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Abstract. In this paper we study various properties of algorithmically random infinite structures. Our results address the following
questions. How would one define algorithmic randomness for infinite structures? Could algorithmically random structures be
computable? What are the similarities and differences between algorithmically random structures and algorithmically random
infinite strings? What are the possible Turing degrees of algorithmically random structures? Are there algorithmically random
infinite groups? For instance, we prove the following in this paper: (1) there are classes which contain algorithmically random
yet computable structures, (2) there exist algorithmically random universal algebras with co-computably enumerable as well as
computably enumerable word problems, (3) there are natural classes of structures in which the Turing degrees of algorithmically
random structures can only be either computable or equivalent to the halting set, and (4) there are examples of algorithmically
random groups. The first result shows a dramatic difference between algorithmically random strings and algorithmically random
structures. The second result significantly improves the known theorem that algorithmically random structures computable in the
halting set exist; these examples of algebras are sharp in terms of arithmetical hierarchy of the word problem for random algebras.
The third result is a dichotomy theorem that characterises all possible Turing degrees of algorithmically random structures.
Finally, the fourth result answers a nontrivial open question about the existence of algorithmically random groups.

1. Introduction
1.1. Background and motivation
Algorithmic randomness of infinite strings has a captivating history going back to Kolmogorov [9], Martin-Löf
[17], Chaitin [2], Schnorr [21, 22], Levin [25]. In the last two decades the topic has attracted the attention of
experts in complexity, computability, logic, philosophy, and algorithms. For instance, see the monographs by
Downey/Hirschfeldt [3], Nies [18] and textbooks by Lee/Vitani [14], Calude [1]. Martin-Löf gave one of the foun-
dational definitions of algorithmic randomness for infinite strings. The key ingredient in the definition is the natural
measure present on the Cantor space {0, 1}ω. Martin-Löf randomness states that random strings are those that avoid
all effective measure zero sets.

Martin-Löf random (ML-random) infinite strings possess many properties that are intuitively clear (and that can
formally be proved; see [3] [18]): they are incompressible; they do not contain infinite computable substrings; they
satisfy the law of large numbers; no winning strategies exist that given an initial segment of the string bet on the
next bit of it.

How would one define algorithmic randomness for infinite structures such as graphs, trees, groups, or uni-
versal algebras? What properties would these algorithmically random structures possess? Can algorithmically ran-
dom structures be computable? Can algorithmically random universal algebras have computably enumerable word
problem? What are the similarities and differences between algorithmically random structures and random infinite
strings? Are there algorithmically random infinite groups? What are the possible Turing degrees of algorithmically
random structures? In this paper we address and (partially) answer all these questions.

A natural yet naive way to introduce algorithmic randomness for structures is this. Let G = (ω; R) be a relational
structure, say in the language of undirected graphs. So, G is a graph. List all unordered pairs from ω. Now we code
G into the following binary string αG : αG(i) = 1 if and only if R is true on the ith unordered pair. Call the graph
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G algorithmically random if the string αG is Martin-Löf random. Is this a good definition? One proves that if αG
is ML-random then G is the Fraïssé limit of all finite graphs [10]. So, from model theory [8] we know that (1)
the first order theory of graph G is ℵ0-categorical, (2) the graph G is isomorphic to a computable graph, (3) the
graph G satisfies the extension axioms, and (4) the theory of G admits effective quantifier elimination. Property
(1) implies that all algorithmically random structures (as defined above) are isomorphic. Erdös and Spencer [4]
remark that this phenomenon “demolishes the theory of infinite random graphs". As far as algorithmic randomness
is concerned, property (2) is counter-intuitive in two ways. The first is that one would like algorithmic randomness
to be a property of the isomorphism type rather than a property of the presentation of the structure. The second is
that it is not clear at all why computability of a structure is compatible with algorithmic randomness; certainly this
fails for infinite binary strings. Properties (3) and (4) provide an effective description of the structure in the first
order logic and decidability of its the first order theory. All these defy the intuitive notion of algorithmic randomness
and suggest alternative approaches should be taken towards defining algorithmic randomness for infinite structures.

As the natural measure in the Cantor space is central in defining algorithmic randomness for infinite strings,
ultimately the task (of defining algorithmically random structures) consists of introducing meaningful measures into
the classes of infinite algebraic structures. The second author accomplishes this task in papers [10] and [11] thus
initiating a systematic study of algorithmic randomness for infinite algebraic structures. This paper continuous the
line of research for studying algorithmic randomness for infinite structures proposed in [10] and [11]. In partic-
ular, the paper answers some of the important questions, including the ones we posed earlier, necessary for deep
understanding of algorithmic random algebraic structures.

1.2. Outline and contributions
1. Algorithmic randomness for infinite structures is introduced through the concept of branching classes (B-classes
for short) defined in [11]. Informally, a branching class provides a context in which one can reason about algorithmic
randomness of algebraic structures. Section 2 recalls the definition and provides examples of branching classes.
Every branching class K consists of finite structures and determines the class Kω of infinite structures that are direct
limits of structures from K. The class K also determines a finitely branching tree T (K) such that there is a bijective
operator η→ Aη mapping infinite paths η of T (K) to structure Aη fromKω. Using the tree T (K), we naturally equip
the class Kω with measure. Having the measure, one defines Martin-Löf random structures in Kω. This implies,
just like for infinite bit strings, that ML-random structures in the class Kω forms the continuum (Theorem 3.6), and
among them there are ML-random structures computable in the halting set 0′ (Theorem 4.11).
2. It is an expected phenomenon that there exist ML-random structures computable in the halting set 0′ . Such struc-
tures correspond to the leftmost paths of computable infinite finitely branching trees, and such paths are computable
in 0′. The mapping η → Aη mentioned above is a computable operator; hence, the structure Aη is computable in
any oracle computing η. In contrast, building η from Aη requires the jump of the open diagram of Aη. We exploit
this in constructing ML-random and yet computable structures (Theorem 5.1). Such example is also built in [11],
but our construction here is considerably simpler and shorter. This example is also essential for understanding re-
sults appearing later in the paper. We remarked earlier that it is counter-intuitive that a computable object might be
algorithmically random; it is because ML-randomness does not preclude computability just like ML-randomness
of strings does not preclude computability in the halting set 0′. But, we prove that no 2-ML-random structure is
computable (Theorem 5.4), where 2-ML-randomness is ML-randomness relative to the halting set 0′.
3. We construct ML-random universal algebra A1 with computably enumerable word problem (Theorem 6.8). We
also construct ML-random universal algebra A2 with co-computably enumerable word problem (Theorem 6.2).
These examples are important because of the following reasons. The first is that no ML-random algebra has a
computable word problem [10]. So, there are no computable ML-random algebras. Compare this with existence of
ML-random computable structures mentioned above. However, ML-random algebras computable in the halting set
0′ exist by Theorem 4.11. The word problems in such algebras are ∆0

2-sets. The examples A1 and A2 show that the
word problem in ML-random algebras can be Σ0

1 and Π0
1 thus significantly improving the ∆0

2 bound. The second
reason is that these are the only possible imrpovements in terms of arithmetical hierarchy. Finally, drawing a parallel
to infinite strings, it is known that there exist ML-random computably enumerable from the left (and also there exist
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ML-random computably enumerable from the right) strings, e.g. the halting probability of the prefix free universal
Turing machine [2]. The existence of structures A1 and A2 can be viewed as a reflection of this phenomenon in the
case of universal algebras.
4. We study the degrees of ML-random structures. The degree of a structure is a fundamental concept used in modern
model theory and computability [13] [20] [24]. Let B be an infinite structure with domain ω. The open diagram of
B is the set of atomic relations or their negations true in B. The degree of a structure A, denoted by deg(A), is the
least Turing degree among all Turing degrees of open diagrams of structures isomorphic to A in case such degree
exists. So, x is the degree of A if the following two properties are satisfied: (a) x computes a copy of the structure,
and (b) all copies of A compute x. The degree represents the least amount of computability needed to represent the
structure. We prove a dichotomy theorem showing that for natural branching classes K, the only possible degrees of
ML-random structures are the computable degree and the degree of the halting set, and both degrees are realisable
(Theorem 7.5). This is an unexpected phenomenon and stands in a stark contrast with algorithmic randomness for
infinite strings.
5. The study of random finitely generated groups has a long history [6, 23]. Traditionally, this is done by fixing
generators and choosing for each n a relator of length n at random. By Gromov [6], random groups are hyperbolic
(with probability 1), and hence have decidable word problem. The approach to randomness taken in this paper gives
a different notion of randomness for groups, which corresponds to randomly determining larger and larger balls in
Cayley graphs. Our approach contrasts Gromov’s one in the sense that all ML-random groups have undecidable
word problem. But, to exhibit ML-random groups we need to build branching classes of groups, the problem asked
in [10]. The problem of finding branching classes of groups is hard because it intuitively relates to the word prob-
lem in groups. Using small cancellation theory developed in [15], we solve the problem and provide an example
of a branching class of groups. So, there are ML-random groups (Theorem 8.6). The reason Gromov’s random
groups contrast with our random groups is that Gromov’s definition is syntactic (select relators at random) while our
definition is semantic and algebraic (select extensions of Cayley graphs at random).

2. Branching classes
In this section we review the branching classes of [10, 11]. A relational signature σ is (Rn0

1 , . . . ,R
nm
m , c1, . . . , ck),

where Rni
i is a relational symbol of arity ni and c j is a constant symbol. We identify structures of the signature up to

isomorphisms and call them σ-structures or structures if σ is clear from the content. All our structures are countable.
Structures that contain functional operations can be identified with relational structures by replacing operations with
their graphs.

Definition 2.1. An embedded system is a sequence {(Ai, fi)}i∈ω such that eachAi is a finite structure, the cardinality
ofAi is smaller than the cardinality ofAi+1, and fi is an embedding fromAi intoAi+1. Call the sequenceA0,A1, . . .
the base of the system.

Each embedded system {(Ai, fi)}i∈ω determines the limit structure denoted by limi(Ai, fi). The limit structure
depends on embeddings fi. For instance, each countable linear order is a direct limit of an embedded system with
base {0 < · · · < i}i∈ω. We want the limit to be independent of the embeddings, and formalise this through the
following definition.

Definition 2.2. An embedded system {(Ai, fi)}i∈ω is strict if limi(Ai, fi) is isomorphic to the direct limit of any
embedded system with the base A0,A1, . . ..

Let K be a decidable class of finite structures. We assume that the structures are given by their explicit represen-
tations. Our goal is to define classes of structures in which all embedded systems are strict.

Definition 2.3 (Height Function). A computable function h : K → ω is called a height function for the class K if it
satisfies the following properties:

(1) The set h−1(i) is finite for all i ∈ ω, and we can compute the cardinality of h−1(i) for every i. A structure
A ∈ K has height i if h(A) = i.
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(2) For every A ∈ K of height i there is a substructure A[i − 1] of height i − 1 such that all substructures of A
of height 6 i− 1 are contained in A[i− 1].

(3) For all A ∈ K of height i and all B ∈ K with A[i− 1] ⊂ B ⊆ A and A[i− 1] = B[i− 1], we have h(B) = i.

Note that h is an isomorphism invariant. Also, condition (2) implies that the substructureA[i−1] is unique, as it is
the largest substructure of A of height i−1. In addition, for allA ∈ K of height i and j 6 i there exists a substructure
A[ j] of height j such that all substructures ofA of height 6 j are contained inA[ j]. Also,A[0] ⊂ A[1] ⊂ . . . ⊂ A[i],
where A[i] = A, and for ` 6 j, A[ j][`] = A[`]. Thus:

Corollary 2.4. For allA,B ∈ K, the structuresA and B are isomorphic if and only if h(A) = h(B) andA[ j] = B[ j]
for all j 6 h(A).

The next lemma states the main property of classes K with height functions.

Lemma 2.5 ([11]). Let K and h be as above. Every embedded system of structures from K is strict.

Proof. Briefly, this is because of the uniqueness of the substructure A[i]. Let {(Ai, fi)}i∈ω and {(Bi, gi)}i∈ω be
embedded systems with the same base. For j < i, let f j,i : A j → Ai and g j,i : B j → Bi by the obvious compositions
of maps. LetA and B be the direct limits of these two systems, respectively. We prove thatA and B are isomorphic.
If need be, by selecting subsequences, we can assume that the heights of Ai and Bi are at least i, and Ai[ j] = A j[ j]
and Bi[ j] = B j[ j] for all i > j. This can be done since the number of structures of height j is finite and Ai, Bi are
increasing in size.

For all i, consider all isomorphisms α : Ai[i] → Bi[i]. Such an isomorphism necessarily exists, since i 6 ` =
min{h(Ai), h(Bi)}, and Ai[i] = Ai[`][i] and is unique. By the uniqueness of Ai[ j], we have α(Ai[ j]) = Bi[ j] for
all j 6 i. By uniqueness of Ai[ j] and our assumption, f j,i(A j[ j]) = Ai[ j]. Similarly, g j,i(B j[ j]) = Bi[ j]. Thus the
composition g−1j,i ◦ α ◦ f j,i is an isomorphism from A j[ j] to B j[ j].

For j 6 i, αi : Ai[i]→ Bi[i] and α j : A j[ j]→ B j[ j], write α j � αi if αi ◦ f j,i = g j,i ◦ α j. As we have just argued,
for every αi there is an α j with α j � αi. The set of all such isomorphisms α thus forms a tree T under �. Namely,
nodes of this tree at level i are isomorphisms from Ai[i] onto Bi[i]. This tree T is finitely branching, since each Ai[i]
is finite. By König’s lemma, there is an infinite path (α0, α1, . . . ) on the tree. By definition of �, this path induces a
well-defined map from A to B.

It remains to show that α is total and surjective. For A j of height i, there is an embedding f j,i of A j into Ai[i],
and so f j,i(A j) ⊆ Ai[i]. Thus A j ⊆ dom αi ◦ f j,i. So α is total. A symmetric argument shows that it is surjective. 2

Thus, for every embedded system (Ai, fi)i∈ω fromK there is an embedded system {Bi, gi}i∈ω of structures from
the same class such that: (1) the direct limits limi(Ai, fi) and limi(Bi, gi) are isomorphic; (2) the height of each Bi

is i; (3) the embeddings gi are identity embeddings; and (4) for all i 6 j we have B j[i] = Bi[i] = Bi. First, we can
assume that the A0 ⊆ A1 ⊆ A2 ⊆ · · · , and then we can simply take Bi = A j[i] for sufficiently large j.

Definition 2.6. Let K and h be as above. Set:

Kω = {A | A is the direct limit of an embedded system from the class K}.

Here is now our definition (from [11]) that provides the context for defining algorithmically random structures:

Definition 2.7. The class K together with the height function h is called a branching class, or B-class for short, if
for allA ∈ K of height i there exist distinct structures B, C ∈ K such that h(B) = h(C) > h(A) and B[i] = C[i] = A.
If a class K is a B-class, then we refer to the class Kω also as a B-class.

We use the following examples of B-classes. The first two examples are from [10]. Many more examples are in
[11].
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Example 1 (Rooted trees). Consider the class Treed of all finite rooted trees T such that every node of T has not
more than d immediate successors. The height h(T ) of T is the length of the longest path from the root to the leaves
of T . The gives a B-class.

Example 2 (c-generated algebras). An algebra A is a tuple (A; f1, . . . , fn, c1, . . . , cm), where A 6= ∅ is the domain
of A, each fi : Aki → A is a total function called an atomic operation of arity ki, and each c j is a a constant) of A.
The algebra A is c-generated if every element a of A is the interpretation of some ground term t. Call the term t a
representation of a.

The height h(a) of the element a ∈ A is the minimal height among the heights of all the ground terms represent-
ing a. The height h(A) of the algebra A is the supremum of all the heights of its elements.

For a c-generated algebra A and n ∈ ω, we define: A(n) = {a ∈ A | h(a) 6 n}. Each ki-ary operation fi of A
defines the partial operation fi,n on A(n): fi,n(a1, . . . , aki) = fi(a1, . . . , aki) if h(ai) < n for i = 1, . . . , ki, and else
undefined.

Call the partial algebras of the form A(n) proper partial algebras. The term “proper” refers to the fact in A(n)
we do not decide the operations on elements of height n, even if the result is also of height n (this is vital to make
the class branching). Define the height ofA(n) to be n. Every infinite c-generated algebraA is the direct limit of the
sequence {A(n)}n∈ω. Define:

PAlg = {B | B is a proper partial algebra }.

The class PAlg is a B-class. The class PAlgω consists of all c-generated infinite algebras.

Example 3 (Binary rooted ordered trees). Let OT (2) be the class of all binary rooted trees where the children of
internal node are linearly ordered. Since the trees are binary, every internal node has either left-child or right-child.
These trees have signature σ = (L,R, c), where c is the root, L(x, y) indicates that y is the left child of x, and R(x, y)
that y is the right child of x. The class OT (2) is a B-class.

3. Topology and measure
In this section we will review the definition of a random structure from [10, 11]. Let K be a branching class,

rK(n) be the number of structures in K of height n. We define the tree T (K).

The root of T (K) is the empty set. This is level −1. The nodes of T (K) at level n > 0 are all structures from K
of height n. There are exactly rK(n) of them. Let B be a structure from K of height n. Its successors in T (K) are the
structures C of height n + 1 such that B = C[n].

To generate a random structure, we randomly choose a height zero structure, and then a height one structure
extending that, a height two structure extending that, and so on, to obtain the structure which is the union of all of
them. This corresponds essentially to picking a random path through the tree T (K). We need to show that this tree
is effective, following which we will put a probability measure on paths through the tree, similar to the way in which
one puts a measure on 2ω when considering binary strings.

The proof of the next lemma is easy:

Lemma 3.1 (Computable Tree Lemma). For T (K) we have the following:

(1) Given a node x of T (K), we can effectively compute the structure Bx associated with x. We identify the nodes
x and the structures Bx.

(2) For each node x in T (K), the structure Bx has an immediate successor. Moreover, we can compute the
number of immediate successors of x.

(3) For each path η = B0,B1, . . . in T (K) we have: B0 ⊂ B1 ⊂ . . .. Thus, the union of this chain determines the
structure Bη = ∪iBi ∈ Kω.

(4) The mapping η→ Bη is a bijection between all infinite paths of T (K) and the class Kω.
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For A ∈ Kω, let A[i] be the largest substructure of A of height i. This is well-defined. The structure A[i] contains
all substructures of A of height 6 i.

Using the tree T (K) we introduce topology in Kω:

Definition 3.2 (Topology). For B ∈ K, set:

Cone(B) = {A | A ∈ Kω, and A[n] = B }.

These are base open sets. Call B the base of the cone.

We now define the following measures on Kω:

Definition 3.3 (Measure). For the root r, define µ(Cone(Br)) = 1. Let Bx ∈ K be of height n. Let ex be the
number of immediate successors of Bx in the tree T (K). For any immediate successor y of x, set µ(Cone(By)) =
µ(Cone(Bx))/ex.

Definition 3.4 (Metric). For structuresA, C ∈ Kω, let n be the maximal level at whichA[n] and C[n] coincide. Let B
be the node of the tree such thatA[n] = B. The distance dµ(A, C) betweenA and C is then: dµ(A, C) = µ(Cone(B)).

The space Kω has the following properties: (1) The function d is a metric on Kω; (2) Kω is compact; (3) Finite
unions of cones form clopen sets in the topology; (4) All µ-measurable sets is a σ-algebra.

Now we define ML-random structures in Kω using definitions from algorithmic randomness. A class C ⊆ Kω
is a Σ0

1-class if there is a computably enumerable (c.e.) sequence B0,B1, . . . of structures from K such that C =
∪i>1Cone(Bi).

Definition 3.5. Let K be a B-class. Consider the class Kω of infinite structures.

(1) A Martin-Löf (ML) test is a uniformly c.e. sequence {Gn}n∈ω of Σ0
1-classes with Gn+1 ⊂ Gn and µ(Gn) < 2−n

for all n.
(2) A structure A from Kω fails a ML-test {Gn}n∈ω if A belongs to ∩nGn. Otherwise, we say that the structure
A passes the test.

(3) A structure A from K is ML-random if it passes every Martin-Löf test.

If C ⊂ Kω is contained in a ML-test, then we say that C has effective measure 0.

It is standard to show that there is a universal ML-test in the sense that passing that test is equivalent to passing all
ML-tests [18]. Formally, a ML-test {Un}n∈ω is universal if for any ML-test {Gm}m∈ω it is the case that ∩mGm ⊆
∩nUn. A construction of a universal ML-test is easy: list all ML-tests {Ge

k}k∈ω uniformly on e and k, and set Un =
∪eGe

n+e+1. The resulting sequence {Un}n∈ω is a universal ML-test. Hence, to prove that a structure A ∈ Kω is ML-
random it suffices to show that A passes the universal ML-test {Un}n∈ω. The class of non-ML-random structures
has effective measure 0. Thus, we have:

Theorem 3.6 (Theorem 6.7 of [11]). Let K be a B-class. The number of ML-random structures in Kω is continuum.

4. Randomness and the halting set
We study elementary effective aspects of ML-random structures from Kω. We start with the following definition

that goes back to Malcev [16] and Rabin [19].

Definition 4.1. An infinite structure A is computable if it is isomorphic to a structure with domain ω such that all
atomic operations and relations of the structure are computable.

Computability is an isomorphism property. A structure is computable iff it is isomorphic to a structure that has a
computable open diagram. A stronger definition that involves the height function and fits the setting of this paper is
this:
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Definition 4.2. A computable structure A from Kω is strictly computable if the size of the substructure A[i] can be
effectively computed for all i ∈ ω.

Strict computability implies non ML-randomness:

Theorem 4.3 (Lemma 6.11 of [11]). If A is strictly computable then A is not ML-random.

Proof. There exists an effective procedure that given n computes the structure A[n]. Hence, for an appropriately
chosen sequence (ni)i∈ω, the sequence of cones Cone(A[n0]), Cone(A[n1]), Cone(A[n2]), . . . forms a Martin-Löf
test that the structure A fails. 2

We derive several corollaries. The first corollary is the following logical property of ML-random structures. For
A ∈ Kω consider the binary predicate L:

L(x, y) iff x ∈ A[i] ⇐⇒ y ∈ A[i] for all i > 0.

Definition 4.4. Call L the level predicate. Extend A with L thus defining the extended structure (A, L).

The extension (A, L) of A is a natural extension in the sense that the automorphism group of A coincides with
the automorphism group of (A, L).

Corollary 4.5 (Corollary 6.12 of [11]). If (A, L) is a computable structure and the ∃-theory of (A, L), that is the
set

{φ | (A, L) |= φ and φ is an existential first-order sentence},

is decidable, then A is not ML-random.

Proof. We can determine the elements of K of height i, and for each such finite structure B we can construct an
existential sentence stating that B is a substructure of A. Thus we can determine the substructures of A of height i.
The largest is A[i], allowing us to effectively compute A[i] for all i. 2

The second property concerns c-generated algebras:

Corollary 4.6. No computable c-generated ML-random algebra exists.

Proof. If A is c-generated, then one computes A[i] for any given i. Hence, A is strictly computable. 2

In particular, we have the following property for classical algebraic structures such as groups and rings:

Corollary 4.7. No finitely generated computable group or ring exists that is ML-random.

Proof. Say G is a finitely generated group with generators a and b. We can view G as a universal algebra with
generators a and b (from the signature). Hence, since G is computable, for each i we can compute the domain G[i].
Hence, G is strictly computable. 2

The next property concerns connected graphs:

Definition 4.8. A connected computable locally finite graph G = (ω, E) is highly computable if for each v ∈ G we
can effectively compute all neighbours (that is, the set {u | {v, u} ∈ E}) of v.

Corollary 4.9. No connected highly computable graph G is ML-random.
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Proof. For each fixed vertex g in the graph G, the naturally defined height function

f (v) = the shortest distance from v to g

is computable since G is highly computable. In any branching class K of graphs (as formally defined in [11]), the
height function for the class K is compatible with the height function f defined above. Now note that for each i we
can compute G[i] (that is all vertices at distance 6 i from g). Therefore, G is strictly computable, and hence G is not
ML-random. 2

Note that the hypotheses of the theorem and all the corollaries above depend only on the structures chosen, and
not on the branching classes Kω. Namely, if A is strictly computable and A ∈ Kω (no matter what the branching
class K is) then A is not ML-random in the class Kω. Thus, non-randomness of strictly computable structures is
context independent.

Definition 4.10. A structureA is 0′-computable if it is isomorphic to a structure with domain ω such that all atomic
relations, including equality, and operations of A are computable in 0′.

Each computable structure is 0′-computable. The reverse is false: there are finitely presented groups with unde-
cidable word problem. The next theorem shows that Theorem 4.3 can’t be extended to 0′-computable structures.

Theorem 4.11 (Theorem 6.14 of [11]). Every branching class Kω contains a 0′-computable ML-random structure.

Proof. Consider the mapping η→ Aη that maps all paths of the tree onto the structures Kω. The mapping η→ Aη

is such that the structure Aη is a computable operator. Hence Aη is computable in any oracle that computes η. It is
standard to show that there exists an ML-random path η in the tree such that η is computable in the halting set 0′ [3]
[18]. Hence the structure Aη is computable in 0′. 2

5. Randomness and computability
For any structure A from a branching class Kω there is a path η ∈ T (K) such that the structure Aη (determined

by η) is isomorphic to A. As we noted the path η can be constructed in the jump of the open diagram of A. In
particular, if A is computable then η is computable in the halting set 0′. We exploit this observation to prove the
following theorem.

Theorem 5.1 (Theorem 7.1 of [11]). There exists a branching class Sω that has a computable ML-random structure.

The proof we give here is better than that from [11]; in particular, it highlights certain combinatorial properties
of the branching class which we will motivate results later in the paper.

Proof. Consider the full binary tree T = {0, 1}? (whose elements are finite binary strings). The signature of this
tree consists of the root symbol c and two binary predicates L and R such that L(x, y) if and only if y = x0 and
R(x, y) if and only if y = x1.

Let � be the lexicographic order. For each x ∈ {0, 1}? consider the structure Bx whose domain consists of all
strings y such that |y| 6 |x| and y � x. Clearly Bx is a tree in the signature (c, L,R).

We set S = {Bx | x ∈ {0, 1}?}. The height function of the class S associates with every structure Bx the length
|x| of x. Obviously, S is a branching class; also, T (S) can naturally be identified with the binary tree T = {0, 1}?.
We have the following easy lemma:

Lemma 5.2 (Algebraic left-embedding lemma). Suppose that x � y. Then:

(1) If |x| 6 |y| then Bx is embedded into By.
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(2) If |x| > |y| then Bx is embedded into Byz for all z such that |x| 6 |yz| and x � yz.

Let {Un}n∈ω be the universal ML-test. Consider the set {0, 1}ω \ U1. All infinite paths in this set are paths
through a computable binary tree. Let η be the leftmost infinite path of the tree. The path is a ML-random path. So,
the structure Bη is ML-random. The path is effectively approximable from the left.

Let x0 � x1 � x2 � . . . be computable approximation to η such that |xi| < |xi+1|. By the lemma above we have
a computable sequence of embedded structures: Bx0 ⊂ Bx1 ⊂ . . .. The direct limit of this structure is isomorphic to
Bη. Thus we have built a ML-random structure which is computable. 2

In the introduction, we remarked that a ML-random string cannot be computable, and yet by the theorem ML-
random structures can be computable. The issue is that an ML-random structure is not sufficiently random to pre-
clude being computable just as an ML-random string is not sufficiently random to preclude being computable in the
halting set. Nevertheless, below we show that no computable structure is 2-ML-random.

Definition 5.3. Consider a B-class Kω. One defines what it means for a structure A from the class Kω to be 2-ML-
random by replacing the Σ0

1-classes in the definition of ML-randomness by Σ0
1-classes relative to the halting set

0′.

Clearly, 2-ML-randomness implies ML-randomness. The theorem below shows that 2-ML-randomness precludes
computable structures to be 2-ML-random (just like ML-randomness for strings precludes ML-random strings to be
computable).

Theorem 5.4. If structure A is computable then A is not 2-ML-random.

Proof. The proof is just recasting of the proof of Theorem 4.3 with an oracle for 0′. There is a 0′-computable
function that computes, for each n, the finite structure A[n]. Then we can use the same argument as in Theorem
4.3: for an appropriately chosen sequence (ni)i∈ω, the sequence of cones Cone(A[n0]),Cone(A[n1]), . . . forms a
Martin-Löf test relative to 0′ that the structure A fails. 2

6. Co-c.e. and c.e. ML-random algebras
Our interest is in ML-random c-generated algebras as explained in Example 3. From Corollary 4.6 no finitely

generated computable algebra is ML-random. But we also know, from Theorem 4.11, that the class contains ML-
random structures computable in the halting set. It is not too hard to see that the word problem in such an ML-random
algebra is always a ∆0

2-set. Thus, a natural question is whether it is possible to sharpen these results. We sharpen
these results by showing that there exist computably enumerable as well as co-computably enumerable ML-random
algebras. Clearly, the word problems in such algebras are Σ0

1 and Π0
1-sets.

Formally, the word problem is defined as follows. Let A be a c-generated algebra. Elements of this algebra are
represented by ground terms. The word problem for algebra A refers to the set

{(t, p) | t and p are ground terms and A |= t = p}.

Definition 6.1. Let A be a c-generated algebra.

(1) Call A computably enumerable if the word problem for A is computably enumerable.
(2) Call A co-computably enumerable if the word problem for A is co-computably enumerable.

There are a plethora of examples of c.e. and co-c.e. algebras. For instance, all finitely presented groups (in fact,
all finitely presented algebras) are c.e. algebras. An example of a co-c.e. algebra is any group generated by finitely
many computable permutations of ω. Every c.e. or co-c.e. algebra is computable in the halting set 0′. So, the next
theorem strengthens Theorem 4.11 for the class of algebras.
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Theorem 6.2. There is a branching class of finitely generated algebras that contains a co-computably enumerable
ML-random structure.

Proof. Consider the B-class K of all finite ordered trees T as where each non-leaf node has at most two children.
The children of the node are ordered from left to right. Order the nodes of the tree T on the same level (from left to
right) in the natural way. We call to this order the level order of the nodes. The tree T is a structure in the signature
(c, L,R).

We now transform any tree T from K into a partial-tree algebra A(T ) as follows. The signature of A(T ) has
unary operation L and R, and the generator, or constant, c (root). The domain of A(T ) is T . Operations L and R are
defined as follows. For a leaf x, L(x) and R(x) are undefined. For a non-leaf node x, if x has a left child y and right
child z then L(x) = y and R(x) = z. If x has one child only, say y, then L(x) = R(x) = y. This transformed the tree
T to the partial algebra A(T ). We identify T with A(T ).

To define the desired class S , consider the concatenation operations on partial tree–algebras T1 and T2. The
concatenation of T1 and T2, written T1 ·T2, is obtained by attaching to every leaf of T1 the tree T2 and by identifying
the leaf with the root of T2. Formally, the domain of T1 · T2 is the set T1 \ {x | x is a leaf of T1} ∪ {(v, x) | x is a
leaf of T1 and v ∈ T2}. The L and R operations on T1 are inherited from the original L and R. For elements (v, x),
we have L(v, x) = (v′, x) if L(v) = v′ and R(v, x) = v′′ if R(v) = v′′.

We need some notation: denote the full binary partial-tree algebra of height k by Tk; the tree Lk denotes the
partial tree-algebra isomorphic to ({a0, . . . , ak}; L,R) where L(ai) = R(ai) = ai+1 for i < k, and the root is a0;
finally, Ak,i denotes the partial tree-algebra Lk−i · Ti, where i 6 k.

Lemma 6.3. The partial tree-algebras Ak,0, Ak,1, . . ., Ak,k have the same height. In addition, each partial algebra
Ak,i is a homomorphic image of the partial algebra Ak,i+1, and the homomorphism is unique.

We define, by induction, our branching class S by directly constructing the tree T (S) that represents structures
from S. At stage n we define partial-tree algebras at level n of the tree T (S). We also define an ordering on the
elements of level n.

Stage 0. The root of T (S) is the partial-tree algebra L0 (and so, the root is also T0).

Stage n + 1. Suppose we constructed partial tree-algebras B1, . . ., B2n at level n of the tree T (S), listed from left to
right. At level n the tree T (S) has exactly 2n+1 nodes. Namely, each node (partial tree-algebra) Bi has exactly two
immediate successors: Bi · A2n,i−1 and Bi · A2n,i. We order Bi · A2n,i−1 to the left of Bi · A2n,i. For j < i, we order the
successors of B j to the left of the successors of Bi.

Thus, the class S consists of all partial tree-algebras T that appear at some stage n of the construction above. All
the partial tree-algebras at level n of the tree T (S) are defined to have height n. We provide several lemmas about
the partial tree-algebras of the class S. The next lemma is obvious:

Lemma 6.4. The class S is a B-class. Moreover, the tree T (S) is isomorphic to the infinite binary tree.

From this lemma above we immediately get:

Lemma 6.5. For all B ∈ S, µ(Cone(B)) = 2−h(B).

The next lemma proves an algebraic property of tree-algebras of height n.

Lemma 6.6. If B1, . . . ,B2n are the partial tree-algebras at level n of T (S) listed from left to right, then each Bi is a
homomorphic image of Bi+1. Further, each homomorphism is unique.
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Proof. The proof is by induction on n. When n = 0 the statement is clear. Assume that we have proved the lemma
for all trees B1, . . ., B2n that correspond to nodes at level n of the tree T (S). Consider Bi. This has exactly two
immediate successors: Bi · A2n,i−1 and Bi · A2n,i. By Lemma 6.3 there is a unique homomorphism from A2n,i onto
A2n,i−1. Hence, there exists a homomorphism from Bi · A2n,i onto Bi · A2n,i−1. It is clearly unique.

Consider Bi−1 · A2n,i−1, which is the element at level n + 1 immediately to the left of Bi · A2n,i−1. There is
a unique homomorphism hi, by inductive hypothesis, from Bi onto Bi−1. This implies that there exists a unique
homomorphism from Bi · A2n,i−1 onto Bi−1 · A2n,i−1. This proves that all the partial tree-algebras at level n of T (S)
form a chain of homomorphically embedded structures. 2

Thus there is a natural bijection x → Ax from the set of all binary strings onto the class S . We identify the tree
T (S) with the full binary tree.

Corollary 6.7. If x � y & |x| = |y|, then Ay is homomorphically mapped onto Ax.

Let {Un}n∈ω be the universal ML-test in the class Sω (which we identify with the Cantor space {0, 1}ω). Con-
sider the set {0, 1}ω \ U1. Since µ(U1) < 1/2, all infinite paths in {0, 1}ω \ U1 can be considered as paths through
a computable binary tree. Let η be the leftmost infinite path of the tree.

Let x0 � x1 � x2 � . . . be computable approximation to η such that |xi| < |xi+1|. We have the sequence
of partial tree-algebras: Ax0 ,Ax1 ,Ax2 , . . .. The direct limit of this structure is isomorphic to Bη. This structure is
ML-random. Our goal is to show that Bη is a co-c.e. algebra.

Consider all terms of the signature < L,R, c > built from the constant c and operation symbols L and R: c, L(c),
R(c), LL(c), LR(c), RL(c), . . .. The set of all terms forms an algebra; in this algebra for terms t the values of L and
of R on t are terms L(t) and R(t). This is known as the term algebra Term. The algebra Bη is a homomorphic image
of the term algebra Term. Let g : Term → Bη be the onto homomorphism, and let E = {(t, q) | g(t) = g(q)} be
the kernel of the homomorphism. The quotient algebra Term/E is isomorphic to Bη. It suffices to explain why E is
a co-c.e. relation.

To show that E is co-c.e. consider the partial algebra Axn+1 in the sequence above. We can assume that we have
an equivalence relation En on the partial algebra Tk(n) such that the factor structure Tk(n)/En is isomorphic to Axn .
At stage n + 1 either Axn+1 extends Axn or Axn is a subtructure of a homomorphic image of Axn+1 . In the second
case some En-equivalent elements become non-En+1-equivalent. These elements can effectively be computed. If
two elements are not En-equivalent then they will never be Em-equivalent for all m > n. So, non-equality in the
algebra Term/E is co-c.e. 2

Theorem 6.8. There exists a branching class of finitely generated algebras that contains a computably enumerable
ML-random structure.

Proof. The proof of Theorem 6.2 can be changed slightly to construct the desired algebra. Simply replace η with
the rightmost infinite path, say 1 − η, which instead of being computable from the left below, is computable from
the right. Consider an effective sequence of strings . . . � y3 � y2 � y1 � y0 that converges to 1− η from the right.
The resulting structure B1−η is a desired algebra. This is because, by Corollary 6.7, whenever we move from Ayn to
Ayn+1 , we pass to a homomorphic image and then extend. 2

7. Degrees of Random Structures
In this section we study Turing degrees of algorithmically random structures in branching classes Kω.

Definition 7.1. For a structure A, the degree of A is the least Turing degree computing an isomorphic copy of A, if
such degree exists.
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Degrees of structures play important role in understanding effective aspects of structures and their interactions
with model theory [13] [20] [24]. Here we show that the degrees of ML-random structures depend on the underlying
branching classes Kω. Here is one natural example of branching classes:

Definition 7.2. A branching class K is jumpless if for every path η in T (K), every isomorphic copy ofAη computes
η.

For instance, the class of c-generated algebras is jumpless. There are many other examples of jumpless classes
among graphs and trees. The following proposition is easy to prove:

Proposition 7.3. If the classKω is jumpless, then every structure inKω has a degree, and the degrees of ML-random
structures in the class are precisely the Turing degrees which contain random binary strings.

Motivated by the algebraic left-embedding lemma (Lemma 5.2), we give the next definition:

Definition 7.4. A B-classK is left-algebraic if there is a computable ordering on the elements of each level of T (K)
such that for the induced lexicographic ordering � the following holds:

(1) For every path η through T (K), for every sequence x0 � x1 � x2 � . . . with limit η, the sequence computes
an isomorphic copy of Aη.

(2) For every path η through T (K), for every isomorphic copy of Aη, the copy computes a sequence x0 � x1 �
x2 � . . . with limit η.

An example of a left-algebraic branching class is the class S constructed in the proof of Theorem 5.1.

Theorem 7.5. If a B-class K is left-algebraic, then the class Kω contains ML-random structures of degree 0 and 0′,
but of no other degree.

Proof. Let (Un)n∈ω be the universal ML-test for K. Then µ(U1) < 1/2, and the elements of Kω − U1 are the paths
through a computable tree. Let η be the leftmost path. Then there is a computable sequence x0 � x1 � . . . with limit
η. Since K is left-algebraic, there is a computable copy of Aη. Hence, the class Kω has an ML-random structure of
degree 0.

The following fact is analogous to one for random infinite binary strings, and the proof is similar:

Lemma 7.6. If Aη ∈ Kω is ML-random and there is a computable sequence x0 � x1 � x2 � . . . with limit η, or a
computable sequence x0 � x1 � x2 � . . . with limit η, then η has degree 0′.

The path η in this lemma should not be confused with the sequence x0 � x1 � x2 � . . . ; we do not, in general,
expect them to have the same Turing degree.

Now consider the computable tree for which the paths are elements of Kω −U1, and now let η be the rightmost
path. There exists a computable sequence x0 � x1 � x2 � . . . converging to η. Since K is left-algebraic, every
isomorphic copy of Aη computes a sequence η̂0 � η̂1 � η̂2 � . . . with limit η. So every isomorphic copy of Aη

computes η as follows: for an input i, search for an ` such that η`[ j] = η̂`[ j] for all j 6 i. Such an ` must exist. Then
η`[i] = η[i]. Since η has degree 0′, this shows that Aη has degree 0′. So, Kω contains a random structure of degree
0′.

Thus, the class Kω has ML-random structures of degrees 0 and 0′. To show that no other random degrees are
possible, we need a deeper analysis provided by the next lemmas.

Lemma 7.7. If Aη ∈ Kω and Aη has a degree, then there is a sequence η0 � η1 � η2 � . . . with limit η and a
computably enumerable set F ⊂ ω×K ×K such that ηn = x iff there is a y � η with (n, x, y) ∈ F.
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Proof. Consider an isomorphic copy B ofAη realising the degree of the structureAη. Since K is left-algebraic, this
copy computes a sequence (η0 � η1 � η2 � . . . ) with limit η. From now on we fix this sequence. As B realisez
the least degree, every other copy of Aη computes this fixed sequence (η0 � η1 � η2 � . . . ). Also, every other
sequence (ρ0 � ρ1 � ρ2 � . . . ) with limit η computes a copy of Aη. Hence, the sequence (ρ0 � ρ1 � ρ2 � . . . )
also computes the specified sequence (η0 � η1 � η2 � . . . ).

The idea is now the following. We will attempt to build a sequence (ρ0 � ρ1 � ρ2 � . . . ) with limit η which
does not compute (η0 � η1 � η2 � . . . ). Any such attempt must fail, and we use this failure to construct the desired
c.e. set F.

Let (Φi)i∈ω be an effective listing of all Turing functionals, and let (σi)i∈ω be a listing of the elements of T (K)
such that σi � η for all i. We construct (ρ0 � ρ1 � ρ2 � . . . ) in stages, although we do not claim that our
construction is effective.

Stage 0. We begin by letting ρ0 = σ0.
Stage 2i + 1. Suppose we defined ρ0 through ρk2i . At this stage, we must ensure that Φi does not compute

(η0 � η1 � η2 � . . . ). To ensure this, we search for an n and a finite sequence (τ1 � τ2 � · · · � τm) such that
ρk2i � τ1, τm � η and

Φ
(ρ0�···�ρk2i�τ1�···�τm)

i (n) is defined
and this value is not equal to ηn.

Define ρk2i+ j = τ j for 1 6 j 6 m. Otherwise, we make no new definitions at this stage.
Stage 2i + 2. Suppose we have defined ρ0 through ρk2i+1

. At this stage, we must ensure that our sequence
surpasses σi without exceeding η. We define ρk2i+1+1 = σi if ρk2i+1

� σi. Otherwise, we make no new definitions
at this stage.

Note that even numbered stages guarantee that the limit of (ρ0 � ρ1 � ρ2 � . . . ) is η. As we argued earlier, this
sequence computes the specified sequence (η0 � η1 � η2 � . . . ). Therefore there must exists the least i such that

Φ
(ρ0�ρ1�... )
i (n) = ηn for all n.

Consider now the way the construction acts at stage 2i + 1. There must be no sequence (τ1 � · · · � τm)
as desired. Now we define F. A triple (n, x, y) belongs to F iff there is a sequence (τ1 � · · · � τm) with
Φ

(ρ0�···�ρk2i�τ1�···�τm)

i (n) = x and τm = y. Observe that F is computably enumerable. We now argue that F
has the desired properties.

Suppose (n, x, y) ∈ F and y � η. Then there is some sequence (τ1 � · · · � τm) which witnessed that (n, x, y)
belongs in F. If ηn 6= x, then this sequence is as desired for Stage 2i + 1, contrary to our choice of i. So ηn = x.

Conversely, suppose ηn = x. There is an m with Φ
(ρ0�···�ρk2i+m)

i (n) = x. Define the sequence (τ1 � · · · � τm)
by τ j = ρk2i+ j, where j = 1, . . . ,m. This sequence witnesses that (n, x, ρk2i+m) ∈ F, and ρk2i+m � η. 2

Lemma 7.8. If Aη ∈ Kω has a degree, then either there is a computable sequence (ρ0 � ρ1 � . . . ) with limit η, or
there is (η0 � η1 � . . . ) a computable sequence with limit η.

Proof. Consider the set F and the sequence (η0 � η1 � . . . ) as in the previous lemma and its proof. We attempt to
effectively construct (ρ0 � ρ1 � . . . ) as stated in the lemma. If this fails, we will be able to argue that (η0 � η1 �
. . . ) is a computable sequence. We proceed in stages, building ρn at stage n.

Stage n. We enumerate F until we see two triples (m, x0, y0) and (m, x1, y1) with x0 6= x1 and y0 � y1. If
n > 0, we also require ρn−1 � y1. If we find such a pair of triples, we know that η ≺ y1. Otherwise, we would have
y0 � y1 � η, and so by the nature of F, we would have x0 = ηm = x1. We set ρn = y1 for the first pair of triples we
find.

Now, suppose that for every z � η, there is a pair of triples (m, x0, y0) and (m, x1, y1) as above with z � y1.
Then our construction will always find such a pair, and we will eventually define a ρn � z for every such z. So we
will have (ρ0 � ρ1 � . . . ) with limit η.
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Suppose instead there is a z � η such that there is no pair of desired triples with z � y1. We know that for every
m there is a triple (m, x0, y0) with y0 � η ≺ z and x0 = ηm. So it must be that there is no triple (m, x1, y1) with
y1 � z and x1 6= ηm. Then we can compute ηn by enumerating F until we see a triple (n, x, y) with y � z. When we
see such a triple, we know that ηn = x. 2

To finish the proof of the theorem, suppose Aη ∈ Kω has a degree and is random. Then there is either a
computable sequence (η0 � η1 � . . . ) or a computable sequence (η0 � η1 � . . . ) with limit η. As we earlier
argued, in the first case Aη has a computable copy, and in the second case Aη has degree 0′. 2

We dont know degrees realised by random structures from neither jumpless nor left-algebraic B-classes.

8. A Branching Class of Groups
In this section, we build a branching class of groups. We want to define a class K of finite partial groups on a

fixed set of generators, in the style of Example 3, so that Kω consists of groups. There are two difficulties. First, K
cannot include any finite group, as that would violate the branching condition; nor can it include any finite partial
group which only has one extension to an infinite group. Second, there is the problem of effectiveness. The class K
must be decidable but because the word problem for groups is undecidable, we cannot decide whether a finite partial
atomic diagram can be extended to a group.

Our construction uses ideas from [7], namely the application of small cancellation to code structure into a
finitely generated groups. We begin by recalling the basic definitions of small cancellation. For a reference on small
cancellation, see Chapter 5 of [15].

A presentation 〈S | R〉 is symmetrized if every relator in R is cyclically reduced and the relator set R is closed
under inverses and cyclic permutation. For the symmetrized presentation 〈S | R〉, a word u ∈ F(S ) is a piece if there
are two distinct r1, r2 ∈ R such that u is an initial subword of both r1 and r2.

Definition 8.1. The presentation 〈S | R〉 has the C′(λ) small cancellation hypothesis if for each r ∈ R and every
piece u with r = uv, we have |u| < λ|r|. We also say that a presentation satisfies the small cancellation hypothesis
if it does after we replace the relators set with its symmetrized closure.

The key lemma on small cancellation groups is Greendlinger’s Lemma. It says that in a small cancellation group,
every presentation of the trivial word must share a long subword in common with a relator.

Lemma 8.2 (Greendlinger’s Lemma). Assume that G = 〈S | R〉 is a C′(λ) small cancellation group with 0 6 λ 6
1/6. Let w be a non-trivial freely reduced word representing e of G. Then there is a subword v of w and a defining
relator r such that v is also a subword of r and such that |v| > (1− 3λ)|r|.

We are now ready to define the branching class of groups. Given x ∈ {0, 1}ω, define the group Gx generated by
a = a0, b, and c. The group Gx is such that it is generated with {ai}i∈ω ∪ {b, c} and relations

• u(ai, b) = ai+1, and
• u(ai, c) = e for each i with x(i) = 1.

where u(s, t) = sts2ts3t · · · s100t. The group Gx is a C′(1/10) small cancellation group.
Given a group G generated by {a0, b, c}, let G[i] be the finite partial group consisting of the elements represented

by words of length at most i (in a0, b, c). It is important to note that we think of Gx as being generated by {ai}i∈ω ∪
{b, c} when we think of it as a small cancellation group, but as being generated by {a0, b, c} when we consider the
lengths of elements. Our branching class is the class of finite partial groups which arise from the groups Gx, where
x ∈ 2ω.

Definition 8.3. Let K be the class of finite partial groups Gx[i] where x ∈ 2ω and i ∈ ω. The height function on K
is Gx[i] 7→ i.
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The next two lemmas show that there is a connection between Gx[i] and an initial segment of x, with the length of
this initial segment depending on i. These lemmas will show that K is a B-class.

Lemma 8.4. If x �` = y �`, then Gx[1958`/4] = Gy[1958`/4]. Moreover, from x �`, we can effectively determine the
atomic diagram of Gx[1958`/4].

Using this Lemma, it makes sense to define Gx[i] whenever x ∈ 2<ω and i 6 1958|x|/4.

Proof. Given a freely reduced word w in {ai}i∈ω ∪ {b, c}, for each i ∈ ω, let ni be the number of occurrences of ai

or a−1i in w. Define the weight µ(w) to be

µ(w) = n0 + 1958n1 + 19582n2 + · · · .

We will often say “the number of ai’s” when we mean “the number of occurrences of ai’s and a−1i ’s”.
Suppose w1 and w2 are words in a0, b, c, of length at most 1958`/4, such that w1 = w2 in Gx. We claim that

w1 = w2 in Gy. From this and a similar argument reversing the roles of x and y, it will follow that Gx[1958`/4] =
Gy[1958`/4].

Let w = w1w−12 . Note that µ(w) < 1958`. We will argue that for each non-trivial word v with µ(v) < 1958`,
with v equal to the identity in Gx, there is a word v′ of shorter length than v, with v equivalent to v′ in both Gx and
Gy. From this it will follow that w = e in Gy, and so w1 = w2 in Gy.

Given v as above, since v = e in Gx, by Greendlinger’s Lemma there is a generating relator r = u1u2 of Gx,
with u1 a subword of v and |u1| > (1− 3

10 )|r| = 7
10 |r|. We consider a number of cases:

• r is an inverse or cyclic permutation of u(ai, b) = ai+1. Then r is a relator in both Gx and Gy. Note that
|r| = 5151, so |u2| 6 3

10 |r| < 1546. Thus u2 can have at most 1546 ai’s and one ai+1. Also, u1 has at least
3504 ai’s (as u(ai, b) = ai+1 has 5050 ai’s in it). Thus replacing u1 by u−12 in v to obtain v′, we get that the
number of ai’s in v is at least 1958 more than the number of ai’s in v′, and the number of ai+1’s is at most one
more in v′ than in v. Thus µ(v′) 6 µ(v). Since r was a relator in both Gx and Gy, v and v′ are equivalent in
both Gx and Gy.

• r is an inverse or cyclic permutation of u(ai, c) = e. Then u1, and hence v, has at least 3504 ai’s. Since

1958i(number of ai’s in v) 6 µ(v) < 1958`

we have that i < `. Since x �` = y �`, r is also a relator in Gy. Replacing u1 in v by u−12 to get v′, we have that
µ(v′) 6 µ(v) as v2 has at most 1546 ai’s.

Notice that this procedure also gives a method for determining whether w1 = w2 in Gx using only x �`. 2

Lemma 8.5. From Gx[5150`], we can effectively determine x �`.

Proof. We claim that x(i) = 1 iff u(ai, c) = e in Gx. If x(i) = 1, then u(ai, c) = e is a defining relator. Assume
that u(ai, c) = e in Gx. We will show that x(i) = 1. Since u(ai, c) is a reduced word equivalent to e in Gx, there
is an inverse or cyclic permutation r = u1u2 of a defining relator of Gx such that u1 is a subword of u(ai, c), and
|u1| > 7

10 |r|. Then u1 must contain at least two instances of ai and at least one instance of c, and so the only option is
that u(ai, c) = e is a defining relator of Gx and r is an inverse or cyclic permutation of it. This implies that x(i) = 1.

Finally, it suffices to see that for i < `, u(ai, c) is a word of length at most 5150` in a0, b, c, in Gx. We argue by
induction that ai is equivalent to a word of length at most 5150i in Gx. For a0, this is true trivially. Suppose that we
know that ai is equivalent to a word of length at most 5150i. Then ai+1 = u(ai, b) is equivalent to a word of length
at most 5150i+1. This completes our inductive argument. Then if i < `, ai is equivalent to a word of length at most
5150i, and so u(ai, c) is a word of length at most 5150i+1 6 5150`. 2
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The two lemmas above show that h is a computable height function. Moreover, we can compute h−1(i) for
every i. The other properties of the height function are clear. We show t K is branching. Given a finite partial group
Gx[i], choose y such that y �i = x �i, but y(i) 6= x(i). Then by Lemma 8.4, Gx[i] = Gy[i], but by Lemma 8.5,
Gx[5150i+1] 6= Gy[5150i+1]. Thus we have:

Theorem 8.6. The class K is a branching class. Moreover, each A ∈ Kω is a group.

Thus we have the following corollary.

Corollary 8.7. The branching class Kω contains countinuumly many ML-random groups. Some of these ML-
random groups are computable in 0′.
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