
Relativizing Computable Categoricity*

Rod Downey, Matthew Harrison-Trainor, and Alexander Melnikov

November 17, 2020

Abstract

A recent thread in computable structure theory has been the investigation of com-
putable structures after relativizing, the key idea being that facts which are true for
algebraic/structural reasons tend to relativize. On the other hand, there are patholog-
ical examples such as a structure which is computably categorical but not relatively
computably categorical; but such behaviour must eventually stabilize, as for example a
structure is either computably categorical relative to all degrees above 0′′ or not com-
putably categorical relative to all degrees above 0′′. But what can happen in between?
We show a surprising result: there is a structure which alternates between being com-
putably categorical and not computably categorical relative to an infinite increasing
sequence of c.e. degrees.

1 Introduction

In classical mathematics, a principal program is the classification of structures like groups,
rings, and C∗-algebras up to isomorphism. Computable mathematics is concerned with
algorithmically presented structures, and their algorithmic properties. In general, a structure
is computable if it is given with universe and atomic diagram both computable. Demanding
that the structures are represented algorithmically so that basic operations are computable,
and that solutions be computable, tends to mean that questions require much finer-grained
analytic and algebraic techniques. For instance, finding a basis for a variety is much more
involved than a proof that one exists.

A consequence of such considerations is that classical isomorphism becomes refined into
computable (or otherwise computational) isomorphism as a classification tool. Starting with
the seminal work of Maltsev [Mal61], a lot of effort has been put into understanding the rela-
tionship between classical and computational isomorphism both in general and for particular
classes of structures (such as groups).

A basic definition in this area is the following.

Definition 1.1. A computable structureA is computably categorical if for every computable
copy B of A, there is a computable isomorphism between A and B.

*We thank Denis Hirschfeldt for many fruitful discussions.

1



Starting with Maltsev [Mal61], there have been a large number of results characterising
computable categoricity in natural classes of structures; see [LaR77, Smi81, Gon80a, Rem81]
and also the recent papers [MN18, HTMM15]. Research on computable categoricity tended
to split into related approaches. One was motivated by algebra and looked for algebraically
natural ways of classifying computably categorical structures. For instance, the results of
Goncharov and Remmel show that a linear ordering is computably categorical if and only if
it has a finite number of adjacencies, a Boolean algebra is computably categorical if and only
if it has only finitely many atoms, and a torsion-free abelian group is computably categorical
if and only if its rank is finite. After several decades of research it has become evident that
a purely algebraic characterisation of computable categoricity in a class should be possible
only when computable categoricity is equivalent to relative computable categoricity in the
class:

Definition 1.2. A computable structure A is relatively computably categorical if for every
not necessarily computable copy B of A, there is a B-computable isomorphism between A
and B.

The intuition is that if a structure is computably categorical for a purely algebraic reason
then this should be true under relativization. The other related approach to computable
categoricity is based on effectivising model theory. Scott’s Isomorphism Theorem [Sco65]
says that a countable structure A is specified up to isomorphism by an infinitary sentence
in the language Lω1ω, a Scott sentence.

Working independently, Ash, Knight, Manasse, and Slaman [AKMS89], Chisholm [Chi90]
and Ventsov [Ven92] formally clarified the relationship between the algebraic and the model-
theoretical using Scott families. They showed that a structure is relatively computably
categorical if and only if there is a computably enumerable family of first-order existential
quantifiers describing automorphism orbits of tuples in the structure; in modern terms, if
and only if the structure has a Σ1 Scott family [AK00].

If a structure possesses a computable Scott family, then it is computably categorical via
a back-and-forth proof. However the converse is not true. Goncharov (see [EG00]) con-
structed a computably categorical structure with no Σ1 Scott family. Furthermore, there is
no reasonable characterization of the computably categorical structures in general [DKL+15];
formally, their index set is Π1

1-complete.
Does this mean that computable categoricity is a wrong notion? Is there any hope of

effectivizing Scott’s Isomorphism Theorem and capturing computable categoricity using syn-
tax? When we cannot characterise algebraic structures with a certain property it is natural
to seek extra conditions which would make such a characterisation possible. Goncharov
[Gon77, Gon80b] showed that this is indeed possible if the underlying structure obeys a
stronger computational hypothesis than only being computable, namely it is 2-decidable:

Theorem 1.3 (Goncharov [Gon80b]). If a structure is computably categorical and its ∀∃
theory is decidable, then it is relatively computably categorical

The proof of this result relativizes. Thus, if A is 2-decidable and computable relative to
X, then A is relatively computably categorical relative to X, meaning that any two Y -
computably presented structures are Y -computably isomorphic for Y ≥T X.

2



Now suppose that we have a computable structure A which is computably categorical
but not relatively computably categorical, so that there is some X >T ∅ such that A is
not computably categorical relative to X. A simple consequence of the above theorem of
Goncharov is the following:

Fact 1.4. If A is computable and computably categorical relative to some degree d ≥ 0′′,
then A has a 0′′-computable Σ1 Scott family.1 (Hence A is computably categorical relative
to every degree above 0′′.)

Proof. We know that A is 2-decidable relative to d, so by the aforestated result of Goncharov
[Gon80b] it has a d-computable Σ1 Scott family. Now knowing that A has a Σ1 Scott family,
we will find a 0′′-computable such family. Given ā ∈ A and an existential formula ϕ(x̄) true
of ā, ask whether for every tuple b̄ ∈ A satisfying ϕ(x̄) and every existential formula ψ(x̄),
ψ(ā) if and only if ψ(b̄). If this is the case, then ϕ(x̄) isolates the orbit of ā and we can
enumerate it into our 0′′-computable Scott family.

Thus, A perhaps goes from being computably categorical to not computably categorical
relative to X for some ∅ <T X <T ∅′′ and then at degree 0′′ the pathology disappears:
either for all d ≥ 0′′ we have that A is computably categorical relative to d, or for all d ≥ 0′′

we have that A is not computably categorical relative to d.
The natural question we ask is the following.

Question 1.5. If A is computable, what might the sets

{X : A is computably categorical relative to X}

and
{Y : A is not computably categorical relative to Y }

look like?

It is of course most natural to suspect that any process of switching from computably
categorical to not computably categorical is in some way monotonic, i.e., once the pathology
disappears at a degree a > 0 it never occurs again above a. The result below was unexpected.

Theorem 1.6. There is a computable structure A and c.e. degrees 0 = Y0 <T X0 <T Y1 <T

X1 <T · · · such that

1. A is computably categorical relative to Yi for each i,

2. A is not computably categorical relative to Xi for each i,

3. A is relatively computably categorical relative to 0′.

1Note that there exist examples which are computably categorical but not relatively ∆0
α categorical,

where α can be an arbitrary large computable ordinal [DKL+15], or even hyperarithmetically categorical
[Tur]. Fact 1.4 does not contradict these examples since a computably categorical structure does not have
to be computably categorical relative to d ≥ 0′′. The reader should not confuse relative categoricity with
categoricity relative to a fixed oracle. We also note that the standard example of a structure which is
computably categorical but not relatively computably categorical has a 0′-c.e. Σ1 Scott family but no c.e. Σ1

Scott family.

3



Although the theorem above illustrates that there is much more chaos below 0′ than an-
ticipated, it could be that the situation is a lot better above 0′, but this is something to
investigate in the future. It is sometimes better above 0′ since Downey, Kach, Lempp and
Turetsky showed that if A is 1-decidable, then A is relatively ∆0

2 categorical. It is unclear if
our example can be made 1-decidable.

The proof of Theorem 1.6 uses relatively standard ideas of “loops” and “isomorphism
pressing” but it has some unusual features. It is of course a priority argument. The basic
strategy is non-trivial but injury in the proof is merely finite. The guessing is complex enough
to make some aspects of the construction resemble non-uniform infinite injury arguments,
but the tree of strategies is not really helping to sort our the combinatorics. We chose to
eliminate the tree of strategies from the construction. Thus, the reader should prepare for a
non-standard proof.

The next section below is devoted to the proof of the main result. We finish the paper
with a section which contains several observations some involving computable dimension,
and a few open questions related to the topic of the paper.

2 Proof of Theorem 1.6

The structure A will be a directed graph consisting of infinitely many finite connected com-
ponents. Each component will consist of either two, three, four, or five cycles sharing a single
vertex, called the root vertex of the component. The root vertices can be identified as the
only vertices of degree greater than two.

We build A stage-by-stage ensuring that it is computable. At the same time, we will
build two sequences of uniformly c.e. sets (Xi)i∈ω and (Yi)i∈ω and Turing reductions Ψk such
that Bk = ΨXk

k is a Xk-computable copy of A which is not Xk-computably isomorphic to A.
By enumerating elements into Xk, we can give Ψk permission to change Bk.

For every set Z, let (MZ
i )i∈ω a uniformly Z-computable list of the (possibly partial)

Z-computable structures. To ensure that A is computably categorical relative to each Yk,
we meet the requirements:

Sk
i : If MYk

i
∼= A, then MYk

i is Yk-computably isomorphic to A.

Recall that to make A not computably categorical relative to Xk, we build an Xk-computable
structure Bk = ΨXk

k which is not Xk-computably isomorphic to A. To achieve this we meet
the requirements:

Rk
i : ΦXk

i : A → Bk = ΨXk
k is not an isomorphism.

Note that for a fixed k, the R requirements share the same Bk = ΨXk
k . We will build the Xi

and Yi by setting Y0 = ∅, and

Yi+1 = Xi ⊕ Y ∗i+1 and Xi = Yi ⊕X∗i
where X∗i and Y ∗i are c.e. sets to be defined by the construction. Thus we automatically
have ∅ ≡T Y0 ≤T X0 ≤T Y1 ≤T X1 ≤T · · · . Since A is computably categorical relative to
each Xi, and not computably categorical relative to each Yi, we get

∅ ≡T Y0 <T X0 <T Y1 <T X1 <T · · · .

4



In Lemma 2.7, we explain why A is relatively computably categorical relative to 0′.

Strategy for meeting Rk
i in isolation: Let B = Bk = ΨXk

k . We take the following actions:

1. Choose a new large number ` and create two new root vertices a1 and a2 in A, and b1

and b2 in B.

2. Attach a loop of length 2 to a1 and a2 in A, and to b1 and b2 in B. Attach a loop of
length 5`+ 1 to a1 in A and b1 in B; and attach a loop of length 5`+ 2 to a2 in A and
b2 in B. The loop of length 2 is simply to identify a1, a2, b1, and b2 as root vertices.

a1 : 2, 5`+ 1 a2 : 2, 5`+ 2

b1 : 2, 5`+ 1 b2 : 2, 5`+ 2

3. Wait for a stage s at which we see that ΦXk
i : A → B maps a1 7→ b1 and a2 7→ b2. Let

u be the use of this computation.

a1 : 2, 5`+ 1
Φ
// a2 : 2, 5`+ 2

b1 : 2, 5`+ 1
Φ
// b2 : 2, 5`+ 2

4. Choose a large number v > u. Attach loops of length 5` + 3 to a1 in A and b1 in B.
Attach loops of length 5` + 4 to a2 in A and b2 in B with use Xk[s]� 2v + 2 where s
is the current stage. Restrain Xk� 2v + 2 so that it may not be changed by another
requirement of a lower priority (to be clarified). Enumerate ` into Y ∗k′ for k′ ≥ k; this
will be used to meet the S requirements.

a1 : 2, 5`+ 1, 5`+ 3
Φ
// a2 : 2, 5`+ 2, 5`+ 4

b1 : 2, 5`+ 1, 5`+ 3
Φ
// b2 : 2, 5`+ 2, 5`+ 4

5. Attach loops of length 5`+ 2 to a1 in A and b1 in B, and attach loops of length 5`+ 1
to a2 in A and b2 in B.

a1 : 2, 5`+ 1, 5`+ 2, 5`+ 3
Φ
// a2 : 2, 5`+ 1, 5`+ 2, 5`+ 4

b1 : 2, 5`+ 1, 5`+ 2, 5`+ 3
Φ
// b2 : 2, 5`+ 1, 5`+ 2, 5`+ 4

6. Enumerate v into X∗k , which enumerates 2v+ 1 into Xk = Yk ⊕X∗k , thus removing the
loop of length 5`+ 3 attached to b1 and the loop of length 5`+ 4 attached to b2 in B.
Attach a loop of length 5`+ 4 to b1 in B and a loop of length 5`+ 3 to b2 in B.

a1 : 2, 5`+ 1, 5`+ 2, 5`+ 3
Φ
// a2 : 2, 5`+ 1, 5`+ 2, 5`+ 4

b1 : 2, 5`+ 1, 5`+ 2, 5`+ 4
Φ
// b2 : 2, 5`+ 1, 5`+ 2, 5`+ 3

5



If ΦXk
i : A → Bk is an isomorphism, it must be defined on a1 and a2 with some use u. In

step (3), it must map a1 7→ b1 and a2 7→ b2 because a1 and b1 are the only elements with a
loop of length 5` + 1, and a2 and b2 are the only elements with a loop of length 5` + 2. So
at some stage s we see that Φ

Xk[s]�u
i maps a1 7→ b1 and a2 7→ b2. In steps (4), (5), and (6) we

ensure that the elements have the following loops:

a1 : 2, 5`+ 1, 5`+ 2, 5`+ 3
Φ
// a2 : 2, 5`+ 1, 5`+ 2, 5`+ 4

b1 : 2, 5`+ 1, 5`+ 2, 5`+ 4
Φ
// b2 : 2, 5`+ 1, 5`+ 2, 5`+ 3

At stage (6), we enumerated v into X∗k , but we still have Xk� u = Xk[s]� u. So ΦXk
i still

maps a1 7→ b1 and a2 7→ b2, and this does not extend to an isomorphism.

Injury and restraint between different requirements Rk
i : Recall that

Yi+1 = Xi ⊕ Y ∗i+1 and Xi = Yi ⊕X∗i .

Thus putting a restraint on Xk for some k means putting a restraint on each X∗k′ and Y ∗k′ ,
k′ ≤ k. Similarly, putting a restraint on Yk for some k means putting a restraint on each
X∗k′ , k

′ < k, and on each Y ∗k′ , k
′ ≤ k. The reader should keep this in mind throughout the

proof.
If Rk

i finds a computation ΦXk
i in step (3) with use u, it restrains Xk � u. Another

requirement Rk′

i′ with k′ ≤ k might have already chosen an element v′ < u in step (4), and
want to enumerate v′ into X∗k′ in step (6). Since k′ ≤ k, this would enumerate an element
into Xk as well, and potentially violating the restraint placed on Xk by Rk

i . Similarly,
enumerating an element ` into Y ∗k in step (4) might violate restraints placed by lower priority
requirements.

We use the standard priority method; higher priority requirements Rk′

i′ are allowed to
violate the restraint placed by Rk

i , in which case we say that Rk
i is injured ; and when Rk

i

places a restraint, it injures all lower priority requirements Rk′

i′ which then have to choose
a value v′ greater than the restraint placed by Rk

i . Each requirement, unless it is injured
(which will only happen finitely many times) only places finitely many restraints. Thus by
the usual arguments, the restraints are never violated. (Note that the numbers ` and v, which
might be enumerated into X∗k and Y ∗k respectively, are chosen to be large, i.e., large enough
not to violate the restraints of any higher priority requirements. Lower priority requirements
may later place restraints which would be violated by enumerating ` and v, but these lower
priority requirements would then be injured.)

When a requirement is injured, it homogenizes the elements a1 and a2 it has been working
with, and also the elements b1 and b2:

a1 : 2, 5`+ 1, 5`+ 2, 5`+ 3, 5`+ 4 a2 : 2, 5`+ 1, 5`+ 2, 5`+ 3, 5`+ 4

b1 : 2, 5`+ 1, 5`+ 2, 5`+ 3, 5`+ 4 b2 : 2, 5`+ 1, 5`+ 2, 5`+ 3, 5`+ 4

This means that any way of matching up a1 and a2 with b1 and b2 can be extended to an
isomorphism. It then creates new elements a1, a2, b1, and b2 to work with.

Strategy for meeting Sk
i : The requirement Sk

i is responsible for building a Yk-computable
isomorphism f = ΓYk between A andMYk

i . To define f , we must look at pairs of root nodes

6



a1, a2 in A and decide on images for them in M = MYk
i . Given a1, a2, let ` be such that

each of a1 and a2 has a loop of length 5`+ 1 or 5`+ 2. We can Yk-computably look for a pair
of root nodes c1, c2 in M which also have such loops. Finally, identify the requirement Rk′

j

which was responsible for a1, a2. We have three cases in each of which we act differently:

� If k′ ≤ k: In step (4) of meeting the requirement Rk′
j , we enumerate ` into Y ∗k ; so

by checking whether ` ∈ Y ∗k , we can determine whether Rk′
j reached step (4) while

working with a1 and a2. If it did not reach step (4), then exactly one of a1, a2 has a
loop of length 5`+1, and the other has a loop of length 5`+2; so we can map whichever
of a1, a2 has a loop of length 5` + 1 to whichever of c1, c2 has a loop of the same size,
and this will extend to an isomorphism. If Rk′

j did reach step four, then exactly one
of a1, a2 has a loop of length 5`+ 3, and the other has a loop of length 5`+ 4, and we
can again match a1, a2 up with c1, c2.

� If k′ > k and Rk′
j is of higher priority than Sk

i : Sk
i can non-uniformly know whether

or not Rk′
j ever reached step (4); the rest is similar to the previous case.

� If k′ > k and Rk′
j is of lower priority than Sk

i : In this case Yk does not know whether

Rk′
j reached step (4). Without loss of generality, we may assume that a1 and c1 have

loops of length 5`+ 1 and a2 and c2 have loops of length 5`+ 2.

a1 : 2, 5`+ 1 a2 : 2, 5`+ 2

c1 : 2, 5`+ 1 c2 : 2, 5`+ 2.

Then have f map a1 7→ c1 and a2 7→ c2. If Rk′
j never reaches step (4), then this extends

to an isomorphism. The issue might be that Rk′
j reaches step (4), but that M delays

adding the loops from step (4) until Rk′
j has reached step (6), so that A looks like

a1 : 2, 5`+ 1, 5`+ 2, 5`+ 3 a2 : 2, 5`+ 1, 5`+ 2, 5`+ 4.

Mj can now add loops so that it looks like:

c1 : 2, 5`+ 1, 5`+ 2, 5`+ 4 c2 : 2, 5`+ 1, 5`+ 2, 5`+ 3

This would defeat the isomorphism f .

The solution is to force Rk
i to wait for Mj to copy A after step (4) before preceding

on to step (5). After step (4), A looks like

a1 : 2, 5`+ 1, 5`+ 3 a2 : 2, 5`+ 2, 5`+ 4

and this forcesMj, if it wants to be isomorphic to A, to add loops so that it looks like

c1 : 2, 5`+ 1, 5`+ 3 c2 : 2, 5`+ 2, 5`+ 4.

Thus f remains an isomorphism.

There is a complication in that M is a Yk-computable structure, and we must build
A computably. So we work with the stage-by-stage approximation to M given by the

7



stage-by-stage approximation to Yk, and whenever Rk′
j sees more loops added to M

(according to the current value of Yk), it places a restraint on Yk. If this restraint is
ever violated by a higher priority requirement, we homogenize a1 and a2, so that the
map f still extends to an isomorphism. (Recall that putting a restraint on Yk for some
k means putting a restraint on each X∗k′ , k

′ < k, and on each Y ∗k′ , k
′ ≤ k.)

Of course, M does not have to copy A, and there will certainly be some j for which
M � A and Rk′

j gets stuck after step (4). To solve this we use a standard pressing

strategy: the requirements Rk′
j must guess at the outcomes of the higher priority

requirements. WhileRk′
j is waiting forM to catch up, it starts a new instance guessing

thatM is not isomorphic to A; whenM does catch up, this new instance is destroyed
(and homogenized).

The action in the second case works even when k′ ≤ k, it is just that the first case also
works as well. But the action in the third case does not work when k′ ≤ k, and it might be
helpful to the reader, to aid in understanding the construction, to think about why this is
true: In the infinitary outcome, the requirement Rk′

j must be able to restrain Yk, while still
enumerating an element into X∗k′ ; if k′ ≤ k, then enumerating an element into X∗k′ would
also enumerate an element into Yk.

Priorities and guesses: We put a priority ordering on the requirements. A requirement
Sk
i knows the outcome of the higher priority R requirements when it builds its isomorphism

betweenMYk
i and A, and anR requirement must guess at the outcomes of the higher priority

S requirements. The R requirements are the only requirements that are active during the
construction and which can enumerate elements into the Xk and Yk; the S requirements
must be taken into account by the R requirements (e.g. by enumerating elements into the
Yk, or waiting to see loops in a structure MYk

i ), and the isomorphisms they ask for can be
defined after the construction is finished.

Full strategy for meeting Rk
i : For simplicity we write B = Bk. Let F be a subset of the

higher priority S requirements. For each such F , Rk
i can have a module which works under

the assumption that the requirements in F are exactly the higher priority S requirements
that Rk

i needs to wait for. We call this module a module of Rk
i with guess F . At certain

stages in the module for working for F , we will have to wait to see some loops show up in a
structure MYk′

j for some Sk′
j ∈ F ; while waiting, we will start up a module for a set G ( F ,

which itself might start up another module, and so on.
When a module for Rk

i with guess F starts a new module with guess G ( F , we say that
the module with guess F is the parent of the module with guess G, and the module with
guess G is the child of the module with guess F . The module for Rk

i with F consisting of
all of the higher priority S requirements is called the base module.

The module for Rk
i with guess F acts as follows:

1. Choose a new large number ` greater than the restraints of all higher priority require-
ments and also greater than the restraint of the parent modules of this module, and
its parent, and so on. Create two new root vertices a1 and a2 in A, and b1 and b2 in B.

Attach a loop of length 2 to a1 and a2 in A, and to b1 and b2 in B. Attach a loop of
length 5`+ 1 to a1 in A and b1 in B; and attach a loop of length 5`+ 2 to a2 in A and
b2 in B.

8



2. For each requirement Sk′
j in F , with k′ < k, wait until we see a pair of root nodes c1

and c2 in MYk′
j such that c1 has a loop of length 2 and of length 5` + 1, and c2 has a

loop of length 2 and of length 5`+ 2. If we ever see such elements, Rk
i puts a restraint

r greater than the use of the oracle Yk′ for the computation witnessing this. We say
that such an Sk′

j has caught up.

If at any stage s we ever see any other elements connected to c1 or c2, Rk
i puts a

restraint r greater than the use of the oracle Yk′ for the computation witnessing this.
(Just put this restraint once per structure MYk′

j .) We say that such an Sk′
j has been

killed.

Remark 2.1. We note that the strategy only cares about its current component (the
elements a1 and a2 and the adjacent loops it is currently working with). Therefore, if
Sk′
j has been declared killed then this status is not global, i.e., it is internal for this

particular version of the Rk
i -strategy. We could of course make this status global and

give the restraint some global priority (say, the priority of Sk′
j ). However, this is not

necessary. This is because the injury in the construction will be only finite. Thus, if
some higher priority requirement changes the set below the use witnessing that Sk′

j

has been killed, we simply initialise Rk
i . In particular, for one fixed component the

situation in which Sk′
j was killed and then resurrected and then killed again etc. is

impossible.

While waiting, let G be the set of higher priority S requirements which have caught
up but which have not been killed. Start a module of Rk

i with guess G. If we ever
find that a new requirement has caught up, or that one which had caught up has now
been killed, then the module with guess G must be homogenized (as described below),
we reset G to be the new, larger, set of requirements which have caught up but which
have not been killed, and start a module of Rk

i whose guess is the new G.

If we ever see that every requirement in F has either caught up or been killed, move
on to the next step.

3. Wait for a stage s at which we see that ΦXk
i : A → B maps a1 7→ b1 and a2 7→ b2.

Let u be the use of this computation. Enumerate ` into Y ∗k , injuring all lower priority
requirements.

Choose a large number v > u and set a restraint r = v + 1. Attach loops of length
5` + 3 to a1 in A and b1 in B. Attach loops of length 5` + 4 to a2 in A and b2 in B
with use Xk[s]� 2v + 2 where s is the current stage.

4. For each requirement Sk′
j in F , with k′ < k, wait until we see loops of length 5`+3 and

5`+ 4 attached to c1 and c2 respectively. Rk
i puts a restraint r greater than the use of

the oracle Yk′ for the computation witnessing this, and we say that Sk′
j has caught up.

Again, if at any stage s we ever see any other elements connected to c1 or c2, Rk
i puts

a restraint r greater than the use of the oracle Yk′ for the computation witnessing this,
and we say that Sk′

j has been killed.

While waiting, we start new modules of Rk
i with guesses G ( F as in step (2).

9



If we ever see that every requirement in F has either caught up or been killed, move
on to the next step.

5. Attach loops of length 5`+ 2 to a1 in A and b1 in B, and attach loops of length 5`+ 1
to a2 in A and b2 in B.

Enumerate v into X∗k , which enumerates 2v+ 1 into Xk = Yk ⊕X∗k , thus removing the
loop of length 5`+ 3 attached to b1 and the loop of length 5`+ 4 attached to b2 in B.
Attach a loop of length 5`+ 4 to b1 in B and a loop of length 5`+ 3 to b2 in B.

For k′ 6= k, whenever we do anything in A (e.g. creating the elements a1 and a2 or adding
loops to them) do the same in Bk′ with no use.

Whenever a requirement increases its restraint, or enumerates an element, it injures all
lower priority requirements. Each module of an injured requirement undergoes the homog-
enization procedure described below, and then the requirement restarts with just the base
module at the first step.

When a module is to be homogenized, we do the following: for any loop on a1 for which
there is no corresponding loop on a2, we add a loop of that length to a2, and vice versa. So
a1 and a2 have loops of exactly the same lengths attached to them. Do the same for b1 and
b2.

Construction.

Recall that the S requirements do not take any action during the construction; we define
the required isomorphisms after the construction.

At stage s, the first s R-requirements are allowed to act. For each of these requirements,
in order from highest priority to lowest priority, do the following: First, if the requirement
has never before acted or was injured, start the base module of the requirement with F being
the set of all higher priority S requirements. Then, execute the base module until we end
up at a step where we have to wait for a larger stage s. Then, if there is a child module,
execute the child module until it has to wait, then any child of the child module, and so on.

Verification.

Lemma 2.2. Each requirement Rk
i is injured only finitely many times.

Proof. We argue on induction that each Rk
i can injure the lower priority R requirements

only finitely many times. To do this we suppose that a requirement Rk
i is never injured

after some stage, and show that it injures the lower priority requirements only finitely many
times.

An Rk
i module with guess F injures the lower priority requirements only finitely many

times:

� once each time we find that a new requirement has caught up or been killed in step
(2);

� once in step (3);

10



� once each time we find that a new requirement has caught up or been killed in step
(4);

� once in step (5).

Now we argue that there are only finitely many Rk
i modules that ever run. We begin with

the base module, say with guess F0, and it has only one child at a time, with guess F1 ( F0;
and its child module can have one child module, and so on. So at any one time, we have a
chain of child modules with guesses F0 ) F1 ) F2 ) · · · ) Fn, and so n ≤ |F0|. A module
can only homogenize its child module and start a new child module within the same step if a
requirement has been found to have caught up or been killed, each of which can only happen
once per requirement. The one exception to this is if the child module is homogenized in step
(2) and the new child is started in step (4), but this can only happen once per module. So
each module can have only finitely many child modules, each of which can have only finitely
many child modules, and so on, and the depth is bounded by |F0|. Thus there are only ever
finitely many Rk

i modules running during the construction.

Lemma 2.3. Suppose that a module for Rk
i with guess G is never homogenized (which also

means that Rk
i is never injured). Let Sk′

j be a higher priority requirement and suppose that

MYk′
j
∼= A. Then Sk′

j ∈ G.

Proof. Suppose to the contrary that Sk′
j /∈ G. Then, because Sk′

j is contained in the guess

by the base module, there must be some module with guess F containing Sk′
j , which has a

child module G not containing Sk′
j , and neither module is ever homogenized.

So after some point the module with guess F must be stuck waiting at either stage (2)
or (4), with G being exactly the set of higher priority requirements which have caught up

but not been killed. But we will argue that since MYk′
j
∼= A, it must eventually catch up,

and it can never be killed. This would cause the module with guess G to be homogenized,
contradicting our initial assumption.

First, suppose that it is killed. Then at some stage s, we see in MYk′
j [s] that there is

a root vertex such that no root vertex in A has loops of the same lengths; and we put a
restraint on the use so thatMYk′

j has such a vertex. (The restraint is never violated, or else

Rk
i would be injured.) Thus we would have ensured that MYk′

j � A, which is not the case.

It must also catch up, becauseMYk′
j
∼= A, and so whenever a vertex shows up in A with

certain loops, it must show up in MYk′
j ; and so for some s, it must show up in MYk′

j [s].

Lemma 2.4. For each k, A is computably categorical relative to Yk.

Proof. We must show that each Yk-computable structure copy of A is Yk-computably isomor-
phic to A, i.e. that each requirement Sk

i is satisfied. Suppose that A ∼=MYk
j . For simplicity,

writeM =MYk
j . Let f be the Yk-computable isomorphism defined in the strategy for meet-

ing Sk
j . We argue that f is an isomorphism M→ A. It suffices to show that whenever we

maps elements c1, c2 to a1, a2 respectively (as defined in the strategy for Sk
i ), c1 and a1 have

the same lengths of loops attached to them, and c2 and a2 have the same lengths of loops
attached to them.

11



If the module that built a1, a2 was ever homogenized, then any way of mapping c1, c2 to
a1, a2 extends to an isomorphism. So suppose that the module that built a1, a2 was never
homogenized. We have three cases from the definition of f :

1. If k′ ≤ k: If ` /∈ Y ∗k then the module that built a1, a2 did not reach step (3), then a1

is the unique root vertex in A (and c1 is the unique root vertex in M) with a loop
of length 5` + 1, and a2 is the unique root vertex in A (and c2 in M) with a loop of
length 5`+ 2. So mapping c1, c2 to a1, a2 respectively extends to an isomorphism.

If ` ∈ Y ∗k then the module that built a1, a2 reached step (3), and a1 is the unique root
vertex in A (and c1 is the unique root vertex inM) with a loop of length 5`+3, and a2

is the unique root vertex in A (and c2 inM) with a loop of length 5`+ 4. So mapping
c1, c2 to a1, a2 respectively extends to an isomorphism.

2. If k′ > k and Rk′
j is of higher priority than Sk

i : Similar to above.

3. If k′ > k and Rk′
j is of lower priority than Sk

i :

Let F be the guess by the module of Rk′
j that built a1, a2. By Lemma 2.3, since

MYk
i
∼= A, and the module with guess F is not homogenized, we have Sk

i ∈ F .

First of all, we argue that when we find a stage s and elements c1 and c2, such that in
M[s] there is a loop of length 5` + 1 on c1 and of length 5` + 2 on c2, that in M[s]
there is no loop of length 5`+ 2 on c1 or 5`+ 1 on c2. Otherwise, Sk

i would have been
killed. (As in Lemma 2.3, if it is killed, then there is a restraint placed on Yk which
ensures that M � A.)

Then if the module with guess F does not make it to step (5), a1 is the unique root
vertex of A with a loop of length 5`+ 1, and a2 is the unique root vertex with a loop
of length 5`+ 2; so mapping c1 to a1 and c2 to a2 extends to an isomorphism.

Then if the module with guess F does make it to step (5), a1 is the unique root vertex
of A with a loop of length 5`+3, and a2 is the unique root vertex with a loop of length
5`+ 4; we must argue that c1 gets a loop of length 5`+ 3 and c2 gets a loop of length
5` + 4. In step (2) we wait to see c1 get a loop of length 5` + 1 and c2 get a loop of
length 5`+ 2; and then in step (4) we wait to see c1 get a loop of length 5`+ 3 and c2

a loop of length 5` + 4. We put a new restraint on Yk every time we see a new loop.
Moreover, if c2 got the loop of length 5` + 3, or c1 got the loop of length 5` + 4, then
Sk
i would be killed. So it must be c1 that gets the loop of length 5` + 3 and c2 that

gets the loop of length 5`+ 4.

This completes the proof of the claim.

Lemma 2.5. For each k, Bk is isomorphic to A.

Proof. The structure A consists entirely of pairs of root nodes a1, a2 produced by a module
of an R requirement, and the elements forming the loops attached to these root nodes.
Whenever we add elements a1, a2 to A for a requirement Rk′

i , k′ 6= k, we add the same
sort of elements to Bk (i.e., Bk just copies A). When we add elements a1, a2 to A for a
requirement Rk

i , we add elements b1, b2 to Bk, and either a1 has the same size loops as b1

12



(and a2 as b2), or a1 has the same size loops as b2 (and a2 and b1); which case we are in
depends on whether the requirement made it to step (5) or not.

Lemma 2.6. For each k, Bk is not Xk-computably isomorphic to A.

Proof. We must argue that each requirement Rk
i is satisfied, so that no Xk-computable map

ΦXk
i is an isomorphism between Bk and A. Fix some requirement Rk

i which we will show is
satisfied. After some stage, it is no longer injured.

There is some module of Rk
i , say with guess F , which is never homogenized, and which

either waits forever in step (3) or reaches step (5). (The other options for a particular
module are that it waits forever in step (2) or step (4), and in each of these cases it has a
child module; we know from the arguments in the previous lemma that each module must
have some last child module, and that the depth of child modules is bounded, so that there
must be some module with no child module.)

First suppose that the module waits forever in step (3). The either ΦXk
i is partial, or

it maps a1 to some element other than b1. If it is is partial then it obviously cannot be
an isomorphism. If it maps a1 to some element other than b1, then it cannot extend to an
isomorphism, as a1 and b1 each have a loop of length 5`+ 1, and no other elements of A or
B do, as no other requirement or module has the same value of `.

Now suppose that the module waits forever in step (5). Since the module passed through
step (3), we have that ΦXk

i maps a1 7→ b1 and a2 7→ b2. (The requirement Rk
i puts a restraint

on the use of the computation found in step (3), which cannot be violated by any lower
priority requirement; and if a higher priority requirement violated the restraint, Rk

i would
have been injured.) But we ensure in step (5) that a1 has a loop of length 5` + 3 and that
b1 does not, so that ΦXk

i does not extend to an isomorphism.

Lemma 2.7. A is computably categorical relative to 0′.

Proof. Recall that the structure A is a directed graph consisting of infinitely many finite
connected components. Each component consists of either two, three, four, or five cycles
sharing a single vertex, the root vertex of the component. The root vertices can be identified
as the only vertices of degree greater than two. Moreover, one can see from the construction
that if two components are not isomorphic, it is because each of them contains a loop of a
size that the other does not. (No component is a substructure of any other component.)

Thus A has a Σ1 Scott family; the automorphism type of a component is determined
by the existential formula saying which sizes of loops it contains. This Scott family is 0′-
computable because each component is finite. As A has a 0′-computable Σ1 Scott family, it
is computably categorical relative to 0′.

3 Finite computable dimension, and open questions

For each n ∈ ω − {0}, Goncharov [Gon80b] constructed a computable structure which has
computable dimension n. McCoy [McC02] used a forcing argument to observe that finite
computable dimension does not relativize meaning that if A has computable dimension
n > 1, with n ∈ ω, then there is some oracle X relative to which A has dimension 6= n.
Analysis of the construction shows that X = ∅′′ would suffice. We make an improvement
showing that X = ∅′ suffices.

13



Proposition 3.1. If a computable structure has finite computable dimension > 1, then it
has computable dimension ∞ relative to any degree above 0′.

Proof. Let A be a computable structure. Relative to 0′, it is 1-decidable. By [DKLT13]
A has a 0′-computable Σ0

2 Scott family. If B is any other computable copy of A which
is not computably isomorphic to A, A and B are 0′′-computably isomorphic. Thus A has
computable dimension 1 or∞ relative to 0′. If it has computable dimension 1 relative to 0′,
then A and B are 0′-computably isomorphic, and so A has computable dimension ∞.

We mention without proof the following result which is proven using a straightfor-
ward modification to the “special component” construction of Goncharov [Gon80b], as per
Hirschfeldt [Hir00]. We believe that its proof would contain no new ideas, and would simply
make the present paper 10 pages longer. We thus leave it as a strong conjecture.

Strong Conjecture 3.2. There is a computable structure A of computable dimension 2 and
a c.e. set L such that A has computable dimension 2 relative to L.

A general question is then: What is the behaviour of the computable dimension of a
computable structure after relativizing to various degrees? Some specific questions along
these lines are as follows:

Question 3.3. For which degrees d is there a computable structure of computable dimension
2 which has computable dimension 2 relative to d?

Question 3.4. For all A of computable dimension 1 < n <∞ is there X with ∅ <T X <T

∅′ such that A does not have dimension n relative to X.

Question 3.5. Is there a degree d > 0 and a computable structure of computable dimension
2 which has computable dimension 3 relative to d?

Note that the reverse—having computable dimension 3 and then computable dimension
2 relative to d—is less likely to happen:

Proposition 3.6. Let A be a computable structure with computable dimension n, and with
computable dimension m relative to d, with 0′ ≥ d > 0. Then n ≤ m.

Note that d also cannot be above 0′ by Proposition 3.1.

Proof. If n > m, then there are two non-isomorphic computable copies ofA which are d ≤ 0′-
computably isomorphic, and so A has computable dimension 1 or ∞, a contradiction.

Question 3.7. For which degrees d is there a computably categorical structure with finite
computable dimension 2 relative to d? E.g. what about d = 0′ or d = 0′′?

And going back to computable categoricity, we ask whether there is a degree d which is
low in the sense that it is unable to make a computably categorical structure not computably
categorical:

Question 3.8. Is there a degree d > 0 such that, for all computably categorical A, A is
computably categorical relative to d?

A construction can be used to show that no such X can be c.e.

14



References

[AK00] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hi-
erarchy, volume 144 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 2000.

[AKMS89] Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman. Generic copies
of countable structures. Ann. Pure Appl. Logic, 42(3):195–205, 1989.

[Chi90] John Chisholm. Effective model theory vs. recursive model theory. J. Symbolic
Logic, 55(3):1168–1191, 1990.

[DKL+15] Rodney G. Downey, Asher M. Kach, Steffen Lempp, Andrew E. M. Lewis-Pye,
Antonio Montalbán, and Daniel D. Turetsky. The complexity of computable
categoricity. Adv. Math., 268:423–466, 2015.

[DKLT13] Rodney G. Downey, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky.
Computable categoricity versus relative computable categoricity. Fund. Math.,
221(2):129–159, 2013.

[EG00] Yuri L. Ershov and Sergei S. Goncharov. Constructive models. Siberian School
of Algebra and Logic. Consultants Bureau, New York, 2000.

[Gon77] S. S. Gončarov. The number of nonautoequivalent constructivizations. Algebra
i Logika, 16(3):257–282, 377, 1977.

[Gon80a] S. S. Gončarov. Autostability of models and abelian groups. Algebra i Logika,
19(1):23–44, 132, 1980.

[Gon80b] S. S. Gončarov. The problem of the number of nonautoequivalent construc-
tivizations. Algebra i Logika, 19(6):621–639, 745, 1980.

[Hir00] Denis R. Hirschfeldt. Degree spectra of relations on computable structures. Bull.
Symbolic Logic, 6(2):197–212, 2000.

[HTMM15] Matthew Harrison-Trainor, Alexander Melnikov, and Antonio Montalbán. In-
dependence in computable algebra. J. Algebra, 443:441–468, 2015.

[LaR77] P. LaRoche. Recursively presented Boolean algebras. Notices AMS, 24:552–553,
1977.

[Mal61] A. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.

[McC02] Charles F. D. McCoy. Finite computable dimension does not relativize. Arch.
Math. Logic, 41(4):309–320, 2002.

[MN18] Alexander G. Melnikov and Keng Meng Ng. Computable torsion abelian groups.
Adv. Math., 325:864–907, 2018.

15



[Rem81] J. B. Remmel. Recursively categorical linear orderings. Proc. Amer. Math. Soc.,
83(2):387–391, 1981.

[Sco65] Dana Scott. Logic with denumerably long formulas and finite strings of quan-
tifiers. In Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), pages
329–341. North-Holland, Amsterdam, 1965.

[Smi81] Rick L. Smith. Two theorems on autostability in p-groups. In Logic Year 1979–
80 (Proc. Seminars and Conf. Math. Logic, Univ. Connecticut, Storrs, Conn.,
1979/80), volume 859 of Lecture Notes in Math., pages 302–311. Springer,
Berlin-New York, 1981.

[Tur] Dan Turetsky. Coding in the automorphism group of a computably categorical
structure. preprint.

[Ven92] Yu. G. Ventsov. The effective choice problem for relations and reducibilities
in classes of constructive and positive models. Algebra i Logika, 31(2):101–118,
220, 1992.

16


	Introduction
	Proof of Theorem 1.6
	Finite computable dimension, and open questions

