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Abstract. We show that structures with only one binary function symbol are universal for “online”
(punctual) computable structures. In contrast, we give a description of punctually categorical graphs

which implies that graphs are not universal for online computability.

1. Introduction

There are a large number of natural algorithmic processes which receive input over time (and must
pretend that they might receive more input infinitely often) but need to provide output promptly
without waiting for more input. For example, consider a memory manager in a computer: over time,
the manager receives requests to assign memory, but it cannot wait too long before actually assigning
memory. We refer to these as online tasks. After decades of development, computability theory and
computable structure theory give a well-developed framework to investigate the limits of computation in
mathematics. Nonetheless, there is no such general theory for online structures. The paper contributes
to the general program [KMN17b, Mel17b, BDKM, KMN17a, MN] that aims to lay the foundations of
online computability in algebra and combinatorics. Informally, a computable presentation of a structure
is online if more of the structure is computed without delay; we will give formal definitions later.

It is well-known in model theory that graphs are universal structures; informally, this means that
any structure can be thought of as a graph. This is also true for computable structures. The main
result of the paper implies that online presented graphs cannot possess some complex enough features
that some other online algebraic structures provably have. That is, online graphs are not universal.
To state our result formally we need definitions.

We also show that structures with a single binary function are universal for online structures.

1.1. Online structures.

1.1.1. Computable structures. The study of general computable processes in algebra is a long tradition
going back to the early twentieth century; see van der Waarden [vdW30], Hermann [Her26], and
Dehn [Deh11]. Maltsev [Mal61] and Rabin [Rab60] proposed the following standard model for such
investigations: A computable presentation of a structure is a coding of the structure with universe N,
so that the relations and functions are Turing computable on the codes of elements. For example,
a computable presentation of an infinite group is any 1-1 numbering of its universe with natural
numbers such that the group operation becomes a (Turing) computable function on the indices of
elements. This is the same as to say that the group has a recursive presentation with solvable word
problem [Hig61, LS01].

The general area of computable structures now has a well-developed theory. This area has several
threads, as can be seen by the large volumes [EGN+98a, EGN+98b], but below we will discuss a couple
of relevance to the present paper.

Turing computability allows to us to use our algorithmic intuition to derive algebraic and definability-
theoretic conclusions about a given structure in the general spirit of Hilbert’s 10th problem. For
example, it is well-known that a relation on a structure is computably enumerable in (relative to)
any presentation of a structure A iff the relation is ΣA1 -definable in the language Lω1ω; see the book
[AK00]. For explicit connections of such studies with descriptive set theory and model theory see, e.g.,
Montalbán [Mon13] and Melnikov and Montalbán [MM18]. There has also been a large body of work
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exploring the relationship between classical isomorphism type and computable isomorphism type. For
example, if every pair of computable copies of a structure are computably isomorphic then the structure
is called computably categorical. Examples of such structures include the dense linear ordering without
endpoints and the random graph. It is clear that every pair of computable copies of the random graph
are computably isomorphic. We also mention that using more general effective classification tools, such
as calibrations via computability-theoretical hierarchies, one can gain understanding of the complexity
of classification problems in (not necessarily computable) mathematics [GK02]. For example, we know
that certain classes cannot have classical invariants because of the complexity of the isomorphism
problem [DM08, Mel17a].

We note that such investigations rely on the most general notion of an algorithm that we know
today, namely Turing computable functions. In particular, we do not assume any time or space
bounds in such abstract computations. It is a general phenomenon that many such abstract algorithms
can be provably turned into more feasible algorithms for reasons yet to be understood; see, e.g.,
[Gri90, KMN17b]. The present article contributes to the research program which, among other goals,
aims to explain this phenomenon. The other important goal is to give a foundation for online structure
theory. In particular, we need a representative model of online structures. Following [KMN17b], we
choose primitive recursion as the basis of our theory. We will briefly discuss the reasons for this, and
then give some precise definitions.

1.1.2. Resource-constrained computable structure theory. In the same way that computational complex-
ity theory grew from computability theory, authors have looked at various forms of feasible structure
theory. That is, what happens when we put resource bounds on the definitions of allowable computa-
tion?

Khoussainov and Nerode [KN94] initiated a systematic study into automatically presentable algebraic
structures. Automatic structures are linear-time computable and have decidable theories, but such
presentations seem quite rare. For example, the additive group of the rationals is not automatic [Tsa11].
The approach via finite automata is highly sensitive to how we define what we mean by automatic. For
example, treating a function as a relation yields quite a different kind of automatic presentation from
treating it is as a transducer. See [ECH+92] for an alternate approach to automatic groups. Although
the theory of automatic structures is a beautiful subject, a finite automaton is definitely not general
enough for our purposes.

Cenzer and Remmel, Gregorieff, Alaev, and others [CR98, Gri90, Ala17, Ala18] studied polynomial
time presentable structures. We omit the formal definitions, but we note that they are sensitive to
how exactly we code the domain. In many common algebraic classes we can show that all Turing
computable structures have polynomial-time computable copies. One attractive result is that every
computably presentable linear ordering has a copy in linear time and logarithmic space [Gri90]. Similar
results hold for broad subclasses of Boolean algebras [CR] and commutative groups [CR92, CDRU09],
and some other structures [CR91]. As was noted in [KMN17b], many known proofs from polynomial
time structure theory (e.g., [CR91, CR92, CDRU09, Gri90]) are focused on making the operations and
relations on the structure merely primitive recursive, and then observing that the presentation that we
obtain is in fact polynomial-time. The restricted Church-Turing thesis for primitive recursive functions
says that a function is primitive recursive iff it can be described by an algorithm that uses only bounded
loops. Furthermore, to illustrate that a structure has no polynomial time copy, it is sometimes easiest
to argue that it does not even have a copy with primitive recursive operations, see e.g. [CR92].

Finally, from a computable model theory perspective, the most natural way to construct structures
is via a Henkin construction. A decidable theory has a decidable model, meaning that its full first-
order diagram is computable. But almost all natural decision procedures in the literature are primitive
recursive, and as observed in [KMN17b] the natural Henkin construction will automatically give an
appropriately primitive recursively decidable model.

Because of all of the reasons outlined above, we believe that primitive recursive structures provide
a general model of the general issues faced in the theory of online structures, in that they give a
generic model to focus on the key ingredient, that unbounded search is outlawed. Our choice for
basic online theory is to consider primitive recursive procedures on primitive recursive structures. It is
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natural to systematically investigate those structures that admit a presentation with primitive recursive
operations, as defined below

1.1.3. Punctual computability. Kalimullin, Melnikov, and Ng [KMN17b] proposed that an “online”
structure must minimally satisfy:

Definition 1.1 ([KMN17b]). A countable structure is fully primitive recursive (fpr) if its domain is N
and the operations and predicates of the structure are (uniformly) primitive recursive.

We call fpr structures computable without delay, punctually computable, or simply punctual. Here
“delay” really means an instance of a truly unbounded search. We could also agree that all finite
structures are also punctual by allowing initial segments of N to serve as their domains. Although the
definition above is not restricted to finite languages, we will never consider infinite languages in the
paper; therefore, we do not clarify what uniformity means in Def. 1.1.

We have chosen punctual structures as our central model. Primitive recursiveness gives a useful
unifying abstraction to computational processes for structures with computationally bounded presen-
tations. In such investigations we only care that there is some bound. Furthermore, these models arise
quite naturally through standard decision procedures. Irrelevant counting combinatorics is stripped
from such proofs, thus emphasising the effects related to the existence of a bound in principle. These
effects are far more significant than it may seem at first glance; the main result of the paper will be a
good illustration of this phenomenon.

1.2. Graphs are general enough for computable mathematics. It is well-known that any count-
able algebraic structure can be algorithmically transformed into a graph. One represents elements of
the structure as particular nodes in the graph, each of which is marked with a particular configuration
of nodes to distinguish them from the other nodes, and then connects these particular nodes with other
configurations to encode the operations and relations. This is simple enough to be considered folklore,
but see [RS, Lav63] for the first explicit use of such transformations. Such a coding preserves most of
the (Turing) computability-theoretic properties of importance. Classes of countable structures which
can effectively “code” any other countable structure are called universal. Examples of universal classes
also include groups, partial orders, integral domains [HKSS02], and, most notably, fields [MPSS]. In
contrast, it follows from [GD80, Rem81, Ric81, LaR77] that Boolean algebras and linear orders are not
universal. Harrison-Trainor, Melnikov, Miller, and Montalbán [HTMMM17] have recently shown that
all known proofs of universality share the same features. In particular, they are witnessed by Turing
functionals that are also functors with some nice additional properties. Furthermore, they showed that
there is an equivalent Lcω1,ω definability-theoretic formulation of universality in all known cases. Their
approach can be taken as the basic formal definition of (Turing) universality of a class; we however
omit details.

1.3. A punctually universal class. The theorem below gives the first known example of a punctually
universal class.

Theorem 1.2. The class of structures with only one binary function symbol is punctually universal.

We have not formally defined universality, let alone punctual universality. To state the result formally
we need a few elementary definitions.

For a total function f : ω → ω, let P (f) be the least class containing f and all primitive recursive
functions which is closed under composition and primitive recursion. This is done by forbidding the
(unbounded) minimisation operator and adding f to the recursive schemata. Then for any g ∈ P (f),
there is a “recipe” for generating g from f and the primitive recursive functions, using composition and

primitive recursion. Replacing f in this recipe with another function f̂ would result in a ĝ ∈ P (f̂). A
primitive recursive functional Φ is thus a schemata for generating a function from a function symbol f
and various primitive recursive functions, using composition and primitive recursion. And Φ(f) is the
function obtained by interpreting f as f .

We define primitive recursive functionals on subsets of ω by identifying such sets with their charac-
teristic function.
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We must give some definitions in order to state Theorem 1.2 formally. We give a definition of
universality in the form of effective categories. This is essentially the same as [MPSS, HTMM15],
except that we use p.r. functionals instead of computable functionals. The idea is that a class is
universal if we can transform any structure into a structure in that class in a primitive recursive way,
and that this tranformation has an inverse transformation.

Definition 1.3. A category of structures on ω is a category where the objects are a set of structures with
domain ω, closed under isomorphisms, and the morphisms are the isomorphisms between structures.

We can view any class of structures closed under isomorphism as a category of structures on ω and
vice versa.

Recall that a functor F : C → D maps objects in C to objects in D, and morphisms in C to morphisms
in D, such that:

• for every A ∈ C, F must map the identity on A to the identity on F (A), and
• for all morphisms g : A1 → A2 and h : A2 → A3, F (h ◦ g) = F (h) ◦ F (g).

A functor is primitive recursive if, essentially, it is given by primitive recursive functionals.

Definition 1.4. Let C and D be categories of structures on ω. A primitive recursive functor is a
functor F : C → D for which there exist primitive recursive functionals Φ and Φ∗ such that

• for every A ∈ C, Φ(A) = F (A),
• for every morphism g : A → B, we have Φ∗(A⊕ B ⊕ g) = F (g).

Note that we also get that F (g−1) is primitive recursive in g−1.
We also need a notion of two functors being effectively the same. This is somewhat technical.

Definition 1.5. A functor F : C → D is primitive recursively naturally isomorphic (or just p.r. iso-
morphic) to a functor G : C → D if there are primitive recursive functionals Λ,Λ−1 such that for every
A ∈ C, Λ(A) is an isomorphism from F (A) to G(A) and Λ−1(A) is its inverse, and the following
diagram commutes for every A,B ∈ C and every morphism h : A → B:

F (A)

F (h)

��

Λ(A) // G(A)

G(h)

��
F (B)

Λ(B)
// G(B)

Two functors are pseudo-inverses if their composition is p.r. isomorphic to the identity.

Now we can define a reduction between categories.

Definition 1.6. Say that a class C is (uniformly) p.r. reducible to a class D if there is a subclass D′
of D and computable functors F : C → D′, G : D′ → C such that F and G are pseudo-inverses.

Note that D′ must be closed under isomorphisms; so the functor G must be defined on any structure
isomorphic to one in the image of F . Also note that this is transitive; if C is p.r. reducible to D, and
D is p.r. reducible to E , then C is p.r. reducible to E .

Definition 1.7. A class D is p.r. universal if for every finite language L, the category of structures in
the language L is p.r. reducible to D.

Since p.r. functionals are also Turing computable functionals, every punctually universal class is
Turing universal as well.

It is convenient to use this definition to prove that a class is universal. To show that a class is not
universal, it is desirable to give a particular example of a primitive recursive property which cannot
be realized within that class; in this way, the fact that the class is not universal in independent of the
choice of a precise definition for universality.

We prove Theorem 1.2 in Section 2.
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1.4. Graphs are not general enough for online mathematics. Recall that a computable struc-
ture is computably categorical if it has exactly one (Turing) computable presentation up to (Turing)
computable isomorphism [EG00, GK02]. We say that a (punctual) structure is punctually categorical
if between any two punctual copies of the structure there is a primitive recursive isomorphism with
primitive recursive inverse [KMN17b]. In [KMN17b] Kalimullin, Melnikov and Ng constructed an ex-
ample of a punctually categorical structure which is not computably categorical (and we conjecture
that there are punctually categorical structures which are not 0(α)-categorical). As we noted above,
one should expect every punctually universal class to be Turing universal as well. In particular, a
punctually universal class must also contain an example of this sort. On the other hand, the following
theorem says that punctually categorical graphs are relatively simple.

Theorem 1.8. Let G be an undirected infinite graph. Then the following are equivalent:

(1) G is punctually categorical.
(2) G becomes a clique or an anti-clique (an independent set) after removing finitely many vertices

v̄ = v0, . . . , vk with each vi being either adjacent to all x ∈ (G − v̄) or not adjacent to all
x ∈ (G− v̄). Equivalently, G is automorphically trivial – there is a finite tuple v̄ such that any
permutation of G that fixes v̄ pointwise is an automorphism.

In particular, every punctually categorical graph is computably categorical. So graphs are not universal
for punctual computability for any reasonable notion of punctual universality.

We remark that the proof of Theorem 1.8 involves several new proof techniques which seem like they
should become basic to the area. They are not the usual priority arguments endemic in computability
theory, but involve careful understanding of the relative speed of presentations of structures. Also
involved is some kind of notion of “distance” within structures, something which is unexplored in
classical structure theory in the non-metric setting.

We leave open:

Question 1.9. Is there a punctually universal relational class?

Likely our techniques will make the following sub-question accessible.

Question 1.10. Is there an algebraic description of punctually categorical directed graphs? Of punc-
tually categorical structures with many binary relations? Of punctually categorical structures in a
relational language?

2. A punctually universal class: Proof of Theorem 1.2

Throughout the proof we will often refer to primitive recursion rather than primitive recursion
relative to some total function. In particular, the structures and the isomorphisms are assumed to be
primitive recursive. However, it should be rather clear that the argument is relativisable via primitive
recursive functional, in the appropriate sense.

Beginning with the category of structures in a finite language L, we will argue in several steps
by giving p.r. reductions to intermediate categories of structures in particular languages. Since p.r.
reductions are transitive, this is sufficient. We will also argue somewhat loosely, as it is tedious but
straightforward to check for example that two particular functors are pseudo-inverses.

Step 1. Replace all predicate symbols in A by function symbols as follows (and treat constants as
0-ary functions, so that the language consists entirely of function symbols). Let Γ(A) be the extension
of A by two new elements, 0 and 1, which are marked by corresponding new constant symbols. Then
we can view the predicate symbols from A as function symbols in Γ(A) that map tuples to these
constants: Γ(A) |= [fR(x̄) = 1] if A |= R(x̄), and Γ(A) |= [fR(x̄) = 0] if A |= ¬R(x̄). It is not hard
to see that Γ is a p.r. functor with p.r. pseudo-inverse. Hence, we can assume from the beginning that
A has only function symbols. We also make sure that different function symbols have different arities
by replacing, for example, f(x1, . . . , xn) by f ′(x1, . . . , xn, xn+1) = f(x1, . . . , xn). Thus without loss
of generality we may assume that the signature of A consists of the functions f1, f2, . . . , fm and the
arity of each fk, 1 ≤ k ≤ m, is equal to k (if some arity k is missing we can introduce a new function
fk(x1, . . . , xk) = x1).
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Step 2. Given a functional language with the properties described above, we make the following
p.r. reduction. Let Γ(A) be the structure with the domain

{[x1, x2, . . . , xk] : 1 ≤ k ≤ m & x1, x2, . . . , xk ∈ A}

containing all nonempty strings of the length not greater than m in the alphabet A. The structure
Γ(A) has the binary symbol for truncated concatenation

[x1, x2, . . . , xi] ∗ [y1, y2, . . . , yj ] = [x1, x2, . . . , xi, y1, y2, . . . , ymin(m−i,j)]

and the unary function symbols

g0([x1, x2, . . . , xk]) = [fk(x1, x2, . . . , xk)],

gi([x1, x2, . . . , xk]) =

{
[xi], if i ≤ k;

[x1], otherwise.

for 1 ≤ i ≤ m.
We will identify each element x ∈ A with the one-element string [x] ∈ Γ(A). Then the structure A

is an automorphism base of Γ(A) (due to [x1, . . . , xk] = [x1] ∗ · · · ∗ [xk]), and so Γ is a p.r. functor.
We now need to argue that Γ has a p.r. pseudo-inverse. First, note that

|y| = i⇐⇒ y = g1(y) ∗ · · · ∗ gi(y)

and the right-hand side can be checked in a p.r. way in any copy. The pseudo-inverse of Γ should just
be the functor which takes U ∼= Γ(A) to the structure whose domain is the set of strings of length one
with fk defined by fk(x1, . . . , xk) = g0(x1 ∗ · · · ∗xk). This is a computable functor, but to see that it is
a p.r. functional, we need to see that we can find new strings of U which have length 1 in a punctual
way.

Suppose U ∼= Γ(A) for punctual structures

A = 〈ω, fAi : 1 ≤ i ≤ m〉 and U = 〈ω, ∗U , gUi : 0 ≤ i ≤ m〉.

Define functions p, q and r by primitive recursion: p(0) = 0, q(0) = 1, r(0) = gU1 (0), and for s > 0

p(s) = (µx)[(∃i1≤i≤m)(∀tt<s)[gUi (x) 6= r(t)]],

q(s) = (µi1≤i≤m)[(∀tt<s)[gUi (p(s)) 6= r(t)]],

r(s) = gUq(s)(p(s)).

In other words, in p(s) we search for the least element of U which (as a “string”) contains a new symbol
(one-element “string”) not belonging to {r(0), r(1), . . . , r(s−1)}. Then r(s) is a first such symbol. Since
lengths of “strings” are bounded by m, the search in the µx-operator is restricted by 1+s+s2+· · ·+sm,
so the functions p, q and r are primitive recursive. Note also that p is a non-decreasing function such
that p(s) ≥

[
s
m

]
(p jumps at least every m-th stage), and r is a bijection from ω onto the image of

gUi (i.e., onto the set of one-element “strings” in U). Moreover, since gU1 (r(s)) = r(s) = gUq(s)(p(s)) we

have p(s) ≤ r(s) by the definition of p(s), and, hence, if the value r−1(y) exists then[
r−1(y)

m

]
≤ p(r−1(y)) ≤ y.

We conclude that r−1 is also primitive recursive.
Now we can define a punctual structure B = 〈ω, fBi : 1 ≤ i ≤ m〉 ∼= A by

fBi (x1, x2, . . . , xi) = r−1(gU0 (r(x1) ∗U r(x2) ∗U · · · ∗U r(xi))).

The pseudo-inverse of Γ is the functor Θ that maps U to B. It is easy to see that Θ ◦ Γ is isomorphic
to the identity. It remains to check that Γ ◦ Θ is isomorphic to the identity. To see this, we need
to show that there are, uniformly, primitive recursive isomorphisms in each direction between U and
Γ(Θ(U)) = Γ(B). The primitive recursive function

H([x1, x2, . . . , xi]) = r(x1) ∗U r(x2) ∗U · · · ∗U r(xi) for 1 ≤ i ≤ m,
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will be an isomorphism from Γ(B) onto U . To see that H−1 is also primitive recursive it is enough to
note that the “length” |y|U can be computed as

|y|U = (µi1≤i≤m)[y = gU1 (y) ∗U · · · ∗U gUi (y)],

and then

H−1(y) = [r−1(gU1 (y)), r−1(gU2 (y)), . . . , r−1(gU|y|U (y))].

Γ(A) is not yet a structure with only one binary function symbol, so we still need to reduce the
language further. In preparation for that, observe that if we interpret x1 ∗ x2 ∗ · · · ∗ xk by associating
left to right, then our functional for the pseudo-inverse only ever makes use of x ∗ y for |y| = 1, and
so we could redefine x ∗ y for |y| > 1 however we liked without interfering with the operation of this
functional.

Step 3. To prove the theorem we need to remove the unary functions gi, 0 ≤ i ≤ m, from the
signature of Γ(A), emulating them using only one binary function ∗ defined above; this can be done
by further enriching the structure by new elements. To do so we add into Γ(A) new elements

c0, c1, . . . , cm

such that

ci ∗ cj = cmin(m,i+j+1), for 0 ≤ i, j ≤ m,
x ∗ ci = c0, for 0 ≤ i ≤ m,x 6= c0, c1, . . . , cm,

ci ∗ x = gi(x), for 0 ≤ i ≤ m,x 6= c0, c1, . . . , cm,

x ∗ y = c0, for x, y 6= c0, c1, . . . , cm, |y| > 1.

Note that the final line is changing the definition of ∗ on the old elements, and it is no longer associative.
However, as noted earlier, this change does not cause any problems with our reductions.

It is clear that each of the new elements c0, c1, . . . , cm is p.r. definable; for instance, c0 is the unique
element such that x ∗ c0 = c0 for at least m+ 2 different x; c1 = c0 ∗ c0; c2 = c1 ∗ c0; etc. Notice that
we can locate c0 via a bounded search: for any m+ 2 distinct elements x1, . . . , xm+2, c0 must occur in
{xi ∗ (xi ∗ xi) : 1 ≤ i ≤ m + 2}. We can then generate the remaining ci from c0 as above. Therefore
this is another p.r. reduction, and we can remove gi, 0 ≤ i ≤ m, from the signature of Γ(A).

3. Punctually categorical graphs: Proof of Theorem 1.8

The implication (2) =⇒ (1) in Theorem 1.8 is trivial. We prove (1) =⇒ (2). We start with the
simplest case in which G is essentially locally finite. For now, we focus only on proving that G is either
almost a clique or almost an anti-clique; we will establish its homogeneity with respect to the finitely
many exceptional nodes later.

Proposition 3.1. Suppose a punctually categorical graph G becomes locally finite after removing finitely
many vertices. Then G becomes an anti-clique after removing finitely many vertices.

Proof. Let G be the graph. Name the finite tuple ā = (a1, a2, . . .) of exceptional nodes as constants,
and let G′ be G \ ā. Each x ∈ G′ has an ā-colour, which is the configuration of the form

(x, a1) ∈ E(G), (x, a2) /∈ E(G), . . . ,

that is, the relation induced by the edge relation w.r.t. the fixed finite tuple.

Consider the cases below. In each case we describe the strategy for building a punctual H ∼= G such
that H 6∼=p G, where ∼=p stands for a primitive recursive isomorphism with primitive recursive inverse.
(We call such isomorphisms punctual.)

Case 1. The graph G′ has infinitely many connected components.
Case 1.1 All but finitely many components in G′ are singletons, and all components are finite. In

this case G′ (thus, G as well) becomes a totally disconnected set after removing finitely
many nodes.
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Case 1.2 Either there is an infinite connected component or there are infinitely many non-trivial
(non-singleton) connected components in G′. There must exist an infinite independent
ā-monochromatic set. Build a graph H while diagonalizing one by one against primitive
recursive isomorphisms with G. To diagonalize against a particular isomorphism pe, in
H, enumerate elements from the monochromatic independent set very quickly (though we
cannot yet choose images in G for these elements) and wait for pe : G → H to converge
on more nodes x which are connected to at least one other node in G, but currently keep
such nodes out of H. At some point, pe must converge and show a mistake. Then we
must include in H some of the nodes from G which we have so far omitted while also
choosing images in G for some of the elements in H from the monochromatic independent
set. After this, we move on to the next primitive recursive isomorphism. So this case is
impossible.

Case 2. The graph G′ has finitely many connected components. In this case at least one of the com-
ponents must be infinite, and must contain an infinite ā-monochromatic set. We diagonalise
against a pair (pe, qe), where qe is the intended inverse of pe. Initially let H copy G and wait
for pe : H → G to converge on some node x within one such infinite component,

pe(x) = h ∈ H.
As soon as this happens, introduce a new extra h′ ∈ H whose ā-colour is the same as the
ā-colour of the infinite ā-monochromatic set in the component. Wait for qe(h

′) ↓= x′ ∈ G, and
wait for x′ to be put into one of the finitely many connected components in G′. While we wait
we let H copy G, but currently keep h′ out of the range of the (computable) isomorphism that
we are constructing.

- If the component of x′ it is not the same as the component of x, then map h′ to the first
found fresh and unused element in the component of x in G′ which has the same ā-colour.
We have diagonalised.

- If the component of x′ is the same as the component of x, then let x, x1, . . . , xk, x
′ be a

path that witnesses this. Wait for pe to converge on each of the xi in the paths, but keep
h′ disconnected from h. After this is done, we have diagonalised. It remains to introduce
an image of h′ in G, this is done as above.

Note that the strategies differ in different cases. �

To understand the case which is far from being locally finite we will need the technical proposition
below. It says that if deg(x) = ∞ then the set N(x) = {z : (z, x) ∈ E(G)}, which we call the
1-neighbourhood (1-nbhd) of x, must be growing punctually.

Proposition 3.2. Suppose G is a punctually categorical graph, and assume deg(x) = ∞ for some
x ∈ G. Then the 1-nbhd of x must be rapidly growing, i.e., there exists a primitive recursive time-
function f such that

|N(x) [s]| < |N(x) [f(s)]|,
for every stage s of the construction.

Proof idea. We write |X| for the cardinality of X. Imagine that x is the only vertex of G with the
property deg(x) = ∞, and assume N(x) is very slowly growing, i.e., there is no primitive recursive
bound on the stage at which the nth vertex appears in N(x). In this simple case the strategy is
straightforward. Build a copy B of G which is essentially identical to G but with |NB(x)| = |NG(x)|−1
at every stage. Any isomorphism must match the points of infinite degree, and we know the graph has
only one such point. We also know that “most of the time” G puts points into G \N(x), and therefore
in B we can eventually delay one element from appearing in the 1-nbhd of x and still keep B punctual.
All we need to do is to wait until p : G → B is diagonalised on the extra vertex that G has in N(x)
when compared with B. Note that we must eventually succeed, for otherwise we could use p to extract
a primitive recursive bound on the speed of growth of N(x) in G.

When G has many vertices of infinite degree and is not rigid, we have to consider 2 copies, A and
B, of G and look at two vertices in G. This is necessary because p : B → A does not have to map the
natural version of x in B to the natural version of x in A. So suppose A is copying G via ψ and B
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via φ (both are defined by us), and suppose we are trying to diagonalise against a pair (p, q), where
p : B → A and (supposedly) p−1 = q.

The idea is to either keep |NA(pφ(x))| < |NB(φ(x))| or |NA(pφ(x))| > |NB(φ(x))| for as long as
possible, and use either p or q to press the opponent to grow the respective neighbourhoods in G. It
is also crucial to avoid |NA(pφ(x))| = |NB(mφ(x))| at all costs, because in this situation we cannot
“press” the opponent. We informally explain how we “press” below.

For example, suppose at stage s have |NA(pφ(x))| < |NB(φ(x))|. Then evaluate p on NB(φ(x))[s];
the opponent must grow NG(ψ−1pφ(x)) in G. The trick here is that we do not make the 1-
neighbourhood equal, but rather delay at most one point and press the opponent to grow NG(ψ−1pφ(x))
1-point larger than NB(φ(x))[s]. So one point appears in G and makes the two 1-nbhds look equal; how-
ever, we keep this point out of our structure A and wait for another point to appear in NG(ψ−1pφ(x)).
This is fine to delay one point from the diagram of A. Just consider the next point u in G. If
u /∈ NG(ψ−1pφ(x)) then copy it into A. If it is in NG(ψ−1pφ(x)) then this is exactly what we needed.
But recall that we challenged the opponent by computing p on the currently larger NB(φ(x)). The op-
ponent must respond by enumerating more points intoNG(ψ−1pφ(x)), and it must do so within the time
bound of p, for otherwise p is not an isomorphism. Thus, unless NG(x) (thus, NB(φ(x))) grows within
the time needed for p(NB(φ(x))[s]) to converge, we will be able to make |NA(pφ(x))| > |NB(φ(x))|.
But then we can evaluate q on NA(pφ(x)) and similalry press the opponent to grow NB(φ(x)) by
extending NG(x) in G; this was our ultimate goal. In the worst case scenario the time bound can
be extracted from and q(NA(pφ(x))[t]), were t depends on the convergence time for p(NB(φ(x))[s]),
making the described above process punctual.

The sketch above describes the worst case scenario, but there will be various cases which also have to
be incorporated into the formal argument below. To maintain the inequality |NA(pφ(x))| 6= |NB(φ(x))|
at every stage we will have to consider the cases when either NA(pφ(x)) or NB(φ(x)) starts growing
faster than anticipated. Also, |NA(pφ(x))| and |NB(φ(x))| do not have to differ by only one element at
a given stage. In all these cases we have even more advantage over the opponent, however, considering
such cases will significantly increase the combinatorial complexity of the formal argument below, making
it not that easy to follow. At this stage the reader may want to see the formal details.

Proof of Prop. 3.2. For any vertex x of a graph G, define its 1-neighbourhood (1-nbhd) to be the set
N(x) = {y : (x, y) ∈ E(G)} ∪ {x}, i.e., the set of points at distance ≤ 1 from x. We write |X| for
the cardinality of X. Using two auxiliary punctual copies, A and B, of G we will produce a primitive
recursive bound on the stages at which new points get enumerated into N(x). The copy A will be
copying G via computable isomorphism ψ, and B via φ. The isomorphisms ψ and φ will be “natural”
(i.e., the identity) at most of the stages, but with some local modifications described by the strategy
below.

We will attempt to diagonalise against each pair (p, q), where p : B → A is trying to illustrate
that it is a punctual isomorphism with p−1 = q. We must fail to diagonalise against one (least) such
pair which actually does represent a punctual isomorphism; this will allow us to extract a primitive
recursive bound for the speed of growth of N(x).

Write x′ for φ(x) ∈ B. Assume B is currently naturally copying G via φ, and A is currently naturally
copying G via ψ. Without loss of generality, assume p(x′) ↓ and q(p(x′)) ↓= x′. At every stage s we
monitor p and q on the first s inputs and check that q = p−1 and both preserve the edge relation. If
this property does not hold, then we immediately halt the module described below and initiate the
module that looks at the next highest priority pair (p′, q′).

The diagonalisation module for (p, q).

i. Make sure that |N(x′)| 6= |N(p(x′))|. If the inequality already holds then do nothing and
proceed to ii. Otherwise, if currently |N(x′)| = |N(p(x′))|, do the following. Wait for either a
fresh y to be put into N(x) in G or a fresh z to appear in N(ψ−1(p(x′))) (or both). (While
waiting let A and B copy G.) The following cases are possible:
(a) Such a y appears in N(x) but this same element is not in N(ψ−1(p(x′))), then we have
|N(x′)| > |N(p(x′))|.
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(b) A fresh z appears in N(ψ−1(p(x′))) and z /∈ N(x), then we have achieved |N(x′)| <
|N(p(x′))|.

(c) We have found y ∈ N(ψ−1(p(x′)))∩N(x). Then put the natural ψ-image of y into A, but
currently keep y out of the domain of φ. We currently have |N(x′)| < |N(p(x′))|.

Depending on whether |N(x′)| < |N(p(x′))| or |N(x′)| > |N(p(x′))|, go to ii. or iii. below,
respectively.

ii. Suppose |N(x′)[s]| < |N(p(x′))[s]|. (In this case perhaps there is one element y of G currently
intentionally kept outside of the domain of φ.)
(a) Start waiting for q to converge on all elements in N(p(x′))[s].
(b) Consider the next k = (|N(p(x′))| − |N(x′)|) + 1 points in G currently outside of the

domain of ψ (including y in the notation above, if it exists).
(c) Pick a non-empty subset S of the set of these k points such that one of the two conditions

below holds (if such a subset exists):
(1) The natural extension of ψ to S makes N(x′) grow in B, and the inequality |N(x′)| <
|N(p(x′)| is preserved under the natural extension of ψ and φ to S. (If y is defined
then it must be the case that N(p(x′)) also grows.) If S contains a y′ 6= y such
that y′ ∈ N(ψ−1(p(x′)))∩N(x), then define φ(y) and ψ(y′) naturally, but delay the
definition of φ(y′). Then restart ii. with the new values of |N(x′)| and |N(p(x′))|,
and let y′ play the role of a “new” y. (We shall abuse our notation and identify this y′

with y at later stages. Note that in this case N(x) has increased in size in G before q to converged

on all elements in N(p(x′))[s].)

(2) The natural extension of ψ and φ to S flips the inequality |N(x′)| < |N(p(x′)| into
|N(x′)| > |N(p(x′)|. (If y is defined then we require that y ∈ S and N(x) grows
by at least two extra points, i.e., S ∩N(x) contains more than just y.) In this case
extend ψ and φ to S naturally and go to iii. below.

(d) There is no subset S having one of the two properties (1) and (2) above. Then one of the
two possibilities must hold:

(1) If y is undefined, then there is z among the k elements that we consider with the
property z ∈ N(x), and furthermore z /∈ N(ψ−1(p(x′))). In particular, adding the
natural φ- and ψ-images to the respective structures for any subset S 3 z of these
k elements will result in |N(x′) = N(p(x′))|. Then extend φ and ψ to all the k
elements except for z and return to the second clause of ii. with z playing the role
of y and with new fresh k elements that contain y = z. (In particular, keep z out of
the domain of φ.)

(2) y is defined. Since none of the above cases apply, there must be no points among
the considered k = 2 points that belong to N(x) with the exception of y. Naturally
extend φ and ψ to these k points, but keep y out of the domain of φ. Also, update the
value of k if necessary if N(p(x′)) has increased, but keep waiting for q to converge
merely on all elements of (the potentially smaller) N(p(x′))[s], where s was the stage
when ii. was initiated. Then return to (b) of ii. with new fresh k elements.

iii. Suppose |N(x′)[s]| > |N(p(x′))[s]. This case is very similar to ii. above, but without the extra
complication related to the auxiliary element y.
(a) Start waiting for p to converge on N(x′)[s].
(b) Whenever a new point enters N(x), naturally define φ and ψ on x and extend φ and ψ

to the first found extra point currently outside of their domain. Go to iii. with these new
parameters. (Note that |N(x′)| > |N(p(x′))| still holds.) In the substeps below we assume
that new elements do not enter N(x). If they do, (b) acts immediately (but see (f) for a
mild modification).

(c) Consider the first unused (|N(x′)|[s] − |N(p(x′))|[s]) + 1 = k many points in the domain
of G.

(d) If all of these points belong to ψ−1(N(p(x′))), then adjoin these points to N(p(x′)) and
define ψ on these points naturally. In this case we end up with |N(x′)| < |N(p(x′))| (recall
that N(x′) is not growing, see above). Go to ii.
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(e) If there are less than k − 1 points that belong to ψ−1(N(p(x′))) among these k points,
then extend φ and ψ to these points, thus (perhaps) growing N(p(x′)). Since N(x) was
assumed to not grow, we decrease |N(x′)| − |N(p(x′))| and thus k as well. The choice of
k (and the k-1 points) implies that |N(x′)| > |N(p(x′))| is preserved. Repeat for the next
k points in G, with the new value for k.

(f) If there are exactly k − 1 points (among the k points) that belong to ψ−1(N(p(x′))),
then pick one such point z and temporarily keep it out of the domains of ψ and φ.
Naturally define φ and ψ on the rest of the k points. (Note that we will end up with
|N(x′)| − |N(p(x′))| = 1.) After this is done, start waiting for one more point to enter
ψ−1N(p(x′)) (while waiting, keep building A and B elsewhere). If a new point enters
N(x) while we are waiting, then define φ and ψ on z and act as prescribed in (b) and note
that |N(x′)| > |N(p(x′))| still holds in this case. Otherwise, as soon as such a point is
found, naturally define both φ and ψ on both this point and on z which was kept outside
of their domains. As the result of this action, we will have |N(x′)| < |N(p(x′))|. Go to ii.

This finishes the description of the diagonalisation module.

Construction. Let the modules act one after another, according to some effective listing of pairs
(p, q). When the highest priority module succeeds in diagonalising against its pair of functions, we
remove the restraints of the module by extending φ (or ψ) to the point which was currently kept out
of its domain, and then we initiate the next highest priority module, etc.

Verification. Observe that all delays on the enumeration of the diagram of A and B imposed by
the module are bounded and did not depend on the time needed to compute p or q. Furthermore, we
explicitly ensured that at most one new vertex is put into A and B with a delay that depends only
on the diagram of G and the stage of the construction (e.g., the parameter k) in a primitive recursive
fashion. Thus, both A and B are (infinite) punctual graphs. Also, any element that could be delayed
from being mapped to B via φ will eventually be put into the domain of φ, and similarly for A and
ψ. This is because either (p, q) will prove that it is not an isomorphism in finite time and thus the
restraint of the basic module will be removed, or the clause ii. or iii will eventually finish its action,
which also always results in the restraint being dropped. By their definition, φ and ψ are (computable)
isomorphisms. Thus, regardless of the outcomes of the modules, both A and B are punctual copies of
G computably isomorphic to G via ψ and φ, respectively.

Recall that at every stage we check whether p = q−1 on the first few inputs of p and q, and that p
(and q) looks like an isomorphism on these inputs. Therefore, if (p, q) does not represent a punctual
isomorphism then the module corresponding to (p, q) will eventually halt. There must exist a pair
(p, q) which represents an actual punctual isomorphism between B and A; assume (p, q) is the highest
priority such pair.

The adjustment on stage i. results in either ii. or iii. becoming active. Note that i. will eventually
finish its action because the degree of x is infinite, and therefore at least one of the conditions in i. will
eventually be satisfied (more specifically, a new vertex will eventually enter N(x)).

Since (p, q) represents an isomorphism, then the condition |N(x′)| > |N(p(x′))| implies that a new
element must appear in N(p(x′)) before p halts on all elements currently in N(x′), and similarly for
the case |N(x′)| < |N(p(x′))|. We list the possible scenaria in ii. of the module below.

(1) If the action happens at (1) of (c), then this means that N(x) has grown by one extra element
within the time needed to compute q on on all elements in N(p(x′))[s], where s is the stage at
which ii. was first initiated (and is not the current stage). In this case we stay in ii.

(2) Similarly, if the action happens at (2) of (c) then N(x) must have increased within the same
as above time bound. In this case we go to iii.

(3) Note that by the choice of k there will always be some action at (d) of ii., in the sense that
some new points will be put into both A and B. (We note that “putting new points” really
means “defining the diagram on a longer segment of ω”.)

We argue that either (1) or (2) of (c) will eventually act. Since q must be a primitive recursive
isomorphism, it must eventually converge on N(p(x′))[s], and the images must be in N(x′). Thus,
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N(x′) must be forced to grow by G; in other words, G must start enumerating points into N(x). The
potential delay/restraint of at most one point from the domain of ψ : G→ B makes no difference. We
could have promised to keep at most one point out of B, this merely a bounded delay. Thus, G must
respond by giving another point in N(x), otherwise we will diagonalise against (p, q). As the result, we
wither act in (1) of (c) or we act in (2) of (c). In either case the module ensures that N(x) has grown
by at least one point within the time required for q to converge on the finite set N(p(x′))[s].

We now look at iii. Similarly to ii., we set a time bound at (a) of iii. If we act at (b) then N(x)
must have increased within the time bound. If we act at (d), then within the time bound we will see
the size N(p(x′)) grow beyond the size of N(x′), but it is not obvious how this gives the bound on the
next stage at which N(x) grows. Indeed, within the bound set by (a) of iii., N(x) may have stayed
the same. But it is sufficient to note that in (d) we will switch to ii., which itself will pick a bound
based on q and a finite subset of the currently defined part of A (namely, N(p(x′))). The size m of the
part of A which will have been enumerated by then depends on the stage in a primitive recursive way.
Therefore, when we initiate iii., the time bound on the growth of N(x) to be within the time needed for
q to converge on the first m elements of A, where m primitively recursively depends on the stage s and
the time needed for the computation of p on N(x)[s].

If we act in (e) then we call for iii., but with adjusted parameters, but with the same time bound
that was set above. In (f), either N(x) increases within the time bound, or we go to ii. Similarly to
(d), it is crucial that the actual bound that we impose on the speed of growth of N(x) is different from
the bound that is used by the clause iii.

It follows from the analysis above that N(x) will be forced to grow, and furthermore there is a
primitive recursive bound on the stages at which N(x) increases. �

The rest of the proof will be a sequence of (neat) observations making use of the main technical
proposition above. We note that all the results that we obtained so far apply for the graph-theoretic
complement of G (the same vertices under the non-edge relation).

Proposition 3.3. Suppose G is punctually categorical and deg(x) = ∞ for some x ∈ G. Then x is
connected to a.e. vertex in G.

Proof. Suppose that deg(x) =∞. By Proposition 3.2 we see that N(x) is prompt. Then we can produce
a punctual copy H of G and an element y ∈ H which is the image of x under some isomorphism, such
that H −NH(y) is not punctual in the sense of Proposition 3.2. Then Proposition 3.2 applied to the
graph-theoretic complement of H implies that H − NH(y) is finite. Thus x is connected to almost
every vertex.

To build H, as usual we copy G while delaying some elements. Fix a particular image y ∈ H of x.
We diagonalize against primitive recursive bounds on the speed of growth of H−NH(y). At some point
of the construction, H has copied some finite portion of G and we must diagonalize against the next
primitive recursive bound p. To do this, we copy only elements of N(x) into H. We must eventually see
a disagreement with p. Once we have diagonalized against the bound, copy all of the skipped elements
into H and move on to diagonalize against the next bound. �

Proposition 3.4. Suppose G has infinitely many vertices of infinite degree. For each n ∈ ω, there are
only finitely many vertices of degree n. The same holds for co-degree n.

Proof. Fix any n + 1 distinct vertices of infinite degree. By the previous proposition, almost every
vertex in G is adjacent to all of them, and thus has degree at least n+ 1. �

Proposition 3.4 implies that—provided that G has infinitely many vertices of infinite degree and
infinitely many vertices of finite degree—the automorphism orbit of any vertex in G must be finite.

Proposition 3.5. Suppose G has infinitely many vertices of infinite degree and infinitely many vertices
of finite degree. For each v ∈ G, consider the graph (G− v) obtained by removing the vertex v from G.
Then G 6∼= (G− v).
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Proof. Consider the case when deg(v) = n <∞, the case of co-finite degree is symmetric. Notice that
for any x in (G− v), its degree in (G− v) is either the same as its degree in G, or is one less. And the
latter can only happen if x is adjacent to v.

Suppose v has degree n. By Proposition 3.4, there are only finitely many vertices of degree n. If G
is isomorphic to (G-v), some y0 in G drops from degree n + 1 to degree n. But then there must also
be some y1 which drops from degree n+ 2 to degree n+ 1, etc. But each of these yi is adjacent to v,
contrary to the assumption that v has finite degree. �

We are ready to finish the proof of Theorem 1.8. Suppose that G is punctually categorical. First,
we argue that G has only finitely many vertices of finite degree or only finitely many vertices of infinite
degree. Indeed, suppose to the contrary that G is not like that, and so G 6∼= (G− v) for any v ∈ G by
Proposition 3.5. In this case it is easy to show that G cannot be punctually categorical, as follows. To
diagonalise against a pair (p, q), we simply delay one vertex v in an auxiliary copy that we build. We
wait for (p, q) to illustrate a disagreement, and then we can put v into our copy.

Then by Proposition 3.1 applied to G or to the graph-theoretic complement of G, G becomes a clique
or an anti-clique after removing finitely many vertices v̄. By Proposition 3.3, each of these vertices is
either connected to almost every vertex in G, or is not connected to almost every vertex in G. Let v̄
be the finite set of exceptional nodes from (G − ū). Since (G − ū) is either a clique or an anti-clique,
each node in v̄ is connected to every or to no vertices of (G− ū). Thus (G− ūv̄) satisfies the theorem.
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