

We now move to prove that (2) Ô⇒ (3). Let φā(x̄) be the Eα formula that supports the
Aα type of ā. We claim that φā(x̄) defines the automorphism orbit of ā. To demonstrate this,



30 RUIYUAN CHEN, DAVID GONZALEZ, AND MATTHEW HARRISON-TRAINOR

we claim that the set T ∶= {(ā, b̄)∣M ⊧ φā(b̄)} is a back-and-forth set. As φā supports the
whole Aα type of ā it is certainly the case that for (ā, b̄) ∈ T , ā and b̄ have the same atomic
diagram. Now consider c ∈M; we find a d ∈M such that M ⊧ φā,c(b̄, d). In other words,
we must show that M ⊧ ∃xφā,c(b̄, x). If this does not hold, we have that M ⊧ ¬∃xφā,c(b̄, x).
Note that this is a Aα formula, therefore, it is implied by φā(b̄) which isolates the Aα type of
b̄. However, this means that M ⊧ ¬∃xφā,c(ā, x) as M ⊧ φā(ā). That said, M ⊧ ∃xφā,c(ā, x)
as witnessed by c, a contradiction. Therefore, there is such a d as required.

To see the “forth” part of the argument, it is enough to show that M ⊧ φā(b̄) ⇐⇒ φb̄(ā)
and appeal to a symmetrical argument as the one above. Say that M ⊧ φā(b̄) ∧ ¬φb̄(ā). As
¬φb̄ is Aα, we obtain that it is implied by φā which supports the whole Aα type in M. This is
a contradiction as it yields M ⊧ ¬φb̄(b̄). Therefore, T is a back-and-forth set and any b̄ with
M ⊧ φā(b̄) is automorphic to ā.

We now show that (3) Ô⇒ (4). This is just the same as showing that there is a Σα

description of any automorphism orbit in M if there is a Eα description of any automorphism
orbit in M. This follows immediately from Lemma 7.5.

Lastly, we note that (4) Ô⇒ (1). If SR(M) ≤ α then M has a Πα+1 Scott sentence. As
every Πα+1 formula is ∀Eα, it follows that M also has a ∀Eα Scott sentence. □

Corollary 1.8. Let M be a countable structure.
(1) If, for all countable N ,

M ≤α N Ô⇒M ≅ N
then M has a Πα+2 Scott sentence.

(2) If, for all countable N ,
N ≤αMÔ⇒M ≅N

then M has a Πα+1 Scott sentence.

Proof. For (1), M ≤α N Ô⇒ M ≅ N . There is a Πα+2 sentence defining the set of N such
that M ≤α N . By assumption, this is a Scott sentence.

For (2), suppose that N ≤α M Ô⇒ M ≅ N . Then, by Theorem 1.7, there is a structure
N ≤αM such that N omits every Πα type which is not Σα-supported inM. Thus N ≅M and
every Πα type realized in M is Σα-supported in M. Thus M has a Πα+1 Scott sentence. □
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