
NON-DENSITY IN PUNCTUAL COMPUTABILITY

NOAM GREENBERG, MATTHEW HARRISON-TRAINOR,
ALEXANDER MELNIKOV, AND DAN TURETSKY

Abstract. In computable structure theory, one considers computable presentations of ab-
stract structures such as graphs or groups, and one thinks of two different computable
presentations as being essentially the same if there is a computable isomorphism between
them. Because the inverse of a computable function is also computable, the relation of being
computably isomorphic is an equivalence relation, and so the only structure on the set of
computable presentations is the number of non-equivalent presentations.

Recently there has been increased interest in primitive recursive presentations of struc-
tures, and in this setting, the inverse of a primitive recursive function is not necessarily
primitive recursive, and so we get a relation of reducibility between structures which in-
duces a partial ordering on the primitive recursive presentations of a structure. Whenever
we have a reducibility notion, one of the natural first questions is whether it is dense. We
show that it is not dense: There are primitive recursive presentations A ≅ B of the same
abstract structure, such that A is reducible to B (there is a primitive recursive isomorphism
A → B) but B is not reducible to A (there is no primitive recursive isomorphism B → A),
and for any third primitive recursive presentationM of the same structure, if A is reducible
to M and M is reducible to B, then either M is reducible to A or B is reducible to M.

1. Introduction

This paper contributes to the new theory which is focused on eliminating unbounded search
from proofs and processes in algebra and infinite combinatorics; see surveys [BDKM19, DMN]
for the foundations of this theory. The key motivation here is that unbounded search is
often abused in the literature on algorithms performed in infinite algebraic and combinatorial
structures. For example, it is well-known that the word problem for finitely generated groups
is intrinsic in the sense that if one presentation has decidable word problem then every
presentation will have decidable word problem. This is simply because we can match the
generators and map words to words to transition between any two given copies. However,
this isomorphism relies on the unbounded search as well: we must wait for an element
to be spanned by the generators to define its image. Another example is the back-and-
forth proof that all countable dense linear orders with no endpoint are isomorphic; see
[BDKM19, KMN17, MNb] for more examples. It is natural to ask what happens when we
forbid unbounded search, i.e., if we restrict ourselves to primitive recursive procedures.

A primitive recursive algorithm of course does not have to be computationally feasible.
Nonetheless, somewhat unexpectedly primitive recursive algorithms are useful in the study
of more feasible algorithms. As discussed in [KMN17, BDKM19], very often eliminating
unbounded search is the crucial step in turning a general Turing computable algebraic pro-
cedure into a polynomial time one; for many examples see [Gri90, CDRU09, CR92, CR98,
Ala17, Ala18]. Of course, producing a primitive recursive algorithm is typically less chal-
lenging than designing a feasible one since we do not have to worry about counting steps

Greenberg and Turetsky were supported by a Marsden Fund grant #17-VUW-090.
1

2 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

explicitly; we only care that there is some precomputed bound on all loops and searches.
Remarkably, it is not uncommon that the resulting crude primitive recursive algorithm can
be modified into a feasible one. For example, the recent solution [BHTK+19] to a problem of
Khoussainov and Nerode on the characterisation of automatic structures ([KN08], Question
4.9) relies on a simpler argument that works for primitive recursive structures; with some
extra work it is then pushed to automatic structures. Another useful role of primitive re-
cursion is in proving that no feasible procedure is possible at all. Indeed, it is often easiest
to argue that a primitive recursive procedure or even a total procedure fails to exist, let
alone a polynomial time or automatic one; see, e.g., [CR92, CR98, KMN17]. We conclude
that primitive recursion serves as a unifying useful abstraction which connects feasible al-
gebra [CR98, KN08] with the earlier approach to online algorithms in combinatorics via
totality [Kie98, KPT94].

In this paper we focus on eliminating unbounded search from proofs and processes in
computable structure theory [EG00, AK00]. Following the tradition that goes back to
Mal′cev [Mal61] and Rabin [Rab60], computable structure theory studies computably pre-
sented countably infinite algebraic structures; these are structures upon the domain N whose
operations and relations are Turing computable. The natural subrecursive analogy of this
notion is the following definition:

Definition 1.1 ([KMN17]). A countable structure is fully primitive recursive or punctual if
its domain is N and the operations and predicates of the structure are (uniformly) primitive
recursive.

The intuition is that a punctual structure must reveal itself “punctually”, i.e., within a
precomputed number of steps. We will also fix the convention that all finite structures are
also punctual by allowing initial segments of N to serve as their domains. We will never
consider infinite languages in the paper; therefore, we do not need to clarify what uniformity
means in Definition 1.1.

Computable structure theory typically studies computable structures up to computable
isomorphism, which gives an equivalence relation on computable copies of the same structure.
To talk about isomorphisms in the framework of punctual structures, we shall also need to
consider punctual analogues of computable functions. However, recall that the inverse of
a primitive recursive function does not have to be primitive recursive. In contrast with
computable structure theory, this leads to a reduction:

Definition 1.2 ([KMnN17]). A punctual structure A is punctually reducible to a punctual
structure B, written A ≤pr B, if there exists a primitive recursive surjective isomorphism from
A onto B.

This leads to an equivalence relation ≡pr and the punctual degree structure on the classes
(the punctual degrees) which will be denoted PR(A).

The punctual degrees PR(A) of a structure A is a rather sensitive invariant which allows
us to detect subtle subrecursive differences between two seemingly similar structures. We
give an example. The dense linear order is a canonical example when a computable back-
and-forth method works; the other common (algebraically) homogeneous examples include
the random graph and the Fräısse limit of finite abelian p-groups. It seems that for each of
these structures the proof requires exactly one unbounded delay at every step. Remarkably,
the punctual degrees of the dense linear order, the random graph, and the universal abelian
p-group are pairwise non-isomorphic; see [MNb]. Intuitively, the result shows that these

NON-DENSITY IN PUNCTUAL COMPUTABILITY 3

delays are actually different in nature in all three cases. Similarly, there exist infinite punctual
finitely generated structures having non-isomorphic punctual degrees [KMN17, BKMN]; note
that such structures have a unique computable presentation up to a Turing computable
isomorphism.

The study of punctual degrees naturally splits into two main themes, one of finding struc-
ture and the other of finding examples of non-structure.

In the first theme, one seeks to formulate a general enough property of PR-degrees of A
which is implied by A having a certain algebraic property, e.g., being finitely generated or
homogeneous. It is natural to ask how the algebraic properties of A are reflected in PR(A).
Very little is known here so far, but there has been some progress in the case of finitely
generated structures. For instance, for a finitely generated rigid structure A with ∣A∣ > 2
and a countable lattice L, the following are equivalent: (1) L can be embedded into PR(A)

preserving sup and inf , and (2) L is distributive; see [KMZ]. This is a structural result
which is yet to be fully understood. Also, it is not hard to show that, for a finitely generated
A, PR(A) has to be dense [BKMN] and is never a Boolean algebra [KMZ]. Work here is
ongoing.

The second theme is concerned with finding structures whose punctual degrees have non-
trivial and counterintuitive features refuting natural conjectures. While the two themes
clearly complement each other both technically and methodologically, the second theme
is of some special interest to a computable structure theorist because it resembles the
once very popular theory of finite computable dimension [Gon80, GMR89, Hir01, HKSS02,
McC02, GLS03] while the techniques are substantially different. For instance, Melnikov and
Ng [MNa] have constructed a punctual A with exactly two punctual degrees. There are
also counter-intuitive examples of finitely generated structures [BKMN] and highly technical
bizarre examples of unary structures [DGM+]. Each of these counterexamples refutes natural
conjecture which intuitively should hold. The main result of this paper contributes to the
second theme, since it refutes the following natural conjecture:

Conjecture 1.3. The punctual degrees PR(A) of any structure A are always dense.

That is, A <pr B should imply that there exists a C such that A <pr C <pr B. The
conjecture holds for many natural classes ([KMN17]) as well as for all technical counter-
examples known so far [KMZ, DGM+, KMN17, BKMN, KMnN17]. Perhaps most notably,
the conjecture holds for arbitrary finitely generated structures [BKMN]. It may seem that if
a structure A is not finitely generated then its punctual degrees should be even more “rich”.
Such an A should have more ways of delaying certain configurations from quickly appearing
in it, thus there should be even more ways of building an intermediate C. Nonetheless, we
prove:

Theorem 1.4. There exist a punctual structure A such that PR(A) are not dense.

The proof of this theorem is of a special technical interest because it is the first known suc-
cessful implementation of non-degenerate infinite injury via the tree method in the punctual
framework, and as far as we know in feasible algebra in general. The proof contains several
novel ideas related to the ways the priority tree method and how it should be understood
and used in the punctual context. The fundamental issue with the usual tree method is that
we typically cannot simply wait below a Π0

2 outcome since this wait is clearly unbounded.
Nonetheless, guessing at a Π0

2 outcome seems inevitable in our proof, so we had to adjust
the method.

4 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

Many questions about punctual degrees remain open. We strongly suspect that the new
techniques will be helpful in attacking:

Question 1. Is there a structure A that has exactly two punctual degrees b <pr a?

Question 2. Let L be a finite partial order. Is there an A with PR(A) ≅ L?

In Question 2, finite Boolean algebras and the atomic non-distributive M5 and N5 seem most
interesting since they will contrast with results from [KMZ].

We also suspect our methods can be applied to natural classes. For instance, we would
like to understand which linear orders have dense punctual degrees. We suspect that, for
an abelian p-group A, PR(A) are dense if and only if ∣PR(A)∣ = ∞; the latter has a purely
algebraic characterisation [KMN17].

2. Proof of Theorem 1.4

Proof. Recall that we need to build punctual A <pr B and prove that there is no M with
A <prM<pr B.

2.1. The language of the structure. Recall that the domain of every punctual structure
has to be ω. The language of A will be as follows. There will be a unary relation U such that
it complement U c is a pure set in A in which all n-tuples are automorphic to each other over
U . We will be able to “waste time” by adding elements to U c when necessary. The essential
part of the structure of A will be contained within U . There will also be unary functions f
and g. The elements of U will be of two types:

● elements x such that g(x) = x and fn(x) = x for some n ≥ 3; or
● elements y such that f(y) = y and g(y) = x for some x of the first type.

We call an element of the first type, together with its images under f , an n-cycle where n
is least such that fn(x) = x. We call an element of the second type a tag. Note that we can
immediately tell of which type an element z is by checking whether g(z) = z or f(z) = z. An
n-cycle will be either tagged or untagged; if it is untagged, then no element of the n-cycle
will be the image under g of another element, and if it is tagged, then each element of the
n-cycle will be the image under g of a tag, with a different tag for each element of the cycle.
So given two tagged n-cycles, any isomorphism of the cycles extends to an isomorphism of
the tags. Also, if we see one element of a cycle in a punctual structure, and we know the
length of the cycle, we can in a primitive recursive way find all of the elements of the cycle
by iterating f ; similarly, given a tag, we can find the cycle it is attached to.

2.2. The requirements. We build A and an isomorphic copy B, both punctually com-
putable. At every stage of the construction, we will have partial structures As and Bs upon
initial segments of ω, with A = ⋃As and B = ⋃Bs.

Remark 2.1. Each As will be a substructure of Bs, and the reduction A ≤pr B will be natural
in the sense that an element of As will be immediately copied into Bs but will perhaps receive
a different index in the domain ω. Although the reduction witnessing A ≤pr B will not be
the identity map, it will differ from the identity map up to a punctual g whose range g(A)
and whose inverse g−1 ∶ g(A) → g is also primitive recursive. Having in mind this feature of
g, we will sometimes abuse our terminology and call g the identity map.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 5

2.2.1. The requirements. Let (Mi, ψi, θi)i∈ω be a list of the primitive recursive structures
and primitive recursive maps ψi∶A → Mi and θi∶Mi → B. Let γi be a list of the primitive
recursive maps B → A.

B

γj

��

Mi

θi

OO

A

ψi

OO

We must meet the following requirements:

Ri: if ψi is an isomorphism from A onto Mi and θi is an isomorphism

from Mi onto B, then either Mi ≤pr A or B ≤prMi.

Si: γi is not a primitive recursive isomorphism from B onto A.

To make Mi ≤pr A or B ≤prMi, we have to define a primitive recursive isomorphism either
from Mi onto A or from B onto Mi.

As with any priority argument, it is helpful to first consider a strategy to satisfy require-
ments individually, and only after this to combine these strategies together. In this argument,
combining the strategies is particularly difficult, mainly due to the fact that each of theMi

is individually primitive recursive, but they are not uniformly primitive recursive.

2.3. Intuition for one R-strategy. To begin, we will informally describe the strategy
for satisfying a single requirement R = Ri while satisfying all of the requirements Si. Let
M=Mi, ψ = ψi, θ = θi, where these were defined in the previous subsection.

Up to a punctual delay, we may assume that whenever an element shows up in M, its
image in B under θ is immediately defined, and that its image is an element of the same
type; in particular, for x ∈ M: x ∈ U if and only if θ(x) ∈ U ; x is part of an n-cycle if and
only if θ(x) is part of an n-cycle; and if x is tagged then θ(x) is tagged. Note that we cannot
say that if θ(x) is tagged, then x is tagged; this is because the tag y on x yields a tag θ(y)
on θ(x), but a tag on θ(x) does not yield a tag on x. Of course if θ is to be an isomorphism,
a tag must eventually be added to x, it just does not have to show up within a primitive
recursive delay. So we think of A as a substructure of M, and M as a substructure of B.

Remark 2.2. It is important to note that this is only the case when we are dealing with
only a single requirement R; so this assumption is not strictly necessary but it will make
it easier to understand the key points of the construction while dealing with only one R
requirement before adding in complications. In the presence of many requirements we can
no longer conclude that this delay described above is primitive recursive uniformly in the
index i. This is because there is no uniformly primitive recursive enumeration of the θi. It
will of course be uniformly computable in the index i. Since θi is total and thus can be
computed in a bounded amount of time, we can keep adding elements to U c to delay until
we see θi to halt. It follows that the induced delay is primitive recursive relative to θi. See
[BDKM19] for more examples of subrecursive non-uniformity in punctual structure theory.

Having in mind Remarks 2.1 and 2.2, in presence of only oneR-requirement we can identify
an element x ∈ A with the respective element in B, and also in M:

6 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

A
ψ
//M

θ
// B

x // x̂ // x

If this is ever not the case, we can immediately end the construction withM≇ A ≅ B. (This
is by standard techniques but as this will not be necessary in the general case, we will not
elaborate on how this can be done.) For any element x of B, we use x̂ to denote an element
of M whose image in B is x. If, for example, x is part of an n-cycle but θ(x) is not, the
requirement R is automatically satisfied and does not require any further action.

The basic strategy for Si. To diagonalize against a potential primitive recursive isomorphism
γi∶ B → A, put an n-cycle C in B, but to keep it out of A long enough that γi must be defined
on C in B but has no reasonable image for C in A.

A naive idea for meeting Ri. Informally, B will contain more algebraic subcomponents
(cycles) than A, according to the basic Si-strategy above. If Mi reveals these extra cycles
with some fixed primitive recursive delay, then we can match these cycles with those in B
punctually, and B ≤pr Mi. However, if Mi keeps revealing these extra cycles slower than
expected, we must make sure thatMi ≤pr A; intuitively, this urges A to enumerate the cycle
and match it with the cycle in Mi.

Of course, we do not have a uniform measure of “speed” with which a cycle C is expected to
appear inMi, and this has to be guessed using the uniformly computable list of all primitive
recursive functions. Suppose currently we work with a timestamp function p̃` which gives us
a measure of enumeration speed (to be clarified later).

The obvious problem with the naive idea described above is that Mi could reveal finitely
many cycles p̃`-fast, and therefore we chose to make progress in witnessing B ≤prMi. How-
ever, much later we can discover that some fresh cycle C reveals itself slow relative to p̃`,
and therefore we should switch to demonstrating that Mi ≤pr A. But the slow cycles either
still have no image in A or these images appeared too late, and this is inconsistent with
Mi ≤pr A.

Our solution to this problem (to be described in detail below) is based on the following
idea. Every time Mi reveals a cycle C quickly, we immediately put a tagged version C○ of
this cycle into A and match C with C○. This way we will be able to catch up in the definition
of Mi ≤pr A by putting a tag on C as late as we want.

This idea leads to complications in the strategy. As soon as we put C○ into A, a similar
tagged cycle must also appear inMi because A ≤prMi, and since we must guarantee A ≤pr B

we must also put an extra tagged cycle in B. This means that, keeping in mind the possibility
that Mi ≤pr A as above, we will be forced to put another extra cycle into A, etc. Thus, at
the end we may end up with lots of cycles, most of which are tagged. To make progress in
demonstrating Mi ≤pr A we will have to homogenise the whole component which grew out
of the single cycle C.

We now give more details. We begin with clarifying the concept of primitive recursive time
of computation, and then we give a detailed description of the main strategies in presence
of only one Ri.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 7

2.4. Primitive recursive time. Recall that a function is primitive recursive if, and only if,
it can be realised on the universal Turing machine with a primitive recursive timestamp func-
tion; see the appendix of [BDKM19]. In other words, we have that pi(x) = U(s(i);x)[t(x)] ↓
where t(x) is a primitive recursive timestamp function and s is the primitive recursive func-
tion from the s-m-n theorem. Let (pi)i∈ω be a uniformly computable list of all primitive
recursive functions ω → ω. Set p̃i(n) to be the sum, over j < i, of the primitive recursive
timestamp functions for pj(n) (which are ≥ pj(n)). So p̃i dominates pj, j < i, on all inputs.
If we can ensure that a computable function is slower than each of the p̃i then the function
cannot be primitive recursive. Moreover, p̃i(n) has the nice property that it takes time
about p̃i(n) to compute p̃i(n); more formally, p̃i(n) is time-constructible, in that p̃i(n) can
be computed in time O(p̃i(n)), and this is uniform in i. Imagine that we want to wait until
after stage p̃i(n) to take some action, but that we want to take that action soon after stage
p̃i(n). The first step would be to compute p̃i(n) to see how long we have to wait, and if p̃i(n)
took a long time to compute, by the time we had computed it we would already have waited
too long and missed our chance. But since p̃i is constructed using the stopping times, we
can compute p̃i(n) in only slightly more than p̃i(n) steps as follows: for each j < i, compute
pj(n), and then add up the total computation time; this is p̃i(n).

At every stage of the construction the strategy for R is associated with an index ` and a
potential timestamp function p̃`. Before we explain what exactly the strategy does, we note
that the requirement R will have one of two outcomes:

Σ2: for some `, whenever an untagged n-cycle C enters B, its copy Ĉ entersM by stage
maxx∈C p̃`(x).

Π2: for every `, there is an untagged n-cycle C in B such that Ĉ does not enter M by
stage maxx∈C p̃`(x).

There will be many tagged n-cycles in all of the structures A, B, and C, so it is really the
untagged n-cycles that we will have to worry about.

Remark 2.3. Essentially, one should think of the Σ2 outcome as saying that untagged n-cycles
entered M soon after they entered B, and thus using p̃` we can demonstrate B ≤pr Mi.
The Π2 outcome says that for any primitive recursive delay p̃`, there are n-cycles which
enter M much later than they entered B, relative to the delay p`. In this outcome, the
strategy combined with homogenization of other components (where we thought we had the
Σ2 outcome) will allow us to punctually map M onto A.

More on the strategy for Si. Recall that we also have to diagonalize against maps γi∶ B → A.
In the Σ2 outcome, we can put untagged n-cycles C in B and hold them out of A as long as
we want; therefore, we simply follow the basic strategy for Si as explained above. In the Π2

outcome, we have to build a map from M to A. Only when an untagged n-cycle C enters
M we are forced to put it in A. Since we are in the Π2 outcome, there are many cycles C
that take a long time to enter M, and therefore nothing urges us to put them into A. We
will use this feature to demonstrate γi∶ B → A cannot be an isomorphism; more details will
be given in §2.5.2. In particular, we do not have to meet Si explicitly (via its basic strategy)
in this case.

2.5. Formal details for one R combined with all Si. The structure we build will be
divided up into different components, each of which is the location of an attempt to satisfy a
particular requirement; the n-component consists of all of the n-cycles and their tags. Recall

8 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

that we use the complement of U to delay when necessary. Also, recall that we identify cycles
in A and B which indeed agree up to a primitive recursive correspondence; see Remark 2.1

2.5.1. The description of one n-component. The n-component works as follows. When it
begins to act, it chooses the least ` such that the requirement R might still have the Σ2

outcome with witness index `. We call this ` the threshold value. The n-component begins
by adding an untagged n-cycle C to B, but not to A, as shown in the diagram below.

B ∶ C

M ∶

A ∶

We then wait for one of the following two things to happen, in which case we take the
corresponding action. We call one the (current) Π2 outcome, and the other the (current) Σ2

outcome. Let s be the current stage.

● Π2 outcome: A version of C has not showed up in M within p̃`(C) = maxx∈C p̃`(x)

many steps. Add C to A; when an untagged n-cycle Ĉ = ψ(C) shows up in M, we
have ϕ map it to C.

B ∶ C

M ∶ Ĉ

ϕ

��

A ∶ C

● Σ2 outcome: An n-cycle Ĉ entersM within at most p̃`(C) = maxx∈C p̃`(x) steps. Add

a tagged n-cycle D1 to A and B. Set ϕ(Ĉ) = D1.

B ∶ C ○D1

M ∶ Ĉ
ϕ

A ∶ ○D1

(The circles here denote that the cycle is tagged.) Note that ϕ is not currently looking

like an isomorphism, because Ĉ is untagged, but D1 is tagged.
Then, as soon as the ψ-image D̂1 of D1 shows up in M, add a new tagged n-cycle

D2 to A and, thus, to B.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 9

B ∶ C ○D1 ○D2

M ∶ Ĉ
ϕ

○D̂1

ϕ

!!

A ∶ ○D1 ○D2

We continue doing this. To meet S1, . . . ,Sn, we need to diagonalise against γ1, . . . , γn∶ B →
A. Eventually, the maps γ1, . . . , γn must become defined on C ⊆ B, but they cannot
map C to another untagged n-cycle, because there are no untagged n-cycles in A;
the best that such a γ = γj can do is to map C to some Di as shown in the diagram
below. After each of γ1, . . . , γn have been computed on C, we add C to A.

B ∶ C

γ

��

○D1 ○D2 ○D3 ⋯

M ∶ Ĉ

ϕ

○D̂1

ϕ

!!

○D̂1

ϕ

!!

○D̂1

ϕ

⋯

A ∶ C ○D1 ○D2 ○D3 ⋯

Even after this happened, we keep adding new tagged n-cycles to the component.
It is possible that at some point in the construction, the n-component will have to

be homogenized. What this means is that we want to make ϕ—which so far does not
look like an isomorphism, because it maps the untagged Ĉ to the tagged D1—into an
isomorphism. Add a tag to C, and extend ϕ to map the last n-cycle Dk we have built
so far to C, e.g.

B ∶ ○C ○D1 ○D2 ○D3 ○D4

M ∶ ○Ĉ
ϕ

○D̂1

ϕ

!!

○D̂2

ϕ

!!

○D̂3

ϕ

!!

○D4

rr
A ∶ ○C ○D1 ○D2 ○D3 ○D4

Now ϕ looks like an isomorphism on the n-component.

This completes the strategy for a single component.

2.5.2. Combining several components. Start the first n-component with n = 3 and ` = 0
(recall the minimum length of a cycle is 3). Once the current component is finished acting,
start a new n-component with n being the current stage and the threshold value ` being
the least ` such that no component with the same threshold value has had a Π2 outcome.
Whenever we have a new component with a Π2 outcome, homogenize all of the components
with Σ2 outcomes.

In the end, we will be in one of two cases:

10 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

● All of the components have the Π2 outcome or were homogenized; and for each ` there
is a component with threshold value `. In this case ϕ is an isomorphismM→A, and
so the requirement R is satisfied.

We argue that there is no primitive recursive isomorphism B → A. If there was,
say γ, then let ` be such that p̃` dominates γ. Let n be such that the n-component
had this threshold value ` and outcome Π2. There is an untagged n-cycle C in B,
but no untagged n-cycle is in A until after stage maxx∈C p̃`(x); since p̃` dominates
γ, γ cannot cannot map C to an untagged n-cycle in A, and hence cannot be an
isomorphism.

● All but finitely many components have the Σ2 outcome with the threshold value `
which will never be homogenised; the other components either have the Π2 outcome
or are homogenized.

In this case there exists a primitive recursive isomorphism B →M. Let ` be such
that all of the non-homogenized components with the Σ2 outcome have threshold
value `. We can define the isomorphism non-uniformly on the finitely many other
components. We argue that, on cofinitely many components, the map θ−1 ∶ B → M

is punctual. When a cycle C is first added to B, wait for maxx∈C p̃`(x)-many steps for

θ−1(Ĉ) to show up in M and map C to Ĉ. For an element Di, when we add Di to B,

we also add it to A, and we can wait for the image D̂i = ψ(Di) to show up in M; we

then map Di to D̂i. This process is punctual since p` and ψ are primitive recursive.
So the requirement R is satisfied.

We also argue that in this case there is no primitive recursive isomorphism B → A;
but as described in the construction, an n-component with Σ2 outcome ensures that
γ1, . . . , γn are not isomorphisms before adding C to A unless it is later homogenised.
Since there are infinitely many n-components with arbitrarily large n having a Σ2-
outcome and which are never homogenised, all Sj-requirements are met.

In either case, we have satisfied R and each requirement Sj.

2.6. The full construction. Now we will describe how to meet all of the requirements. An
n-component will now work with the R-requirements R0, . . . ,Rn. There is some additional
complexity that arises when dealing with many structures M0,M1,

2.6.1. The four main issues. There are four key issues which we will have to circumvent
in presence of many R-requirements and which were not visible in the case of only one R-
requirement. We informally discuss these issues below; the formal construction is contained
in the next subsection.

First, when we add the n-cycle C to B, some of the monitored Mi might add the corre-
sponding n-cycle Ĉ toMi very quickly, and others very slowly, where quickly and slowly for
Mi are measured relative to a primitive recursive threshold function p̃`i . When some Mi

has an n-cycle Ĉ show up slowly relative to p̃`i (the Π2 outcome), we must quickly add C to

A because we want to build a primitive recursive isomorphismMi → A mapping Ĉ inMi to
C in A). But if `i < `j, and hence p̃`i is dominated by p̃`j , this process might be happening
quickly relative to p̃`j , and we have not yet finished waiting for Mj to respond. Thus, we
are adding C to A sooner than we would like for Mj.

To resolve this, we use the following idea. Since the scenario above happens only when Ri
plays its Π0

2-outcome, Rj can assume that Ri has the true outcome Π0
2 which means thatMi

NON-DENSITY IN PUNCTUAL COMPUTABILITY 11

is arbitrarily slow. In particular, Ri will eventually have its threshold lifted arbitrarily large
and will play its Π0

2-outcome again and again arbitrarily late in the construction. Thus, it
is safe forMj to rely on the threshold of Ri for its own Π0

2-outcome, provided that the true
outcome of Mi is indeed Π0

2.
Of course, we will have to handle more that one requirement at once. In this case, in

addition to the outcome, we will maintain the maximum threshold value `max ∶= `i; this
keeps track of how long we were able to wait for Ĉ to show up. If all of the requirements
R1, . . . ,Rk we are dealing with have the Σ2 outcome, then the threshold value is just the
maximum of `1, . . . , `k because we were able to wait as long as we wanted before adding C to
A. An important aspect of the construction will be that the maximum thresholds eventually
keep increasing, in the sense that their limit is ∞, so that they do not limit the construction.
This will be further clarified below and then verified in Lemma 2.8.

Second, there is a new issue with homogenization and building a potential isomorphism.
Recall that we had to homogenize a component, say the n-component, because it had the
outcome Σ2, and later the m-component with m > n played the outcome Π2. Recall that
(§2.5.1) we would wait for a cycle to appear in the opponent’s structure within a certain
bound, and only then we would perhaps add a tagged cycle to A. In presence of many
R-requirements we cannot afford to wait for many opponent’s structures to respond within
distinct and increasing bounds. Also, we never had to homogenize a component which played
its Π2 outcome. The strategy will nevertheless be similar. Whereas before we waited until
a component had the Σ2 outcome to introduce tagged n-cycles D, we will now always add
tagged n-cycles to each component. Consider the following example.

Example 2.4. Suppose the n-component plays its Σ2 outcome for R1, but the Π2 outcome
for R2. In particular, it attempts to build an isomorphism M2 → A. Suppose also that at
a later stage the n-component must be homogenized because some later component has the
Π2 outcome for R1. The question is whether we would like to add a tagged cycle to A, and
if yes then how soon. The basic strategy for R2 says that a tagged cycle is to be added
only when R2 finishes its computation with its much slower threshold. However, R1 cannot
afford to wait for this computation to finish since it has to act now.

The solution will be to add a tagged cycle to A without waiting for R2 to finish its
computation. This action will force a tagged cycle to appear inM2, and this can potentially
happen very quickly. This is of course consistent with the basic strategy for R2, because it
really only cares about untagged cycles. Also, it could then be the case that the global true
outcome of R2 is Σ2 (i.e., cofinitely many components will play Σ2 with the same threshold)
and so we actually need to build an isomorphism B →M2. Thus, we must also think of the
potential image of the new cycle ofM2 in B, but this will be provided by the basic strategy
for R1.

To summarise, to make sure that we never get stuck in the definitions of our maps and
that we have enough tagged cycles, just add as many as necessary and as quickly as possible.
This will not upset the main strategy in its essence.

Third, when dealing with a single requirement R, we were able to assume that the com-
position θ ○ψ∶A →M→ B was essentially the identity map in the sense of Remark 2.1. The
strategy then was to only add a single n-cycle at a time, and to wait for its images to appear
inM before adding a new n-cycle. Now, when we add an n-cycle to A, we might need to add
more n-cycles to A for the sake ofMi (which must act relatively quickly) before the image of

12 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

the n-cycle has appeared in Mj (which might be acting much more slowly). This means in
particular that, for instance, θj will have many potential images for a given (tagged) cycle,
and its choice does not have to naturally line up with what θi does. Nevertheless this is not
really an issue because there is little interaction between θi and θj, and similarly for ψi and
ψj. All we need is that B and A have enough (tagged) cycles to be matched with those in
Mj, and this is up to the opponent to ensure that his maps make sound choices.

There is one time at which we will need a little more control, and that is when a component
is homogenized. When the n-component is homogenized, we will stop adding new n-cycles,
which will mean that each of A, Mi, and B have exactly the same number of n-cycles, all
of which will be tagged; thus ψi and θi will naturally have to be surjective on the n-cycles,
and this will be enough for us.

Fourth, we cannot have a single threshold value for each requirement, but rather for each
requirement Ri and each guess σ at the outcomes of the requirements R0, . . . ,Ri−1, we must
have a threshold value `σi . Whether Ĉ enters Mi quickly or slowly is dependent on the
threshold value; but we have a number of different possible threshold values `σi for each σ,
and which one we use depends on the current outcomes of R0, . . . ,Ri−1. This combinatorial
complexity is sorted using the tree of strategies.

2.6.2. The tree of strategies. The n-component will have an outcome for each requirement
R which is either Σ2 or Π2. We think of these outcomes as being organized on a tree, with
the Π2 outcomes to the left of the Σ2 outcomes. Formally, we define the tree of (possible)
outcomes T = {Σ2,Π2}

<ω which consists of the finite maps from indices i of requirements Ri
to outcomes {Σ2,Π2}.

Whenever a component plays an outcome σ, it injures every previous component that had
an outcome to the right of σ on the tree (which will mean homogenizing the components
which had those outcomes). The true path will, as usual, be the leftmost path visited
infinitely often.

For each requirement i and string σ = ⟨σ0, . . . , σi−1⟩ of outcomes for the higher priority
requirements, we maintain a threshold value `σ. These values get updated after the action
of each component, and we denote the threshold value after the n-component by `σ[n].
Sometimes we write `σi for `σ as a reminder of which requirement Ri the threshold value is
for, though of course i = ∣σ∣. The threshold value represents our current best guess at the
witness for the Σ2 outcome of Ri under the assumption that the higher priority requirements
have the outcomes listed in σ.

2.6.3. The formal construction. We will describe the action of each component, leaving
the construction of the isomorphisms to the verification. At any point in time only one
component will be active. On completion, the n-component will define an outcome Γ =

(Γ1[n], . . . ,Γk[n]) and a maximum threshold `max[n] as well as defining new threshold val-
ues `σ[n]. We begin with the 3-component, and when it is finished continue with the 4-
component, the 5-component, etc.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 13

Action of the n-component: Begin by adding an untagged n-cycle C to B, and at each stage
add a new tagged n-cycle D1,D2, . . . to A and B:

B ∶ C ○D1 ○D2 ○D3 ⋯

A ∶ ○D1 ○D2 ○D3 ⋯

We keep adding new tagged n-cycles D until the component is homogenized. Then, until the
loop is ended, at each consequent stage s do the following:

● For each i ≤ n for which Ri has not yet been determined to have the Σ2 outcome,
check whether an n-cycle Ĉ entersMi[s] with Ĉ mapped to C in B by θi∶Mi → B. If

not, then do nothing; if such an n-cycle Ĉ has entered Mi, then declare Ri to have
the outcome Γi[n] ∶= Σ2.

● For each i ≤ n for which Ri has not yet been declared to have the Σ2 outcome, check
whether there is σ = (σ0, . . . , σi−1) such that:

– for j < i, if σj is Σ2 then Rj has already been declared to have the Σ2 outcome
in this component;

– with ` = `σi , the current stage s has s ≥ p̃`(x) for each x ∈ C ⊆ B.
If there is such an i, choose the least. The maximum threshold is `max[n] ∶= `σi [n−1]
for the witness i. Declare each Rj which does not already have the Σ2 outcome to
have the outcome Γj[n] ∶= Π2. Add C to A. End the loop.

● If all of R1, . . . ,Rn have been declared to have the Σ2 outcome, declare each Rj, j > n,
to have the outcome Γj[n] ∶= Π2. Eventually the maps γ1, . . . , γn∶ B → A must become
defined on C ⊆ B, but they cannot map C to another untagged n-cycle, because there
are no untagged n-cycles in A; the best that such a γ can do is to map C to some
tagged n-cycle D. After each of γ1, . . . , γn have been defined on C, we can add C to
A.

Once this has happened we will end the loop. The maximum threshold for the
component is `max[n] ∶= `max[n − 1] + 1.

Let Γ[n] = (Γ1[n],Γ2[n], . . .) be the outcome of the n-component. For each m-component,
m < n, with outcome Γ[m] to the right of Γ[n]—i.e. with, for some i, Γ1[m] = Γ1[n], . . . ,Γi−1[m] =

Γi−1[n], and Γi[m] = Σ2 but Γi[n] = Π2—we homogenize the m-component by adding a tag
to C. We stop adding new tagged m-cycles to A and B.

We update the thresholds as follows:

● For each σ ≺ Γ, with i = ∣σ∣, define:
– `σ[n] ∶= `σ[n − 1] if Γi = Σ2 (i.e., if Ri had the Σ2 outcome in this component);

and
– `σ[n] ∶= `[n−1]+1 if Γi = Π2 (i.e., if Ri had the Π2 outcome in this component).

(This defines ` on initial segments of Γ.)
● For each σΠ2 ≺ Γ, with i = ∣σ∣, and each τ ∈ {Σ2,Π2}

<ω, let `σΣ2τ [n] ∶= max(`σ[n −
1] + 1, `σΣ2τ [n − 1]). (This defines ` everywhere to the right of Γ.)

● For each other σ, let `σ[n] ∶= `σ[n − 1]. (This defines ` everywhere to the left of Γ.)

This ends the construction.

14 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

2.7. Verification. Let n1, n2, n3, . . . be the n-components which are never homogenized.
The standard type of argument in priority constructions proves:

Lemma 2.5. For each requirement Ri, one of the following is the case:

(1) For every sufficiently large j, Γi[nj] = Σ2, or
(2) For every sufficiently large j, Γi[nj] = Π2.

Proof. We argue by induction on i. We may assume that for every sufficiently large j ≥ J , for
each i′ < i, Γi′[nj] takes on a fixed value. Now if j′ > j > J and Γi[nj′] = Π2 but Γi[nj] = Σ2,
then Γ1[nj′], . . . ,Γi[nj′] would be to the left of Γ1[nj], . . . ,Γi[nj], contradicting the fact that
the nj-component is never homogenized. So for sufficiently large j, Γi[nj] takes on the same
value (either Σ2 or Π2). �

In the first case, we say that the requirement Ri has (true) outcome Σ2; in this case, Ĉ
always appears relatively quickly inMi, where quickly is measured relative to some primitive
recursive function p̃`. Lemma 2.6 shows that in this case the threshold values stabilize on a
single value of `. In the second case, we say that Ri has (true) outcome Π2. Then Ĉ often
appears slowly (or not at all) in Mi, relative to any primitive recursive function. Lemma
2.7 shows that in this case the threshold values increase unbounded.

Lemma 2.6. Let σ be the sequence of true outcomes of R0, . . . ,Ri−1. If the true outcome of
Ri is Σ2, then there is ` such that for sufficiently large j, `σi [nj] = `.

Proof. Let K be sufficiently large that for k ≥K and j ≤ i, Γj[nk] is the true outcome of Rj.
Thus, for m ≥ nK , the outcome Γ[m] of the m-component is never to the left of σ̂ ⟨Σ2⟩, as if
it was, the nK-component would be injured. So for each such m, either Γ[m] is to the right of
σ, or it extends σ̂ {Σ2}. A component never changes the thresholds `σ where σ is to the left
of its outcome, so if Γ[m] is to the right of σ, then we have `σi [m] = `σi [m−1]. If Γ[m] extends
σ̂ {Σ2}, then we also have `σi [m] = `σi [m − 1]. Thus for all m ≥K, `σi [m] = `σi [nK]. �

Lemma 2.7. Let σ be the sequence of true outcomes of R0, . . . ,Ri−1. If the true outcome of
Ri is Π2, then limj→∞ `σi [nj] = ∞.

Proof. Let K be sufficiently large that for k ≥K and j ≤ i, Γj[nk] is the true outcome of Rj.
Thus, for m ≥ nK , the outcome Γ[m] of the m-component is never to the left of σ̂ ⟨Π2⟩, as if
it was, the nK-component would be injured. So for each such m, either Γ[m] is to the right
of σ, it extends σ̂ {Σ2}, or it extends σ̂ {Π2}. A component never changes the thresholds to
the left of its outcome, so if Γ[m] is to the right of σ, then we have `σi [m] = `σi [m − 1]. If
Γ[m] extends σ̂ {Σ2}, then we also have `σi [m] = `σi [m − 1]. And if Γ[m] extends σ̂ {Π2},
then we also have `σi [m] = `σi [m− 1] + 1. The latter is the case whenever m = nk, k ≥K, and
so it follows that limj→∞ `σi [nj] = ∞. �

Suppose that σ is the outcome of the requirements R0, . . . ,Ri−1 in the n-component, and
that Ri has outcome Π2 in the n-component. The idea of the construction was that we want
to wait for Ĉ to show up in Mi until we can compute p̃`σi [n−1](x). But we might not wait
this long, because before this happens we might find that some other requirement has the
Π2 outcome. The maximum threshold `max[n] measures how long we actually waited. The
next lemma will show that this threshold value increases to infinity, which will mean that
this poses no issue.

Lemma 2.8. limm→∞ `max[m] = ∞.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 15

Proof. To each n-component, we will assign a sequence t[n] = (t1[n], t2[n], t3[n], t4[n], . . .).
Here, tr[n] will be the number of σ with `σ[n] = r. Note that each entry of t[n] is always
finite (because we have `σ[n] ≥ ∣σ∣).

First, we always have `σ[n] ≥ `σ[m] for n > m, which means that the sequence of t[n] is
non-increasing as the components increase: t[3] ≥ t[4] ≥ ⋯.

Now we will argue that if `max[n+ 1] ≤ `max[n], then t[n+ 1] < t[n] and, in particular, for
some i ≤ `max[n], ti[n + 1] < ti[n]. This can only happen finitely many times for each i, so
we can conclude that lim supm→∞ `max[m] = ∞. There are two possibilities from one stage
to the next, only in the second of which can we have `max[n + 1] ≤ `max[n]:

● If each of R1, . . . ,Rn+1 in the (n+1)-component have the Σ2 outcome, then we define

`max[n + 1] = `max[n] + 1.

● If some Ri had the Π2 outcome and ended the loop for the (n + 1)-component, then
we set `max[n+1] = `σi [n] where σ = (Γ0[n], . . . ,Γi−1[n]). We have `σ[n+1] = `σ[n]+1.
Together with the fact that for each τ , `τ [n + 1] ≥ `τ [n], this implies that t[n + 1] <
t[n], and in particular for some j ≤ `σ[n] = `max[n], tj[n + 1] < tj[n].

This proves the lemma. �

Let σ be a list of outcomes for R0, . . . ,Ri−1. Whenever we have a Σ2 outcome for Ri
extending σ for the first time, we reset the thresholds `τ for τ extending σΣ2 so that `τ ≥ `σ.
This results in:

Lemma 2.9. Let σ, τ be a sequence of outcomes with σ̂ ⟨Σ2⟩ ⪯ τ . Then for every n, `σ[n] ≤
`τ [n].

Proof. Let i = ∣σ∣. This is true at the beginning (for the 3-component), and we argue that it
remains true from one stage to the next.

First suppose that Γi[n+1] = Σ2. Then we have `σ[n+1] = `σ[n]. For each τ ∈ {Σ2,Π2}
<ω,

we have `σΣ2τ [n + 1] ∶= `σΣ2τ [n]. Since `σ[n] ≤ `σΣ2τ [n], the same remains true for n + 1.
Second, suppose that Γi[n + 1] = Σ2. Then we have `σ[n + 1] = `σ[n] + 1. For each

τ ∈ {Σ2,Π2}
<ω, we have `σΣ2τ [n + 1] ∶= max(`σ[n] + 1, `σΣ2τ [n]) ≥ `σ[n + 1]. �

The next two lemmas say that the outcome of Ri in the n-component actually determines
how quickly or slowly Ĉ entered Mi.

Lemma 2.10. Let σ be the sequence of outcomes for R1, . . . ,Ri−1 in the n-component. Sup-
pose that the outcome Γi[n] of Ri on the n-component was Σ2. Let s be the first stage at

which p̃`σ[n−1](x) is computed for every x ∈ C ⊆ B. Then Ĉ entered Mi by the stage s.

Proof. We argue by induction on i. Inductively, and using Lemma 2.9, by this stage s, for
every j < i with σ(j) = Σ2, Rj has already been declared to have the Σ2 outcome. Then if Ĉ
had not enteredMi by stage s, the n-component would declare Ri to have the Π2 outcome.
Since this is not the case, Ĉ must have entered Mi by stage s. �

Lemma 2.11. Suppose that the outcome Γi[n] of Ri on the n-component was Π2. Let s be

the first stage at which p̃`max[n](x) is computed, for x ∈ C ⊆ B. Then Ĉ has not entered Mi

by stage s.

Proof. If Ĉ had entered Mi, Ri would have been declared to have outcome Σ2 by the n-
component. �

16 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

Next we will show that for each i, either B ≤prMi (if Ri had the Σ2 outcome) orMi ≤pr A

(if Ri had the Π2 outcome).

Lemma 2.12. Suppose that ψi is an isomorphism from A ontoMi and θi is an isomorphism
from Mi onto B, and that the outcome of Ri is Σ2. Then B ≤prMi.

Proof. We have to argue that there is a primitive recursive isomorphism B →Mi. Let σ be
the sequence of true outcomes of R0, . . . ,Ri−1. Fix K and ` such that for k ≥ K and j < i,
Γj[nk] = σ(j), Γi[nk] = Σ2, and `σi [nj] = `.

We define an isomorphism ψ∶ B →Mi component-by-component. On the nth component,
we have a number of different cases:

● If n < nK , then we construct the isomorphism by non-uniformly mapping Ĉ to C. For
each tagged n-cycle D in B, we map D to a tagged n-cycle inMi; we can find such a
tagged n-cycle in a primitive recursive way by finding the image, under ψi∶A →Mi,
of a tagged n-cycle in A. While we do this, we must also make sure that each tagged
n-cycle in Mi is the image of some tagged n-cycle in B.

● If n ≥ nK and `i ≤ `, then after we put C into B, wait for one of the following to
happen:

– An n-cycle Ĉ with θi(Ĉ) = C ∈ B enters Mi.

Map C to Ĉ. We map tagged n-cycles in B to tagged n-cycles inMi as described
above. If the n-component is ever homogenized, then we stop adding new tagged
n-cycles to A and B. In both A and B, every n-cycle is tagged, and A and B
have the same finite number of n-cycles. Thus after a primitive recursive delay,
Ĉ must be the image under θi of an n-cycle in A (which may not be C ⊆ A), and

hence will receive a tag; we can then map the tag of C ⊆ B to the tag of Ĉ.
– For some j < i, σ(j) = Π2 but an n-cycle Ĉ with θj(Ĉ) enters Mj.

We know that the n-component will be homogenized because its outcome will
be to the right of the true outcome (its outcome cannot be to the left of the
true outcome, or the nK-component would be homogenized). So C will at some
point receive a tag. So we can map each of C and each other tagged n-cycle D
in B to any other tagged n-cycle inMi, in such a way that every tagged n-cycle
in Mi is the image of one in B. We can do this primitively recursively because
we have, via the map ψi∶A →Mi, a primitive recursive list of tagged n-cycles in
Mi.

We claim that one of these must happen by stage maxx∈C⊆B p̃`(x). Suppose that
up to stage maxx∈C⊆B p̃`(x), there is no j < i with σ(j) = Π2 such that an n-cycle

Ĉ with θj(Ĉ) enters Mj; this means that no such Rj is declared to have the Σ2

outcome in the n-component. For each j < i with σ(j) = Σ2, by Lemma 2.9 we know
that `σj[n − 1] ≤ ` = `σi . If there is some j ≤ i with σ(j) = Σ2 such that by stage

maxx∈C⊆B p̃`(x) no n-cycle Ĉ with θj(Ĉ) has enteredMj, then (by the contrapositive
of Lemma 2.10) for the least such j, R0, . . . ,Rj would be declared to have outcome
σ↾j Π2 in the n-component. This is to the left of the true outcome, which is the
outcome of nK , and so the nK-component would be injured. Thus we can conclude
that for each j ≤ i with σ(j) = Σ2, by stage maxx∈C⊆B p̃`(x), an n-cycle Ĉ with θj(Ĉ)
has entered Mj. In particular, this is true for j = i. So we have shown that one of
the two possibilities above must occur by stage maxx∈C⊆B p̃`(x).

NON-DENSITY IN PUNCTUAL COMPUTABILITY 17

Putting together these isomorphisms on each component, which are uniformly primitive
recursive, we get a primitive recursive isomorphism B →Mi. �

Lemma 2.13. Suppose that ψi is an isomorphism from A ontoMi and θi is an isomorphism
from Mi onto B, and that the outcome of Ri is Π2. Then Mi ≤pr A.

Proof. We have to argue that there is a primitive recursive isomorphism Mi → A. Fix K
such that for k ≥K and j < i, Γj[nk] = σ(j), Γi[nk] = Π2.

We define an isomorphism Mi → A component-by-component. On the nth component,
we have two different cases:

● If n < nK , then we construct the isomorphism by non-uniformly mapping Ĉ to C. (As
in the previous lemma, we map tagged n-cycles in Mi to tagged n-cycles in A.)

● If n ≥ nK , we wait for an element Ĉ with θi(Ĉ) = C to appear in Mi. While we
wait, we have to map tagged n-cycles in Mi to tagged n-cycles in A; we can do this
because we have a primitive recursive list of tagged n-cycle D in A. When Ĉ enters
Mi, we have two possibilities.

First, if C is already in A, then we map Ĉ to C. Ĉ cannot receive a tag unless its
image C = θi(Ĉ) in B does, which only happens if the n-component is homogenized;

in this case, C also receives a tag in A, and we can map the tag of Ĉ to this tag.
Otherwise, if C is not already in A, the outcome of the n-component for Ri is Σ2,

and so we know that the n-component will later be homogenized, and Ĉ will receive
a tag. So we just map Ĉ to a tagged n-cycle in A. When Ĉ receives a tag, we map it
to the tag of its image in B.

When the n-component is homogenized, C ⊆ A receives a tag, and we can find a
new tagged n-cycle D̂ in Mi and map it to C in A.

Putting together these isomorphisms on each component, which are uniformly primitive
recursive, we get a primitive recursive isomorphism Mi → A. �

Lemma 2.14. Each requirement Si is satisfied: γi is not an isomorphism from B to A.

Proof. If there is some nj-component, nj ≥ i, such that each of the requirements R1, . . . ,Rnj
has the Σ2 outcome, then C ∈ B is an untagged n-cycle (since the nj-component is never
homogenized), and we do not add C to A until after γn has already become defined on C; so
the image of C under γn cannot be an untagged n-cycle, and γn cannot be an isomorphism.

Otherwise, let i′ be such that γi is dominated by p̃i′ . For every nj-component, nj ≥ i′,
some requirement Rk has the outcome Π2. For sufficiently large j, `max[nj] > i′. This means
that in the nj-component, C is not added to A until after stage maxx∈C⊆B p̃i′(x) (see Lemma
2.11), and so no element of C is among the first maxx∈C⊆B p̃i′(x) elements of A. Since p̃i′
dominates γi, for x ∈ C ⊆ B, γi(x) cannot be in C ⊆ A; and as the nj-component is never
homogenized C is the only untagged nj-cycle. Thus γi is not an isomorphism. �

By Lemmas 2.12 and 2.13, each R requirement is satisfied. By Lemma 2.14, each S
requirement is satisfied. This completes the proof of the theorem. �

References

[AK00] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144
of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Ams-
terdam, 2000.

18 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

[Ala17] P. E. Alaev. Structures computable in polynomial time. I. Algebra Logic, 55(6):421–435, 2017.
[Ala18] P. E. Alaev. Structures computable in polynomial time. II. Algebra Logic, 56(6):429–442, 2018.
[BDKM19] Nikolay Bazhenov, Rod Downey, Iskander Kalimullin, and Alexander Melnikov. Foundations of

online structure theory. Bull. Symb. Log., 25(2):141–181, 2019.
[BHTK+19] Nikolay Bazhenov, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Melnikov, and

Keng Meng Ng. Automatic and polynomial-time algebraic structures. The Journal of Symbolic
Logic, pages 1–32, 04 2019.

[BKMN] N. Bazhenov, I. Kalimullin, A. Melnikov, and K. M. Ng. Punctual presentations of finitely
generated structures. Submitted.

[CDRU09] Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel, and Zia Uddin. Space complexity of
abelian groups. Arch. Math. Log., 48(1):115–140, 2009.

[CR92] Douglas A. Cenzer and Jeffrey B. Remmel. Polynomial-time abelian groups. Ann. Pure Appl.
Logic, 56(1-3):313–363, 1992.

[CR98] D. Cenzer and J. B. Remmel. Complexity theoretic model theory and algebra. In Yu. L. Ershov,
S. S. Goncharov, A. Nerode, and J. B. Remmel, editors, Handbook of recursive mathematics,
Vol. 1, volume 138 of Stud. Logic Found. Math., pages 381–513. North-Holland, Amsterdam,
1998.

[DGM+] R. Downey, N. Greenberg, A. Melnikov, K.M. Ng, and D. Turetsky. Punctual categoricity and
universality. to appear in the Journal of Symbolic Logic.

[DMN] Rod Downey, Alexander Melnikov, and Keng Meng Ng. Foundations of online structure theory
ii: the operator approach. Preprint.

[EG00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and Logic. Con-
sultants Bureau, New York, 2000.

[GLS03] S. Goncharov, S. Lempp, and R. Solomon. The computable dimension of ordered abelian groups.
Adv. Math., 175(1):102–143, 2003.

[GMR89] S. S. Goncharov, A. V. Molokov, and N. S. Romanovskĭı. Nilpotent groups of finite algorithmic
dimension. Sibirsk. Mat. Zh., 30(1):82–88, 1989.

[Gon80] S. Goncharov. The problem of the number of nonautoequivalent constructivizations. Algebra i
Logika, 19(6):621–639, 745, 1980.

[Gri90] Serge Grigorieff. Every recursive linear ordering has a copy in DTIME-SPACE(n, log(n)). J.
Symb. Log., 55(1):260–276, 1990.

[Hir01] Denis R. Hirschfeldt. Degree spectra of intrinsically c.e. relations. J. Symbolic Logic, 66(2):441–
469, 2001.

[HKSS02] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko. Degree spectra and computable di-
mensions in algebraic structures. Ann. Pure Appl. Logic, 115(1-3):71–113, 2002.

[Kie98] H. A. Kierstead. Recursive and on-line graph coloring. In Yu. L. Ershov, S. S. Goncharov,
A. Nerode, and J. B. Remmel, editors, Handbook of recursive mathematics, Vol. 2, volume 139
of Stud. Logic Found. Math., pages 1233–1269. North-Holland, Amsterdam, 1998.

[KMN17] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures computable
without delay. Theoret. Comput. Sci., 674:73–98, 2017.

[KMnN17] I. Sh. Kalimullin, A. G. Mel′ nikov, and K. M. Ng. Different versions of categoricity without
delays. Algebra Logika, 56(2):256–266, 2017.

[KMZ] I. Kalimullin, A. Melnikov, and M Zubkov. Punctual degrees and lattice embeddings. to appear
in proceedings of Aspects of Computation (World-Scientific).

[KN08] Bakhadyr Khoussainov and Anil Nerode. Open questions in the theory of automatic structures.
Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (94):181–204, 2008.

[KPT94] H. A. Kierstead, S. G. Penrice, and W. T. Trotter Jr. On-line coloring and recursive graph
theory. SIAM J. Discrete Math., 7:72–89, 1994.

[Mal61] A. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.
[McC02] Charles F. D. McCoy. Finite computable dimension does not relativize. Arch. Math. Logic,

41(4):309–320, 2002.
[MNa] A. Melnikov and K.M. Ng. A structure of punctual dimension two. to appear in Proceedings of

the American mathematical Society.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 19

[MNb] A. G. Melnikov and K. M. Ng. The back-and-forth method and computability without delay.
Preprint.

[Rab60] M. Rabin. Computable algebra, general theory and theory of computable fields. Trans. Amer.
Math. Soc., 95:341–360, 1960.

	1. Introduction
	2. Proof of Theorem 1.4
	2.1. The language of the structure
	2.2. The requirements
	2.3. Intuition for one R-strategy
	2.4. Primitive recursive time
	2.5. Formal details for one R combined with all Si.
	2.6. The full construction
	2.7. Verification

	References

