
COMPUTABLE VALUED FIELDS

MATTHEW HARRISON-TRAINOR

Abstract. We investigate the computability-theoretic properties of valued fields, and in
particular algebraically closed valued fields and p-adically closed valued fields. We give
an effectiveness condition, related to Hensel’s lemma, on a valued field which is necessary
and sufficient to extend the valuation to any algebraic extension. We show that there
is a computable formally p-adic field which does not embed into any computable p-adic
closure, but we give an effectiveness condition on the divisibility relation in the value group
which is sufficient to find such an embedding. By checking that algebraically closed valued
fields and p-adically closed valued fields of infinite transcendence degree have the Mal'cev
property, we show that they have computable dimension ω.

1. Introduction

Recently there has been interest in studying, from the perspective of computability the-
ory, various types of fields which arise in model theory. Marker and Miller [MM] studied
the degree spectra of differentially closed fields, while Miller, Ovchinnikov, and Trushin
[MOT14] have looked at generalizations of splitting algorithms for differential fields. Real
closed fields have been studied by Calvert [Cal04], Ocasio [Oca14], Knight and Lange [KL13],
and Igusa, Knight, and Schweber [IKS]. Generalizations to difference fields of Rabin’s the-
orem on embeddings into algebraic closures have been studied by Melnikov, Miller, and the
author [HTMM]. This article is a study of valued fields from the perspective of computable
algebra. Variations of Rabin’s theorem for valued fields were previously studied by Smith
[Smi81]; some of our results extend those of that paper.

Definition 1.1. A valued field is a field K together with a valuation v on K, that is, a
map K → Γ ∪ {∞} from K to an ordered abelian group Γ, such that

(1) v(x) =∞ if and only if x = 0,
(2) v(xy) = v(x) + v(y), and
(3) v(x + y) ≥ min(v(x), v(y)) (with equality if v(x) ≠ v(y)).

Γ is called the value group. We will always assume that the valuation is surjective.

Standard examples of valued fields are the p-adic valuations on Q and their completions,
the p-adic fields Qp.

In computable algebra, we consider computable presentations of algebraic structures. A
computable valued field is a field whose underlying domain is a computable set K ⊆ ω,
equipped with computable functions +K and ×K giving the addition and multiplication
operations, and with a computable valuation, i.e. a computable function v∶K → Γ where
Γ is a computable group (a computable subset of ω with a computable group operation).
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There are a number of equivalent ways of presenting a valued field (see Section 2.3), but
this method is most faithful to the classical definition of a valued field. Two computable
valued fields may be classically isomorphic but not computably isomorphic.

One objective of computable algebra is to see which classical theorems hold in the effective
setting, considering only computable objects. For example, it is a classical result that every
valued field embeds into an algebraically closed valued field. The same is true in the effective
setting: every computable valued field effectively embeds into a computable algebraically
closed valued field. Similarly, every valued field has a Henselization, and every computable
valued field effectively embeds into a computable presentation of its Henselization.

On the other hand, a slight variation of this does not hold. If we fix an embedding of a
valued field (K,v) into its algebraic closure (K,w) with an extension of the valuation, the
Henselization of K in K is unique. In the effective setting, we assume that these fields (K,v)
and (K,w) are computable and that the embedding is effective. In this case, we cannot
compute the Henselization of K inside of K, even if we assume that K has a splitting
algorithm (an algorithm for finding the minimal polynomial over K of an element of K, or
equivalently, for deciding which elements of K are actually in K). Thus there is no effective
criteria to decide, for a given a ∈ K, and using only the minimal polynomial of a over K
and the valuations of various elements, whether or not a is in the Henselization of K.

1.1. Extending Valuations. In [HTMM] the author, together with Melnikov and Miller,
considered the problem of extending an automorphism of a field F to an automorphism of
an algebraic extension K of F (with a fixed computable embedding of F in K). In this
article, we consider the related problem of extending a valuation of F to a valuation of K.
Smith [Smi81] proved several results along these lines, most importantly that every valued
field embeds into an algebraically closed field with an extension of the valuation, but that
one cannot do this with a fixed embedding into a fixed algebraically closed field. Our main
result is as follows:

Theorem 1.2. Let (K,v) be a computable algebraic valued field. Then the following are
equivalent:

(1) for every computable embedding ι∶K → L of K into a field L algebraic over K, there
is a computable extension of v to a computable valuation w on L,

(2) the Hensel irreducibility set

HK ∶= {f = xn + an−1x
n−1 + an−2x

n−2 +⋯ + a0 ∈ OK[x] ∶

f is irreducible over K, v(an−1) = 0, and v(an−2), . . . , v(a0) > 0}

of (K,v) is computable.

1.2. p-adically Closed Fields. Among the most important examples of valued fields are
the p-adics Qp. The theory of p-adically closed fields is the theory of Qp. Just as the
theory of real closed fields is the model companion of the formally real fields, the theory
of p-adically closed fields is the model companion of a class of fields called the formally
p-adic fields. Classically, every formally p-adic embeds into a p-adic closure. The effective
analogue is false:
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Theorem 1.3. There is a computable formally p-adic field which does not embed into a
computable p-adic closure.

The issue is that we can construct a formally p-adic field in which the divisibility relation
on the value group is not computable. If we have an algorithm to compute the divisibility
relation on the value group of a formally p-adic field, then we can effectively embed that
field into a computable p-adic closure.

Theorem 1.4. Let (K,v) be a computable formally p-adic valued field with value group Γ.
Suppose that we can compute, for each γ ∈ Γ and k ∈ N, whether γ is divisible by k. Then
there is a computable embedding of K into a computable p-adic closure (L,w).

1.3. Copies with Computable and Non-Computable Transcendence Bases. Many
algebraic structures admit a notion of independence, such as algebraic independence in
field, linear independence in vectors spaces, Z-linear independence in abelian groups, and
differential independence in differential fields. In the 1960’s, Mal'cev noticed that there
are two non-computably-isomorphic computable presentations of the infinite-dimensional
Q-vector space, one with a computable basis, and the other with no computable basis,
and that the two were ∆0

2-isomorphic. Many other structures have been found to have the
same property, such as algebraically closed fields, torsion-free abelian groups [Nur74, Dob83,
Gon82], Archimedean ordered abelian groups [GLS03], differentially closed fields, real closed
fields, and difference closed fields [HTMM15]. In [HTMM15], the author together with
Melnikov and Montalbán formally characterized this phenomenon (which they named the
Mal'cev property) using the notion of a r.i.c.e. pregeometry, and presented a metatheorem
unifying all of these examples. Here we will apply the metatheorem to algebraically closed
valued fields and p-adically closed valued fields.

Theorem 1.5. Every computable algebraically closed valued field or p-adically closed valued
field K of infinite transcendence degree has a computable copy G ≅∆0

2
K with a computable

transcendence base and a computable copy B ≅∆0
2
K with no computable transcendence base.

Note that by a theorem of Goncharov [Gon82], every such structure has computable dimen-
sion ω.

2. Preliminaries

2.1. Splitting algorithms. Recall that the splitting set SF of F is the set of all polyno-
mials p ∈ F [X] which are reducible over F . The splitting set of a field is not necessarily
computable (see [Mil08, Lemma 7]), but it is always c.e. If the splitting set of F is com-
putable, then we say that F has a splitting algorithm. Finite fields and algebraically closed
fields trivially have splitting algorithms. Kronecker [Kro82] showed that Q has a splitting
algorithm, and also that many other field extensions also have splitting algorithms:

Theorem 2.1 (Kronecker [Kro82]; see also [vdW70]). The field Q has a splitting algorithm.
If a computable field F has a splitting algorithm, and a is transcendental over F (or separable
and algebraic over F ), then F (a) has a splitting algorithm. Moreover, in the case that a
is algebraic over F , the splitting algorithm for F (a) can be found uniformly in the splitting
algorithm for F and the minimal polynomial of a over F . If a is transcendental over F ,
then the splitting algorithm can be found uniformly in the splitting algorithm for F .
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Given a field F with a splitting algorithm and an element a which is either transcendental
over F , or separable and algebraic over F , we know that F (a) has a splitting algorithm.
However, the algorithm depends on whether a is transcendental or algebraic. To find a
splitting algorithm uniformly, we must know which is the case.

Rabin [Rab60] showed that every computable field F has a computable algebraic closure
F , and moreover there is a computable embedding ı∶F → F . We call such an embedding a
Rabin embedding. Moreover, he characterized the image of F under this embedding:

Theorem 2.2 (Rabin [Rab60]). Let F be a computable field. Then there is a computable
algebraically closed field F and a computable field embedding ı∶F → F such that F is al-
gebraic over ı(F ). Moreover, for any such F and ı, the image ı(F ) of F in F is Turing
equivalent to the splitting set of F .

2.2. Valued fields. The valuation ring OK,v of K is the subring consisting of all elements
a with v(a) ≥ 0. OK,v is a local ring with maximal ideal mK,v = {x ∶ v(x) > 0}. The residue
field kK,v is the quotient OK,v/mK,v. When the valuation v is clear from the context, we
write OK , mK , and kK . Given a ∈ OK , we denote by ā its image in the residue field. For a
comprehensive reference on valued fields, see [EP05].

Definition 2.3. A valued field (K,v) is Henselian if it satisfies one of the following equiv-
alent properties (see [EP05, Theorem 4.1.3]):

(1) v has a unique extension to every algebraic extension L of K,
(2) given f ∈ OK[x] and a ∈ OK such that v(f(a)) > 2v(f ′(a)), there is a unique b ∈ O

such that f(b) = 0 and v(a − b) > v(f ′(a)),
(3) given f ∈ OK[x] and a ∈ OK such that f̄(ā) = 0 and f̄ ′(ā) ≠ 0, there is a b ∈ OK

with f(b) = 0 and ā = b̄,
(4) every polynomial xn + an−1x

n−1 + an−2x
n−2 + ⋯ + a0 ∈ OK[x] with v(an−1) = 0 and

v(an−2), . . . , v(a0) > 0 has a solution in K.

Every valued field has a Henselization, that is, a minimal Henselian field into which it
embeds. The Henselization of a field is algebraic over that field, and every Henselization of
a given field is isomorphic. Moreover, after fixing an embedding of the field into its algebraic
closure, the Henselization is unique. We denote by Kh the Henselization of a field K.

If (L,w) is a valued field extension of (K,v), then we may view the value group ΓK as
a subgroup of ΓL and the residue field kK as a subfield of kL. We call e(w/v) = [ΓL ∶ ΓK]
the ramification index of the extension and f(w/v) = [kL ∶ kK] the residue degree of the
extension. An extension is called immediate if the ramification index and the residue degree
are both 1. If we consider a field L which is an extension (as a field) of the valued field
(K,v), we can ask about extensions of v to L. There may in general be many possible
extensions, but the number is limited by the degree [L ∶ K] of the extension according to
the following theorem.

Theorem 2.4 (Theorems 3.3.4 and 3.3.5 of [EP05]). Let L/K be a finite extension of fields
and v a valuation on K. Let w1, . . . ,wn be the distinct extensions of v to L. Then

n

∑
i=1

e(wi/v)f(wi/v) ≤ [L ∶K].

If the extension L/K is separable and the value group of K is Z, then we have equality.
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This inequality is known as the fundamental inequality. In the case that we have equality,
i.e., when the extension is separable and the value group is Z, we call this the fundamental
equality. All of the extensions w1, . . . ,wn in the theorem are conjugate by an automorphism
of L over K.

The following theorem will allow us to represent extensions of a valuation across a finite
extension L/K of fields by elements of L. It is a restatement of Theorem 3.2.7 (3) of [EP05]
for finite extensions of fields, using Lemma 3.2.8 to check the hypotheses of Theorem 3.2.7
can be simplified in this case.

Theorem 2.5. Let L/K be a finite extension of fields and v a valuation on K. Let
w1, . . . ,wn be distinct valuations on L extending v. Then given a1, . . . , an ∈ L such that
wi(ai) ≥ 0 for all i, there is a ∈ L such that wi(a) ≥ 0 for all i and wi(a − ai) > 0 for all i.

Let (K,v) be a valued field. If (K,v) has no proper separable immediate extensions,
then K is Henselian. We call such a K algebraically maximal. The converse is only true if
K is finitely ramified : if the residue field has characteristic zero, or if it has characteristic
p and there are only finitely many elements of the value group between 0 and 1 = v(p).

Theorem 2.6 (Theorem 4.1.10 of [EP05]). Suppose that (K,v) is finitely ramified. Then
(K,v) is Henselian if and only if it is algebraically maximal.

2.3. Computable valued fields. There are many natural languages in which to talk about
valued fields [Cha11]. Three of them are:

(1) Macintyre’s language Ldiv which adds a binary relation a ∣ b to the ring language,
with a ∣ b interpreted as v(a) ≤ v(b).

(2) Robinson’s two-sorted language LRob which has a sort for the value group (as an
ordered group) and contains the valuation function v∶K → Γ ∪∞.

(3) The three-sorted language LΓ,k which extends LRob by adding the residue field and
residue map.

A computable valued field is a computable field (i.e., the domain is a computable set, and
the operations of addition and multiplication are computable) together with a computable
valuation. By this we mean, in Ldiv, that the relation a ∣ b is computable; in LRob, that
there is a computable group Γ and that the valuation map v is computable; and in LΓ,k,
that in addition the residue field k and the residue map are computable. It follows from
the proof of the following proposition that all three ways of presenting a valued field are
effectively bi-interpretable (see [HTMMM]), and hence it does not matter which we choose.

Proposition 2.7. Let (K,v) be a computable valued field in the language Ldiv. There is a
computable presentation Γ of the value group of K and a computable presentation k of the
residue field of K so that the valuation map v∶K → Γ and the reduction map OK → k are
computable.

Proof. The value group Γ is the quotient of K× by the computable equivalence relation

a ∼ b⇐⇒ (a ∣ b) ∧ (b ∣ a).

The group operation is given by [a] + [b] = [ab]. The ordering on the value group is that
induced by a ∣ b. The valuation map v∶K → Γ is just the quotient map.
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We can compute, inside K, the valuation ring OK . The residue field is the quotient of
OK by its maximal ideal m = {a ∈ OK ∶ v(a) > 0}. So we can present the residue field as a
quotient of the valuation ring by the computable equivalence relation

a ∼ b⇐⇒ v(a − b) > 0. �

2.4. Algebraically closed valued fields. The theory ACVF of algebraically closed valued
fields is axiomatized by saying that (K,v) is a valued field which is algebraically closed as
a field (and recalling that we assumed that the valuation map is surjective). For a reference
on algebraically closed valued fields, see [Cha11]. The theory is complete (after naming the
characteristic and the characteristic of the residue field), decidable, and admits quantifier
elimination. ACVF is the model completion of the theory of valued fields.

2.5. p-adically closed valued fields. A valued field (K,v) extending Q is formally p-adic
if:

(1) v extends the p-adic valuation on Q,
(2) the residue field is Fp, and
(3) v(p) is the least positive element of the value group.

K is p-adically closed if in addition:
(4) K is Henselian and
(5) the value group is elementarily equivalent to Z, i.e., a model of Presburger arith-

metic.1

This axiomatizes the complete theory pCF of p-adically closed fields, which is the theory
of the p-adics Qp. See [PR84] for a reference on formally p-adic fields.

In a formally p-adic field, we can identify Z with the convex subgroup of the value group
Γ generated by v(p). The coarse valuation v̄ is the composition of v with the quotient map
Γ→ Γ/Z. Then Γ is elementarily equivalent to Z if and only if Γ/Z is divisible. We call Γ/Z
the coarse value group.

Every formally p-adic field embeds into a p-adic closure, that is, an algebraic extension
which is p-adically closed. The p-adic closure is not necessarily unique. The theory pCF
is the model companion of the theory of formally p-adic fields, and hence every formula is
equivalent, modulo pCF , to an existential formula. In fact, pCF eliminates quantifiers after
adding the predicate Pn which picks out the nth powers [Mac76]. Thus the elementary
diagram of any computable model of pCF is decidable. We denote by P ∗

n the non-zero
nth powers. The theory pCF also admits definable Skolem functions [vdD84]. Finally,
there is a cell decomposition theorem for definable sets in a p-adically closed field (see
[Den86, SvdD88, Mou09]).

Definition 2.8. The collections of cells in K is defined recursively by:
(1) If X is a single point in Kn, then X is a (0)-cell.
(2) If ◻1 and ◻2 are either <, ≤, or no condition, γ1, γ2 ∈ v(K) ∪ {−∞,∞} c ∈ K, k ∈ ω,

and λ ∈K×, then

{x ∈K ∶ γ1 ◻1 v(x − c) ◻2 γ2 and P ∗
k (λ(x − c))}

is a (1)-cell.

1The models of Presburger arithmetic are the discrete ordered abelian semigroups with a zero and a least
element 1, such that for all x and n there is y such that x = ny + r for some r = 0, . . . , n − 1.
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(3) If f is a definable continuous function from a (i1, . . . , in)-cell C to K, then the graph
of f is a (i1, . . . , in,0)-cell.

(4) If B is a (i1, . . . , in)-cell, f , g, and h are definable continuous functions from B to
K, λ ∈K×, and ◻1 and ◻2 are either <, ≤, or no condition, then

C = {(x̄, y) ∈ B ×K ∶ v(f(x̄)) ◻1 v(y − g(x̄)) ◻2 v(h(x̄)) and P ∗
k (λ(y − g(x̄))}

is a (i1, . . . , in,1)-cell.

Theorem 2.9 (Cell decomposition for pCF ). Let (K,v) be a p-adically closed valued field.
Let S ⊆Kn be a definable set. Then S can be partitioned into finitely many cells. Moreover,
the parameters over which the cells are defined are all definable over the parameters of S.

3. Extending valuations

We begin this section by showing that we can effectively embed valued fields into their
Henselizations and into algebraically closed valued fields. This result appeared in [Smi81]
and we repeat the proof here as we will later build on these ideas.

Proposition 3.1 (Theorem 3 of [Smi81]). Let (K,v) be a computable valued field. There
is a computable embedding of K into a computable presentation K of its algebraic closure
and a computable extension of v to K.

Proof. If v is the trivial valuation, then extend it to the trivial valuation on K under
any computable embedding of K into its algebraic closure. Otherwise, the theory ACVF ∪
Diagat(K) is complete, hence decidable. So it has a computable model (L,w) by an effective
Henkin construction (see, for example, [Har98]), and we get a computable embedding of
K into L by mapping x ∈ K to the interpretation of the constant representing x in L.
In L, we can enumerate the algebraic closure K of K and hence construct a computable
presentation. �

A consequence of this is that every computable non-trivially-valued field K embeds into a
model of ACVF whose underlying field is algebraic over K.

Lemma 3.2. Let (K,v) be a computable finite extension of valued fields of Q with the p-
adic valuation. Given K(a) a finite field extension of K, we can compute a list of all of the
extensions of v to K(a), with no duplication, as well as the ramification indices and residue
degrees of these extensions. We can also compute the residue fields and the value groups
of these extensions as subsets of Fp = kQ and Q = v(Q) respectively. This computation is

uniform in the generators for K over Q.

Proof. We argue by induction on the number of generators of K. Since we know the
generators for K, K has a splitting algorithm. Embedding (K,v) into (K,w) = (Q,w) via
the previous lemma, we can compute the image of K in K. We can compute the minimal
polynomial of a over K, and use it to find the embeddings of K(a) into K over K. By
restricting w to K(a) under each of these embeddings, we get a list of the possible extensions
of v to K(a), possibly containing duplicates.

Given u1, . . . , un valuations on K(a) extending v, we claim that we can tell in a c.e. way
that they are a complete list, without duplicates, of the extensions of v to K(a). To see
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that there are no duplicates in the list, we just have to find elements of K(a) on which they
differ. Since K is a finite extension of Q, v(K) ≅ Z, and so by Theorem 2.4, if u1, . . . , un is
a complete list of the extensions of v to K(a), then

n

∑
i=1

e(ui/v)f(ui/v) = [K(a) ∶K].

Note that we can compute [K(a) ∶K] using the splitting algorithm for K. Inductively, we
can compute the value group and residue field of K as subsets of the value group Q and the
residue field Fp of Q respectively. Since they are finitely generated substructures and we
know the residue degree and ramification index of (K,v) over Q, we can compute finite sets
of generators for the value group and residue field of (K,v). So for each valuation u from
among u1, . . . , un, we can compute the value group and residue field of u as c.e. subsets of
Q and Fp. So we can compute increasing sequences with limits e(u/v) and f(u/v).

We always have, for any such list with no duplication,

n

∑
i=1

e(ui/v)f(ui/v) ≤ [K(a) ∶K].

So u1, . . . , un is a complete list if and only if the increasing approximations to e(ui/v) and
f(ui/v) we computed above eventually give equality.

When we compute, in this way, a complete list of the extensions of v to K(a), we also
get their ramifications indices and residue degrees. Using these values, we can compute the
value groups and residue fields of these extensions as subsets of Q and Fp �

Let (K,v) be a computable valued field with a splitting algorithm. Given an element a
algebraic over K, one can use Newton polygons to decide what possible valuations a can
take under an extension of v to K(a). Even if a always has a unique valuation, K(a) may
admit multiple distinct extensions of v. The following lemma shows that in the general case
(i.e., when K is not finitely generated) there is no way to decide in a computable way, from
the minimal polynomial of a over K, how many extension of v there are.

Proposition 3.3. There is a computable algebraic valued field (K,v) with a splitting algo-
rithm such that there is no way to (uniformly in a) compute the number of extensions of v
to an algebraic extension K(a).

Proof. Assume that 0′0 = ∅, and that at each subsequent stage, exactly one element enters

0′. Fix a presentation K of the algebraic closure of K and a computable Rabin embedding
of K into K.

Fix an odd prime r. Let p1, p2, . . . be a list of the infinitely many primes p ≠ r. Begin at
stage 0 with K0 = Q with v0 the r-adic valuation.

Suppose that at stage s, 0′s = {a1, . . . , as}. We will have already defined

Ks = Q((rqi)
1

pai ∶ i = 1, . . . , s)

with the unique extension vs of the r-adic valuation to Ks (the fact that this extension
of the valuation is unique follows from the fundamental inequality). Here, q1, . . . , qs are
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distinct primes q ≡ 1 mod r. Let as+1 = b be the element which enters 0′ at stage s + 1.
Search for a prime qs+1 ≡ 1 mod r which is not r such that, as subsets of K with domain ω,

Ks((rqs+1)
1
pb ) ∩ {0, . . . , s} =Ks ∩ {0, . . . , s}.

Let Ks+1 =Ks((rqs+1)
1
pb ). As Ks is an extension of Q of degree pa1⋯pas and pb is coprime

to this, for any two distinct primes q and q′,

Ks((rq)
1
pb ) ∩Ks((rq

′)
1
pb ) =Ks or Ks((rq)

1
pb ) =Ks((rq

′)
1
pb ).

Thus we can find a qs+1 as desired. Extend vs to the unique valuation vs+1 on Ks+1. Let
(K,v) = ⋃s(Ks, vs). Note that K has a splitting algorithm: to decide whether a give s ∈K
is in K, one can simply check whether s ∈Ks. Also, v is the unique extension of the r-adic
valuation from Q to K.

We claim that if a ∈ 0′, then the valuation v on K has more than one extension to K(r
1
pa ),

and if a ∉ 0′, then v has a unique extension to K(r
1
pa ).

First suppose that a enters 0′ at stage s. Then we have a tower of extensions

Q ⊂ Q(1 + q
1
pa
s ) ⊂K(r

1
pa ).

Note that 1 + q
1
pa
s has minimal polynomial

(x − 1)pa − qs = (
pa
0
)xpa − (

pa
1
)xpa−1 + (

pa
2
)xpa−2 +⋯ ± (

pa
pa − 1

)x − (qs − 1).

Since qs ≡ 1 mod r, r ∣ qs − 1. Also, since pa ≠ r, r ∤ ( pa
pa−1

) = pa, r ∤ (pa
0
) = 1, and

r ∤ (pa
1
) = p. Thus, by looking at the Newton polygon of this minimal polynomial, we see

that there are multiple distinct extensions of the r-adic valuation on Q to Q(1 + q
1
pa
s ). So

there are multiple distinct extensions of the r-adic valuation on Q to K(r
1
pa ). Since v was

the unique extension of the r-adic valuation to K, there are multiple extensions of v to

K(r
1
pa ).

Now suppose that a ∉ 0′. Then consider the tower of extensions

Q ⊂ Q(r
1
pa ) ⊂K1(r

1
pa ) ⊂K2(r

1
pa ) ⊂ ⋯.

Since a ∉ 0′, each of these extensions has ramification index equal to its degree as a field
extension. By the fundamental inequality, there is a unique extension of the valuation for
each field extension. �

We can also embed every valued field into a computable presentation of its Henselization.

Proposition 3.4 (Proposition 6 of [Smi81]). Let (K,v) be a computable valued field. There
is a computable embedding of K into a computable valued field (L,w) such that (L,w) is
the Henselization of K.

Proof. It is enough to show that if (K,v)→ (K,v) is an embedding of K into a computable
presentation of its algebraic closure, then we can enumerate Kh in K. We can close under
applications of Hensel’s lemma, say in the version (2) of Definition 2.3 above, to enumerate
the Henselization of K. Note that the solutions in (2) are unique. �
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Smith also showed that Henselizations are recursively unique [Smi81].
Given an embedding of a valued field into its algebraic closure, we might want to decide

which elements of the algebraic closure are in the Henselization, rather than just enumerat-
ing the elements of the Henselization. We show that this can be done for the Henselization
of Q inside any fixed presentation of Q.

Proposition 3.5. Let (Q, v) be a computable valued field with the p-adic valuation. Fix a
Rabin embedding of Q into Q. Then the Hensilization Qh ⊆ Q of Q is computable inside Q.

Proof. Since Q is finitely ramified, it has value group Z. By Theorem 2.6, the Henselization
of Q is the smallest algebraically maximal valued field containing Q; that is, the minimal
extension of Q with no immediate extensions. The Hensilization of Q is unique inside the
fixed presentation of Q.

Given a, a ∈ Qh if and only if Q(a), together with the induced valuation v coming from
the valuation on Q, is an immediate extension of Q. If a ∈ Qh, then Q(a) is an immediate
extension of Q. On the other hand, if Q(a) is an immediate extension of Q, since Q(a)h

is an immediate extension of Q(a) we know that Q(a)h is an immediate extension of Qh.
Since Qh has no proper immediate extensions, Q(a)h = Qh. Thus a ∈ Qh.

To check whether Q(a) is an immediate extension of Q, we need to compute the ramifi-
cation index and residue degree of the extension of v to Q(a). We can do this uniformly in
a by Lemma 3.2. �

This lemma is not true for an arbitrary algebraic valued field. The following proposition
shows that there is a computable algebraic valued field (K,v), with a splitting algorithm,
so that we cannot decide whether or not an element a is in the Henselization of K. As a
consequence, there is no computable way to decide, from a minimal polynomial of a over
K, whether or not a is in the Henselization of K.

Proposition 3.6. There is a computable algebraic valued field (K,v) with a splitting algo-
rithm whose Henselization is not computable as a subset of Q.

Proof. Fix a prime r and a computable list p1, p2, . . . of the primes not equal to r. In a
similar way to Proposition 3.3, construct a computable valued field

(K,v) = Q((rqi)
1
pi ∶ i ∈ 0′)

with a splitting algorithm. As before, for each i, qi ≡ 1 mod r. The primes qi do not
necessarily form a computable sequence in i. The valuation v is the unique extension of the
r-adic valuation to K.

Then for each i ∈ 0′, q
1
pi
i is in the Henselization of Q, and hence in the Henselization

of (K,v). This is because 1pi ≡ q mod r but pi1
pi−1 ≡ pi /≡ 0 (mod r). So r

1
pi is in the

Henselization of (K,v).

On the other hand, suppose that i ∉ 0′. We will show that r
1
pi is not in the Henselization

of (K,v). Note that the value group of K is Z⟨ 1
pj
∶ j ∈ 0′⟩. Then this is also the value group

of the Henselization of K, and so r
1
pi is not in the Henselization. �
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We now come to the main result of this section. We showed above that we can embed
a valued field (K,v) into an algebraically closed valued field, constructing the algebraic
closure K at the same as we construct the extension of the valuation. But what if we have
a fixed embedding of K into a presentation of its algebraic closure, and we want to extend
the valuation v to K via that particular embedding? Theorem 4 of [Smi81] shows that one
cannot always do this.

If ι is an embedding of K into K, by an (ι-)extension of the valuation v to the field K
we mean a valuation w on K with w ○ ι = v. The following theorem gives a necessary and
sufficient condition for a valuation v on an algebraic field K to extend to every algebraic
extension.

Theorem 3.7. Let (K,v) be a computable algebraic valued field. Then the following are
equivalent:

(1) for every computable embedding ι∶K → L of K into a field L algebraic over K, there
is a computable extension of v to a computable valuation w on L,

(2) the Hensel irreducibility set

HK ∶= {f = xn + an−1x
n−1 + an−2x

n−2 +⋯ + a0 ∈ OK[x] ∶

f is irreducible over K, v(an−1) = 0, and v(an−2), . . . , v(a0) > 0}

of (K,v) is computable.

Note the relation between the set HK and (4) of Definition 2.3. Indeed, Smith showed that
given a Henselian computable field, and a fixed embedding in an algebraic closure, one can
extend the valuation (see Proposition 5 of [Smi81]); our result can be seen as a significant
generalization of this, as a Henselian field trivially has computable Hensel irreducibility set.

Proof. (2)⇒(1). Fix Q a computable presentation of the algebraic closure of Q, and ι an

embedding of K into Q. Using this embedding, we can view K as a c.e. subset of Q. Begin
by defining w0 to be the p-adic valuation on F0 = Q.

We begin by showing that we can find a sequence

F0 = Q ⊆ F1 = F0(a0) ⊆ F2 = F1(a1) ⊆ ⋯

of fields, such that each Fs is a normal extension of F0, and so that Q is the union of these
fields. Given Fs a finite normal extension of Q, and a splitting algorithm for Fs, Fs is a
computable subset of Q. Let a be the first element of Q which is not in Fs. Search for an
element as such that a ∈ Fi(as), and all of the conjugates of as over Q are in Fs(as). By
Theorem 2.1, Fs(as) has a splitting algorithm, so we can check this computably. Some such
as exists by the primitive element theorem. Then let Fs+1 = Fs(as). We have, uniformly in
s, a splitting algorithm for Fs.

Suppose that we have defined ws on Fs, with the property that there is a common
extension of v and ws to Q. We will show how to extend ws to a valuation ws+1 on Fs+1

such that ws and v have a common extension to Q.
By Lemma 3.2 we can find all of the extensions of ws to Fs+1. If there is only one

extension, let ws+1 be this extension. Otherwise, let u1, . . . , um be the distinct valuations
on Fs+1 extending the p-adic valuation on Q.
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For each i, we will search for evidence that ui is not compatible with v. If ui is not
compatible with v, then (by König’s Lemma, since there are only finitely many valuations
on a finitely generated algebraic extension of Q) there is some finitely generated subfield K ′

of K such that v ∣K ′ and ui are not compatible on K ′Fs+1. For each K ′, K ′Fs+1 is a finite
degree extension of Q, and so by Lemma 3.2 we can find all of the valuations on K ′Fs+1. If
ui and v ∣ K ′ do not have a common extension to K ′Fs+1, then every valuation on K ′Fs+1

will differ from either ui or v ∣ K ′ when applied to some element. So if ui and v are not
compatible, we will discover this in a c.e. way.

On the other hand, using Theorem 2.5 with ai = 1 and aj = 0 for i ≠ j, there is βi ∈ Fs+1

such that ui(βi − 1) > 0 and uj(βi) > 0 for j ≠ i. Note that ui(βi) = 0. We can choose such
a βi for each i. We claim that if ui and v have a common extension, say w, to KFs+1, then
we can eventually find the minimal polynomial of βi over K. Let

fi = x
n + an−1x

n−1 + an−2x
n−2 +⋯ + a0

be the minimal polynomial of βi over K. Let βi = β
1
i , . . . , β

n
i be the conjugates of βi over

K. Since Fs+1 is a normal extension of Q, and βi ∈ Fs+1, each of these conjugates is in Fs+1.
Each of β2

i , . . . , β
n
i is a conjugate of βi over Q. Among (uj)i≠j are the conjugates of the

valuation ui over Q. Since uj(βi) > 0 for each i ≠ j, ui(β
2
i ), . . . , ui(β

n
i ) > 0. Then

fi = (x − β1
i )(x − β

2
i )⋯(x − βni )

and so
v(an−1) = w(an−1) = w(−β1

i −⋯ − βni ) = w(−βi) = ui(βi) = 0.

For k = 0, . . . , n − 2, we can write ak as a sum of products of β1
i , . . . , β

n
i , where each term

of the sum has at least two factors, and each of β1
i , . . . , β

n
i shows up at most once in each

product. Thus the w-value of each term is strictly positive, and so v(ak) = w(ak) > 0. To
find the minimal polynomial of βi over K, we search for an irreducible polynomial

f = xn + an−1x
n−1 + an−2x

n−2 +⋯ + a0

with f(βi) = 0, v(an−1) = 0, and v(an−2), . . . , v(a0) > 0. Note that we can check whether
such a polynomial is irreducible. We can perform this search whether or not ui and v have
a common extension to KFs+1. If ui and v do have a common extension to KFs+1, then
we will eventually find the minimal polynomial of βi. We can also find all of the conjugates
βi = β

1
i , . . . , β

n
i of βi over K.

Suppose that ui and v have a common extension to KFi(a), and uj and v have a common
extension to KFi(a). Since any two extensions of v to KFs+1 are conjugate over K, ui and
uj are conjugate over K. Thus uj(β

k
i ) = 0 for some k.

On the other hand, suppose that uj(β
k
i ) = 0 for some k. Note that uj is conjugate over

K to a valuation u′j with u′j(βi) = 0. By choice of βi, u
′
j = ui. Thus ui and uj are conjugate

over K. Then ui and v have a common extension to KFs+1 if and only if uj and v do.
Eventually, we will find, for some i, the minimal polynomial

f = xn + an−1x
n−1 + an−2x

n−2 +⋯ + a0

of βi over K, and conjugates βi = β
1
i , . . . , β

n
i of βi over K. Some of the uj , for j ≠ i, will be

found to be incompatible with v. The rest of the uj will have uj(β
k
i ) = 0 for some k. Since

at least one of the uj has a common extension with v to KFs+1, it must be that ui and all
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of the uj with uj(β
k
i ) = 0 have such an extension. In particular, ui and v have a common

extension to KFs+1. Take ws+1 = ui.

For (1)⇒(2), let Q be a computable presentation of the algebraic closure of Q. Let
a0, a1, a2, . . . enumerate the elements of K. We will define, at stage s + 1, an embedding
ιs+1∶Q(a0, . . . , as)→ Q such that ι0 ⊆ ι1 ⊆ ι2 ⊆ ⋯. Then ι = ⋃s ιs will be an embedding of K
into Q. We will attempt to meet the following requirements:

Ri ∶ ϕi is not a valuation on Q extending v.

We know, by assumption, that we must fail to satisfy this requirement for some i, as there
is a computable extension of v. We will use this failure to prove that HK is computable.
The strategy is similar to that used in [HTMM].

Construction.

Begin with ι0∶Q → Q the unique embedding. As stage s + 1, we have already defined
ιs∶Q(a0, . . . , as−1)→ Q. We must define ιs+1 on Q(a0, . . . , as).

Let i ∈ ω be least, if it exists, such that Ri is not yet satisfied and there is a polynomial
f = xn + bn−1x

n−1 + bn−2x
n−2 +⋯ + b0 ∈ Q(a0, . . . , as−1)[x] with:

(1) v(bn−1) = 0,
(2) v(bn−2), . . . , v(a0) > 0,
(3) f is irreducible over Q(a0, . . . , as−1),
(4) f splits over Q(a0, . . . , as), and

(5) for c1, . . . , cm the solutions of ι(f) in Q, ϕi,s(cj) is defined for each j.
Since we have splitting algorithms for the finite extensions Q(a0, . . . , as−1) and Q(a0, . . . , as),
we can check whether this is the case for a particular f . Since ϕi,s converges for only finitely
many inputs, there are only finitely many such f to consider.

As the bi are symmetric functions in the roots of f , for any valuation of Q, all of the roots
of f have valuation ≥ 0, and exactly one root of f has valuation exactly zero. Suppose that
c1, . . . , cr are the solutions of ι(f) with valuation ≤ 0; note that there is at least one such
solution, as otherwise we would have an−1 > 0 since it is a sum of products of elements with
valuation > 0. Then bn−r is the sum of the products of r of the solutions of ι(f), and c1⋯cr
has (strictly) the least valuation among these; then v(bn−r) = v(c1) + ⋯ + v(cr) ≤ 0. Hence
r = 1, and v(c1) = v(bn−1) = 0. Without loss of generality, let c1, . . . , cm be the solutions of
ι(f), with ϕi(c1) = 0 and ϕi(c2), . . . , ϕi(cm) > 0. (Note that if the valuations of the ci are

different than this, then ϕi is not a valuation of Q ι-extending v. Thus Ri is satisfied.)
Now f splits over Q(a0, . . . , as), say f = g1⋯g` with g1, . . . , g` irreducible over Q(a0, . . . , as).

Given the valuation v on Q(a0, . . . , as) ⊆ K, there is exactly one j for which gj can have
a solution with valuation 0 with respect to a valuation extending v; we can find such a j
computably by looking at the values of the coefficients of the gj . Without loss of generality,
let j = 1. Note also that g1, . . . , g` are conjugate over Q(a0, . . . , as−1). Thus, we can extend
ιs to ιs+1∶Q(a0, . . . , as) → Q such that c1 is not a solution of ι(g1). Then if w = ϕi is a
valuation on Q ι-extending v, w(c1) = 0 and so c1 must be a root of ι(g1); but this is not
the case, and so w = ϕi is not a valuation on Q ι-extending v. Thus Ri is satisfied.

End construction.
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We built an embedding ι = ⋃s ιs of K into Q. By assumption, there is a computable
valuation w on Q extending the valuation v on K. Let w be given by ϕi. Given a polynomial
f ∈K[x], with f = xn+bn−1x

n−1+bn−2x
n−2+⋯+b0 where v(bn−1) = 0 and v(bn−2), . . . , v(b0) >

0, let c1, . . . , cm be the solutions of ι(f) in Q. Let t be a stage such that:
(1) no Rj , for j < i, acts after stage t,
(2) ϕi,t(cj) is defined for each j,
(3) f ∈ Q(a0, . . . , at−1)[x].

Note that (1) is independent of f , and depends only on the stage i. The following claim
will finish the proof.

Claim 1. f is irreducible over K if and only if f is irreducible over Q(a0, . . . , at).

Proof. The left to right direction is obvious. So suppose that f is irreducible over Q(a0, . . . , at).
Then suppose that f is not irreducible over K. Then f splits over Q(a0, . . . , as) for some
least s > t. Then, by choice of t, in the construction we satisfy the requirement Ri at stage
s + 1. But then w does not extend v, a contradiction. So f is irreducible over K. �

Given f , we can compute t as required, and then to check whether f is irreducible over K
it suffices to check whether it is irreducible over Q(s0, . . . , st). Since this is a finite algebraic
extension of Q, we have a splitting algorithm for this field. �

4. p-adic closures

It was easy to see by an effective Henkin construction in Proposition 3.1 that every
valued field embeds effectively into a computable algebraically closed valued field. The
same argument does not work to show that every computable formally p-adic field embeds
effectively into a computable p-adic closure, because the theory pCF is not the model
completion of formally p-adic fields: if K is a p-adic field, the elementary diagram of K
together with the theory pCF is not complete. Indeed, there is a computable formally
p-adic field which does not computably embed into a p-adic closure. This uses ideas from
the proof that a formally p-adic field whose value group is not a Z-group embeds into two
non-isomorphic p-adic closures (Theorem 3.2 of [PR84]).

Theorem 4.1. There is a computable formally p-adic field which does not computably embed
into a p-adic closure.

Proof. We will construct a formally p-adic field E by diagonalizing against computable
embeddings fi into p-adic closures (Ki, vi). Let qi be the ith prime. Begin at stage 0
with E0 = Q(t) a transcendental extension of Q, together with the valuation v with v(t) >
Z = v(Q). At stage s + 1, we will have built E0 ⊆ E1 ⊆ ⋯ ⊆ Es a chain of embeddings of
computable valued fields, with each extension algebraic. Let i < s be the least i against
which we have not yet diagonalized such that at stage s there is an element a among the
first s elements of Ki with qi ⋅ v(a) = v(p

mfi(t)) for some 0 ≤m < qi (i.e., fi,s(t) converges,
and enough of the diagram of Ki converges to decide that qi ⋅ v(a) = v(p

mfi(t))). We will
diagonalize against this i. Let Es+1 = Es(b), where b is such that bqi = pm+1fi(t). Extend
the valuation to Es+1 (again, by abuse of notation, calling it v).
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Now Es will be an extension of degree qi1⋯qin of E0, where i1, . . . , in are the requirements
which we have already diagonalized against. E0(b) is an extension of E0 of degree qi, and
so since qi is coprime to qi1 , . . . , qin , Es+1 is an extension of Es of degree qi.

The value group of E0 is Z⟨r⟩, where r = v(t) > Z. Then the value group of Es will be

v(Es) = Z⟨r,
r +m1 + 1

qi1
, . . . ,

r +mn + 1

qin
⟩.

The value group of Es+1 will contain

G = Z⟨r,
r +m1 + 1

qi1
, . . . ,

r +mn + 1

qin
,
r +m + 1

qi
⟩.

Since qi is coprime to qi1 , . . . , qin , v(Es) is a subgroup of G index qi. By the fundamental
inequality, G is the value group of Es+1, and the residue degree is 1. Note also that since
qi1 , . . . , qin , qi are coprime, 1 = v(p) is still the minimal element of the value group. So Es(b)
is formally p-adic. The extension of v from Es to Es+1 is unique.

Let E = ⋃iEi, with valuation v. Then E is a formally p-adic field. Suppose towards
a contradiction that E computably embeds into a computable p-adic closure; let i be an
index such that the embedding is fi into the p-adic closure (Ki, vi). Since the value group
of Ki is a Z-group, there is γ ∈ ΓKi such that qiγ = v(fi(t)) +m for some 0 ≤m < qi. Then,
at some stage s we have diagonalized against every j < i which we will ever diagonalize
against, there is a among the first s elements of Ki with qi ⋅ v(a) = v(pmfi(t)) for some
0 ≤m < qi, fi,s(t) has converged, and enough of the diagram of Ki has converged to decide
that qi ⋅ v(a) = v(p

mfi(t)). Then at stage s + 1, we will diagonalize against Ki by putting
into Es+1 an element b with v(bqi) = v(t) +m + 1. Then, in the value group of Ki, we have

qi ⋅ v (
fi(b)

a
) = qi ⋅ v(fi(b))− qi ⋅ v(a) = v(fi(c))− qi ⋅ v(a) = v(fi(t))+m+1− v(fi(t))−m = 1.

But then qi divides 1 in the value group, and hence Ki is not formally p-adic. So Ki cannot
be the p-adic closure of E. �

The problem with the field from the previous theorem which prevents us from embedding
it into a p-adic closure is that we cannot decide, for a given element of the value group and
n ∈ ω, whether or not it is divisible by n. Theorem 4.4 below will show that this is the only
obstacle.

Definition 4.2. Let G be a torsion-free abelian group. The dividing set of G is

div(G) = {(x,n) ∈ G × ω ∶ n divides x}.

The set div(G) should be viewed as analogous to the splitting set for a field. The following
lemma is the analogue of Theorem 2.1 of Kronecker’s.

Lemma 4.3. Suppose that G is a computable torsion-free abelian group with div(G) com-
putable. Let H = G⟨a⟩ be a computable group where a is a new element with na = b ∈ G.
Then div(H) is computable uniformly in div(G), n, and b.

Note that since G is torsion-free, a is uniquely determined by b and n.
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Proof. We begin by finding a ∈H with na = b. Using div(G), we may suppose that b is not
divisible in G by any prime factor of n; if it is, find such a divisor, and replace b by that
divisor. Thus ma ∉ G for any 0 ≤m < n. Given x ∈ H, write x =ma + g with 0 ≤m < n and
g ∈ G. We want to decide whether x is divisible by some number r. It suffices to decide
whether x is divisible by a prime q; if it is, then we can find such a divisor and repeat the
process, noting that since G is torsion-free, divisors are unique.

If q and n are coprime, then we claim that q divides x if and only if q divides mb+ng. If
q divides x, then q divides mb+ng = nx. For the other direction, suppose q divides mb+ng,
say qh =mb + ng. Since q and n are coprime, let r and s be such that qr = 1 + ns. Then

q(rx − sh) = qrx − qsh = (1 + ns)x − nsx = x.

So q divides x. Since mb + ng is in G, we can decide whether q divides mb + ng, and hence
whether q divides x.

On the other hand, suppose that q and n are not coprime, so that q ∣ n. If q divides g and
q ∣m, then q divides x =ma+ g. For the other direction, suppose that q divides x =ma+ g.
Let y =m′a + g′, with g′ ∈ G, be such that qy = x. Then

(qm′ −m)a = g − qg′

Thus n ∣ qm′ −m, and so q ∣ m. Since q divides ma and q divides ma + g, q divides g.
So q divides x = ma + g in H if and only if q ∣ m and q divides g in G. Thus div(H) is
computable. �

We are now ready to show that when we can compute the dividing set of the value group
of a formally p-adic valued field, we can effectively embed the field into a p-adic closure.

Theorem 4.4. Let (K,v) be a computable formally p-adic valued field with value group Γ.
Suppose that div(Γ) is computable. There is a computable embedding of K into a computable
p-adic closure (L,w).

Proof. We will construct a sequence (K0, v0) = (K,v)h ⊆ (K1, v1) ⊆ (K2, v2) ⊆ ⋯ of com-
putable Henselian valued fields such that (L,w) = ⋃i(Ki, vi) is a computable p-adic closure
of (K,v). If (ai, qi) is an enumeration of all of the pairs of elements a from L and primes q,
with ai ∈Ki, we will ensure at stage s+1 that qs divides one of w(as),w(as)+1, . . . ,w(as)+
qs − 1. Note that we must construct the sequence (ai, qi) concurrently with the Ki. For
each i, div(vi(Ki)) will be computable.

At stage s+1, ask div(vs(Ks)) whether qs divides one of vs(as), vs(as)+1, . . . , vs(as)+qs−1.
If it does, then just set Ks+1 =Ks. Otherwise, let b be an qsth root of as and let E =Ks(b);
since Ks was Henselian, there is only extension v′ of vs to E. Note that qs divides as in
v′(E). By Lemma 4.3, div(v(E)) is computable uniformly. Let Ks+1 be a Henselization of
E. Then the value group of Ks+1 is the same as that of E.

To see that E (and hence Ks+1) is formally p-adic, we must show that the residue field
is still Fp and that 1 = v(p) is still the least positive element of the value group. First,
since qs is prime and v(as) is not divisible by qs, [v′(E) ∶ vs(Ks)] = qs = [E ∶ Ks]. By the
fundamental inequality, the residue degree of v′ over vs is one. Thus the residue field of E
is again Fp.
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Each element of E can be written in the form

d = cqs−1b
qs−1 + cqs−2b

qs−2 +⋯ + c1b + c0

with the ci ∈ Ks. We want to show that v′(d) is not strictly in between 0 and 1 = v(p).
Suppose to the contrary that d has valuation strictly between 0 and 1. Note that as
v′(b), . . . , v′(bqs−1) are all distinct and not in ΓKs , that v′(d) = min0≤i≤qs−1 v

′(cib
i). Since

c0 ∈ Ks does not have valuation strictly between 0 and 1, v′(d) = v′(cib
i) for some i ≥ 1.

Then 0 < qsv
′(cib

i) < qs. Note that qsv
′(cib

i) = qsv(ci)+iv(as) is in ΓKs . Let γ = v(ci) ∈ ΓKs .
Thus, for some j, 1 ≤ j < qs, qsγ + iv(as) = j. Since 1 ≤ i < qs, gcd(qs, i) = 1. Let m,n be
such that mi + nqs = 1. Then

mqsγ + v(as) =mqsγ +miv(as) + nqsv(as) =mj + nqsv(as).

Since qs ∤m,j, we can write mj = qsd − r, where 1 ≤ r < qs. Then

v(as) + r = qs(mγ + d + nv(as)).

This is a contradiction, as qs does not divide v(as) + r in ΓKs . So no element of E has
valuation strictly between 0 and 1. Thus E is formally p-adic.

Now (L,w) = ⋃i(Ki, vi) is a computable valued field into which (K,v) embeds com-
putably, and (L,w) is algebraic over (K,v). Moreover, (L,w) is a model of pCF : it is
formally p-adic as the union of formally p-adic valued fields, it is Henselian as the union
of Henselian fields, and we ensured that the value group was a model of Presburger arith-
metic. �

5. The Mal’cev Property

We begin by recalling the metatheorem from [HTMM15]. The metatheorem is stated us-
ing the general notion of a pregeometry, but for the purposes of this paper, the pregeometry
will always be algebraic independence in fields, and the reader need not know the general
definition of a pregeometry.

Definition 5.1. A class K has the Mal'cev property if each member M of K of infinite
dimension has a computable presentation G with a computable basis and a computable
presentation B with no computable basis such that B ≅∆0

2
M ≅∆0

2
G.

In [HTMM15], two conditions were isolated which imply the Mal'cev property. We require
some definitions before we state these conditions and the metatheorem.

Definition 5.2. The independence diagram IM(c̄) of c̄ in M is the collection of all exis-
tential formulas true of tuples independent over c̄.

Definition 5.3. We say that dependent elements are dense in M if, whenever M ⊧
∃ȳψ(c̄, ȳ, a) for a quantifier-free formula ψ, non-empty tuple c̄, and a ∈M, there is a b ∈ cl(c̄)
such that M ⊧ ∃ȳψ(c̄, ȳ, b). We may also assume that c̄ contains at least m independent
elements, for some fixed m.

Definition 5.4. We say that independent tuples in M are locally indistinguishable if for
every tuple c̄ in M and ū, v̄ independent tuples over c̄, for each existential formula φ such
that M ⊧ φ(c̄, ū), there exists a tuple w̄ that is independent over c̄, has M ⊧ φ(c̄, w̄), and
(with w̄ = (w1, . . . ,wn) and v̄ = (v1, . . . , vn)) we have wi ∈ cl(c̄, v1, . . . , vi) for i = 1, . . . , n.
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The two conditions are as follows:

Condition G: Independent tuples are locally indistinguishable inM and for eachM-tuple
c̄, IM(c̄) is computably enumerable uniformly in c̄.

Condition B: Dependent elements are dense in M.

Theorem 5.5 (Theorem 1.2 of [HTMM15]). Let K be a class of computable structures that
admits a r.i.c.e. pregeometry cl.2 If each M in K of infinite dimension satisfies Conditions
G and B, then K has the Mal'cev property.

5.1. The Mal'cev property for ACVF . We will now use the metatheorem to show that
algebraically closed valued fields have the Mal'cev property. Note that in ACVF , algebraic
dependence is the same as model-theoretic acl.

Theorem 5.6. Algebraically closed valued fields have the Mal'cev property.

Proof. Let (K,v) be an algebraically closed valued field of infinite transcendence degree.
We begin by checking that independent types are locally indistinguishable. Let S ⊆Kn be
a definable set with parameters c̄ which contains a tuple ā = (a1, . . . , an) ∈K

n independent
over c̄. We may assume that some element of the tuple c̄ is non-trivially valued. Using
quantifier elimination in ACVF and writing S in disjunctive normal form, we may, without
loss of generality, take S to be the disjunct which contains ā. Since S contains ā which
is independent over c̄, S is defined by a conjunction of formulas of the form v(f(x̄, c̄)) ≤
v(g(x̄, c̄)) (or such a formula with ≤ replaced by <, or ≠). The subfield Q(c̄)alg is a model
of ACVF , and by model completeness, an elementary submodel of K. Hence it contains an
element ū = (u1, . . . , un) which is in S. Note that S is open in the valuation topology, and
so it contains an open ball

B(ū, ε) = {x̄ ∶ v(ui − xi) ≥ ε}

around ū, with ε ∈ Γ(Q(c̄)alg). There is also some v̄ ≠ ū with v̄ ∈ B(ū, ε)∩Q(c)alg. Write v̄ =
(v1, . . . , vn). Let b̄ = (b1, . . . , bn) be an arbitrary tuple from K independent over c̄. Possibly
replacing each bi with b−1

i , we may assume that v(bi) ≥ 0. Let b̄′ = (bivi−(bi−1)ui)
n
i=1. Note

that bi and b′i are interalgebraic over c̄. Then

v(ui − bivi + (bi − 1)ui) = v(biui − bivi) = v(bi) + v(ui − vi) ≥ ε.

So b̄′ ∈ B(ū, ε) ⊆ S. We have shown that independent types are locally indistinguishable.
A similar argument works to show that independent types are non-principal. Let S ⊆Kn

be a definable set with parameters c̄, again assuming that some element of the tuple c̄ is
non-trivially valued. Then Q(c̄)alg is a model of ACVF and by model completeness there
is a tuple ā ∈ Q(c̄)alg which is contained in S. The tuple ā is algebraic over c̄.

We showed above that a definable set S with parameters c̄ contains a tuple independent
over c̄ if and only if it contains, as a disjunct, a non-empty definable set defined by a
conjunction of formulas of the form v(f(x̄, c̄)) ≤ v(g(x, c̄)) (or with ≤ replaced by < or =).
Together with the decidability of the theory ACVF , this fact allows us to enumerate the
independence diagram of K.

By Theorem 5.5, ACVF has the Mal'cev property. �

2Recall that here this will just be algebraic independence.
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5.2. The Mal’cev property for pCF . Now we will apply the metatheorem to p-adically
closed fields. Once again, the pregeometry will be algebraic independence which is the same
as model-theoretic acl. Our proof will use the cell decomposition for p-adically closed fields.
We begin with a lemma which we will use to check that independent tuples are locally
indistinguishable.

Lemma 5.7. Given a cell

C = {(x̄, y) ∈ B ×K ∶ v(f(x)) ◻1 v(y − g(x̄)) ◻2 v(h(x)) and P ∗
k (λ(x − g(y))}

and ā ∈ B, b algebraically independent from ā, λ, and the coefficients of f and g, with
(ā, b) ∈ C, and c is algebraically independent from ā, there is c′ interalgebraic with c over ā
with (ā, c′) ∈ C.

Proof. Since b is algebraically independent from ā, we know that k ≠ 0. Assume that ◻1

and ◻2 are ≤, so that

C = {(x̄, y) ∈ B ×K ∶ v(f(x)) ≤ v(x − g(y)) ≤ v(h(x)) and P ∗
k (λ(x − g(y))}.

The other cases are similar. It suffices to find c′′ interalgebraic with c over ā such that
v(λf(ā)) ≤ kv(c′′) ≤ v(λh(ā)), as then c′ = (c′′)k/λ+g(ā) has (ā, c′) ∈ C. We may replace λf

by f̂ and similarly with h and ĥ to get v(f̂(ā)) ≤ kv(c′′) ≤ v(ĥ(ā)). Now K ⊧ (∃y)v(f̂(ā)) ≤

kv(y) ≤ v(ĥ(ā)), and so since we have definable Skolem functions, there is a′ algebraic over
ā satisfying this. Moreover, we can choose a′ ≠ 0.

If v(c) = 0, then we have v(ca′) = v(a′) and so we can take c′′ = ca′. Otherwise, by
replacing c by c−1 if necessary, we may assume that v(c) > 0. Then v(1 + c) = 0, and so
v(a′ + ca′) = v(a′). Then we can take c′′ = a′ + ca′. �

Theorem 5.8. p-adically closed fields have the Mal'cev property.

Proof. Let (K,v) be a model of pCF of infinite transcendence degree. We begin by check-
ing that independent tuples are locally indistinguishable. Let S be a set definable over
parameters c̄, containing a tuple ā = (a1, . . . , an) independent over c̄. Let b̄ = (b1, . . . , bn)
be another tuple independent over c̄. The set S has a cell decomposition with parameters
definable over c̄. Some cell must contain ā, and this cell must be of type (1, . . . ,1) since ā
is independent over c̄. By repeated applications of Lemma 5.7, we get b̄′ in S as required.

Suppose that S ⊆Kn is a definable set over parameters c̄ ∈Km. Models of pCF have de-
finable Skolem functions, so there is a definable function f ∶Km →Kn (without parameters)
with f(c̄) ∈ S. Then f(c̄) is definable over c̄, and hence algebraic over c̄. So independent
types are non-principal.

Finally, we have to enumerate the independence diagram of K. We showed above that
there is an independent tuple in a cell if and only if it is of type (1, . . . ,1). Using the
decidability of the elementary diagram of K, we can enumerate the definable sets which
contain such a cell.

By Theorem 5.5, pCF has the Mal'cev property. �
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