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Abstract

Slaman and Wehner independently built a family of sets with the property that
every non-computable degree can compute an enumeration of the family, but there is
no computable enumeration of the family. We call such a family a Slaman–Wehner
family. Loosely motivated by the problem of whether there is an abelian group with
the Slaman–Wehner degree spectrum, we consider families F that are closed under
finite differences: if A ∈ F and B =

∗ A, then B ∈ F . The main question of this paper is
whether there is a Slaman–Wehner family closed under finite differences. The Slaman–
Wehner construction relies on the fact that all of the sets in the family are finite,
and so no similar construction can work for a family closed under finite differences.
Nonetheless, we are unable to answer this question, though we obtain a number of
interesting partial results which can be interpreted as saying that the question is quite
hard.

First of all, no Slaman–Wehner family closed under finite differences can contain a
finite set, and the enumeration of the family from a non-computable degree cannot be
uniform (whereas, in the Slaman–Wehner construction, it is uniform). On the other
hand, we build the following examples of families closed under finite differences which
show the impossibility of several natural attempts to show that no Slaman–Wehner
family exists: (1) a family that can be enumerated by every non-low degree, but not
by any low degree; (2) a family that can be enumerated by any set in a given uniform
list of c.e. sets, but which cannot be enumerated computably; and (3) a family that
can be enumerated by a given ∆0

2 set, but which cannot be computably enumerated.

1 Introduction

This paper is concerned with the computational properties of families of subsets of ω. Such
families have played an important role in computable structure theory because they can be
coded into countable structures. Many important examples have been produced by con-
structing a family with certain computational properties, and then coding that family into
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a countable graph (often called the bouquet graph of that family, see e.g. [Kho86, AK00,
GMS13]). For example, Goncharov constructed a computable structure of effective dimen-
sion 2 in this way [Gon80a, Gon80b].

Given a family of subsets of ω, we can ask: how hard is it to build a copy of that family?
To build a copy of the family, we must build a copy of each set in the family, though it does
not matter what order we present the sets in.

Definition 1.1. An enumeration of a countable family F ⊆ P(ω) is a set W ⊆ ω2 such that
F = {W [i] ∶ i ∈ ω}, where W [i] is the ith column of W . The order of the columns in W and
their multiplicity is not relevant. To avoid issues with multiplicity, we may always assume
that in an enumeration of a family each column is replicated infinitely many times. A family
F is computably enumerable from a set X if there is an X-c.e. enumeration of F .

A surprising result of Slaman [Sla98] and Wehner [Weh98] is that there is a family consisting
of finite sets that can be enumerated by every non-computable degree, but which has no
computable enumeration. Thus the problem of enumerating this family captures exactly the
property of being non-computable.

We focus on families that are closed under finite differences.

Definition 1.2. We say that a family F is closed under finite differences if whenever A ∈ F
and B =∗ A, B ∈ F . (Here, A =∗ B means that A and B differ on only finitely many
elements.)

There are natural places in which such families arise; for example natural computability-
theoretic families such as the family of computable sets are closed under finite differences.
The motivating example for us comes from torsion-free abelian groups. If G is a torsion-free
abelian group, one can consider the family of sets {p prime ∶ p ∣ g} for g ∈ G. If G has no
infinite divisibilities, then this family is closed under finite differences. One might hope to
gain some insight into the following difficult open question by studying families closed under
finite difference, though there are no formal implications in any direction:

Question 1.3. Is there a torsion-free abelian group that has a presentation computable in
every non-computable degree but no computable presentation?

Our main goal in writing this paper was to build a Slaman–Wehner family that is closed
under finite differences. Unfortunately, we are unable to solve this question.

Question 1.4. Is there a family closed under finite differences that can be enumerated by
every non-computable degree, but which has no computable enumeration?

We call such a family a Slaman–Wehner family closed under finite differences. Standard
forcing arguments (see Proposition 3.1) show that if there were such a family, then it would
contain only c.e. sets, so we restrict our attention to those. Also, a theorem of Lachlan [Lac65]
quickly yields that from an enumeration of a family closed under finite differences allowing
repetition, we can compute a Friedberg enumeration, i.e. an enumeration with no repetition
(Corollary 2.2). So, unlike families not closed under finite differences, we do not need to
make any convention about how many times each set is enumerated in an enumeration.
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Though this question remains open, we prove a number of interesting results. We have
two negative result which place some restriction on such a family, should it exist. First, we
show that any Slaman–Wehner family closed under finite differences must consist only of
infinite sets. Second, we show that such a family cannot be enumerated in a uniform way:

Theorem 1.5. Let F be a family of sets closed under finite differences. Suppose that there
is a c.e. operator Φ such that for every non-computable set X, ΦX is an enumeration of F .
Then F can be enumerated computably.

It is interesting to note that there is a Slaman–Wehner family (not closed under finite dif-
ferences) that has no uniform enumeration. This is an argument due to Faizrahmanov and
Kalimullin [FK15]; the non-uniformity comes from the fact that every non-computable set,
viewed as a binary expansion, is either not left-c.e. or not right-c.e. (or neither), but which
of these is the case is not effective.

On the other hand, there are no obvious obstacles to such a family existing. We prove
the existence of the following families:

Theorem 1.6. There is a family closed under finite differences that can be enumerated
uniformly by every non-low degree, but which cannot be enumerated by any low degree.

Theorem 1.7. Given a uniformly c.e. sequence (De)e∈ω of non-computable c.e. sets, there
is a family of c.e. sets closed under finite differences that can be enumerated by every De,
but which cannot be enumerated computably.

Theorem 1.8. For any non-computable ∆0
2 set X, there is a family of c.e. sets closed under

finite differences that can be X-computably enumerated, but which cannot be enumerated
computably.

Combining the first and third of these positive results, note that for every non-computable set
X, there is a family of c.e. sets closed under finite differences that can be X-enumerated, but
which cannot be enumerated computably. So no single set forms a barrier to the existence
of a Slaman–Wehner family closed under finite differences. The next natural question is
whether there is a minimal pair:

Question 1.9. Is there a pair of non-computable sets X and Y such that any family of
c.e. sets closed under finite differences that can be enumerated by both X and Y can be
enumerated computably?

We know from Theorem 1.7 that no pair of c.e. sets is a minimal pair in this sense.

Notation

For a c.e. operator Φ, an oracle X, and i ∈ ω, we let ΦX[i] = {n ∶ (i, n) ∈ ΦX} be the ith

column of ΦX . For a string ξ and k < ∣ξ∣ we let ξ ↾↾ k = ξ ↾ (k + 1).
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2 Friedberg Enumerations

Friedberg [Fri58] showed that there is an effective enumeration of the c.e. sets in which
each set appears exactly once. More generally, a Friedberg enumeration or an injective
enumeration of a family F is an enumeration in which each set appears exactly once. There
is a long history of providing sufficient conditions for a family with a computable enumeration
to have a computable Friedberg enumeration. We will use the following condition due to
Lachlan [Lac65, Lac67].

Given a finite set C, let WC = {Wx ∶ x ∈ C}. A class F has the property (E) if there is a
binary partial computable function η ∶ [ω]<ω × [ω]<ω → ω such that if C and D are finite sets
and WC ⊆ F , then η(C,D) is defined if and only if

(F −WC) ∩ {X ∶X ⊇D}
is non-empty, and in this case η(C,D) is an index of a member of this class. Lachlan proved:

Theorem 2.1 (Lachlan [Lac65],[Lac67]). An infinite c.e. class F has the property (E) if and
only if given a finite subclass G of F we can effectively enumerate F − G without repetition.

It is not hard to show that a family of infinite sets closed under finite differences satisfies
condition (E), yielding:

Corollary 2.2. Let F be a family of sets closed under finite differences. From an enumer-
ation of F allowing repetition, we can compute an enumeration of F with no repetition.

Proof. If F contains a finite set, then it contains every finite set. The standard Friedberg
argument goes through. (See e.g. [Mal65].)

Now suppose that every set in F is infinite. We relativise Lachlan’s theorem to a given
enumeration of F . Fix a set X ∈ F . Given finite sets C and D, for each x ∈ C, look for
yx ∈ Wx −D. Once we find such a yx for each x ∈ C, which we eventually will if WC ⊆ F ,
then define η(C,D) to be an index for X ∪D − {yx ∶ x ∈ C}. This is a finite difference of the
set X, and hence it is in F . So F has condition (E) relative to every enumeration of F .

3 Negative Results

In this section we present our two negative results, i.e. results which say that families of a
certain kind have computable enumerations, and hence cannot have Slaman–Wehner spec-
trum. These results are proved using the forcing relation; in all cases, when we say that a
real is sufficiently generic, we mean with respect to Cohen forcing. We present the proof of
the following well-known fact as a warm-up.

Proposition 3.1. Let F be a family of sets that can be enumerated by every degree d > 0.
Each set in F is c.e.

Proof. Let X be sufficiently generic relative to F . Let Φ be a Turing functional such that
ΦX is an enumeration of F . Fix i. Let Y = ΦX[i]. There is σ ≼X such that σ ⊩ Y = ΦX[i].
Then

Y = {n ∣ ∃ρ ≽ σ such that ρ ⊩ n ∈ ΦG[i] }.
The right-hand-side is c.e.
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Our first negative result is that a family that is closed under finite differences and contains
a (and hence every) finite set cannot have Slaman–Wehner spectrum: if it can be enumerated
by every non-computable degree, then it has a computable enumeration.

Theorem 3.2. Let F be a family of sets, closed under finite differences, that can be enumer-
ated by every degree d > 0. If F contains a finite set, then F can be enumerated computably.

Proof. The idea of the proof is as follows: F can be enumerated by a generic set X via
a function Φ, and there is an initial segment η of X that forces the fact that every set
enumerated by Φ is a set in F . Now for a given i, some of the extensions of η force that
ΦG[i] is a particular set We, and others do not; if an extension σ of η does not force the
identity of ΦG[i], then it has extensions σ1 and σ2 that force that ΦG[i] = We1 and that
ΦG[i] = We2 respectively, with We1 ≠ We2 . For each σ and i, we will enumerate a set Qi,σ.
By guessing at whether or not σ forces that ΦG

e [i] =We for some e, we will be able to make
Qi,σ equal to We if σ does force this fact, and finite otherwise. Since F contains the finite
sets, it will not be a problem when Qi,σ is finite.

Let X be sufficiently generic, and let Φ be a Turing functional such that ΦX is an
enumeration of F . There is an initial segment of X that forces this fact. We will assume
for convenience that this initial segment is the empty string; otherwise, we just work among
extensions of this string.

For each σ and i, we will define a set Qi,σ such that either Qi,σ is finite, or σ ⊩ ΦG[i] =We

and Qi,σ =We. Define Qi,σ as follows. Put n ∈ Qi,σ if:

1. for all m < n, if m ∈ Φτ [i] for some τ ≽ σ of length ∣σ∣+n, then for every τ ≽ σ of length
∣σ∣ + n there is ρ ≽ τ with m ∈ Φρ[i], and

2. there is a string ρ ≽ σ with n ∈ Φρ[i].
Suppose that σ ⊩ ΦG[i] = We for some e. It is not hard to see that Qi,σ ⊆ We. On the

other hand, suppose that n ∈We. We show that n ∈ Qi,σ, so that Qi,σ =We. For (1): Suppose
that m < n is such that m ∈ Φτ [i] for some τ of length ∣σ∣ + n; then m ∈We. Given any τ of
length ∣σ∣+n, there is a sufficiently generic Y ≽ τ . Then ΦY [i] =We and so m ∈ ΦY [i]. Thus
there is ρ ≽ τ with m ∈ Φρ[i]. For (2): There is Y ≽ σ sufficiently generic, and so ΦY [i] =We.
So there is ρ ≽ σ with n ∈ Φρ[i].

On the other hand, suppose that there is no e for which σ ⊩ ΦG[i] = We. Then there
are Y,Z ≽ σ sufficiently generic with ΦY [i] ≠ ΦZ[i]. Suppose without loss of generality that
there is m ∈ ΦY [i] −ΦZ[i]. Let τY ≼ Y be such that m ∈ ΦτY [i], and let τZ ≼ Z be such that
τZ ⊩ m ∉ ΦG[i]; so there is no extension ρ of τZ with m ∈ Φρ[i]. Let N = max(m, ∣τ ∣, ∣ρ∣).
Then no n ≥ N satisfies (1), and so no element of Qi,σ is larger than N . Thus Qi,σ is finite.

In either case, Qi,σ is in F . It remains to show that each element of F is one of the Qi,σ.
Fix We in F . Let X be sufficiently generic, and let i be such that ΦX[i] =We. Let σ ≼X be
such that σ ⊩ ΦG[i] =We. Then Qi,σ =We.

Now we will show that there is no Slaman–Wehner family closed under finite differences
with this witnessed in a uniform way. The families constructed by Slaman and Wehner were
uniform, so if there is a Slaman–Wehner family closed under finite differences it must be
constructed in a different way. By “uniform”, we mean that there is an operator Φ such that
ΦX enumerates the family whenever X is non-computable.
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Theorem 3.3. Let F be a family of sets, closed under finite differences, that can be enu-
merated uniformly by every degree d > 0. Then F can be enumerated computably.

Proof. Let Φ be a Turing functional which witnesses that F can be uniformly enumerated
by every non-computable degree. Uniformly in each σ and i, we will enumerate a set Qi,σ.
For some 1-generic X ≽ σ, we will have Qi,σ =∗ ΦX[i] ∈ F . Before constructing the sets Qi,σ,
we will show how they suffice to prove the theorem.

For each W ∈ F , we argue that there are i and σ such that W =∗ Qi,σ, so that if we take
the family {Qi,σ ∣ i ∈ ω,σ ∈ 2<ω} and close it under finite differences we get an enumeration
of F . Let Y be sufficiently generic. There is i such that W = ΦY [i]. So there is σ ≼ Y
such that σ ⊩W = ΦG[i]. Let X ≽ σ be a 1-generic such that Qi,σ =∗ ΦX[i]. We claim that
W = ΦX[i]. Indeed, suppose that n ∈ ΦX[i]. Then there is ρ ≽ σ such that ρ ⊩ n ∈ ΦG[i],
and so there is a sufficiently generic Z ≽ ρ with n ∈ ΦZ[i] = W . A similar argument works
when n ∉ ΦX[i].

We now construct Qi,σ and an approximation to a 1-generic X ≽ σ with Qi,σ =∗ ΦX[i].
Let (We)e∈ω be an enumeration of the c.e. sets. For simplicity, we will write ΨX = ΦX[i].

We can think of the argument as a failed diagonalization argument. We will attempt to
construct a set Y to meet the following requirements:

Re ∶ ΨY ≠We.

Of course, we will not be able to meet all of these requirements, as no matter what Y is, ΨY

is c.e. If Y is computable, ΦY is c.e., and if Y is non-computable, then ΦY is in the family
F and hence is c.e. (We use Y here because the 1-generic set X we want will be obtained
by combining the approximation to Y with that of a 1-generic Z.)

The possible outcomes of a requirement Re are the infinitary outcome ∞, and finitary
outcomes n ∉We, τ and n ∈We, τ . An outcome n ∉We, τ represents that n ∉ We and

n ∈ Ψτ . An outcome n ∈We, τ represents that n ∈ We and for all ρ ≽ τ , n ∉ Ψρ. These two

types of outcomes are finitary because we will leave n ∉We, τ when n enters We and we

will leave n ∈We, τ when we find a ρ ≽ τ with n ∈ Ψρ. If either of the finitary outcomes is
the true outcome, then Re will be satisfied; but in the infinitary outcome, Re will not be
satisfied.

For a strategy ξ on the tree, we also define the (finite) binary string y(ξ) which is the
initial segment of Y determined by ξ. The empty sequence ⟨⟩ is a strategy and y(⟨⟩) = σ.
Suppose that we have determined that ξ, of length e, is a strategy. If the last entry of ξ
is ∞, then ξ is terminal — no proper extensions of ξ are strategies. Otherwise, the possible
outcomes of ξ on the tree of strategies are ∞, and the outcomes n ∈We, τ and n ∉We, τ

with τ ≽ y(ξ). We let y(ξˆ∞) = y(ξ). For all n and τ ≽ y(ξ), we let y(ξˆ n ∈We, τ ) =
y(ξˆ n ∉We, τ ) = τ .

At each stage, we will define a strategy ξs and let ys = y(ξs). We will let ξ, the true path,
be the path of strategies leftmost visited infinitely often (where the outcome ∞ lies to the
left of the others). We will argue that ξ is in fact finite (it is terminal, with last entry ∞);
otherwise, we show that Y = y(ξ) meets all requirements, which is impossible. The last entry
of ξ indicates the least e for which the requirement Re is not met. Each Ri, i < e, will be
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satisfied with one of the finitary outcomes, and so once these have stabilized, say at stage
s∗, we will have y(ξ) ≼ ys for all s ≥ s∗, and ys = y(ξ) whenever s ≥ s∗ is a true stage. (This
will all be verified after the construction.)

Letting Z be a ∆0
2 1-generic with computable approximation (zs)s∈ω, our 1-generic X ≽ σ

will be X = y(ξ)ˆZ. We have an approximation to X given by xs = yszs. (Note that this is
not a ∆0

2 approximation; we cannot specify y(ξ) as a parameter, as the construction has to
be uniform in i and σ). Using the fact that we failed to satisfy Re, we will show in Claim 3
that defining Qi,σ = {n ∶ ∃s n ∈ Ψxs

s }, we get Qi,σ =∗ ΨX =We.

Construction.

Stage 0: Begin with ξ0 = ⟨∞⟩.
Stage s + 1: a strategy ζ ≺ ξs is discovered to be incorrect at stage s + 1 if, letting e = ∣ζ ∣, we
have:

(1) ξs(e) = n ∉We, τ and n ∈We,s;

(2) ξs(e) = n ∈We, τ and n ∈ Ψρ
s for some ρ ≽ τ ; or

(3) ξs(e) =∞, and there are some n and τ ≽ y(ζ) (with n, ∣τ ∣ ≤ s) such that either

(i) n ∉We,s and n ∈ Ψτ
s ; or

(ii) n ∈We,s and n ∉ Ψρ
s for all ρ ≽ τ (of length ≤ s).

If no ζ ≺ ξs is discovered to be incorrect at stage s + 1, then we let ξs+1 = ξs. Otherwise,
let ζ be the shortest initial segment of ξs discovered to be wrong at stage s + 1. We define
ξs+1 as follows:

� In cases (1) and (2), i.e., when ξs(e) ≠∞, we let ξs+1 = ζˆ∞.

� In sub-case (3i), choosing the least τ and n, we let ξs+1 = ζˆ n ∉We, τ ˆ∞.

� In sub-case (3ii), again choosing the least τ and n, we let ξs+1 = ζˆ n ∈We, τ ˆ∞.

End construction.

Verification.

Let ξ be the leftmost path visited infinitely often. Then either ξ is a finite, terminal
strategy, or it is infinite (and so does not contain an entry ∞). We will shortly see that it is
the former.

We note that if ζ ≺ ξ is non-terminal, then ζ ≺ ξs for all but finitely many stage s; for
every e < ∣ζ ∣, once ζ ↾ e has stabilised, once the outcome ζ(e) is chosen, it will never be
un-chosen, as we cannot return to a discarded outcome.

If ξ is infinite, let y(ξ) = ⋃ζ≺ξ y(ζ); if ξ is finite, then y(ξ) is already defined. We are in
the slightly notationally awkward situation where we do not yet know whether ξ and y(ξ)
are finite or infinite strings, so in the next lemma we will have to talk about strings Y ∈ 2ω

with Y ≽ y where it might be that Y = y(ξ) if y is infinite.
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Claim 1. If e < ∣ξ∣ and ξ(e) ≠∞ then ΨY ≠We for any Y ≽ y(ξ).

Proof. As discussed, there is some stage after which ξt ↾↾ e = ξ ↾↾ e.
First suppose that ξ(e) = n ∉We, τ . Then n ∉ We, since if we found that n ∈ We, we

would never again have this outcome. Also, when we first had this outcome, we had n ∈ Ψτ .
Since Y ≽ τ , ΨY ≠We.

Now if ξ(e) = n ∈We, τ , then n ∈We, but for all ρ ≽ τ , n ∉ Ψρ. Since Y ≽ τ , n ∉ ΨY and
so ΨY ≠We.

If Y ≽ y(ξ), then ΨY is a c.e. set We (either for obvious reasons because Y is computable,
or if Y is non-computable, then ΨY is in the family F and hence a c.e. set). So as a
consequence of this lemma, ξ must be finite, with last entry ∞, and y ∶= y(ξ) is finite as well.
Let s0 be a stage after which ξ− ≺ ξs (where ξ− is the result of removing the last entry ∞
from ξ). So y(ξ) ≼ ys for all s ≥ s0. We say that a stage s ≥ s0 is true if ξs = ξ. There are
infinitely many true stages.

Claim 2. Let e = ∣ξ∣−1 (so ξ(e) =∞). Let Y ≽ y be a 1-generic extending y. Then ΨY =We.

Proof. If there is n ∈ ΨY −We, then there is some τ ≼ Y with n ∈ Ψτ . Then the outcome ξ(e)
would be n ∉We, τ for some such pair n, τ .

If there is n ∈We −ΨY , then since Y is 1-generic, there is a τ such that y ≼ τ ≺ Y and for
all ρ ≽ τ , n ∉ Ψρ. Then the outcome ξ(e) would be n ∈We, τ for some such pair n, τ .

Let (zs)s∈ω be a ∆0
2 approximation of a 1-generic Z. Let X = yˆZ and xt = ytzt; X

is a 1-generic extending y. For each m, there are infinitely many stages t ≥ s0 such that
xt = ytzt ≽X ↾m, indeed this holds for almost all true stages.

Claim 3. Let Qi,σ = {n ∶ ∃s n ∈ Ψxs
s }. Then Qi,σ =∗ ΨX =We.

Proof. Let e be as in the previous claim. Let Qi,σ[t] = {n ∶ ∃s ≤ t n ∈ Ψxs
s }. Each of these

sets is finite, and Qi,σ = ⋃tQi,σ[t].
For every stage t ≥ s0, if n ∈ Qi,σ[t] −Qi,σ[t − 1], then n ∈ Ψxt

t . Since t ≥ s0, xt ≽ y. This
shows that n ∈ Ψτ

t for some τ ≽ y. There is some 1-generic G ≽ τ ; so n ∈ ΨG; by the previous
claim, ΨG =We = ΨX . So Qi,σ ⊆∗ ΨX .

On the other hand, if n ∈ ΨX , there is some t such that n ∈ Ψxt
t . As X = yˆZ is a 1-generic

extending y, ΨX =We. So ΨX =We ⊆ Qi,σ.

We have shown that Qi,σ =∗ ΨX = ΦX[i] for some 1-generic X extending σ. By the
arguments given at the beginning of the proof, if we take the family {Qi,σ ∣ i ∈ ω,σ ∈ 2<ω}
and close it under finite differences, we get an enumeration of F .

The next lemma gives another restriction on what a Slaman-Wehner family closed under
finite differences would have to look like. Let A be a low set that enumerates such a family.
Each set in the family has a computable enumeration, but also an enumeration relative to
A as part of the enumeration of the family by A. We show that for at least one set in the
family, the enumeration relative to A must be faster than any computable enumeration.
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Lemma 3.4. Let A be a low set, and F a family of c.e. sets closed under finite differences
that can be enumerated by A using Φ. Suppose that for each i, for some e with ΦA[i] =We

we have ΦA
s [i] ⊆We,s for all s. Then F can be computably enumerated.

Proof. Let π ∈ 2ω be such that π(e, i) = 1 if and only if (∀n)(∀s) n ∈ ΦA
s [i]⇒ n ∈We,s. Since

A is low, π ≤ ∅′. Let σs be a computable sequence of finite binary strings that approximate
π, and such that there are infinitely many true stages s with σs ≺ π.

We will uniformly compute sets Ui =∗ ΦA[i]. Let Ui,s+1 = Ui,s ∪ [{0, . . . , s}⋂σs(e,i)=1We,s]
and let Ui = ⋃Ui,s. Fix a particular index e′ such that ΦA[i] = We′ and for all s we have
ΦA
s [i] ⊆ We′,s. Let s′ be a stage such that for all s ≥ s′, σs(e′, i) = 1. Then for all s ≥ s′,

Ui,s+1 −Ui,s ⊆We′ and so Ui ⊆∗ We′ . Now suppose that n ∈ ΦA
s [i], s ≥ s′, and s is a true stage

of the approximation σs of π, so that σs ≺ π. Then n ∈ ⋂σs(e,i)=1We,s and so n ∈ Ui. Thus
Ui =∗ We′ = ΦA[i].

4 Examples of Families

In this section, we produce the three examples of families of c.e. sets, closed under finite
difference, that were promised in the introduction: (1) A family that can be enumerated
exactly by the non-low degrees; (2) For any effective list of non-computable c.e. sets, a
family that can be enumerated by those sets but not computably enumerated; and (3) For
any non-computable ∆0

2 set, a family that can be enumerated by that set but which cannot
be computably enumerated. Recall that in all of these cases, our family consists of c.e. sets,
so that in (3) for example we cannot simply take the family to consist solely of the given
non-computable ∆0

2 set.

We begin by adapting Wehner’s construction to produce a family of sets closed under
finite differences that can be enumerated exactly by the non-low degrees. We can think of
this as essentially a jump inversion of Wehner’s construction relativized to 0′.

Theorem 1.6. There is a family closed under finite differences that can be enumerated
uniformly by every non-low degree, but which cannot be enumerated by any low degree.

Proof. Following [GMS13], relativizing Wehner’s construction of a family that can be enu-
merated by exactly the non-computable degrees, we get a family

F∅′ = {{e}⊕ F ∶ e < ω, F ⊆ ω finite, and F ≠W∅′

e }.

Then X can enumerate F if and only if X ≰T ∅′. (See Propositions 2.3 and 2.4 of [GMS13].)
Now, given a set S, define

US = {⟨s, n⟩ ∶ s ∉ S}.
We have the following jump inversion result using US:

Lemma 4.2. For finite sets S, we can uniformly pass between an X-index i for an enumer-
ation of a set WX

i =∗ US and an X ′-index j for WX′

j = S.
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Proof. Given WX
i =∗ US, X ′ can enumerate S by, for each s ∈ ω, searching for n0 such that

for all n ≥ n0, ⟨s, n⟩ ∉WX
e , and enumerating s if such an n0 is found.

On the other hand, if WX′

j = S, then S is Σ0
2 relative to X. So we can find an X-

computable function f such that if s ∈ S, WX
f(s)

is finite, and if s ∉ S, WX
f(s)

= ω. Let

V = {⟨s, n⟩ ∶ n ∈Wf(s)}

Since S is finite, V =∗ US.

Define
G = {V ∶ ∃S ∈ F∅′ [V =∗ US]}.

We claim that G is uniformly enumerable by all non-low degrees, and is not enumerable from
any low degree.

If X is non-low, then X ′ >T ∅′. So X ′ uniformly enumerates F∅′ , and by Lemma 4.2, X
uniformly enumerates a family which, when we close under =∗, will give us G.

If X is low, then any enumeration of G would give an X ′-listing of F∅′ , by Lemma 4.2,
which is impossible.

Next we consider an effective sequence of non-computable c.e. sets.

Theorem 1.7. Given a uniformly c.e. sequence (De)e∈ω of non-computable c.e. sets, there
is a family of c.e. sets closed under finite differences that can be enumerated by every De,
but which cannot be enumerated computably.

Proof. For each i, let Qi be a computable set of indices such that {Wk ∶ k ∈ Qi} is the ith
computable enumeration of a family of sets. When we construct our family F , for each set
in F there will be some i such that the set has infinitely many elements of the form ⟨i, ⋅⟩
and only finitely many elements of the form ⟨j, ⋅⟩ for j ≠ i. We will diagonalize against the
family {Wk ∶ k ∈ Qi} using the sets containing only elements of the form ⟨i, ⋅⟩.

Let Pi be a Π0
1 set of indices for the c.e. sets {n ∶ ⟨i, n⟩ ∈ Wk} where k ∈ Qi and Wk

contains only elements of the form ⟨i, n⟩. The following lemma contains the heart of the
argument: that we can diagonalize against this family.

Lemma 4.4. Given a Π0
1 set P ⊆ ω, there is a family of c.e. sets F closed under finite

differences such that
F ≠ {We ∶ e ∈ P}

and F can be enumerated by every De. Moreover, we can build F uniformly from an index
for P , and the enumeration of F from the De is uniform as well.

Before proving the lemma, we show how to use it to finish the theorem. For each i, let
Fi be the family of c.e. sets obtained by this lemma applied to Pi. The families Fi can be
enumerated uniformly by every De, and Fi ≠ {Wk ∶ k ∈ Pi}. Now we need to combine each of
these families into a single family F ; let F be the closure under taking finite differences of
the family

{ {⟨i, n⟩ ∶ n ∈W} ∶ W ∈ Fi}.
Then F can be enumerated by each De, because De can enumerate each Fi uniformly. Also,
we argue that F is not the same as the ith computable enumeration {Wk ∶ k ∈ Qi}. Note
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that Fi is the family of all sets {n ∶ ⟨i, n⟩ ∈ W} for W ∈ F containing only elements of the
form ⟨i, ⋅⟩. Since Fi ≠ {Wk ∶ k ∈ Pi}, and Pi was obtained from Qi by the same process that
Fi is obtained from F , F ≠ {Wk ∶ k ∈ Qi}.

Now we prove Lemma 4.4. As one might expect, this is a c.e. permitting argument.

Proof of Lemma 4.4. For each index e, we build a De-enumeration of a family Fe of c.e. sets.
We will ensure that the families Fe and Fe′ enumerated by De and De′ are the same; we call
this family F . We will also make sure that F is different from {We ∶ e ∈ P}. Though they
will be the same family, the correspondence between the sets in Fe and the sets in Fe′ may
not be computable, and this is why we give them different names.

First it will be helpful to think of what the construction does in the case of a single
non-computable c.e. set De. We will describe a restriction of the general strategy to this
simpler case. The family Fe will consist of a single set Ue and its finite differences. We want
to ensure that either Ue is not in {Wk ∶ k ∈ P}, or that there is some set in {Wk ∶ k ∈ P} that
is different from Ue and all of its finite differences. What we will do is to consider each Wk

in turn, and try to make Ue different from Wk. We use the elements of the form ⟨k, ⋅⟩ for the
sake of Wk.

For each k in turn, we do the following, beginning with k = 0. We call this process the
module for Wk. Suppose that the module for Wk begins at stage s. If k ∉ Ps, then we do
not have to make Ue different from Wk, and we can just go on to Wk+1. Otherwise, if k ∈ Ps,
begin by putting ⟨k,n⟩ into Ue for each n, with use De,s ↾↾ n where s is the current stage. At
each later stage t, do one of the following:

� If k ∉ Pt, then this means that we no longer have to make Ue different from Wk. We
put ⟨k,n⟩ into Ue with no use, and go on to the module for Wk+1.

� If there is some n that entered De at stage t, and there is m ≥ n with ⟨k,m⟩ ∈ Wk,t,
then we have received permission from De to diagonalize against Wk. For n′ < n, put
⟨k,n′⟩ into Ue with no use. On the other hand, because n has entered De, we are able
to remove ⟨k,m⟩ from Ue. So Ue ≠Wk. We go on to the module for Wk+1.

� Otherwise, it might be that De has changed, but we have not been given an opportunity
to diagonalize. Put ⟨k,n⟩ into Ue with use De,t ↾↾ n and continue the module for Wk at
stage t + 1.

If we end the module for Wk for any reason, then we have succeeded against Wk, either
because k ∉ P and we do not need to do anything, or because we have ensured that Ue ≠Wk.
It is also possible that for some k, the module for Wk never ends. In this case, we will
argue that Wk is not a finite difference of Ue. Suppose that it was; then Ue contains every
element ⟨k,n⟩, and so Wk must contain all but finitely many of those elements. But then by
a standard permission argument, there must be some n that enters De at a stage t at which
⟨k,m⟩ ∈ Wk,t for some m ≥ n; otherwise, we would be able to compute De. This gives us a
contradiction, because if this ever happened then the module for Wk would have been given
permission.

We also need to make sure that the set Ue is c.e. (and in fact computable). For each k,
Ue contains either finitely many elements ⟨k,n⟩, or every element ⟨k,n⟩. If the module for
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Wk never ends, then Ue is actually computable using the knowledge of how the modules for
W0, . . . ,Wk ended. Otherwise, each module ends; to decide which elements ⟨k,n⟩ to put into
Ue, we can wait until the module for We ends, at which point the construction fixes how
many of those elements to put into Ue.

Before returning to the general case, it will be helpful to show how we may assume that
we can delete sets from our enumerations of the families Fe. When we delete a set, we will
delete its entire equivalence class under finite differences. We do this as follows. Reserve
infinitely many elements ⟨0, n⟩ as garbage labels. Whenever we want to delete a set from
the family Fe, we put every label, including all of the garbage labels, into it; we also add all
of these labels onto finite differences of the set, and add new sets to Fe that are the finite
differences of these sets. Since there are infinitely many garbage labels, each of these sets
will still have infinitely many garbage labels. Instead of working with {We ∶ e ∈ P}, we work
with

{We ∶ e ∈ P and We does not contain any garbage labels}.
This is a still a Π0

1 set of indices. If we can make the family of sets in F not including a
garbage label different from this family, then F together with the deleted sets will be different
from {We ∶ e ∈ P}. So for the rest of the construction, we will simply allow ourselves to delete
sets from the families Fe (without talking about garbage labels).

Now we return to the full sequence (De)e∈ω. Now the main issue that arises is that the
different sets De might give us permission at different times, which would mean e.g. that De

would give us permission to remove ⟨k,n⟩ from Ue, but De′ would not give us permission to
remove ⟨k,n⟩ from Ue′ ; and then later De′ would give us permission to remove some other
⟨k,m⟩ from Ue′ , but De would not give use permission to remove it from Ue.

The solution to this is to take advantage of the fact that Ue and Ue′ do not have to be
the same set, as long as there is some other set in Fe that is equal to Ue′ , and some other
set in Fe′ that is equal to Ue. Moreover, which set this is does not have to be fixed. Just
before the start of the module for Wk, each Fe will consist only of the set Ue (and of course,
its finite differences), and we will have Ue = Ue′ for each e, e′. At the start of the module for
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Wk, we will add new sets V e′
e to Fe with the intent of copying Ue′ .

Fe Fe′ Fe′′

Ue Ue′ Ue′′

V e
e′ V e

e′′

V e′
e V e′

e′′

V e′′
e V e′′

e′

⋮ ⋮ ⋮

Note that the subscripts of the sets denote which family they belong to, and the superscripts
denote the set they are copying. We use the elements ⟨k, e, n⟩ for Ue in the module for Wk.
When De gives permission to make Ue ≠Wk by removing an element ⟨k, e, n⟩ from Ue, this
element was never put in Ue′ for e′ ≠ e; so we can delete all of the sets V and make Ue = Ue′
again for each e, e′. So if each module ends, then we end up with Ue = Ue′ ; but if the module
for Wk never ends, then we have Ue ≠ Ue′ for each e, e′, but V e

e′ = Ue.
For a particular value of k, we act against Wk using the following module. Assume that

at each stage only a single element enters exactly one of D0,D1, . . .. At the start of the
module, each Fe will consist of only a single set Ue (plus its finite differences); the sets Ue
will contain exactly the same elements, and will contain only elements of the form ⟨k′, ⋅, ⋅⟩
for k′ < k.

We will describe below the module for Wk as it builds each Fe. The events that trigger
the beginning and ending of each module will be computable. The modules will build the
families Fe as c.e. operators, the eth one with oracle De, describing elements enumerated
into sets in the families with various uses.

Module for Wk:

Suppose that the module for Wk begins at stage s. As described, at stage s, each Fe consists
of a set Ue (and its finite differences). We begin the module by adding to each family Fe
infinitely many sets V e′

e , all equal to the Ue’s, again with no use.
Now let t ≥ s be a stage, and suppose that the module for Wk is still running at stage t.

We do the following:

� If k ∉ Pt:

– delete all the sets V e′
e from all the families Fe;

– with no use, put ⟨k, e′, n⟩ into Ue for each n and e′ (including e′ = e);
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– end the module.

� Otherwise, suppose that some n∗ enters a set De∗ at stage t (recall there will be only
one such pair (n∗, e∗) at each stage), and there is m ≥ n∗ with ⟨k, e∗,m⟩ ∈Wk,t:

– delete all the sets V e′
e from all the families Fe;

– for every e′ ≠ e∗, every e and every n, put ⟨k, e′, n⟩ into Ue with no use;

– for every n < n∗ and every e, put ⟨k, e∗, n⟩ into each Ue with no use;

– end the module.

� Otherwise, for each e and n, put ⟨k, e, n⟩ into Ue with use De,t ↾↾ n. Continue the
module.

The complete construction piecing together the modules is as follows:

Construction: Run the module for W0; if it returns, run the module for W1, and when
that returns run the module for W2, and so on.

Now we must check that the construction works. We make a few remarks about the state of
the construction whenever a module finishes. At the end of any module:

� each Fe consists of only the set Ue (and finite differences);

� every element in Ue is in Ue with no use;

� Ue = Ue′ for each e, e′.

Claim 1. For each e, e′, Fe and Fe′ are the same family F .

Proof. Suppose first that each module ends. Then by the remark above, each Fe consists of
only of the finite differences of a single set Ue, and Ue = Ue′ for each e, e′.

So now suppose that the module for Wk does not end. Then each Fe will consist of a set
Ue and sets V e′

e for e′ ≠ e, and all the finite differences. Moreover, after the beginning of the
module no elements are ever removed from Ue′ (since, if an element would be removed by a
change in De′ , it is added back into Ue′ with the new use). So we have V e′

e = Ue′ . Thus the
families Fe are all the same.

Claim 2. F ≠ {Wk ∶ k ∈ P}.

Proof. We have two cases. First suppose that each module ends. Then F will consist of the
equivalence class of a single set U (with U = Ue for each e). We claim that U ≠Wk for any
k ∈ P , so that U ∉ {Wk ∶ k ∈ P}. Indeed, for each k, the module for Wk ends, either because
we find that k ∉ P , or because there is n that enters De at a stage t, and there is m ≥ n with
⟨k, e,m⟩ ∈Wk,t. In the latter case, ⟨k, e,m⟩ ∈Wk but we remove ⟨k, e,m⟩ from U ; so Wk ≠ U .

Now suppose that the module for Wk does not end. Then we claim that Wk ∉ F . The
family F consists of the sets Ue and their finite differences; each Ue contains the elements
⟨k, e, n⟩ for all n while not containing ⟨k, e′, n⟩ for any e′ ≠ e. Suppose to the contrary that
Wk ∈ F , so that for some e, Wk =∗ Ue. Then choose N such that for all n ≥ N , ⟨k, e, n⟩ ∈Wk.
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Since the module for Wk does not end, whenever n enters De at a stage t, there is no m ≥ n
with ⟨k, e,m⟩ ∈Wk,t. Thus De ↾↾n=De,t ↾↾ n if there is m ≥ n with ⟨k, e,m⟩ ∈Wk,t. This allows
us to compute the non-computable set De. From this contradiction we can conclude that
Wk ∉ F

This completes the proof of the lemma.

It would be natural to try to extend this argument to all of the non-computable c.e. sets
by showing that for any list (De)e∈ω of c.e. sets, some of which might be computable, there is
a family F of c.e. sets closed under finite differences which has no computable enumeration,
but has an enumeration from any non-computable De. The problem we run into is that
during the module for Wk, Wk could copy Ue for some e with De non-computable, so that
we are never given permission. One would then have to add a guessing argument to guess at
when De is non-computable, but we could not make this work with the sets V e′

e . We leave
this question open:

Question 4.5. If F is a family of c.e. sets closed under finite differences, and it can be
enumerated by every non-computable c.e. set, must it have a computable enumeration?

One way to show that there is no Slaman–Wehner family closed under finite differences
would be to show that there is a degree d such that any family of c.e. sets closed under finite
differences that can be enumerated by d has a computable enumeration. We show that this
is not the case. We already know that such a family exists for any non-low degree, and now
we show that such a family exists for any ∆0

2 degree. Note that if we do not require the
family to consist of c.e. sets, then it is not hard to construct such a family; so this is the
main difficulty.

Theorem 1.8. For every ∆0
2 set D, there is a family F of c.e. sets closed under finite

differences that can be enumerated by D, but cannot be enumerated computably.

Proof. Let D be ∆0
2 but not computable. The following lemma will give us a strategy for

diagonalizing against a single set:

Lemma 4.7. There is, uniformly in e, a set UD
e that is c.e. with UD

e ≠∗ We.

Before proving the lemma, we show how to use it to prove the theorem. Let {Wf(n,i)}i∈ω
be an enumeration of the nth computably enumerable family of sets. Let Wg(n,i) = {x ∶
⟨1, i, x⟩ ∈Wf(n,i)}. Let F consist of, for each n, the set An defined as follows, together with
all finite differences. Let i0, i1, . . . be an enumeration of the indices i for sets Wf(n,i) that
contain an element of the form ⟨0, n,m⟩ for some m. The set An contains:

1. ⟨0, n,m⟩ for each m ∈ ω;

2. ⟨1, i`, x⟩ for x ∈ UD
g(n,i`)

, if Wf(n,i0), . . . ,Wf(n,i`−1) all contain an element of the form

⟨0, n′,m⟩, n′ ≠ n.

3. ⟨1, i, x⟩ for each x ∈ ω if Wf(n,i) contains an element of the form ⟨0, n′,m⟩, n′ ≠ n.
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Think of the elements ⟨0, n,m⟩ as coding into An the value of n. Thus the indices i0, i1, . . .
are an enumeration of the sets Wf(n,⋅) that might be equal to An. The set An will diagonalize
against the nth computably enumerable family of sets {Wf(n,i) ∶ i ∈ ω} using the elements
⟨1, ⋅, ⋅⟩, and in particular it will diagonalize against Wf(n,i) using the elements ⟨1, i, ⋅⟩. If
Wf(n,i) contains an element ⟨0, n′,m⟩ for some m, and n′ ≠ n, then it cannot be An; so as
in (3) we do not need to diagonalize against it. In (2), we find the least Wf(n,i) that might
be An, and we use Lemma 4.7 to diagonalize against it. The function g strips off this first
two entries of the elements ⟨1, i, ⋅⟩ that we use to diagonalize. It is important to note that
everything put into An for (2) is also put into An for (3); this is important as it is possible
for the conditions for both (2) and (3) to be true.

It is clear that D can enumerate F . We will show that the nth computably enumerable
family is different from F . Suppose that the nth computably enumerable family were equal
to F . Then there is some least ` such that Wf(n,i`) =∗ An and such that Wf(n,i`) does not
contain an element of the form ⟨0, n′,m⟩ for n′ ≠ n. For each k < ` such that Wf(n,ik) ≠∗ An,
Wf(n,ik) =∗ An′ for some n′ ≠ n, and so it contains an element of the form ⟨0, n′,m⟩. Thus
for every k < `, Wf(n,ik) contains an element of the form ⟨0, n′,m⟩. Then

Wg(n,i`) = {x ∶ ⟨1, i`, x⟩ ∈Wf(n,i`)} =∗ {x ∶ ⟨1, i`, x⟩ ∈ An} = UD
g(n,i`)

.

But Wg(n,i) ≠∗ UD
g(n,i)

, so this is a contradiction. Thus we have shown that F cannot be
computably enumerated.

We must also check that each An is c.e. This is because we can non-uniformly know the
least index i`, if it exists, such that Wf(n,i0), . . . ,Wf(n,i`−1) all contain elements of the form
⟨0, n′,m⟩ for n′ ≠ n. For each k′ < `, any element enumerated by (2) is also enumerated by
(3), and so An consists of:

1. ⟨0, n,m⟩ for each m ∈ ω;

2. ⟨1, i`, x⟩ for x ∈ UD
g(n,i`)

;

3. ⟨1, i, x⟩ for each x ∈ ω if Wf(n,i) contains an element of the form ⟨0, n′,m⟩, n′ ≠ n.

This is c.e. as UD
g(n,i`)

is c.e.

We now return to the proof of Lemma 4.7.

Proof of Lemma 4.7. Uniformly in e, we need to define UD
e ≠∗ We. One can think of the

construction as trying to define

UD
e = {⟨k,D(k), n⟩ ∶ k,n ∈ ω}

where D(k) = 0 or D(k) = 1. This can easily be enumerated by D, and it is not equal to We

because any enumeration of UD
e can compute D. But UD

e is not c.e. We need to make UD
e

c.e., but of course it cannot be c.e. uniformly in e.
It will be helpful to think of the c.e. set We trying to copy the set {⟨k,D(k), n⟩ ∶ k,n ∈ ω}

using the computable approximation Ds, while we as the builders of UD
e are trying to come up

with infinitely many differences between We and UD
e . The two most extreme strategies that

We might take (neither of which will work of course) can be thought of as the greedy strategy
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and the cautious strategy. The greedy strategy computes, at each stage s, Ds(k), and puts
⟨k,Ds(k), t⟩, t < s, into W . Then We will include all of the elements ⟨k,D(k), n⟩, but it will
also contain some elements ⟨k,1 − D(k), n⟩. The cautious strategy never enumerates any
elements into We, because it can never be sure that Ds(k) has stabilized.

Think of We as choosing a different one of these strategy for each k; so for example it
might be greedy for k = 0, cautious for k = 1, etc. (Of course We might take some other
strategy, but in some sense the cautious and greedy strategies are prototypical and we can
consider those other strategies later.)

If We chooses the cautious strategy for some least k, then we already have infinitely many
differences between We and UD

e using only the elements ⟨k, ⋅, ⋅⟩, because We contains none of
these elements and UD

e will contain all of the elements ⟨k,D(k), ⋅⟩. So we do not need to add
to UD

e any elements ⟨k′, ⋅, ⋅⟩ for k′ > k, and in fact we will keep all such elements out of UD
e .

Then, non-uniformly knowing the values of D(0), . . . ,D(k), we will be able to enumerate
UD
e .

Otherwise, suppose that We takes the greedy strategy for every k. Then we need to make
sure that there are infinitely many elements ⟨k, i, n⟩ ∈We −UD

e . In this case, we will have

UD
e = {⟨k,D(k), n⟩ ∶ k,n ∈ ω} ∪ V

where V is a c.e. set that also follows the greedy strategy for every k, but it will do so
slower than We does. What we mean by this is that, for example, ⟨k,0,0⟩ will not be
enumerated into V until ⟨k,0,1⟩ is enumerated into We, and only if Ds(k) is still equal to 0,
and ⟨k,0,1⟩ will not be enumerated into V until ⟨k,0,2⟩ is enumerated into We, and so on;
thus if in fact D(k) = 1, then We will still have made a mistake by containing at least one
element ⟨k,0, n⟩ that is not in V . (Since V follows the greedy strategy, in fact it will contain
{⟨k,D(k), n⟩ ∶ k,n ∈ ω}; and it will contain only finitely many elements ⟨k,1 −D(k), n⟩.)

Of course We we have to be able to combine all of this, as well as defeating any other
strategy We might take. But this will be the guiding idea behind our construction of UD

e .

Let Ds be a ∆0
2 approximation to D. For each k, define UD

e,k as follows:

1. Enumerate ⟨k,0, n⟩ into UD
e,k if D(k) = 0, and enumerate ⟨k,1, n⟩ into UD

e,k if D(k) = 1.

2. If ⟨k,0, n⟩ is in We,s and Ds(k) = 0, enumerate ⟨k,0,0⟩, . . . , ⟨k,0, n − 1⟩ into UD
e,k.

3. If ⟨k,1, n⟩ is in We,s and Ds(k) = 1, enumerate ⟨k,1,0⟩, . . . , ⟨k,1, n − 1⟩ into UD
e,k.

This process is not uniformly computable in k because of (1), which requires the oracle D;
but (2) and (3) enumerate elements computably. (2) and (3) are following the greedy strategy
described above, but slower than We. If D(k) = 0, then UD

e,k contains all of the elements

⟨k,0, n⟩ and only finitely many elements ⟨k,1, n⟩; and if D(k) = 1, then UD
e,k contains all of

the elements ⟨k,1, n⟩ and only finitely many elements ⟨k,0, n⟩.
Now we need to put the sets UD

e,k together into a single set UD
e . Recall that if We follows

the cautious strategy for k, then we do not want to put any elements ⟨k′, ⋅, ⋅⟩ into UD
e for

k′ > k; so we do not want to put UD
e,k′ into UD

e . Define agreement(k, s) to be ∞ if k = 0,
and otherwise it is the greatest ` ≤ s such that for k′ < k, if Ds(k′) = 0 then We,s contains
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` elements of the form ⟨k,0, n⟩; and if Ds(k′) = 1 then We,s contains ` elements of the form
⟨k,1, n⟩. Let

UD
e =⋃

k,s

UD
e,k ↾agreement(k,s)−k .

(If k ≥ agreement(k, s) then take UD
e,k ↾agreement(k,s)−k to be empty.) Note that for a fixed s,

agreement(k, s) is decreasing in k, and that for each fixed k it will converge to a limit (which
might be ∞) as s→∞. So if lims→∞ agreement(k∗, s) <∞ for some k∗, then

⋃
k≥k∗,s

UD
e,k ↾agreement(k,s)−k

will be finite. One should think of the agreement function as measuring the extent to which
We is following a greedy strategy by actually enumerating elements. The agreement function
is computable.

Claim 1. UD
e is c.e.

Proof. Let Ak be the c.e. set defined by (2) and (3), namely:

1. Whenever ⟨k,0, n⟩ enters We,s and Ds(k) = 0, enumerate ⟨k,0,0⟩, . . . , ⟨k,0, n−1⟩ in Ak.

2. Whenever ⟨k,1, n⟩ enters We,s and Ds(k) = 1, enumerate ⟨k,1,0⟩, . . . , ⟨k,1, n−1⟩ in Ak.

Let
A =⋃

k,s

Ak ↾agreement(k,s)−k .

One possibility is that UD
e = A, so that UD

e is c.e. since A is c.e. (Think of this as being
when We follows a greedy strategy for every k.)

Now suppose otherwise. It is clear that A ⊆ UD
e . So suppose that there is an element

⟨k, i, n⟩ ∈ UD
e with ⟨k, i, n⟩ ∉ A; thus ⟨k, i, n⟩ ∉ Ak. We will show that UD

e is c.e. in this case
as well. Choose such a ⟨k∗, i, n⟩ with k∗ minimal. It must be that ⟨k∗, i, n⟩ ∈ UD

e due to (1),
namely that D(k∗) = i. For sufficiently large stages s, Ds(k∗) = i. Since ⟨k∗, i, n⟩ ∉ Ak, there
is no ⟨k∗, i,m⟩ ∈We with m > n. (Think of this as meaning that We was following a cautious
strategy for k∗.) So for every k > k∗, agreement(k, s) ≤ n. Thus

UD
e =⋃

k,s

UD
e,k ↾agreement(k,s)−k=∗ ⋃

k<k∗,s

UD
e,k ↾agreement(k,s)−k .

Each UD
e,k is c.e., but not uniformly over k; one must know the value of D(k). So UD

e is a
finite difference of a finite union of c.e. sets, hence c.e.

Claim 2. If D is non-computable, then UD
e ≠∗ We.

Proof. Suppose to the contrary that UD
e =∗ We. We argue by induction on k that for each

k, lims→∞ agreement(k, s) = ∞. For k = 0, agreement(k, s) = ∞ by definition. Now suppose
that lims→∞ agreement(k′, s) =∞ for k′ < k. Then for k′ < k, UD

e,k′ ⊆ UD
e , and so UD

e,k′ ⊆∗ We.

If D(k′) = 0, then UD
e,k′ contains ⟨k′,0, n⟩ for each n, and so We contains infinitely many such

elements; and from some stage sk′ on, Ds(k′) = 0. Similarly, if D(k′) = 1, then UD
e,k′ contains
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⟨k′,1, n⟩ for each n, and so We contains infinitely many such elements; and from some stage
sk′ on, Ds(k′) = 1. It follows that lims→∞ agreement(k, s) =∞. So

UD
e =⋃

k

UD
e,k.

Note that every element in UD
e,k has the form ⟨k, i, n⟩, so it is easy to break UD

e up into the

union UD
e,k.

Now for each k, wait for some element ⟨k, i, n⟩ to enter We. Define C(k) = i where ⟨k, i, n⟩
is the first such element to enter We. Note that C is computable and defined on every input.
We will argue that C =∗ D, showing that D is computable. In particular, we will argue that
if C(k) ≠D(k), then there is an element ⟨k, i, n⟩ ∈We −UD

e,k. Since We =∗ UD
e there can only

be finitely many such elements.
If C(k) ≠ D(k), then there is ⟨k, i, n⟩ ∈ We with i ≠ D(k). Now as i ≠ D(k), ⟨k, i, n⟩

cannot have been enumerated into UD
e,k by (1). So it must have been enumerated by (2)

or (3). There are at most finitely many stages s at which Ds(k) = i, and at every such
stage s there is some element ⟨k, i,m⟩ in We,s (namely, the largest such element) that is not
enumerated into UD

e,k. So there is some such element ⟨k, i,m⟩ ∈We −UD
e,k.

These claims complete the proof of the lemma.
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