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Abstract

We examine the degree spectra of relations on (ω,<). Given an additional
relation R on (ω,<), such as the successor relation, the degree spectrum of R is
the set of Turing degrees of R in computable copies of (ω,<). It is known that all
degree spectra of relations on (ω,<) fall into one of four categories: the computable
degree, all of the c.e. degrees, all of the ∆0

2 degrees, or intermediate between the
c.e. degrees and the ∆0

2 degrees. Examples of the first three degree spectra are
easy to construct and well-known, but until recently it was open whether there is a
relation with intermediate degree spectrum on a cone. Bazhenov, Kalociński, and
Wroclawski constructed an example of an intermediate degree spectrum, but their
example is unnatural in the sense that it is constructed by diagonalization and thus
not canonical, that is, which relation you obtain from their construction depends on
which Gödel encoding (and hence order of enumeration) of the partial computable
functions / programs you choose. In this paper, we use the “on-a-cone” paradigm to
restrict our attention to “natural” relations R. Our main result is a construction of
a natural relation on (ω,<) which has intermediate degree spectrum. This relation
has intermediate degree spectrum because of structural reasons.

1 Introduction

Let A be a mathematical structure such as a group, graph, or linear order. For this
paper, we will be solely interested in the case where A is the linear order (ω,<) though
the definitions can be made in general. Let R be an additional relation on A not in the
signature of A. Typical examples are the relation of linear independence on a vector
space or the successor relation on a linear order.

What is the intrinsic complexity of R? One way to measure this is to look at how the
complexity of R behaves under isomorphisms. In particular, we consider all computable
copies B of A (isomorphic presentations of A where all of the functions and relations are
computable) and look at the Turing degree of R in B. The collection of all such Turing
degrees is the degree spectrum of R. In other words, the degree spectrum measures the
possible complexity of R while fixing the complexity of the presentation of the underlying
structure.

∗Harrison-Trainor was partially supported by the National Science Foundation under Grant DMS-
2153823 / DMS-2419591. This work began while Damaj was an REU student at the University of
Michigan funded under this grant.
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Definition 1.1. Given a computable structure A and a relation R on A, we define the
degree spectrum of R, DgSpA(R), to be the set of Turing degrees

{degT (ϕ(R)) : B is a computable copy of A and ϕ : A ∼= B}

i.e., the images of R in all computable copies of A under all isomorphisms.

In this paper we follow a series of papers [DKMY09, Kno09, Wri18, HT18, BKW22,
BK23, BKW24] studying the degree spectra of computable relations on the structure
(ω,<). The successor relation S plays a particularly important role in this structure.
There is one copy of (ω,<), the standard copy, where S is computable. In any other
computable copy L = (L,≺) we have the successor relation SL ⊆ L2 on A. SL is always
a co-c.e. set, and hence of c.e. degree, and in fact the degree spectrum of S is exactly the
c.e. degrees.

In any computable copy L there is a unique isomorphism fL : L → (ω,<), and the
Turing degree of this isomorphism is exactly the Turing degree of SL. Given any other
computable relation R on (ω,<), we obtain its image in L by RL = f(R), and so RL ≤T
fL =T S

L ≤T ∅′. For many relations R, we also always have RL ≥T SL, so that the degree
spectrum of R is the same as the degree spectrum of S, that is, all of the c.e. degrees.
This is the case, for example, for the double-successor relation. Given x < y, we have that
y is the successor of x if and only if there is z > y such that z is the double-successor of x.
Thus the degree spectrum of the double-successor relation—a d.c.e. relation—is only the
c.e. degrees, rather than the d.c.e. degrees as one might expect. (A more general version
of this argument shows that the degree spectrum of any intrinsically n-c.e. relation on
(ω,<) will be the c.e. degrees; see Section 4 of [HT18].1)

There are also examples of computable relations on (ω,<) whose degree spectra are
only the computable degree (such as an empty relation, or the identity function) and
all ∆0

2 degrees (such as an infinite and co-infinite unary relation). Because (ω,<) is 0′-
categorical, every degree spectrum of a computable relation on (ω,<) is contained within
the ∆0

2 degrees.
Wright showed that for any computable relation R on (ω,<), the degree spectrum

is either just the computable degree, or must contain all of the c.e. degrees.2 Thus
no degree spectrum could be intermediate between the computable degree and the c.e.
degrees. Wright left open the question of which degree spectra intermediate between the
c.e. degrees and the ∆0

2 degrees were possible, and in particular, he left open the question
of the existence of a degree spectrum strictly intermediate between the c.e. degrees and
the ∆0

2 degrees.
In [BKW22], Bazhenov, Kalociński, and Wroclawski showed that there is a unary

function whose degree spectrum is intermediate. However this relation is unnatural in
the sense that it is built via a complicated priority argument and diagonalization. It is
not canonical because what relation one obtains by the construction depends on, e.g., the
particular choice of Gödel coding for c.e. sets. While computability theory is full of such
unnatural counterexamples, such examples are unlikely to show up in the normal course
of mathematics.

In this paper we consider degree spectra of natural relations on (ω,<). Of course what
it means for a relation to be natural is not well-defined and so we use the “on a cone”

1It was incorrectly stated in [Wri18] that there are intrinsically n-c.e. relations on (ω,<) whose degree
spectra are exactly the n-c.e. degrees.

2Downey, Khoussainov, Miller, and Yu [DKMY09] had previously shown this for unary relations.
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formalism to capture this notion. This formalism originated with Martin’s conjecture (see
[Mon19]) and there has been a recent program, first suggested by Montalbán, of studying
computable structure theory on a cone (e.g., [Mon13, CHT17, HT18, AHTS21]). Degree
spectra on a cone were first studied in the second author’s monograph [HT18], where
relations on (ω,<) were specifically considered.3 There the second author asked the on-
a-cone version of Wright’s question: Is there a relation on (ω,<) whose degree spectrum
is intermediate on a cone? At the time an answer to Wright’s original question, not on a
cone, was still not known. While [BKW22] resolved Wright’s question, it did not resolve
the on-a-cone version: the degree spectrum of their relation is the c.e. degrees on a cone.

In this paper we resolve the on-a-cone version of Wright’s question:

Theorem 3.9. There are relations on (ω,<) whose degree spectrum is strictly between
the c.e. degrees and the ∆0

2 degrees on a cone.

In particular, there are computable examples where the cone is the trivial cone, that is,
computable relations R on (ω,<) such that relative to any degree d, the degree spectrum
of R relative to d is strictly between the d-c.e. degrees and the degrees ∆0

2 relative to d.
Such examples are natural relations of intermediate degree spectrum. To illustrate how
natural these examples are, we describe our example. As was the example in [BKW22],
our example will be a unary function f . An initial segment of f is as follows:

· · ·

One can see that the domain of f is divided up into blocks, and in each block f is a loop.
We write Ln for the loop of length n, i.e., for the block

· · ·

with n nodes. Then f consists of the following blocks:

L1L1L2L1L3L2L4L1L5L2L6L3L7L1L8 . . . .

The pattern here is that the blocks in odd positions follow the pattern L1L2L3L4 . . .
enumerating the natural numbers in increasing order, while the blocks in even positions
L1L1L2L1L2L3 . . . are an enumeration of all of the natural numbers such that each number
occurs infinitely many times. Thus every block appears infinitely many times, but any
pair of blocks appears adjacent to each other at most once.

While we can describe our example simply, the example of [BKW22] does not have
a simple description but is actually the result of a complicated priority construction.
Moreover, what relation one gets from the priority construction depends on certain non-
canonical choices that one makes, such as the choice of Gödel encoding of the partial
computable functions. Finally, their example does not relativize, i.e., the computable
relation R produced does not have intermediate degree spectrum relative to 0′.

3Though this monograph appeared in publication slightly before Wright’s paper [Wri18], a preprint
of Wright’s paper was available before the second author started working on [HT18].
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When Montalbán first suggested studying computable structure theory on a cone, the
hope was that one might find more structure in an area of mathematics that generally
involved non-structure theorems. Though this is sometimes true (e.g., in [CHT17]) it
seems to not always be the case; e.g., we know that there are incomparable degree spectra
on a cone [HT18]. The second half of this paper is dedicated to showing that even
for relations on (ω,<), one of the simplest non-trivial examples, it seems hard to find
structure in the degree spectra on a cone. One of the mains results here is the following
theorem:

Theorem 4.16. Fix α ≥ 6 even. There is a unary function f on (ω,<) whose degree
spectrum on a cone contains all of the β-c.e. degrees for β < α and does not contain all
of the α-c.e. degrees.

Thus there are uncountably many different degree spectra on a cone. We also prove in
Theorem 4.3 that the degree spectra on a cone of these functions are not contained in
the β-c.e. degrees for any β; that is, for any β, the degree spectrum on a cone contains a
non-β-c.e. degree.

2 Preliminaries

2.1 Cones and Martin’s measure

Given a set A ⊆ 2ω, we say that A is degree-invariant if whenever X ∈ A and Y ≡T X,
Y ∈ A. If A is degree invariant, we can identify it with the corresponding set of Turing
degrees {degT (X) | X ∈ A}.

Definition 2.1. Given X ⊆ ω, the cone above X is

CX = {Y | Y ≥T X}.

As a consequence of Martin’s proof of Borel determinacy [Mar75], one gets the fol-
lowing theorem.

Theorem 2.2 (Martin, [Mar68]). Every degree-invariant Borel subset of 2ω either con-
tains a cone or is disjoint from a cone.

With more determinacy (e.g., analytic determinacy) this can be extended to more com-
plicated degree-invariant sets. For this paper, Borel determinacy will be sufficient.

Thinking of cones as large sets, one can define the {0, 1}-valued Martin’s measure on
Borel degree-invariant sets by setting µ(A) = 1 if A contains a cone, and µ(A) = 0 if A
is disjoint from a cone. Note that the intersection of countably many cones contains a
cone, which makes Martin’s measure is countably additive.

2.2 Degree spectra on a cone

Definition 2.3. If A is X-computable, we define the degree spectrum of R relative to X,
DgSpXA(R), to be the set of degrees

DgSpXA(R) = {degT (ϕ(R)⊕X) : B is an X-computable copy of A and ϕ : A ∼= B}.
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Let R and S be relations on A and B respectively. The set of Y such that DgSpYA(R) =
DgSpYB (S) is a degree-invariant Borel set,4 and so by Borel determinacy, either contains
a cone or is disjoint from a cone. If it contains a cone, then we think of the degree
spectra of R and S being equal for most degrees Y . Otherwise, there is a cone on which
DgSpYA(R) 6= DgSpYB (S) and we think of their degree spectra as being different for most
degrees Y .

Definition 2.4. Let R and S be relations on A and B respectively. We say that the
degree spectrum of R is equal to the degree spectrum of S on a cone if there is some X
such that for all Y ≥T X, DgSpYA(R) = DgSpYB (S). The degree spectrum of R on a cone
is the equivalence class for R modulo this equivalence relation.

We can also define what it means for the degree spectrum of R to be contained
in the degree spectrum of S on a cone: if there is some X such that for all Y ≥T X,
DgSpYA(R) ⊆ DgSpYB (S). Sometimes we also want to talk about the contents of the degree
spectrum of R on a cone without reference to some other relation, as in the following
definition.

Definition 2.5. Let R be a relation on A. We say that the degree spectrum of R is equal
to the c.e. degrees on a cone if there is some X such that for all Y ≥T X, DgSpYA(R) is
the set of Y -c.e. degrees above Y . Similarly, we can define what it means for a degree
spectrum to be equal to the computable degree or the ∆0

2 degrees on a cone.

Note that throughout this paper, the relations and structures need not be computable.
This is because for any structure and relation there is a cone on which that structure and
relation are computable. Thus we may essentially behave as if all structures and relations
are computable.

2.3 Notation and Definitions

Recall that Wright [Wri18] showed that given a computable relation R on (ω,<), either
the degree spectrum of R is the computable degree {0} or the degree spectrum of R
contains all of the c.e. degrees. For specific types of relations, more is known. For example,
Wright showed that if R is unary, then the degree spectrum is either the computable
degree {0} or all the ∆0

2 degrees.
In the process of showing that there is a relation of intermediate degree spectrum,

Bazhenov, Kalociński, and Wroclawski [BKW22] introduced the following class of rela-
tively simple unary functions on (ω,<).

Definition 2.6. We say that a function f : (ω,<)→ (ω,<) is a block function if for each
n there is some interval [a, b], containing n, that is closed under f and f−1. We call the
minimal such interval the f -block, or simply the block if f is understood, containing n.
Distinct f -blocks cannot have any overlap, and so the domain of f can be divided into
blocks.

The example they constructed, as well as the examples that we construct in this paper,
will be block functions.

4To see this, one must use Scott’s theorem [Sco65] that for a fixed structure A, determining whether
B ∼= A is Borel.
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Each block is finite, so we can list out all of the possible isomorphism types of blocks.
We call these isomorphism types the block types or simply types. We say that f realises
or has a block type if that block type is the type of an f -block. We denote the nth block
type in this enumeration by In and will use this to provide an alternate way to represent
an arbitrary block function.

Definition 2.7. Given a block function f , we define a sequence αf of natural numbers,
called the string corresponding to f , by αf (i) = n where In is the type of the ith block
that occurs in f .

The string αf completely determines f .
We note that the example of Bazhenov, Kalociński, and Wroclawski of an interme-

diate degree spectrum relies on not only the string αf corresponding to f being non-
computable, but the counting function cf (n) = #{i : αf (i) = n} being non-computable.
In our examples, both αf and cf will be computable together with any other reasonable
information that one might ask for.

Given two f -blocks, we say that one embeds into the other if there is an order-
preserving and f -preserving map from the one block to the other. Given block types I
and J , we say that I embeds into J if there is an order-preserving and f -preserving map
from any block of type I to any block of type J .

Frequently in this paper we will build a computable linear order (A, <A) ∼= (ω,<)
(possibly relative to some oracle) by stages. At each stage, we will define a finite linear
order As whose domain is a subset of ω. At each stage s+ 1, we may add new elements
to As to obtain As+1, saying where they are in relation to all of the elements of As, so
that A0 ⊆ A1 ⊆ A2 ⊆ · · · . We build A =

⋃
sAs.

For clarity, we will always denote by A = {a0, a1, a2, . . .} the domain of A to distin-
guish it from the particular isomorphism type (ω,<). At each stage s, we have a guess
at an isomorphism A → (ω,<): 0 corresponds to the first element of As, 1 to the second
element, and so on. We write πs : As → (ω,<) for the guess at stage s at this partial
isomorphism: Given a ∈ As, we write πs(a) for the corresponding element of (ω,<),
that is, πs(a) = n where n is the number of elements less than a in As.5 For a tuple
ā = (a1, . . . , an), we write πs(ā) for the corresponding tuple (πs(a1), . . . , πs(an)). We also
write π for the isomorphism π : A → (ω,<), and so write π(a) = n for the corresponding
element of (ω,<) at the end of the construction. Think of πs(a) as a stage-by-stage ap-
proximation of the final value π(a). At each stage s+ 1, new elements may be added to
A. If they are added above a ∈ As, then πs+1(a) = πs(a). But if they are added below
a ∈ As, then πs+1(a) > πs(a).

While in some constructions we will build a copy A of (ω,<) as described above, at
other times we will be diagonalizing against all computable copies of (ω,<). Let (Ae)e∈ω
be a list of the computable orderings, or more precisely the (possibly partial) <-structures
Ae computed by the eth partial computable function. Generally if Ae is not a linear order
we recognize this at some finite stage and so can ignore it, and since we are only concerned
with linear orders isomorphic to (ω,<) we can effectively assume that Ae is infinite. So,
morally speaking, we can think of each Ae as being an infinite computable linear order.
At each stage s, we have computed finite linear order Ae,s. We can make definitions,

5Distinguishing between elements a of A and the elements πs(a) they correspond to in (ω,<) at each
stage s, a correspondence which will change between stages, will be the primary notational difficulty in
this paper and we apologize to the reader for how hard it is to write down any notation for this in an
easily readable form.
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like πe,s(a), similar to the definitions above. We will usually omit the e, writing πs(a)
when the structure Ae is understood. Note that if Ae is not actually isomorphic to (ω,<)
then it is possible that lims→∞ πs(a) = ∞ as infinitely many elements are added to As
below a; but if Ae really is isomorphic to (ω,<) then lims→∞ πs(a) will exist and be the
isomorphic image of a in (ω,<).

Given ā = (a1, . . . , a`) and b̄ = (b1, . . . , b`) in (ω,<), we say that ā extends to b̄ if
b1 ≥ a1 and, for each i, bi+1 − bi ≥ ai+1 − ai. Then ā extends to b̄ if and only if when
ū ∈ As, and πs(ū) = ā, it is possible to add elements to As to produce As+1 with
πs+1(ū) = b̄. Also, given a tuple ā = (a1, . . . , a`) ∈ (ω,<) and n ∈ Z we write ā + n for
(a1 + n, . . . , a` + n).

If f is a unary function on (ω,<), then we write fAs for the guess at stage s at the
values of f on the elements of As. We define fAs(a) = b if and only if f(πs(a)) = πs(b).
Note that fAs might not be a total function, as there might not be enough elements in As.
However if f is a block function, then there are initial segments of (ω,<) which are closed
under f , and so by making some small adjustments we can assume that fAs : As → As
is total.

3 Intermediate Degree Spectrum

In this section we will construct an example of a unary function whose degree spectrum
on a cone is intermediate between the c.e. degrees and the ∆0

2 degrees. First, we will give
a general characterization for when the degree spectrum on a cone of a block function
strictly contains the c.e. degrees. This is the easiest part, and is essentially adapting
Section 3 of [HT18] to the setting of block functions. Second, we will give a general
condition for when the degree spectrum of a block function is all ∆0

2 degrees. This is
where most of the work is done. Finally, we give an example and prove that it meets the
first condition but not the second condition and thus strictly contains the c.e. degrees
and is strictly contained within the ∆0

2 degrees.

3.1 Containing a non-c.e. degree

We take from [HT18] a sufficient condition for the degree spectrum of a relation R on an
arbitrary structure to strictly contain the c.e. degrees on a cone. Properly re-interpreted
in the specific case of a block function on (ω,<), this will give us a condition which is
both necessary and sufficient.

Definition 3.1. Let R be an additional relation on a structure A. We say that ā is
difference-free (or d-free) over c̄ if for any tuple b̄ and quantifier-free formula ϕ(c̄, ū, v̄)
true of ā, b̄ there are ā′, b̄′ satisfying ϕ(c̄, ū, v̄) such that (1) R restricted to c̄, ā′ is not
the same as R restricted to c̄, ā and (2) for any existential formula ψ(c̄, ū, v̄) true of ā′, b̄′,
there are ā′′ and b̄′′ satisfying ψ(c̄, ū, v̄) and such that R restricted to c̄, ā′′, b̄′′ is the same
as R restricted to c̄, ā, b̄.6

The sufficient condition from [HT18] is as follows.

6Note that in [HT18], the formula ϕ in the definition was allowed to be existential. The definition we
give is equivalent and simpler.
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Theorem 3.2 (Proposition 3.4 of [HT18]). Let A be a structure and R a relation on A.
Suppose that for each tuple c̄ there is ā which is d-free over c̄. Then the degree spectrum
of R strictly contains the c.e. degrees on a cone.

We do not know whether this condition is also necessary. However if we interpret this
for a block function on (ω,<), we get the following condition which is simpler as well as
both necessary and sufficient.

Theorem 3.3. Let f be a block function which is not intrinsically computable on a cone.
Then f is intrinsically of c.e. degree on a cone if and only if there are infinitely many
blocks that do not embed into a later block.

Proof. First, suppose that there are only finitely many blocks that do not embed into
a later block. After some finite initial segment, all blocks that occur embed into some
later block. By non-uniformly fixing this initial segment, we can assume that every block
embeds into another block. We show that for any tuple c, there is some tuple a which
is d-free over c. Given c, let a be some f -block of size greater than one such that all
its elements are greater than those of c. Since we assumed that f was not intrinsically
computable, it cannot be the identity almost everywhere and so there must be infinitely
many blocks of size greater than one. We claim that a is d-free over c.

Now, with c, a as above, suppose there is some quantifier-free formula ϕ(x, u, v) and
tuple b such that ϕ(c, a, b) is true. We make some simplifying assumptions. First, we
may assume that there is no repetition amongst the elements of all of the tuples. Second,
by including in c̄ any elements of b̄ which are less than the elements of ā, we may assume
that all of the elements of b̄ are greater than all of the elements of ā. And third, we can
assume that b̄ consists of n distinct adjacent blocks b = b1b2 · · · bn with b1 the first block
after a.

Now define a′ = a + 1 and b
′

= b + 1. Then c a′b
′

has the same order type as c̄, ā, b̄
and so still satisfies ϕ(x, u, v). However the values of f on a are not the same as f on a′

as a is a block and a′ is not. Furthermore, suppose ψ(x, u, v) is some existential formula

satisfied by c, a′, b
′
. We can again replace this by a quantifier free formula χ(x, u, v, w)

which is satisfied by c, a′, b
′
, e′ for some tuple e′. Noting that there are no gaps between

the elements of ā′, b̄′, we may split ē′ into ē′1ē
′
2 where the elements of ē′1 are less than the

elements of ā′ and the elements of ē′2 are greater than the elements of ā′b̄′.
Now let a′′ be the image of ā in some block into which it embeds, and similarly let

b̄′′1, . . . , b̄
′′
n be the images of b̄1, . . . , b̄n in blocks into which they embed, choosing these

images sufficiently large that c̄ < ē′1 < ā′′ < b̄′′1 < b̄′′2 < · · · < b̄′′n. Finally, choose ē′′2 larger
than all of these. Let ē′′ = ē′1ē

′′
2.

Our construction has ensured that c a′′b
′′
e′′ has the same order type as c a′b

′
e′ and so

c a′′b
′′

satisfies the formula ψ(x, u, v). Moreover, the values of f on c a′′b
′′

are the same
as the values on c a b. Thus, a is d-free over c, as desired. By Theorem 3.2, the degree
spectrum of f strictly contains the c.e. degrees on a cone.

In the other direction, suppose that there are infinitely many f -blocks which embed
into no larger f -blocks. We work on the cone on which we can compute αf and whether
a given block embeds into a later block. We will show that, for any X on this cone, if fA

is the copy of f in an X-computable copy (A, <A) of (ω,<) then fA is of X-c.e. degree.
This implies that the degree spectrum of R on a cone is contained in the c.e. degrees. To
simplify notation, we will suppress X, assuming that αf is computable and that we can
compute whether a given block embeds into any later block.
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To show that fA is of c.e. degree, we will show that for any k it computes the kth
element of A. This implies that it computes the successor relation on A. Recall that the
successor relation on A is always of c.e. degree and computes fA, so this will imply that
fA is of c.e. degree.

Given k, look in (ω,<) for a block, all of whose elements are greater than k, which does
not embed into any greater block. Suppose that this block is the elements (`, . . . , `+m−1)
of ω, so that there are ` elements less than this block. Let the block type be I. In A,
look for a tuple of elements a0 < a1 < · · · < a` < · · · < a`+m−1 of A such that fA on
(a`, . . . , a`+m−1) has block type I. (This means that f on (`, . . . , ` + m− 1) is the same
as fA on (a`, . . . , a`+m−1).) Once we find such elements, we know that ak is the kth
element of A. This is because block type I does not embed into any later fA-block (and
noting that a block cannot embed into a sequence of blocks without embedding into one
of them).

3.2 Not all ∆0
2 degrees

In this section we give conditions to determine whether the degree spectrum of a block
function on a cone consists of all ∆0

2 degrees or whether the degree spectrum is properly
contained in the ∆0

2 degrees. The key is whether or not an infinite f -coding sequence,
defined as follows, exists.

Definition 3.4. Given a block function f on (ω,<), we say that a sequence of intervals
[a1, b1], [a2, b2], . . . and a collection of maps ϕi : [ai, bi] → [ai+1, bi+1] form an f -coding
sequence if they satisfy the following conditions

(1) Each interval completely contains all f -blocks it intersects, and hence is closed
under f and f−1.

(2) ϕi : [ai, bi] → [ai+1, bi+1] are non-decreasing embeddings which preserve the order-
ing.

(3) ϕi+1 ◦ ϕi : [ai, bi]→ [ai+2, bi+2] preserves f .

(4) ϕ1 : [a1, b1] → [a2, b2] does not preserve f , i.e., there is some x ∈ [a1, b1] such that
ϕ1(f(x)) 6= f(ϕ1(x)). Together with the previous property this implies that none
of the ϕi preserves f .

(5) ai+1 > bi so that all of the elements of each interval are greater than the elements
of the previous interval.

For i < j we write ϕi 7→j for ϕj−1 ◦ · · · ◦ ϕi : [ai, bi] → [aj, bj]. If i and j have the same
parity, then fi 7→j preserves f , and otherwise it does not. Also, the ϕi 7→j compose nicely,
i.e., ϕj 7→k ◦ ϕi 7→j = ϕi 7→k.

[a1, b1]

ϕ1 $$

[a3, b3]

ϕ3 $$

[a5, b5]

ϕ5 $$

· · ·

[a2, b2]

ϕ2

::

[a4, b4]

ϕ4

::

[a6, b6] · · ·

.

This definition can be motivated as follows. Given a ∆0
2 set X, we want to produce

a computable copy A of (ω,<) such that fA ≡T X. For each e we want to introduce
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some elements of ūe of A coding whether e ∈ X. We will build A by stages, with a
finite linear order As at each stage, and A0 ⊆ A1 ⊆ A2 ⊆ · · · with A as the union. At
each stage s, we guess that nth element of As is really the nth element of A (hence, the
isomorphic image of n− 1 ∈ (ω,<)). Thus at stage s we have a guess at the values of fA

on these elements. When e enters or leaves X at a stage, we must insert elements into
A below and/or between the elements of ūe to change the guess at the values of fA on
these elements. If, say, e left X, so we added new elements to A to change the guess at
the values of fA on ūe, and then later e re-enters X, we must again add new elements
to A so that the values of fA on ūe look the same as they did when previously we had
e ∈ X. It is important that we cannot just make the values of fA on ūe different every
time e enters or leaves X, because then we might be able to compute information about
how many times e entered or left X.

An f -coding sequence is set up exactly to perform such a construction. Given a single
e, say e /∈ X at this stage, we begin with ūe being [a1, b1]. Then, when e enters X, we add
elements to A so that ūe becomes ϕ1([a1, b1]) ⊆ [a2, b2]. When e later leaves X we add
elements to A so that ūe becomes ϕ2(ϕ1([a1, b1])) = ϕ17→3([a1, b1]) ⊆ [a3, b3]. We continue
in this way until e settles. Of course there is much more to deal with, such as all of the
other values of e, and we have not exactly explained why X ≥T fA as there are many
other elements of A. But this is the basic idea.

Only one infinite coding sequence is necessary to code a ∆0
2 set as the coding tuples for

all values of e can be moved along this same sequence; for this, property (5) is important.
Further, we will show that the absence of such a sequence is enough to miss a ∆0

2 set.
This is because, if all coding sequences are finite, then we can produce a ∆0

2 set which
changes the value of each element more times than the length of the coding sequence
which attempts to determine its value. This idea will be made more formal in the proofs
to follow.

When constructing an f -coding sequence, it will be more convenient to omit (5). We
call such a sequence of intervals and maps a weak f -coding sequence. We may occasionally
refer to an f -coding sequence as a strong f -coding sequence to emphasize that it is not
just a weak f -coding sequence. When the function f is clear, we may simply say a coding
sequence. In this section, we will be concerned solely with infinite f -coding sequences,
but in the following section we will be concerned with finite f -coding sequences. In those
sections we may not always write “infinite” or “finite” respectively.

By general arguments, one can always turn an infinite weak f -coding sequence into
an infinite f -coding sequence.

Lemma 3.5. Let f be a unary function on (ω,<), and suppose that f has an infinite
weak f -coding sequence. Then f has an infinite (strong) f -coding sequence.

Proof. Suppose that we have a weak f -coding sequence with intervals [a1, b1], [a2, b2], . . .
and maps ϕi. Recall that all of the maps are non-decreasing.

We say that an element x ∈ [a1, b1] eventually increases to infinity if, for each y, there
is some composition of the ϕ which, when applied to x, increase it above y. That is, if
for every y there is some n such that ϕn(· · · (ϕ1(x)) · · · ) > y. If x does not eventually
increase to infinity, then there must be some y such that for all sufficiently large n,
ϕn(· · · (ϕ1(x)) · · · ) = y. Note that b1 eventually increases to infinity, as otherwise there
would be n such that for all m ≥ n the map ϕm would be the identity, contradicting (4).
Also, we note that if x eventually increases to infinity, then so does every y ≥ x, and also
every y in the same block as x.

10



Let a′1 ∈ [a1, b1] be such that every element of [a1, a
′
1) does not eventually increase to

infinity, and every element of [a′1, b1] does eventually increase to infinity. By the above
remarks, [a′1, b1] is closed under blocks. First, we argue that ϕ1 does not preserve f when
restricted to [a′1, b1]. This is because it does preserve f when restricted to [a1, a

′
1), as we

now argue. There is n even such that for all x ∈ [a1, a
′
1)

ϕn(· · · (ϕ1(x)) · · · ) = ϕn+1(ϕn(· · · (ϕ1(x)) · · · )).

But ϕn+1 ◦ · · · ◦ ϕ2 = ϕ27→n+1 preserves f since n is even. So ϕ1 preserves f on [a1, a
′
1),

and so does not preserve f when restricted to [a′1, b1].
Now since a′1 eventually increases to infinity, there must be some odd n such that

ϕn(· · · (ϕ1(a
′
1))) > b1. (Since b1 is the largest element of its block, this also implies that

all elements of any block containing the image of an element [a′1, b1] under ϕn ◦ · · · ◦ ϕ1

is also greater than b1.) We now replace [a1, b1] by [a′1, b1] and delete all of the blocks
[a2, b2], . . . , [an, bn] so that the next block after [a′1, b1] is [an+1, bn+1]. We still have a map
ϕ∗1 = ϕ1 7→n+1 from [a′1, b1] to [an+1, bn+1]. Now we replace [an+1, bn+1] with the smallest
interval [b′n+1, a

′
n+1] which contains the image of [a′1, b1] under ϕ∗1 and which is closed

under blocks. By choice of n, we get that a′n+1 > b1.
Thus we have now obtained

[a′1, b1]

ϕ∗1 ##

[an+2, bn+2]

ϕn+2 %%

[an+4, bn+4]

ϕn+4 %%

· · ·

[a′n+1, b
′
n+1]

ϕn+1

99

[an+3, bn+3]

ϕn+3

99

[an+5, bn+5] · · ·

.

This is a weak f -coding sequence with a′n+1 > b1. By continuing this process, now with
the second interval [a′n+1, b

′
n+1], and so on, we eventually obtain an f -coding sequence.

Theorem 3.6. Let f be a block function such that every block, except for finitely many,
embeds into some later block. Then the degree spectrum of f , on a cone, is all ∆0

2 degrees
if and only if there is an infinite f -coding sequence

Proof. First, suppose there is an infinite f -coding sequence [a1, b1], [a2, b2], [a3, b3], . . . with
functions ϕi. We show that, on the cone above αf and this coding sequence, the degree
spectrum of f is all ∆0

2 degrees. As usual, we will suppress the base of the cone and assume
that αf and this coding sequence are computable. We will also assume, by fixing a finite
initial segment, that every block embeds into a later block. Then we must show that the
degree spectrum of f is all ∆0

2 degrees. Since the degree spectrum of f is contained in
the ∆0

2 degrees, we must show that every ∆0
2 is in the degree spectrum of f .

Fix a ∆0
2 set X. We will build a computable copy A of (ω,<) such that fA ≡T X.

During this construction, the elements we place into the linear order will fall into one of
two categories: coding elements and padding elements. Padding elements are elements
that are added to move coding elements, and play no other role in the coding. We will
have to ensure that the approximation fAs to fA stays the same on the padding elements;
we can do this because every block embeds into a later block. For each e ∈ ω, there will
be some collection of coding elements corresponding to e. We divide these into the initial
coding elements which are the elements first chosen to code whether e ∈ X. It is these
elements on which we will check the values of fA to determine whether e is in X. When we
first start coding whether e ∈ X, we will add initial coding elements to A corresponding
(via the current guess at the isomorphism A → (ω,<)) to an interval [ai, bi] with i even if
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e /∈ X or odd if e ∈ X. If, at some later stage, we see that e has entered or exited X, we
insert elements into A so that these initial coding elements now correspond to elements of
some [aj, bj], j > i, with the parity of j depending on whether e ∈ X or e /∈ X; moreover,
the elements in this interval that they correspond to should be the images, under the ϕ’s,
of the elements they previously corresponded to. It is also possible that some e′ < e will
enter or exit X, causing us to add elements to A for the sake of e′, and thus requiring
us to take action for the coding elements for e as well. Because the embeddings ϕ might
not be surjective, as the construction progresses, the initial coding elements will “gather”
other subsequent coding elements. The coding elements for e will be consecutive and we
call them the coding segment for e.

The goal of the construction is to move the coding elements so that the values of fA

on them mirror whether the corresponding e is in X or not, while also ensuring that once
padding elements have been added to the structure, the value of fA on those elements
does not change. Given e′ < e, the coding segment for e will be greater than the coding
segment for e′, so that we can move the segment for e without moving the segment for
e′.

Construction: For each e, starting from stage e where they are defined, we will have
the initial coding elements ūe ∈ A, the full coding segment v̄e ∈ A containing ūe, and a
restraint re = maxA v̄e ∈ A which is the A-largest element of v̄. We write each tuple in
A-increasing order. The initial coding elements ūe will never change once defined, while
the coding segment v̄e may have more elements added, and the restraint re may increase
in the A order. We will use v̄e[s] and re[s] to refer to the values at stage s. We will always
have that if e′ ≤ e then v̄e > re′ so that the coding segment for e is free of the restraint
of e′.

Recall that at each stage s, given a tuple ā ∈ As, πs(ā) is the corresponding tuple in
(ω,<). We also have fAs which is the function f on As.

From each stage to the next, we will maintain the following properties:

(1) At each stage s ≥ e, the coding elements v̄e of A correspond to πs(v̄e) in (ω,<)
which is an interval [ai, bi], with i odd if e ∈ Xs or i even if e /∈ Xs.

(2) If at stage s ≥ e the coding elements v̄e[s] corresponded (via πs : As → (ω,<)) to
an interval [ai, bi], and at stage s + 1 the coding elements v̄[s + 1] correspond (via
πs+1 : As → (ω,<)) to an interval [aj, bj], then the coding elements v̄e[s] at stage s
correspond at stage s+ 1 to the images, under the ϕ, of the elements of (ω,<) that
they corresponded to at stage s. That is,

πs+1(v̄e[s]) = ϕi 7→j(πs(v̄e[s])).

(3) If, at stage s an element a ∈ A is a padding element, by which we mean that it is
not a coding element (i.e., not part of any v̄e[s]), then at stage s + 1 it is still not
a coding element, and fAs(a) = fAs+1(a).

(4) From stage s ≥ e to stage s+ 1, elements can only be added to A below re if there
is e′ ≤ e which entered or left X at stage s + 1, i.e., with e′ ∈ Xs4Xs+1. Thus, if
Xs+1 ��e= Xs ��e, then the partial isomorphism πs : As → (ω,<) does not change
at stage s+ 1 on elements below re.

Stage 0: We begin with A0 being empty.
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Stage s: At this stage in the construction our partial linear order As can be partitioned
into a finite number of coding segments and padding blocks, each of which form an
interval:

p̄0 <A v̄0[s] <A p̄1 <A v̄1[s] <A · · · .
We add new elements to As to code Xs+1.

We do not do anything to p̄0. We begin by handling v̄0[s]. If Xs+1(0) = Xs(0), then
we do nothing. But if Xs+1(0) 6= Xs(0), then we must act. Suppose that 0 ∈ Xs but
0 /∈ Xs+1. Then v̄0[s] corresponds to the elements of an interval [ai, bi] for i even. We
insert ai+1 − ai new padding elements above the elements of p̄0 and below the elements
of v̄0[s]. Also add new coding elements (bi+1 + ai − ai+1 − bi of them) to ensure that
v̄0[s] corresponds, in As+1, to ϕi(πs(v̄0[s])) ⊆ [ai+1, bi+1]. These new elements will be
subsequent coding elements; let v̄0[s+1] consist of v̄0[s] together with these new elements
of A. If 0 /∈ Xs but 0 ∈ Xs+1, then we act similarly but move v̄0 from an interval [ai, bi]
for i odd to [ai+1, bi+1] with i+ 1 even.

Now we have added several elements below p̄1. We must ensure that the values of f
on p̄1 at stage s+ 1 are the same as they were at stage s. For each block making up p̄1,
insert new padding elements below the least element of this block and possibly between
the elements of this block to move them up to the image of the original f -block in some
other f -block into which it embeds. (We use here the fact that each f -block embeds into
infinitely many other blocks.) Further, we add enough padding elements on the end to
complete these blocks. This ensures that for all padding elements present at stage s, the
value of fAs+1 on these elements at stage s+ 1 is the same as it was at stage s.

We continue this process, in turn, with the subsequence coding segments and padding
blocks. In increasing order, we ensure that each of these segments from As still satisfy
our requirements in As+1. However we must now take into account the fact that we may
have already inserted elements.

• Given a padding segment p̄i, consider each set of elements which corresponded at
stage s to a block. We must make sure that those same elements correspond in
As+1 to a block of the same type. For each block making up p̄i, insert new padding
elements below the least element of this block and possibly between the elements
of this block to move them up to the image of the original f -block in some other
f -block into which it embeds. Further, ensure we add enough padding elements on
the end to complete this block. This ensures that for all padding elements present
at stage s, the value of fAs on these elements is the same as at stage s+ 1.

• Given v̄e[s] the coding segment corresponding to e first check the value of Xs+1(e).
Even if Xs+1(e) = Xs(e) has not changed, we may have added new elements below
v̄e[s] so that it no longer corresponds to the same interval [ak, bk] that it did at stage
s. Let ϕk 7→` be such that (i) ` is even if e ∈ Xs+1 and ` is odd if e /∈ Xs+1, and (ii)
` is sufficiently large that by adding elements below and between the elements of
v̄e[s] that at stage s + 1 the segment v̄e[s] corresponds to the image, under ϕk 7→`,
of [ak, bk] = πs(v̄e[s]). (Note that (5) in the definition of a coding sequence—the
difference between a weak coding sequence and a coding sequence—is key to obtain
such an [a`, b`] with a` large enough to accommodate the new elements that have
been added to the linear order below v̄e[s].) Any new elements that were inserted
and end up in the new interval are added to the collection of coding elements
v̄e[s + 1] corresponding to e, and the other newly added elements are padding
elements. Further, we ensure that enough new coding elements are after the final
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element to ensure we complete the entire interval, putting these elements in v̄e[s+1]
as well. Thus v̄e[s+ 1] will now consist of π−1s+1([a`, b`]).

• Finally, we introduce the coding elements corresponding to s. After we have en-
sured all previously added elements still satisfy the requirements check the value of
Xs+1(s) (which we may assume is 0, i.e., s /∈ Sx+1) and identify the next interval
of the form [ai, bi] such that i is even if s ∈ Xs+1 and i is odd if s /∈ Xs+1, and
with ai greater than the length of the linear order at this stage. Insert enough new
padding elements to the end of the linear order to extend it to have length ai, then
add bi− ai + 1 new coding elements corresponding to the interval [ai, bi]. These are
the initial coding elements ūs[s+ 1] for s, and make up the coding segment v̄s[s+ 1]
at this stage. This ensures we have satisfied requirement Rs at stage s.

Verification: First, to see that A is really a computable copy of (ω,<), observe that
for any fixed a ∈ A, only finitely many elements are inserted below a. This follows from
(4). Because a was added at stage s in the construction, then there can be at most s− 1
coding blocks below it. An element is only inserted below a if some e corresponding to
one of these coding blocks enters or leaves X, with a below the restraint. After these
s − 1 elements of the ∆0

2 set X stop changing values, elements will stop being inserted
below a. Hence, since these are finitely many elements of a ∆0

2 set, this will occur in a
finite number of stages.

To show that fA ≡T X, we use the following lemma which follows from (2).

Lemma 3.7. Suppose that s < t. If, at stage s, v̄e[s] corresponds to [am, bm] and, at
stage t, v̄e[t] corresponds to [an, bn], then the elements of v̄e[s] corresponds at stage t to
the images under ϕm7→n of the elements they corresponded to at stage s:

[an, bn] ⊇ πt(v̄e[s]) = ϕm 7→n(πs(v̄e[s])) = ϕm 7→n[am, bm].

In particular, if m and n have the same parity, then fAt(a) = fAs(a). If m and n have
opposite parities, then there is a ∈ ūe such that fAt(a) 6= fAs(a).

Proof. The first part follows from (2) using induction. The second part follows from the
definition of a coding sequence, particularly which ϕm7→n are f -preserving.

We first use the lemma and (1) to show that fA ≥T X. Given some element e run
the above construction, which is computable, until stage e + 1 when the initial coding
elements ūe corresponding to e are introduced. Now, compute the true value of fA on
these elements. If fA is the same on ūe as it was at stage e+ 1, then X(e) = Xe(e+ 1).
Otherwise, if fA is different on ūe than it was at stage e+ 1, then X(e) = 1−Xe(e+ 1).

Finally, we show that X ≥T fA. This uses the lemma as well as properties (1) and
(3). Given some element a ∈ A run the above construction until a is added to the linear
order. Using (3) if a is added as a padding element then the construction ensures that
fA(a) does not change and so we take the value at this stage. If a is a coding element
corresponding to e then we use (1) and the lemma. We will see that fA(a) takes on one of
two values depending on X(e). Say that a first appears in A at a stage s in a coding block
v̄e[s], corresponding at that stage to [ai, bi] and with Xs(e) = k. If X(e) = Xs(e) = k,
then fA(a) is the same as it was at stage s. Otherwise, suppose that X(e) 6= Xs(e) = k.
Then, at some stage t > s, we find that X(e) = Xt(e) = 1 − k. At this stage, a is an
element of v̄e[t] which corresponds to [aj, bj] with j of a different parity from i. Then
fA(a) is the same as it was at stage t.
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For the converse direction we must show that if the degree spectrum of f , on a cone,
is all ∆0

2 degrees then there is an infinite f -coding sequence. We work on the cone above
αf (which we suppress) and show that if no infinite f -coding sequences exist then we can
produce ∆0

2 set C such that there is no computable copy L of (ω,<) with fL ≡T C. To
do this, we meet the following requirements

Re,i,j : If Le ∼= (ω,<), then either ΦfLe

i 6= C or ΨC
j 6= fLe

where Le is a computable listing of the (possibly partial) linear orders. The construction
is a finite injury priority construction. Given a set X, we make use of the notation
X[0, . . . , k] for the sequence 〈X(0), . . . , X(k)〉.

The strategy for Re,i,j is as follows. First, if eth program fails to code a linear order
the requirement is automatically satisfied and so we will assume that at all stages s, Le,s
is a linear order.

(1) To initialize this requirement choose some x that has not yet been restrained, re-
strain it, and assign it to this requirement. We begin with C(x) = 0. We say the
strategy is in Phase 0.

(2) At stage s, if the requirement is in Phase 0, say this requirement requires attention
if there are computations

ΦfLe,s

i,s (x) = 0 = Cs(x) with use u0

and
ΨCs
j,s[0, . . . ,m0] = fLe,s [0, . . . ,m0] with use v0

where m0 ≥ u0 is such that all f -blocks that intersect [0, . . . , u0] in Ae,s, and all
elements less than them in Le,s, are completely contained in [0, . . . ,m0].

When this requirement acts, restrain [0, . . . , v0] in C and define Cs+1(x) = 1. Fi-
nally, move the requirement to Phase 1.

(3) At stage s, if the requirement is in Phase n + 1, say this requirement requires
attention if there are computations

ΦfLe,s

i,s (x) = Cs(x) with use un+1

and
ΨCs
j,s[0, . . . ,mn+1] = fLe,s [0, . . . ,mn+1] with use vn+1

where mn+1 ≥ max{mn, un+1} such that all f -blocks that intersect the elements
[0, . . . ,max{mn, un+1}], and all elements less than them in Le,s, are completely
contained in [0, . . . ,mn+1].

When this requirement acts, restrain [0, . . . , vn+1] in C and define Cs+1(x) = 1 −
Cs(x). Finally, move the requirement to Phase n+ 2.

Construction of C: At stage s of the construction, consider the first s requirements,
in order of decreasing priority. If any requirement requires attention then the one with
the highest priority acts according to its strategy, injuring and resetting all lower priority
strategies. If no requirement acts, then initialize the lowest priority requirement that has
not yet been initialized.
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Verification: It is not obvious that the construction is a finite injury construction, as
even if a requirement Re,i,j is not injured, it appears on the surface that it might go
through infinitely many phases. In this case, our approximation for C would also not
come to a limit. We will argue by induction on the requirements that each requirement
acts only finitely many times and is eventually satisfied. This argument will use the fact
that there is no infinite coding sequence.

Consider a requirement Re,i,j and assume that after some stage it is no longer injured.
If Le is partial (or not a linear order), then Re,i,j is automatically satisfied and will no
longer act after some stage. So we may assume that Le is a linear order. If there is
some n such that the strategy enters Phase n but never enters Phase n+ 1, then we are
also done since Re,i,j will have acted only finitely many times and will also be satisfied.

(Otherwise, if ΦfLe

i = C and ΦC
j = fLe , then we would eventually enter Phase n+ 1.) So

it is enough to show that the strategy enters finitely many phases as this will also show
that it requires attention finitely many times. To do this we show that if, after a strategy
is no longer injured, it enters Phase n for arbitrarily large n then we can produce an
infinite f -coding sequence; in fact we produce a weak f -coding sequence and then use
Lemma 3.5 to obtain an f -coding sequence.

Let sn be the stage at which the strategy enters Phase n, if it exists, and recall
that vn is the restraint placed at Phase n. We begin by arguing that the restraints are
maintained, and that C (up to the restraint) cycles back and forth between two possible
configurations depending on whether the phase is odd or even.

Lemma 3.8. Let n′ > n be of the same parity. Then:

(1) Csn′ [0, . . . , vn] = Csn [0, . . . , vn].

(2) fLe,sn′ [0, . . . ,mn] = fLe,sn [0, . . . ,mn].

Further, for all n,

(3) fLe,sn [0, . . . , un] 6= fLe,sn+1 [0, . . . , un].

Proof. We check each of (1), (2), and (3).

(1) After Phase n, we have restrained the elements [0, . . . , vn] and so, since the re-
quirement is no longer injured by higher priority arguments, the only elements in
[0, . . . , vn] that can change value is the original x that was restrained for Re,i,j.
However, since n and n′ have the same parity, the construction ensures that C(x)
(whether x is in C) is the same as well. Hence, Csn′ [0, . . . , vn] = Csn [0, . . . , vn], as
desired.

(2) By construction we have Φ
Csn
j [0, . . . ,mn] = fLe,sn [0, . . . ,mn] and Φ

Csn′
j [0, . . . ,mn] =

fLe,sn′ [0, . . . ,mn]. Further, the first computation listed has use vn. Since by (1),

this use vn is the same at Phases n and n′, the computations Φ
Csn
j [0, . . . ,mn] and

Φ
Csn′
j [0, . . . ,mn] must be the same as well and so fLe,sn′ [0, . . . ,mn] = fLe,sn [0, . . . ,mn],

as desired.

(3) By construction ΦfLe,sn
i (x) = Csn(x) and Φf

Le,sn+1

i (x) = Csn+1(x) but Csn(x) 6=
Csn+1(x) and so the use of the computation ΦfLe,sn

i (x) must have changed by stage
sn+1, otherwise we would recover the same computation. Since the use is un, we
must have fLe,sn [0, . . . , un] 6= fLe,sn+1 [0, . . . , un], as desired.
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It will be helpful to consider, at each stage s, the guess πs : Le,s → (ω,<) at the
isomorphism Le → (ω,<). Note that (by definition), fLe,s is the image of f under πs.

Finally, to produce the weak f -coding sequence we proceed as follows:

• Let [a0, b0] be the smallest initial segment of (ω,<) which contains all of the πs0-
images of the elements 0, . . . , u0 in Le,s0 and all of the blocks which they intersect.
Note that all of [a0, b0] is contained within the πs0-images of [0, . . . ,m0].

• Given [ai, bi], let [ai+1, bi+1] be the minimal interval in (ω,<) that contains all of
the πsi+1

-images of the elements 0, . . . ,max{mi, ui+1} in Le,si+1
and all of the blocks

which they intersect. Note that all of [ai, bi] is contained within the πsi+1
-images of

[0, . . . ,mi+1].

• Define the maps ϕi : [ai, bi] → [ai+1, bi+1] by ϕi = πi+1 ◦ π−1i . (The way to think
about these maps is that, when [ai, bi] was defined at stage si, these elements of
(ω,<) corresponded to certain elements of Le. However by stage si+1, we have seen
more elements enter Le, and now those elements of Le are instead in correspon-
dence with other elements of (ω,<), namely some elements of [ai+1, bi+1]. The map
fi keeps track of how this correspondence has changed. The element of Le that
corresponded to n ∈ [ai, bi] now corresponds to fi(n) ∈ [ai+1, bi+1].)

This sequence satisfies most of the requirements by construction. We just need to ensure
that the ϕi are not f -preserving but the ϕi+1 ◦ ϕi are. But this is exactly the content of
Lemma 3.8. Hence, assuming we enter Phase n for arbitrarily large n we have produced
an infinite weak coding sequence. From an infinite weak coding sequence, using Lemma
3.5 we can produce an infinite coding sequence. Thus, by our assumption about the
absence of such a sequence it follows that after a strategy is no longer injured it only
enters finitely many phases.

From this theorem we can easily recover several previous results, such as Theorem
3.10 of [BKW22].

3.3 An example

Now that we have produced necessary and sufficient conditions for the degree spectrum
of a unary function being either all c.e. degrees or all ∆0

2 degrees on a cone, we know
exactly which conditions a unary function must satisfy to have an intermediate degree
spectrum and can produce an example.

Theorem 3.9. There is a computable block function f whose degree spectrum on a cone
strictly contains the c.e. degrees and is strictly contained within the ∆0

2 degrees. Moreover,
the base of the cone is the computable degree, and so the degree spectrum of this function
strictly contains the c.e. degrees and is strictly contained within the ∆0

2 degrees.

Proof. Let Lk be the block corresponding to the loop of length k, i.e., the block isomorphic
to [1, . . . , k]→ [1, . . . , k] via x 7→ x+ 1 for x < k and k 7→ 1. Consider the block function
f where the odd blocks are given by the sequence L1, L2, L3, L4, L5, . . . and the even
blocks are given by the sequence L1, L1, L2, L1, L2, L3, . . .. An initial segment looks like:

L1 + L1 + L2 + L1 + L3 + L2 + L4 + L1 + L5 + L2 + L6 + L3 + L7 + · · ·

This function is constructed so that it satisfies the following:
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• all blocks that occur in the function occur infinitely often,

• no two block types embed in another different block type,

• no two different block types that occur in the function have the same size, and

• no two blocks types are adjacent (in the same order) more than once.

Since each block occurs infinitely often the degree spectrum of f on a cone must contain
a non-c.e. degree. To show that the degree spectrum of f on a cone does not contain all
∆0

2 degrees we show that there is no infinite f -coding sequence. Indeed we will show that
any f -coding sequence has length at most five. By Theorems 3.3 and 3.6 this proves the
theorem. (For the moreover statement, one must observe that for this particular f no
cone is required in the proofs of these theorems.)

Consider any (possibly finite) f -coding sequence [a1, b1], [a2, b2], . . . and corresponding
maps ϕi. We make the following definitions.

(1) Say that l1 < . . . < lp form a link in an interval [ai, bi] if they form a block of length
p in [ai, bi]. Say that this interval witnesses this link.

(2) Say that a link l1 < . . . < lp in [ai, bi] is vulnerable in [aj, bj], j > i, if the images
ϕi 7→j(l1) < · · · < ϕi 7→j(lp) are no longer contained in a single block and now intersect
two or more different blocks.

(3) Say that a link l1 < . . . < lp in [ai, bi] is broken in [aj, bj], j > i, if some element is
inserted between the images ϕi 7→j(l1) and ϕi 7→j(lp), i.e., the lr are no longer adjacent
after applying ϕi 7→j.

We first claim that either there is a link witnessed in [a1, b1] that becomes vulnerable in
[a2, b2], or there is a link witnessed in [a2, b2] that becomes vulnerable in [a3, b3]. The
map ϕ1 from [a1, b1] to [a2, b2] is not f -preserving, and so there is a link l1 < · · · < lp
witnessed in [a1, b1] such that ϕ1 is not f -preserving on these elements. This link forms
a block of size p in [a1, b1], and f has only one block type of each size, so either the
images of l1 < · · · < lp in [a2, b2] lie in two different blocks or are contained in some larger
block. In the former case, the link l1 < · · · < lp has become vulnerable in [a2, b2]. In
the second case, let k1 < · · · < kq be this larger block in [a2, b2] containing the images of
l1, . . . , lp. Then k1 < · · · < kq is a link witnessed in [a2, b2] which becomes vulnerable in
[a3, b3]. This is because ϕ17→3 from [a1, b1] to [a3, b3] is f -preserving and so the images of
l1 < · · · < lp form a block in [a3, b3]; this block is contained in, but not all of, the image
of k1 < · · · < kq in [a3, b3].

Now suppose that we have a link l1, . . . , lp which is witnessed in [ai, bi] and which
becomes vulnerable in [ai+1, bi+1]. We claim that it must break in either [ai+2, bi+2]
or [ai+3, bi+3]. Indeed, in [ai+1, bi+1] the images of the link l1, . . . , lp lie in at least
two different blocks, and so the same is true in [ai+3, bi+3]. Moreover, since the map
ϕi+17→i+3 : [ai+1, bi+1] → [ai+3, bi+3] is f -preserving, in [ai+3, bi+3] the images of l1, . . . , lp
lie in blocks of the same block types. However, since ϕi 7→i+2 : [ai, bi] → [ai+2, bi+2] is
f -preserving, the images of l1, . . . , lp form a block in [ai+2, bi+2]. Thus—as each ϕj is
order-preserving—ϕi+17→i+3 : [ai+1, bi+1] → [ai+3, bi+3] cannot be the identity. Since each
pair of f -blocks only appears adjacent to each other once in f , some element must be
inserted between the images in [ai+3, bi+3] of l1 and lp; thus the link must be broken in
[ai+3, bi+3] if not earlier.
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Now we argue that after a link is broken, the coding sequence must terminate. Suppose
that a link l1, . . . , lp is witnessed in [ai, bi] but broken in [aj, bj]. Then i and j must be of
opposite parities, as if they were of the same parity then the map ϕi 7→j : [ai, bi]→ [aj, bj]
would be f -preserving, and the images of l1, . . . , lp would form a block in [aj, bj], and hence
would be a sequence of successive elements. Thus, as i and j have opposite parities, the
map ϕi 7→j+1 is f -preserving, so the images of l1, . . . , lp in [aj+1, bj+1] must form a block of
size p as l1, . . . , lp did in [ai, bi]. However, in [aj, bj] and hence in [aj+1, bj+1] the images of
l1, . . . , lp are no longer successive elements, preventing them from forming such a block.
Thus the coding sequence must terminate with [aj, bj].

Thus we have a link in [a1, b1] or [a2, b2] which becomes vulnerable in [a2, b2] or [a3, b3],
and hence broken by [a5, b5] or before. There can be no more elements of the coding
sequence.

4 Many different intermediate spectra

Now that we know that intermediate degree spectrum are possible, we may ask for a more
specific description of these intermediate degree spectra. How many possible intermediate
degree spectra are there? Are particular interesting classes of degrees possible degree
spectra? In this section, we continue to limit the relations we consider to block functions
since this is the simplest case. Even so, we find significant complexity. We will particularly
focus on the α-c.e. degrees, whose definition we now recall.

Definition 4.1. Let (α+1,≺) be (a presentation of) a computable ordinal. A set A is α-
c.e. if there are is a computable approximation function g : ω2 → {0, 1} and a computable
counting function r : ω2 → α + 1 such that

(1) for all x, g(x, 0) = 0,

(2) for all x, r(x, 0) = α,

(3) for all x and s, r(x, s+ 1) � r(x, s),

(4) if g(x, s+ 1) 6= g(x, s) then r(x, s+ 1) ≺ r(x, s), and

(5) A(x) = lims→∞ g(x, s).

We say that a set is of α-c.e. degree if it is Turing equivalent to an α-c.e. set.

The definition of the α-c.e. sets depends on the chosen the presentation of α+ 1; indeed,
for any ∆0

2 set, there is some presentation of ω2 + 1 which makes that set ω2-c.e. But for
any fixed presentation of ω2 + 1, there are ∆0

2 sets which are not ω2-c.e.
Any ordinal has a computable presentation on a cone, so when working on a cone we

do not need to assume that ordinals are computable. Moreover, by the following remark
we also do not need to worry about different presentations for the same ordinal.

Remark 4.2. Let α be an ordinal, and let (P,<P ) and (Q,<Q) be two presentations
of α + 1. We write αP -c.e. for the α-c.e. sets and degrees defined with respect to the
presentation P , and similarly for αQ-c.e. There is a cone on which (P,<P ) and (Q,<Q)
are computable, and the αP -c.e. sets are the same as the αQ-c.e. sets. This cone is the
join of the two presentations and an isomorphism between them. Thus, working on a
cone, all presentations for α + 1 collapse and so it makes sense to talk about the α-c.e.
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sets without reference to presentation. (Note that it is not true that there is a cone on
which all presentations are equivalent, but rather that there is in some sense a single
presentation up to equivalence in the limit.)

Recall that, while there is no listing of all ∆0
2 sets, for each (presentation of a) com-

putable ordinal α there is a listing of all of the α-c.e. sets. The following theorem rules
out, for block functions, any degree spectrum that can be listed in such a way other than
the c.e. sets.

Theorem 4.3. Let f be a block function which is not intrinsically computable and such
that, after some initial segment, all blocks embed into some later block. Let (XA

e )e∈ω be,
uniformly in A, an A-computable list of (computable approximations to) ∆0

2(A) sets each
of which computes A. Then, for all A on a cone, the degree spectrum of f relative to A
contains some degree which is not Turing equivalent to any set in the listing (XA

e )e∈ω.

Corollary 4.4. Let f be a block function whose degree spectrum on a cone strictly con-
tains the c.e. degrees. Then, for every α, the degree spectrum of f on a cone contains a
non-α-c.e. degree.

Proof of Theorem 4.3. As usual we work on a cone on which we can compute αf , and
assume without loss of generality that all blocks embed into some later block. Suppose
(Xe)e∈ω is a listing as above with Xe,s being the limit approximation to Xe. We construct
a computable copy A of (ω,<) via finite stages, satisfying the requirements

Re,i,j : either ΦfA

i 6= Xe or ΦXe
j 6= fA

The construction is a finite injury priority construction.
The strategy for Re,i,j at stage s is as follows

(1) To initialize this requirement choose some interval [a, b] which forms an f -block of
size greater than one and such that a is greater than the length of the finite linear
order As−1. Insert new elements at the end of the linear order so that it has length
b and restrain the elements in the interval [a, b] for this requirement. Call these
elements l0, . . . , lb−a. We say the requirement is in Phase 0.

(2) At stage s, if the requirement is in Phase 0, say this requirement requires attention
if there are computations

Φ
Xe,s
i,s [l0, . . . , lb−a] = fAs [l0, . . . , lb−a] with use u0

and
ΨAsj,s [0, . . . , u0] = Xe,s[0, . . . , u0] with use v0.

When this requirement acts, restrain all blocks in As which contain or are below
some element of the use in the ordering <As . Next, insert one element below the
block consisting of the elements l0, . . . , lb−a. For each block that was restrained
(except for l0, . . . , lb−a) check to ensure the value of f on these elements is the same
as when it was restrained. If not, then insert new elements below the least element
of this block and possibly between the elements of this block to move them up
to the image of the original f -block in some other f -block into which it embeds.
Further, ensure we add enough new elements on the end to complete this block.
This, ensures that for all restrained elements, the value of fAs+1 on these elements
is the same in stage s. We say this requirement is in Phase 1.
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(3) At stage s, if the requirement is in Phase 2n for n ≥ 1, say this requirement requires
attention if there are computations

Φ
Xe,s
i,s [l0, . . . , lb−a] = fAs [l0, . . . , lb−a] with use u2n

and
ΨAsj,s [0, . . . , u2n] = Xe,s[0, . . . , u2n] with use v2n

When this requirement acts, insert one new element below the block consisting of
the elements l0, . . . , lb−a. For each block that was restrained in Phase 0 (except for
l0, . . . , lb−a) check to ensure the value of f on these elements is the same as when
it was restrained. If not, then insert new elements below the least element of this
block and possibly between the elements of this block to move them up to the image
of the original f -block in some other f -block into which it embeds. Further, ensure
we add enough new elements on the end to complete this block. This, ensures that
for all restrained elements, the value of fAs+1 on these elements is the same in stage
s. We say this requirement is in Phase 2n+ 1.

(4) At stage s, if the requirement is in Phase 2n + 1 for n ≥ 1, say this requirement
requires attention if there are computations

Φ
Xe,s
i,s [l0, . . . , lb−a] = fAs [l0, . . . , lb−a] with use u2n+1

and
ΨAsj,s [0, . . . , u2n+1] = Xe,s[0, . . . , u2n+1] with use v2n+1

When this requirement acts, insert enough new elements element below the element
l0 and possible between the l0, . . . , lb−a so that they are moved up to the image of the
block containing l0, . . . , lb−a during Phase 2n in some block into which it embeds.
This ensures that the value of f on l0, . . . , lb−a is the same as it was in Phase 2n. For
each block that was restrained in Phase 0 (except for l0, . . . , lb−a) check to ensure
the value of f on these elements is the same as when it was restrained. If not, then
insert new elements below the least element of this block and possibly between the
elements of this block to move them up to the image of the original f -block in some
other f -block into which it embeds. Further, ensure we add enough new elements
on the end to complete this block. This ensures that for all restrained elements, the
value of fAs on these elements is the same in stage s− 1. We say this requirement
is in Phase 2n+ 2.

Note that whenever the requirement is acted on we change the value of f on the li, break-
ing the computation that was found at that stage and ensuring that the requirement is
again satisfied when we move to the next stage.

Verification: Since elements are inserted below the li corresponding to some requirement
only when that requirement or some higher priority requirement requires attention it is
enough to check that after a requirement is no longer injured its strategy enters only
finitely many phases. This will ensure that this construction produces a copy of (ω,<)
and that all requirements are eventually satisfied, i.e., A is not equivalent to any of the
degrees in the listing.

First, we make the following observations about the construction. Let sn be the stage
where the strategy enters Phase n
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• The value of fAs2n is the same on the li assigned to this strategy for all n.

• The value of fAsn on the blocks in the use v0 which were restrained in Phase 0 is
the same for all n.

We now show that Xe changes each time we move to another phase but maintains the
same value on some interval for all even phases. In the proof of the previous theorem
where we showed the value of the set we were trying to beat oscillated between two
possible values but in this case the set must only have a certain value for even phases but
is allowed to vary on odd ones.

Lemma 4.5.

(1) For all even n, Xe,sn [0, . . . , u0] = Xe,s0 [0, . . . , u0]

(2) For all n, Xe,sn [0, . . . , u0] 6= Xe,sn+1 [0, . . . , u0].

Proof.

(1) Observe that for the computation Ψ
As0
j,s0

[0, . . . , u0] = Xe,s0 [0, . . . , u0] its use, except
for possibly the li, is preserved at all stages and so since the value of fAsn is the
same for all even n, the use of this computation must be preserved at stage sn for all

even n so the original computation must hold, i.e., Ψ
As0
j,s0

[0, . . . , u0] = Ψ
Asn
j,s0

[0, . . . , un]
and so it follows that Xe,sn [0, . . . , u0] = Xe,s0 [0, . . . , u0], as desired.

(2) The computation Φ
Xe,s
i,s0

[l0, . . . , lb−a] = fAs0 [l0, . . . , lb−a] found in Phase 0 has use u0
and so by part (1) holds at stage sn for all even n. However, since fAsn [l0, . . . , lb−a] 6=
fAsn+1 [l0, . . . , lb−a] and Φ

Xe,s
i,sn

[l0, . . . , lb−a] = fAsn [l0, . . . , lb−a] for all n we must have

Φ
Xe,sn
i,sn

[l0, . . . , lb−a] 6= Φ
Xe,sn+1

i,sn+1
[l0, . . . , lb−a]. Hence, the use of the computation must

change between stage sn and sn+1. Further, since either n or n + 1 is even, the
use of one of these computations is u0 and so we must have Xe,sn [0, . . . , u0] 6=
Xe,sn+1 [0, . . . , u0], as desired.

This lemma tells us that some element in [0, . . . , u0] must change value each time the
strategy enters a new phase. Now, since X is a ∆0

2 set, it follows that each finite collection
of elements can change only finitely often so this strategy can enter only finitely many
stages.

Despite the apparent difficulty in describing these intermediate degree spectra one
way we can attempt to characterize them is by the least computable ordinal α such that
their degree spectra contains all α-c.e. degrees. To do this we introduce the notion of
coding trees to better understand which types of finite coding sequences exist for a given
function f . To a given f there will be associated two trees, a maximal coding tree and
a minimal coding tree. The rank of the maximal coding tree will help to determine
whether there is an α-c.e. degree not contained in the degree spectrum, and the rank of
the minimal coding tree will help to determine whether every α-c.e. degree is contained
in the degree spectrum.

The reason that we will need two different trees is that there are actually two ways
in which we might want to be able to move coding elements in a linear order. The first,
which was previously mentioned, is the ability to move the coding elements back and
forth between two possible values of f to account for changes in a ∆0

2 set. The second,
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which was not as apparent in the case where we had an infinite coding sequence, is
the ability to preserve the value of f on the coding sequence while other elements are
inserted below them, i.e., the value of f on other coding sequences is changing. So, the
rank of the maximal coding tree captures which types of moves are possible when coding
only a single element, which is enough for diagonalization, while the minimal coding tree
captures which types of moves are possible while ensuring that coding sequences can move
independently of each other, which is required for encoding a particular set. However,
we will see below that the ranks of the minimal and maximal coding trees only provide
an upper and lower bound on the α such that all α-c.e. sets can be coded but it can be
much more complicated to determine exactly which sets are in the degree spectrum.

We recall the rank of a tree.

Definition 4.6. Let T be a well-founded tree. Given σ ∈ T , the rank of σ is defined by:

(1) rank(σ) = 0 if σ is a leaf.

(2) rank(σ) = sup {rank(τ) + 1 | τ child of σ}.

We define rank(T ) to be the rank of the root node of T , or ∞ if T is non-well-founded.

Definition 4.7. Let f be a block function on (ω,<). We define its maximal coding tree
as follows. The elements of the tree will be all finite weak coding sequences, with the
empty sequence as the root. Extension on the tree is just extension of coding sequences
(including using the same functions ϕ.) We write, for this tree, Tmax(f), and let the
maximal coding rank of f be maxrank(f) = rank(Tmax(f)).

Theorem 4.8. Let f be a block function such that every block, except for finitely many,
embeds into some later block. If α is the rank of the maximal coding tree for f , then there
is some α-c.e. degree which is not in the degree spectrum of f .

Proof. We work on a cone on which we can compute the usual facts about f as well
as a given presentation for α and the maximal coding tree for f together the ranking
function on that tree using that presentation of α for the ranks. The construction here is
similar to the construction in the second part of the proof of Theorem 3.6 (which shows
that if there is no infinite f -coding sequence, then the degree spectrum of f is not all
∆0

2 degrees). There, we constructed a ∆0
2 set C while diagonalizing against being Turing

equivalent to fAe for copies Ae of (ω,<). We had requirements

Re,i,j : If Le ∼= (ω,<), then either ΦfLe

i 6= C or ΨC
j 6= fLe .

For each requirement, we chose an element x for which we would change C(x). The fact
that there was no infinite f -coding sequence meant that eventually each Re,i,j would be
satisfied and C(x) would no longer change; more precisely, we would only change C(x)
when we were able to extend the (weak) f -coding sequence that we were building.

The construction now will be exactly the same, except that we will add a rank function
r(x, s) : ω2 → α+ 1. Given x, we begin with r(x, 0) = α. We also maintain at each stage
a weak coding sequence CSx,s with rank in Tmax(f) of rank(CSx,s) = r(x, s). We begin
with CSx,0 as the empty coding sequence, with rank α = r(x, s) in Tmax(f). If x is
never assigned to a requirement, then C(x) never changes, and we never decrease r(x, s).
Otherwise, we do not change r(x, s) and CSx,s until after x has been assigned to some
requirement Re,i,j, and then we will only have r(x, s) < r(x, s− 1) at stages s when Re,i,j
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changes from one phase to the next; these are also the only stages when Cs(x) 6= Cs−1(x).
The weak coding sequence CSx,s will be the sequence built by Re,i,j in Theorem 3.6.
Suppose that we have defined r(x, s− 1) and CSx,s−1 and that at stage s the requirement
Re,i,j changes from Phase n to Phase n+ 1. The weak coding sequence CSx,s−1 will have
been the sequence of length n constructed at Phase n. In moving to Phase n + 1, we
extend this weak coding sequence to a sequence CSx,s of length n+ 1 as described in the
proof of Theorem 3.6. Define r(x, s) to be the rank of CSx,s in the maximal coding tree
Tmax(f). If, at any point, the requirement Re,i,j is injured, then we never again change
C(x) and so never again have to decrease r(x, s). Thus we have shown that the set C
built is α-c.e., proving the theorem.

Note that the condition given in this theorem is sufficient but not necessary. Indeed,
suppose that fk is the function obtained from f by “removing” the first k blocks of f .
Then f and fk have the same degree spectra, but it is possible that maxrank(fk) <
maxrank(f).

Example 4.9. Consider the example f from Theorem 3.9. There, we showed that any
f -coding sequence has length at most 5. Thus the rank of the maximal coding tree for f
is at most 6 (since in the rank of the coding tree we include the empty sequence). Thus
by Theorem 4.8 on a cone there is a 6-c.e. degree which is not in the degree spectrum of
that function f . Since in that example we can carry out the argument of Theorem 4.8
computably, not working on a cone, there is a 6-c.e. degree which is not in the degree
spectrum of f .

We now turn to a condition for the reverse, that is, a coding tree that will allow us
to code all α-c.e. sets. This is somewhat more complicated.

Definition 4.10. Let f be a block function on (ω,<). Suppose that (a) every block
embeds into infinitely many later blocks, or equivalently, the degree spectrum of f strictly
contains the c.e. degrees on a cone, and (b) there is no infinite f -coding sequence, or
equivalently the degree spectrum of f is strictly contained within the ∆0

2 degrees on a
cone.

First, we need an additional definition. Given two coding sequences σ and τ which
agree on all but the last interval, which are, say, [an, bn] for σ and [a′n, b

′
n] for τ , we say

that σ permits τ if an < a′n and there is a nondecreasing embedding ψ from [an, bn] →
[a′n, b

′
n] which preserves f and commutes with the maps ϕn−1 : [an−1, bn−1]→ [an, bn] and

ϕ′n−1 : [an−1, bn−1]→ [a′n, b
′
n].

· · · // [an−2, bn−2]
ϕn−2 // [an−1, bn−1]

ϕn−1 //

ϕ′n−1

%%

[an, bn]

ψ

��
[a′n, b

′
n]

.

The fact that each f -block embeds into infinitely many later blocks implies that for any
coding sequence σ0 there is an infinite sequence σ = σ0, σ1, σ2, . . . such that each σi
permits σi+1.

We define the minimal coding tree Tmin(f) of f as follows. The elements are all finite
coding sequences, with the empty sequence as the root. For the maximal coding tree, we
used weak coding sequences, but here we use strong coding sequences. Extension on the
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tree is just extension of coding sequences (using the same functions ϕ). Since there is no
infinite f -coding sequence this tree is well-founded.

Define, inductively, a ranking minrank on Tmin(f). For a leaf σ, we put minrank(σ) =
0. Given a non-leaf σ 6= ∅, we set minrank(σ) ≥ α if there is an infinite sequence
σ = σ0, σ1, σ2, . . . such that each σi permits σi+1 and for each β < α and each i = 0, 1, 2, . . .
there is τi a child of σi such that minrank(τi) ≥ β. Then as usual we set minrank(σ) to be
the greatest α such that minrank(σ) ≥ α. We put minrank(∅) = supσ 6=∅ minrank(σ)+1.

For each non-root-node σ 6= ∅, there is an infinite sequence σ = σ0, σ1, σ2, . . . such that
for each i, minrank(σi) ≥ minrank(σ). (For the case when minrank(σ) = 0, this is due to
the fact that as noted above that because f -block embeds into infinitely many later blocks
implies that for any coding sequence σ0 there is an infinite sequence σ = σ0, σ1, σ2, . . .
such that each σi permits σi+1.)

We define minrank(f) to be minrank(∅) the empty coding sequence which is the root
node of Tmin(f).

Theorem 4.11. Let f be a block function such that every block, except for finitely many,
embeds into some later block. If α = minrank(f) is the rank of the minimal coding tree
corresponding to f , then, on a cone, the degree spectrum of f contains all β-c.e. degrees
for any β < α.

Proof of Theorem 4.11. We work on the cone above αf and the minimal coding tree and
its ranking function into a presentation of α. Suppose X is an β-c.e. set, with β < α,
given by functions g, r where g is the computable approximation of X and r is ranking
function counting the number of mind changes. We construct a computable copy A of
(ω,<) such that fA is Turing equivalent to X. The construction will be almost exactly
the same as the first part of Theorem 3.6 but we will be much more careful in how we
use our coding sequences. In that construction, we had at each stage s certain elements
v̄e[s] of As which we used to code the value of X(e). In particular, v̄e[s] corresponded,
via the partial isomorphism πs : As → (ω,<), to an interval [ai, bi] in a coding sequence.
In Theorem 3.6 these intervals [ai, bi] were in a fixed infinite f -coding sequence. Now we
work within the minimal coding tree. At each stage s, we will have a coding sequence
CSe,s ∈ Tmin(f) with minrank(CSe,s) = r(e, s). The length of CSe,s will be equal to 1 more
than the number of times X(e) has changed value before stage s,

length(CSe,s) = 1 + #{t < s | Xt(e) 6= Xt+1(e)}.

Suppose that CSe,s consists of intervals [a1, b1], . . . , [an, bn] with n = 1 + #{t < s |
Xt(e) 6= Xt+1(e)}. Then we will have πs(v̄e[s]) = [an, bn]. If at stage s + 1 we see
that Xs+1(e) 6= Xs(e) then we know that r(e, s + 1) < r(e, s) and so we can choose
an extension CSe,s+1 of CSe,s with minrank(CSe,s+1) = r(e, s + 1) which adds one more
interval [an+1, bn+1]. We will add elements to A so that at stage s+ 1, v̄e[s] corresponds
to the images in [an+1, bn+1], under ϕn, of [an, bn]:

πs+1(v̄e[s]) = ϕn(πs(v̄e[s])).

The other possibility is that at stage s + 1 we have Xs+1(e) = Xs(e) but some elements
have already been added to A below v̄e[s] for the sake of some e′ < e. In Theorem 3.6
we had an infinite f -coding sequence and so we had enough room to just move along the
sequence to another position [aj, bj] with j of the same parity as i. Now, we have limited
room; instead, we use the permitting aspect of the tree. There is some other coding
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sequence CSe,s+1 which is of the same rank and length as CSe,s, which agrees with CSe,s
except for the last interval [a′n, b

′
n], and which permits CSe,s. There is a non-decreasing

and f -preserving map ψ : [an, bn] → [a′n, b
′
n]. Moreover, we can choose such a coding

sequence with a′n large enough that we can insert elements into A so that

πs+1(v̄e[s]) = ψ(πs(v̄e[s])).

This allows us to adjust A for e without decreasing the rank of the coding sequence. Thus
it is not the case that the coding sequences CSe,s for e are just growing by extensions;
rather, there are also lateral moves when the last interval in CSe,s changes. Having given
the informal idea of the construction, we will now give the formal construction.

Construction: As in Theorem 3.6: For each e, starting from stage e where they are
defined, we will have the initial coding elements ūe ∈ A, the full coding segment v̄e ∈ A
containing ūe, and a restraint re = maxA v̄e ∈ A which is the A-largest element of v̄.
We write each tuple in A-increasing order. The initial coding elements ūe will never
change once defined, while the coding segment v̄e may have more elements added, and
the restraint re may increase in the A order. We will use v̄e[s] and re[s] to refer to the
values at stage s. We will always have that if e′ ≤ e then v̄e > re′ so that the coding
segment for e is free of the restraint of e′.

At each stage s for each e we will also have ne[s] which will be one more than the
number of changes7 in X(e),

ne[s] = 1 + #{t < s | Xt(e) 6= Xt+1(e)}

and a coding sequence CSe,s of length ne[s] and minrank(CSe,s) ≥ r(e, s). We will gener-
ally write [a1, b1], . . . , [an, bn] and ϕ1, . . . , ϕn−1 for the corresponding intervals and maps,
taking n = ne[s] and suppressing e and s for simplicity of notation. Note that ne[s] will
be odd if and only if Xs(e) = 0 and even if and only if Xs(e) = 1.

Recall that at each stage s, given a tuple ā ∈ As, πs(ā) is the corresponding tuple in
(ω,<). We also have fAs which is the function f on As.

From each stage to the next, we will maintain the following properties:

(1) At each stage s ≥ e, the coding elements v̄e of A correspond to πs(v̄e) in (ω,<)
which is the last interval [an, bn] in CSe,s.

(2) Suppose that at stage s ≥ e the coding elements v̄e[s] corresponded (via πs : As →
(ω,<)) to the interval [an, bn] in the coding sequence CSe,s. At stage s+ 1:

(a) if Xs+1(e) 6= Xs(e), then at stage s+1 the coding elements v̄[s+1] correspond
(via πs+1 : As+1 → (ω,<)) to the interval [an+1, bn+1] from the coding sequence
CSe,s+1 which extends CSe,s by this interval. The coding elements v̄e[s] at stage
s correspond at stage s+ 1 to the images, in the commutative diagram, of the
elements of (ω,<) that they corresponded to at stage s. That is,

πs+1(v̄e[s]) = ϕi 7→j(πs(v̄e[s])).

(b) if Xs+1(e) = Xs(e) then at stage s + 1 the coding elements v̄[s + 1] cor-
respond (via πs+1 : As → (ω,<)) to an interval [a′n, b

′
n] which is the last

7It will be helpful to assume that Xs(e) = 0 for all s ≤ e+ 1.
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interval of the coding sequence CSe,s+1 of the same length as CSe,s, with
minrank(CSe,s+1) ≥ minrank(CSe,s), and such that CSe,s permits CSe,s+1. Let
ψ be the map witnessing this. The coding elements v̄e[s] at stage s correspond
at stage s+ 1 to the images of the elements of (ω,<) that they corresponded
to at stage s. That is,

πs+1(v̄e[s]) = ψ(πs(v̄e[s])).

(3) If, at stage s an element a ∈ A is not a coding element (i.e., not part of any v̄e[s]),
then at stage s+ 1 it is still not a coding element, and fAs(a) = fAs+1(a).

(4) From stage s ≥ e to stage s+ 1, elements can only be added to A below re if there
is e′ ≤ e which entered or left X at stage s + 1, i.e., with e′ ∈ Xs4Xs+1. Thus, if
Xs+1 ��e= Xs ��e, then the partial isomorphism πs : As → (ω,<) does not change
at stage s+ 1 on elements below re.

Stage s: At this stage in the construction our partial linear order As can be partitioned
into a finite number of coding segments and padding blocks, each of which form an
interval:

p̄0 <A v̄0[s] <A p̄1 <A v̄1[s] <A · · · .

We add new elements to As to code Xs+1.
Starting with v̄0[s], and continuing in order with p̄1, v̄1[s], and so on, we ensure that

each of these segments still satisfy our requirements. However we must now take into
account the fact that we may have already inserted elements.

• Given a padding segment p̄i, if no elements have been inserted below this segment,
then we do not have to do anything. If there have been other elements, then we
must act as follows. Consider each set of elements which corresponded at stage s
to a block. We must make sure that those same elements correspond in As+1 to a
block of the same type. For each block making up p̄i, insert new padding elements
below the least element of this block and possibly between the elements of this
block to move them up to the image of the original f -block in some other f -block
into which it embeds. Further, ensure we add enough padding elements on the end
to complete this block. This ensures that for all padding elements present at stage
s, the value of fAs on these elements is the same as at stage s+ 1.

• Given v̄e[s] the coding segment corresponding to e first check the value of Xs+1(e).
We have two cases.

– If Xs+1(e) 6= Xs(e), then r(e, s + 1) < r(e, s). Choose a coding sequence
CSe,s+1 extending CSe,s with minrank(CSe,s+1) ≥ r(e, s + 1), which we can do
as r(e, s + 1) < r(e, s) ≤ minrank(CSe,s). Let [an+1, bn+1] be the last interval
in minrank(CSe,s+1). We can choose CSe,s+1 such that an+1 is sufficiently large
that, by adding elements between and below the elements of v̄e[s], we can have
the segment v̄e[s] corresponds to the image, under ϕk 7→`, of [ak, bk] = πs(v̄e[s]).
Any new elements that were inserted and end up in the new interval are added
to the collection of coding elements v̄e[s+ 1] corresponding to e, otherwise the
newly added elements are padding elements. Further, we ensure that enough
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new coding elements are after the final element to ensure we complete the
entire interval, putting these elements in v̄e[s+ 1] as well. Thus we have

πs+1(v̄e[s]) = ϕi 7→j(πs(v̄e[s]))

and
πs+1(v̄e[s+ 1]) = [an+1, bn+1].

– If Xs+1(e) = Xs(e), then we first ask whether some element has already been
inserted below v̄e[s]. If not, then we do not insert any further elements. If
so, say k elements have been inserted below v̄e[s], then we act as follows. We
have at this stage a coding sequence CSe,s with last interval [an, bn]. Look
for a coding sequence CSe,s+1 of the same length and rank which is permitted
by CSe,s, and which has last interval [a′n, b

′
n] with a′n ≥ an + k. Let ψ be

the corresponding non-decreasing f -preserving function [an, bn]→ [a′n, b
′
n]. By

inserting elements below and between the elements of v̄e[s], we can have that
the segment v̄e[s] corresponds, at stage s + 1, to the image in [a′n, b

′
n], under

ψ, of [an, bn] = πs(v̄e[s]). Any new elements that were inserted and end up
in the new interval are added to the collection of coding elements v̄e[s + 1]
corresponding to e, otherwise the newly added elements are padding elements.
Further, we ensure that enough new coding elements are after the final element
to ensure we complete the entire interval, putting these elements in v̄e[s + 1]
as well. Thus we have

πs+1(v̄e[s]) = ψ(πs(v̄e[s]))

and
πs+1(v̄e[s+ 1]) = [a′n, b

′
n].

• Finally, we introduce the coding elements corresponding to s. After we have en-
sured all previously added elements still satisfy the requirements check the value
of Xs+1(s) (which we may assume is 0, s /∈ Xs+1). Choose a coding sequence CS
of length 1 such that minrank(CS) ≥ β ≥ r(s, s + 1). Since there is an infinite
sequence of such coding sequences each permitting the next, we can choose such
a coding sequence CS such that the last interval [a, b] of that coding sequence has
a greater than the length of the linear order A at this stage. Insert enough new
padding elements to the end of A to extend it to have length a, then add b− a+ 1
new coding elements corresponding to the interval [a, b]. These are the initial cod-
ing elements ūs[s+ 1] for s, and make up the coding segment v̄s[s+ 1] at this stage.
Set CSs,s+1 to be this coding sequence CSs,s+1 = CS.

This ends the construction.

Verification: Much of the verification is the same as in Theorem 3.6. For example, to
see that A is really a computable copy of (ω,<) we observe as before that for any fixed a
there is some e such that elements are only inserted below a when for some stage s and
some e′ ≤ e, Xs+1(e) 6= Xs(e). Since X is ∆0

2, these eventually come to a limit, and so
only finitely many elements are inserted below a.

It remains to show that fA ≡T X. This is a little more complicated than in Theo-
rem 3.6 due to the lateral movement from one coding sequence to a coding sequence it
permits. The analogue of Lemma 3.7 is as follows, and is proved in the same way.
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Lemma 4.12. Suppose that s < t.

(1) If, for all s′ with s ≤ s′ ≤ t we have Xs′(e) = Xs(e) = Xt(e), then CSe,s is the
same length as and permits CSe,t, say as witnessed by the f -preserving function
ψ : [an, bn]→ [a′n, b

′
n] on the last intervals of these coding sequences. Moreover,

[a′n, b
′
n] ⊇ πt(v̄e[s]) = ψ(πs(v̄e[s])) = ψ[an, bn].

(2) If s′ ≥ s is the least stage with Xs′+1(e) 6= Xs′(e) then CSe,s is the same length
(say m) as and is either equal to or permits CSe,s′, as witnessed by the f -preserving
function ψ : [am, bm]→ [a′m, b

′
m] on the last intervals of these coding sequences, and

CSe,t (say of length n > m) strictly extends CSe,s′. (If CSe,s and CSe,s′ are the same
then ψ is the identity.) Moreover,

[an, bn] ⊇ πt(v̄e[s]) = ϕm7→n ◦ ψ(πs(v̄e[s])) = ϕm 7→n ◦ ψ[am, bm].

In particular, if m and n are the same parity then ϕm 7→n ◦ ψ is f -preserving.

First we show that fA ≥T X. Given some element e ∈ X run the above construction,
which is computable, until stage e+ 1 when the initial coding elements ūe corresponding
to e are added. Now, compute the value of fA on these elements. If fA is the same on
ūe as it was at stage e + 1, then X(e) = Xe(e + 1). Otherwise, if fA is different on ūe
than it was at stage e+ 1, then X(e) = 1−Xe(e+ 1).

Finally, we show that X ≥T fA. Given some element a ∈ A run the above construc-
tion until a is added to the linear order. If a is added as a padding element then the
construction ensures that fA(a) does not change and so we take the value at this stage. If
a is a coding element corresponding to e then fA(a) takes on one of two values depending
on X(e). Say that a first appears in A at a stage s in a coding block v̄e[s], corresponding
at that stage to [ai, bi] and with Xs(e) = k. If X(e) = Xs(e) = k, then fA(a) is the same
as it was at stage s. Otherwise, suppose that X(e) 6= Xs(e) = k. Then, at some stage
t > s, we find that X(e) = Xt(e) = 1 − k. At this stage, a is an element of v̄e[t] which
corresponds to [aj, bj] with j of a different parity from i. Then fA(a) is the same as it
was at stage t.

Remark 4.13. Indeed, the proof can be used to show that all α-computable degrees are
contained in the degree spectrum of f , where a set A is α-computable if there are is a
computable approximation function g : ω2 → {0, 1} and a computable counting function
r : ω2 → α such that

(1) for all x, r(x, 0) < α,

(2) for all x and s, r(x, s+ 1) � r(x, s),

(3) if g(x, s+ 1) 6= g(x, s) then r(x, s+ 1) ≺ r(x, s), and

(4) A(x) = lims→∞ g(x, s).

The difference is that we do not require that g(x, 0) = 0, so that we may begin with x /∈ A
or x ∈ A. An α-computable set is α-c.e. but not necessarily vice versa. For degrees, the
difference is mostly important when α is a limit ordinal.
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Example 4.14. Consider the function f from Theorem 3.9. It was shown that, given
any f -coding sequence [a1, b1], [a2, b2], . . ., there must a link which is vulnerable in ei-
ther [a2, b2] or [a3, b3]. We show that the minimal coding tree of f has minrank ≤ 3 by
showing any coding sequence with a vulnerable link has rank 0. Consider the case of
a coding sequence [a1, b1], [a2, b2], [a3, b3] with a link `1, . . . , `k witnessed in [a2, b2] which
is vulnerable in [a3, b3]. (The case of a link witnessed in [a1, b1] which is vulnerable in
[a2, b2] is similar.) Consider a coding sequence [a1, b1], [a2, b2], [a

′
3, b
′
3] which is permitted by

[a1, b1], [a2, b2], [a3, b3]. The image in [a3, b3] under ϕ2 of the link `1, . . . , `k in [a2, b2] inter-
sects, in [a3, b3], at least two blocks. Since any two blocks appear adjacent to each other in
f at most once, the image of these blocks in [a′3, b

′
3] under ψ are not adjacent and so have

some element between them. But ψ ◦ϕ2 is the map ϕ′2 : [a2, b2]→ [a′3, b
′
3] from the coding

sequence [a1, b1], [a2, b2], [a
′
3, b
′
3], and so in [a′3, b

′
3] the image of `1, . . . , `k under ϕ′2 intersects

two blocks which have had some element, not in the image of the link, between them. That
is, `1, . . . , `k is actually broken in [a′3, b

′
3]. Thus the coding sequence [a1, b1], [a2, b2], [a

′
3, b
′
3]

has no extensions and is of minrank zero. Since [a1, b1], [a2, b2], [a3, b3] only permits coding
sequences of minrank zero, it also has minrank zero. Thus minrank(f) ≤ 3 as any coding
sequence with three elements has minrank zero.

It is not hard to show that minrank(f) ≥ 3 so that minrank(f) = 3. Let ` < m < n.
Consider the coding sequences [a1, b1] where [a1, b1] has block type L`, an `-loop. For
any two such coding sequences, the lesser one permits the greater one. These coding
sequences can be extended to coding sequences [a1, b1], [a2, b2] where [a2, b2] has block
type Lm, and m-loop, say under the map ϕ1 : [a1, b1] 7→ [a2, a2 + b1 − a1] ⊆ [a2, b2].
For any two such coding sequences with the same first interval [a1, b1], the lesser one
permits the greater one. Finally, any such sequence [a1, b1], [a2, b2] extends to a sequence
[a1, b1], [a2, b2], [a3, b3] where the image of [a2, b2] in [a3, b3] is made up of two blocks, one
of block type L`, and the other of block type Ln. [a3, b3] may have further blocks in
between these. This shows that any [a1, b1], [a2, b2] as above has minrank one, and any
[a1, b1] as above has minrank two. Thus minrank(f) = 3.

Theorems 4.8 and 4.11 only tell us that on a cone the degree spectrum of this function
f contains all 2-c.e. degrees but not all 6-c.e. degrees, but does not give any information
about the degrees between these. A more ad-hoc argument can be given to show that, in
fact, the degree spectrum of f does not contain all 3-c.e. degrees. This argument relies on
the fact that any sequence permitting a vulnerable sequence has rank 0 and so this can be
accounted for ahead of time in the priority argument by reserving an element which will
force the coding sequence produced by the function to move to one which is permitted
by it. However, one could imagine this will not happen more generally for any function
of minrank three as this argument depends on the number of times one sequence permits
a vulnerable sequence before decreasing its maximal rank. In fact, we believe that one
could produce an example of a function with minimal rank 3 and maximal rank 6 but
whose degree spectrum contains all 4-c.e. degrees. So, the difference between the minimal
and maximal ranks arises not from a difference in the lengths of the coding sequences,
but from the more complicated behavior underlying which sequences permit each other.
We believe that by coming up examples with different permitting behaviours, one might
be able to find, e.g., incomparable degree spectra on a cone.

Conjecture 4.15. There are block functions f and g on (ω,<) whose degree spectra on
a cone are incomparable.

We will give some examples in this paper but we will focus on cases in which the
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minimal and maximal coding trees match up at various ordinals α. We say that an
ordinal α is even if it is of the form λ + n where λ is a limit ordinal and n ∈ ω is even;
otherwise, we say that α is odd, in which case it is of the form λ+ n with n odd.

Theorem 4.16. Fix α ≥ 6 even. There is a block function f on (ω,<) whose degree
spectrum on a cone contains all of the β-c.e. degrees for β < α and does not contain all
of the α-c.e. degrees.

Proof. Let T ⊆ ω<ω be a tree of rank α, with rank function r : T → α ∪ {α}. Thus
r(∅) = α is even. We may choose T such that for each σ ∈ T , r(σ) has the same parity
as the length of σ, i.e., if σ is of even length then r(σ) is an even ordinal, and if σ is of
odd length then r(σ) is an odd ordinal.

Fix some Gödel number ` of the elements of ω<ω such that if |σ| < |τ |, `(σ) < `(τ)
For each σ = 〈a0, . . . , an〉 ∈ ω<ω, with σ 6= ∅, associate with σ the following block type
Bσ:

x0 + L2`(σ�0)+2 + L2`(σ�1)+2 + · · ·+ L2`(σ�n)+2 + x1 + x2 + x3

where if |σ| is even we let
x0 → x3 → x2 → x1 → x1

and if |σ| is odd we let:
x0 → x3 → x2 → x1 → x2

We call x0, x1, x2, x3 the sandwich elements of the block.
Notice that each of these blocks have different lengths (in base 2 their lengths have

1’s in positions uniquely determined by the initial segments of σ) and that each of
their lengths are even. Now, we define f as follows: The even blocks are the sequence
L1, L3, L5, . . . of loops of odd lengths. The odd blocks are given by Bσ1 , Lj(1), Bσ2 , Lj(1), . . .
where σ1, σ2, . . . is a recursive enumeration of the elements of T where each element ap-
pears infinitely often. Similarly, j is a recursive enumeration of the odd integers such that
each element appears infinitely often but with the additional condition that j(i) ≤ 2i+ 1
for all i. As in Theorem 3.9, f satisfies the following properties:

• all blocks that occur in the function occur infinitely often

• no two different block types that occur in the function have the same size

• no two blocks types are adjacent (in the same order) more than once

There was one property in Theorem 3.9 that now fails: previously, no block type embed-
ded into any other block type, but now there are many block types which embed into each
other. The reader should note that the first bullet point is the reason that we include the
blocks Lj(i), and is what allows the degree spectrum of f on a cone to contain non-c.e.
degrees. They play no other role in the proof.

Now, notice that T embeds into the minimal coding tree of f . Given σ ∈ T we
can associate to it the coding sequence [a1, b1], . . . , [a|σ|, b|σ|] where [ai, bi] is an interval
with ai > bi−1 and which is a block of the form Bσ�i. (Note that there is no block
for the empty sequence, but rather the root of T maps to the empty coding sequence.)
The maps ϕi : Bσ�i → Bσ�(i+1) are the natural maps sending each xj in one block to
the corresponding xj in the other block, and sending each loop to the loop of the same
length. For each σ this will be an f -coding sequence and it will be in the minimal coding
tree since each interval in the sequence is a single block and so, since each block appears
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infinitely often, is always permitted by some later copy of the block. By Theorem 4.11,
the degree spectra of f contains all β-c.e. degrees for β < α.

We consider two possible types of coding sequences. In [a1, b1] there must be some
element x such that ϕ1(f(x)) 6= f(ϕ1(x)). In [a1, b1] this element is part of a block, say
of type I. Consider the image of this block in [a2, b2] under ϕ1. If the image is split
between two different blocks, then we have a link in [a1, b1] that becomes vulnerable in
[a2, b2]. Otherwise, the image is contained entirely in one block, say of type J . Now this
block embeds, by ϕ2, in [a3, b3]. If the image is split between two different blocks, then
we have a link in [a2, b2] that becomes vulnerable in [a3, b3]. Otherwise, the entire image
is contained in a single block, say of type K. We will concentrate on this case, returning
later to the two cases of a link that becomes vulnerable.

We may assume, without loss of generality by shrinking intervals, that [a0, b0] is a
block of type I, and that each [an+1, bn+1] is the closure, under blocks, of the image of
[an, bn] under ϕn. In particular, [a1, b1] is a block of type J , and [a2, b2] is a block of type
K. Since no two distinct block types have the same size, J must be larger than I, and
so K must be larger than I. In particular, I must be a block of type Bσ1 and K of type
Bσ3 for some σ1 ≺ σ3 whose lengths have the same parity. Let x0, x1, x2, x3 be the four
sandwich elements from I with either

x0 → x3 → x2 → x1 → x1

or
x0 → x3 → x2 → x1 → x2.

The only elements of this kind are the four sandwich elements from a block Bτ . Thus the
f -preserving map ϕ1 7→3 : [a1, b1]→ [a3, b3] must map the sandwich elements of I to those
of K, i.e.,

a1 7→ a3, b1 − 2 7→ b3 − 2, b1 − 1 7→ b3 − 1, b1 7→ b3.

Then ϕ1 must map the sandwich elements of I to those of J ,

a1 7→ a2, b1 − 2 7→ b2 − 2, b1 − 1 7→ b2 − 1, b1 7→ b2,

and ϕ2 must map the sandwich elements of J to those of K,

a2 7→ a3, b2 − 2 7→ b3 − 2, b2 − 1 7→ b3 − 1, b2 7→ b3.

(For example, if a1 did not map to a2, then we would have ϕ1(a1) > a2 and so a3 =
ϕ2(ϕ(a1)) > ϕ2(a2) ≥ a3.) That is, in the maps I → J → K induced by ϕ1 and ϕ2, the
sandwich elements are mapped to each other. The map ϕ2 7→4 : [a2, b2]→ [a4, b4], since it
preserves f , must map the sandwich elements of J to the sandwich elements of another
block, say of type M . Moreover, arguing similarly, ϕ3 must map the elements of K inside
of M while mapping sandwich elements to sandwich elements. Continuing in this way,
the sequence [a1, b1], [a2, b2], . . . must consist of blocks of the form Bσ1 , Bτ1 , Bσ2 , Bτ2 , . . .
where σ1 ≺ σ2 ≺ · · · and τ1 ≺ τ2 ≺ · · · . Moreover, the lengths of the σi are all of the
same parity as each other, and the lengths of the τi are also of the same parity as each
other. None of the σi and τi are ∅, the root of T . Thus in T , r(σi), r(τi) < α.

Now we return to the cases we skipped where there is a link which becomes vulnerable,
and argue that any such f -coding sequence has length at most 5: For any f -coding
sequence [a1, b1], [a2, b2], . . . and maps ϕi, as shown in Theorem 3.9, if there is some link
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in [ai, bi] which is vulnerable in [aj, bj] then the link will be broken by [aj+2, bj+2] and so
the coding sequence must terminate.

Thus, in the maximal coding tree, we have certain (finite) maximal paths of length
≤ 6, e.g., those consisting of an f -coding sequence where a link becomes vulnerable,8 and
all other paths are induced by a pair of paths through T . This will imply, since α ≥ 5,
that the rank of the maximal coding tree is at most α + 1. Indeed, consider the tree
T ∗ of pairs of sequences 〈σ1, τ1, σ2, τ2, . . . , σn, τn〉 of non-root elements of T such that (a)
σ1 ≺ σ2 ≺ · · · and τ1 ≺ τ2 ≺ · · · , (b) the lengths of the σi are all of the same parity as
each other, and (c) the lengths of the τi are also of the same parity as each other. By (b)
and (c), the ranks of the σi are either all even or all odd, and similarly for the τi. Since
each σi and τi is not the root ∅ of T , their ranks are all < α. Let rank∗ be the rank
function on this tree T ∗, which is clearly well-founded. Then we claim that

(1) Recalling that α is even,
rank∗(∅) ≤ α.

(2) If σ1 has even length then

rank∗(〈σ1〉) ≤ r(σ1) + 1,

and if σ1 has odd length then

rank∗(〈σ1〉) ≤ r(σ1)

(3) If r(σn) has even length then

rank∗(〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉) ≤ r(σn) + 1,

and if r(σn) has odd length then

rank∗(〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉) ≤ r(σn).

If r(τn−1) is even then

rank∗(〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉) ≤ r(τn−1),

and if r(τn−1) is odd then

rank∗(〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉) ≤ r(τn−1)− 1.

(4) If r(τn) has even length then

rank∗(〈σ1, τ1, σ2, τ2, . . . , σn, τn〉) ≤ r(τn) + 1,

and if r(τn) has odd length then

rank∗(〈σ1, τ1, σ2, τ2, . . . , σn, τn〉) ≤ r(τn).

If r(σn) is even then

rank∗(〈σ1, τ1, σ2, τ2, . . . , σn, τn〉) ≤ r(σn),

and if r(σn) is odd then

rank∗(〈σ1, τ1, σ2, τ2, . . . , σn, τn〉) ≤ r(σn)− 1.
8All f -coding sequences have length 5, but in the tree this path starts with the empty f -coding

sequence and so this corresponds to a path of length 6.
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We argue inductively for (3). Suppose that we have 〈σ1, τ1, σ2, τ2, . . . , τn−1, σn, τn〉 an
extension of rank β extending 〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉. We have several cases to check.

• Suppose that τn−1 and τn both have even length (and hence r(τn−1) and r(τn−1) are
even). Then, inductively, β ≤ r(τn) + 1. Since τn is an extension of τn−1 and the
length of τn is at least two greater than the length of τn−1, β+1 ≤ r(τn)+2 ≤ r(τn−1)
and so

rank∗(〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉) ≤ r(τn−1).

• Suppose that τn−1 and τn both have odd length (and hence r(τn−1) and r(τn−1) are
odd). Then, inductively, β ≤ r(τn). Since τn is an extension of τn−1 and the length
of τn is at least two greater than the length of τn−1, β+ 1 ≤ r(τn) + 1 ≤ r(τn−1)− 1
and so

rank∗(〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉) ≤ r(τn−1)− 1.

• Suppose that σn has even length so that r(σn) is even. Then, inductively, β ≤ r(σn)
and so β + 1 ≤ r(σn) + 1. Thus

rank∗(〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉) ≤ r(σn) + 1.

• Suppose that σn has odd length so that r(σn) is odd. Then, inductively, β ≤
r(σn)− 1 and so β + 1 ≤ r(σn). Thus

rank∗(〈σ1, τ1, σ2, τ2, . . . , τn−1, σn〉) ≤ r(σn).

(4) can be argued similarly. To argue (2), we have two cases. Suppose 〈σ1, τ1〉 is an
extension of 〈σ1〉 of rank β.

• If σ1 has even length, then β ≤ r(σ1) and so β + 1 < r(σ1) + 1. Thus

rank∗(〈σ1〉) ≤ r(σ1) + 1.

• If σ1 has odd length, then β ≤ r(σ1)− 1 and so β + 1 ≤ r(σ1). Thus

rank∗(〈σ1〉) ≤ r(σ1).

Finally, we argue (1). Suppose that 〈σ1〉 is an extension of ∅ of rank β. Then we have
two cases.

• If σ1 has odd length, then β ≤ r(σ1) < α. Thus β + 1 ≤ α and so

rank∗(∅) ≤ α.

• If σ1 has even length, then β ≤ r(σ1)+1. Since σ1 has even length, r(σ1) is an even
ordinal, and r(σ1) < α where α is also an even ordinal. Thus r(σ1) + 1 < α. Hence
β + 1 ≤ α and so

rank∗(∅) ≤ α.

This finishes the argument. In particular, we have shown that rank∗(T ∗) = rank∗(∅) ≤ α.
Thus, since α ≥ 5, we have shown that the rank of the maximal coding tree Tmax(f)

is at most α + 1. By Theorem 4.8, on a cone the degree spectrum of f does not contain
all (α + 1)-c.e. degrees.
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We do not know if this can be proved for α an odd ordinal, and there is some reason
to think that it might not be true for odd ordinals.

Question 4.17. Is the statement of Theorem 4.16 provable for α an odd ordinal?

We end this paper with several other questions and conjectures. Though we state
these for block functions, we are also interested more generally in any relation R on
(ω,<).

Question 4.18. If the degree spectrum on a cone of a block function f contains the
non-c.e. degrees, must it contain all 2-c.e. degrees?

Question 4.19. Is there an infinite descending sequence of degree spectra on a cone of
block functions?

Question 4.20. Is there an exact classification of when the degree spectrum of a block
function f on a cone contains all of the α-c.e. degrees?
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[BKW22] Nikolay Bazhenov, Dariusz Kalociński, and Micha l Wroc lawski. Intrinsic
complexity of recursive functions on natural numbers with standard order. In
39th International Symposium on Theoretical Aspects of Computer Science,
volume 219 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 8, 20. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022.

[BKW24] Nikolay Bazhenov, Dariusz Kalociński, and Micha l Wroc lawski. Degrees of
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