A REPRESENTATION THEOREM FOR POSSIBILITY MODELS

MATTHEW HARRISON-TRAINOR

ABSTRACT. Possibility models are models for modal logic that generalize the
standard Kripke models by allowing partial possibilities in addition to total
worlds. A heuristic sometimes used to motivate possibility models takes each
possibility to be a set of total worlds. Taking inspiration from this, we prove a
representation theorem for possibility models: for every countable possibility
model satisfying natural conditions, there is a Kripke model with respect to
which we can identify the possibilities as certain sets of total worlds. More
formally, we introduce a notion of a possibilization of a Kripke model, and we
show that every separative and strong countable possibility model is isomor-
phic to a possibilization of a Kripke model.

1. INTRODUCTION

Humberstone [Hum&1) introduced possibility models as an alternative semantics
for propositional modal logic. In a possibility model, the worlds of a Kripke model
are replaced by partial possibilities. A possibility determines some parts or aspects
of a world; as Edgington [Edg85] explains (see also Chapter 10 of [Hall3] and
Chapter 6 of [Rumlj]):

Possibilities differ from possible worlds in leaving many details un-
specified... I am counting the possibility that the die lands six-up
as one possibility. There are indefinitely many possible worlds com-
patible with this one possibility which vary not only in the precise
location and orientation of the landed die, but also as to whether
it is raining in China at the time, or at any other time, and so on
ad infinitum. .. . (564)

While a world in a Kripke model determines the truth or falsity of every sentence
in the language under consideration, a possibility might determine the truth of
some sentences, the falsity of others, and leave the truth value of further sentences
undetermined. One possibility might refine another. If a possibility Y refines a
possibility X, then any propositional variable true at X remains true at Y and
any propositional variable false at X remains false at Y'; however, of the remaining
propositional variables, some may become true at Y, some may become false, and
others may remain undecided. There is also a modal accessibility relation between
possibilities.

An extensive theory of possibility models was developed by Holliday in [Hol15].
There, adapting an example of Litak [Lit05], it was shown that at the level of frames,
possibility semantics is more general than Kripke semantics: there are possibility
frames as in Definition below whose logic is a normal modal logic that is not the
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logic of any class of Kripke frames. For other recent work on possibility semantics,
see [Gar13|, [Holl4)], [BBHI17], [Yam17], and [HT16] (and the related [BHI6]).

A heuristic sometimes used to motivate possibility models takes each possibility
to be a set of total worlds. Sometimes, as in [Cre04], possibilities are even defined
as sets of total worlds; the possibility that the die lands six-up can be identified or
at least associated with the set of total worlds in which the die lands six-up. There
are objections to this on philosophical grounds—Edgington [Edg85, p. 564] asserts
that when one thinks of a possibility, one is not thinking of a single possible world
or even a set of possible worlds, but rather some other type of object—but the idea
of possibilities as sets-of-total-worlds can be thought of as a simplified motivating
example of possibility models. Given a Kripke model, we can form a possibility
model by taking, as the possibilities, every (non-empty) set of total worlds. We call
this the powerset possibilization (see Definition . We can also view a Kripke
model as a possibility model, taking the possibilities to be the singleton sets of total
worlds (which we identify with their elements). In both of these cases, there is a
key connection between the possibility model and the Kripke model: a sentence
@ is true (in the possibility model) at a possibility if and only if it is true (in the
Kripke model) at every world contained in that possibility. Of course, there are
many other ways to generate a possibility model from a Kripke model, taking as
possibilities some, but not all, sets of total worlds. We call such a possibility model
a possibilization of the Kripke model, and we require that, as before, a sentence ¢
be true at a possibility if and only if it is true at every world in that possibility (see
Definition [3.2).

In an abstract possibility model, the possibilities are simply primitive elements
and need not be sets of total worlds, and indeed there need not be any connection
with Kripke models at all. This leads to the main question of the paper:

Main Question. Is every possibility model (isomorphic to) the possibilization of
a Kripke model?

It is not hard to see that there are possibility models which are not isomorphic
to a possibilization. For example, the possibility model could include duplication
of possibilities—two possibilities which have exactly the same refinements—which
cannot happen in a possibilization. However, every possibility model can be trans-
formed (see Propositions and in a natural way into one which is separative
and strong; such possibility models avoid these sorts of issues.

For countable models, the answer to the main question is affirmative: we are
able to show that every countable, separative, and strong possibility model is (up
to isomorphism) a possibilization.

Theorem 1.1 (Representation theorem for countable possibility models). FEvery
countable, separative, and strong possibility model in a countable language is iso-
morphic to a possibilization of a countable Kripke model.

The representation theorem is proved in Section

There are two important hypotheses in the statement of the theorem. First,
we require that the language be countable, and second, that the number of pos-
sibilities be countable. We produce a counterexample when the assumption that
the language is countable is lifted (see Section . Our method of proof does not
work when there are uncountably many possibilities; but it might be that some
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other method would allow us to extend our representation theorem to uncountable
models.

Question. Is every separative and strong possibility model, countable or uncount-
able but in a countable language, isomorphic to the possibilization of a Kripke
model?

1.1. Worldifications. The first step in proving our representation theorem is to
find, in a possibility model, some total worlds. To this end, we introduce the
notion of worldification, which is a dual notion to possibilization (see Deﬁnition.
A worldification of a possibility model M is a Kripke model I such that every
possibility in M is refined by some total world of K and so that every total world
of IC is the limit of more and more refined possibilities in M; moreover, there must
be a tight relation between truth and the accessibility relation in the two models.
We show that every countable possibility model has a worldification.

Theorem 1.2. FEvery countable possibility model in a countable language has a
worldification.

This theorem is proved in Section |4} The difficulty in proving this theorem is that
the accessibility relation of the worldification K should come from the accessibility
relation on M; it is obvious how to extend each individual possibility to a total
world, but it is not obvious how to do this simultaneously for each possibility of M
while respecting the accessibility relation.

Our representation theorem is proved by embedding each possibility model M
into a worldification K with a few additional properties. Then we interpret the
possibilities in M as sets of total worlds from K.

Theorem is not true for uncountable models. We produce a counterexample
using Aronszajn trees. (Aronszajn trees are trees with odd behaviour coming from
set theory.) However, this example relies in an essential way on not being strong;
we do not know whether every strong possibility model has a worldification.

Question. Does every strong possibility model have a worldification?

1.2. Frames. At the level of frames, we can define a notion of frame-worldification.
A Kripke frame F is a frame-worldification of a possibility frame G if two conditions
are met. First, the possibilities and the worlds of F and G are related as in a
worldification of models (so that every possibility in G is refined by some total
world of F and so that every total world of F is the limit of more and more
refined possibilities in G). Second, any Kripke model K based on F should induce a
possibility model M based on G (and every possibility model M based on G should
admit a Kripke model K based on F) so that K is a worldification of M.

There are countable possibility frames which have no frame-worldifications. This
ties in to Holliday’s [Holl5] result that there are possibility frames whose logic is
not the logic of any class of Kripke frames. Such a possibility frame could not have
a worldification. On the other hand, if we consider general possibility frames and
general Kripke frames, we find that if a general possibility frame has countably
many admissible sets, then it has a frame-worldification.

Theorem 1.3. FEvery countable general possibility frame with countably many ad-
missible sets has a frame-worldification.

This theorem is proved in Section [6]
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1.3. Brief philosophical remarks. Arguments have been given, from a philo-
sophical perspective, for and against the idea of constructing worlds out of limits
of possibilities. Rumfitt [Ruml15], for example, describes how one might try to
construct a total world:

[T]he possibility that I have red hair leaves it undetermined whether
Ed Miliband will win a General Election. But there is also the
possibility that I have red hair while Miliband wins an election,
and the distinct possibility that I have red hair while he does not.
By iterating this process, it may be suggested, we shall eventually
reach fully determinate possibilities which do settle the truth or
falsity of all statements. These possibilities will be the points of
modal space... . (159)

Our construction follows essentially the strategy described above, which has similar-
ities to the construction of a generic in set theory (see [Coh66], [Jec03], or [Kun80]).
However, our proof of Theorem [I.2] requires much more than the strategy just de-
scribed; most of the work that we will do goes into picking appropriate sequences
of refinements so that one can define the modal accessibility relation between the
constructed points. It must also be noted that Rumfitt [RumI5] expresses doubts
about the construction of the points themselves:

[T]he business of making a possibility more determinate seems open-
ended. There are possibilities that the child at home should be a
boy, a six-year-old boy, a six-year-old boy with blue eyes, a six-year-
old boy with blue eyes who weighs 3 stone, and so forth. So far
from terminating in a fully determinate possibility, we seem to have
an indefinitely long sequence of increasingly determinate possibili-
ties, any one of which is open to further determination. But then,
so far from conceiving of our rational activities as discriminating
between regions of determinate points, we appear to have no clear
conception of such a point at all. (159)

Here it is important that we restrict our attention to a countable set of propositional
variables, so that we can define a countable sequence of possibilities such that each
propositional variable is decided at some point in the sequence. Although every
possibility in the sequence may be open to further determination, we can take the
countable sequence itself as a “world” which decides each propositional variable in
the given countable set. This is compatible with Rumfitt’s assertion that we may
never reach a possibility that “settles the truth or falsity of all statements” without
restriction.

2. PossiBILITY MODELS

2.1. Possibility Semantics. Let P be a set of propositional variables, and let
L(P) be the standard language of propositional modal logic with modal operators
O and ¢ and propositional variables coming from P.

The following frames may be viewed as a special case of the “full possibility
frames” of [Holl5] and as a generalization of the frames of [Hum81]E|

1Holliday [Holl5] writes ‘X C Y’ to mean that X is a refinement of Y, going “down” rather
than “up” for refinements, while [Hum81] writes ‘X > Y~ to mean that X is a refinement of Y.
‘We will write ‘X > Y’ to mean that X is a refinement of Y.
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Definition 2.1. A (basic) possibility frame is a tuple F = (P, R, <) where:
(1) P is a non-empty set of possibilities,
(2) R CP x P is a binary accessibility relation, and
(3) < is a partial order on P, the refinement relation,

satisfying the following three properties:
P1: For all X, X', and Y with X’ > X, if X’RY then XRY.

X' ---Y
b
v
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X
P2: Forall X,Y,and Y/ with Y/ > Y, if XRY then XRY".
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R: For all X and Y, if XRY then there is X’ > X such that for all X" > X',
there is Y’ > Y such that X”"RY".
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X' NY’
o
X—-—--=Y

We interpret XRY as meaning that what is necessary at X is trueat Y. X > Y
means that X determines each issue which Y does, in the same way, and possibly
more. Our possibility frames are more general than those considered by Humber-
stone. Humberstone asked that a stronger version of the condition R be satisfied,
namely:
R*T: For all X and Y, if XRY then there is X’ > X such that for all X" > X',
X"RY B

See [Holl5l Section 2.3] for a discussion of why it is desirable to use the weaker
condition on the refinability relation.

A partial function f: D — C is a function which is defined on some, possibly
proper, subset of D. If x € D and f is defined at * € D and maps x to y € C, we
write f(z) = y; otherwise, if f is not defined at x, we write f(x) = 7.

Definition 2.2. A possibility model is a tuple M = (P,R,<,V) where F =

(P,R,<) is a possibility frame and V: P x P — {T,F} is a partial function, the

valuation, satisfying:

Persistence: ForanyY > X in P and any p € P, if V(X,p) = T then V(Y,p) =T,
and similarly for F.

Refinability: For any X € P, if V(x,p) = 7, then there exist Y > X and Z > X
such that V(Y,p) =F and V(Z,p) =T.

2There is also an intermediate condition R* discussed in [HTT6] and [HolT5].
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M is said to be based on F.

If X € P, then we read V(X,p) =T as “p is true at X (under V)”, V(X,p) =F as
“p is false at X (under V')”, and V(X,p) = ? as “p is undetermined at X (under
V).

Definition 2.3. Given a possibility model M = (P, R,<,V), the satisfaction
relation is defined inductively as follows:

(1) M, X EpifV(X,p)=T.

2 M\ XEepAYpif M, X Epand M, X E .

3) M, X E—pifforalY > X, M,Y ¥ .

(4) M, X = Og if for all Y € P such that XRY, M,Y = ¢.

Humberstone [Hum8&1] proves all of the following lemmas and Proposition
below (see [Holl5] for the proofs using the weaker refinability condition).

Lemma 2.4 (Persistence). Let M = (P, R,<,V) be a possibility model. IfY > X
and M, X = ¢, then MY = .

Lemma 2.5 (Refinability). Let M = (P, R, <, V) be a possibility model. If M, X ¥
@, then for someY > X, MY E —p.

Lemma 2.6 (Double Negation Elimination). Let M = (P, R, <, V) be a possibility
model. M, X = ¢ if and only if M, X |E ——¢

As usual, we say that a sentence ¢ is globally true in a possibility model M if
M, X | ¢ for all X and ¢ is valid if it is globally true in all possibility models. A
sentence ¢ is satisfiable if there is a model M and possibility X with M, X | .

Proposition 2.7 (Soundness and Completeness). For any sentence @, the follow-
ing are equivalent:

(1) @ is valid over all possibility models,
(2) ¢ is valid over all Kripke models,
(8) @ is provable in the minimal normal modal logic K.

3. POSSIBILIZATIONS

3.1. Possibilizations. The simplest example of a possibilization is the powerset
possibilization, where the set of possibilities is taken to be as large as possibleﬂ

Definition 3.1. Let K = W,S,U). The powerset possibilization of K is the
possibility model M = (P, R, <, V) where:
(1) P=pW)\{a};
(2) for X, Y € P, X >Y if and only if X CY;
(3) XRY if and only if Y C S[X] = {w': Bw € X)wSw'};
4) V(X,p)=Tiffor all w € X, U(w,p) =T; V(X,p) =F if for all w € X,
U(w,p) = F; and otherwise V(X,p) = 7.

One can prove that for each X € P, and for each sentence p, M, X = ¢ if and
only if for all w € X, K, w [ ¢; and that for each world w € W, and each sentence
@, if IC,w [= ¢ then there is a possibility X € P with w € X and M, X [ .

3Holliday [Hol15l Fact B.1] observes that a powerset possibilization might not satisfy Humber-
stone’s stronger condition R+,
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More generally, a possibilization of a Kripke model will be a possibility model
where the possibilities are sets of worlds from the Kripke model. There must be a
tight connection between the two models.

Definition 3.2. Let £ = (W, S,U) be a Kripke model. A possibilization of K is a
possibility model M = (P, R, <, V), with P a non-empty collection of non-empty
subsets of W, such that:
(P1) for each world w € W, and each sentence ¢, if K, w }= ¢ then there is a
possibility X € P with w € X and M, X | ¢;
(P2) any two distinct worlds v,w € W are separated by possibilities, that is,
there is X € P withv € X, w ¢ X
) if X,Y € P are not disjoint, there is Z € P with Z C X NY;
) for X, Y € P, X >Y if and only if X C Y
) for X, Y € P, XRY if and only if Y C S[X];
) for each X € P, and for each sentence ¢, M, X = ¢ if and only if for all
weX, K xkEep

(P1){(P3)|ensure that there are enough possibilities to distinguish between distinct
worlds, to ensure that a sentence true at some world in the Kripke model is true
somewhere in the possibility model, and so on. and are the same as in
the definition of the powerset possibilization and are the natural ways to induce the
refinement and accessibility relations on sets of worlds. says, as a special case,
that the values of the propositional variables are defined as in the powerset possibi-
lization, but it also says something about more complicated sentences, namely that
what might be true at a possibility is exactly what might be true at the worlds that
make up that possibility. One could replace by a few closure conditions on the
set of possibilities. Essentially these conditions say that there are sufficiently many
possibilities to distinguish the worlds of the Kripke model and to make truth in the
possibilization correspond to truth in the Kripke model (with the accessibility and
refinement relations defined in the natural way via and without saying
exactly what those possibilities should be.

The powerset possibilization of a Kripke model is a possibilization, and a Kripke
model can be viewed as a possibilization of itself (using the singleton sets as possi-
bilities and with the refinement relation being the identity).

Our goal is to show that every countable possibility model is the possibilization
of a Kripke model. Our strategy will be to produce a worldification of the possibility
model and then to view the possibility model as a possibilization of its worldifica-
tion. There are two barriers to this. The first is that to produce a worldification of
the right kind, we must have a possibility model which is strong as defined below.
The second is that the possibility model may have redundant possibilities; this will
be solved by assuming that our possibility model is separative as defined below.

3.2. Separative possibility models. The following natural class of possibility
models is studied in Section 4.1 of [H0115JE|

Definition 3.3. Let M = (P, R,<,V) be a possibility model. M is separative if
whenever X # Y, thereis X’ > X such that X" and Y have no common refinements.

Define
X> Ve WVX'>X)3X">X") X" >Y.

4The terminology comes from set-theoretic forcing; see for example p. 204 of [Jec03].
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Then a possibility model M is separative if and only if the refinement relation > is
equal to >,. One can see that if a possibility model is separative, then, for example,
any two possibilities which have exactly the same refinements must be equal.

Not every possibility model is separative, though as remarked above, every pos-
sibilization is separative. However, every possibility model embeds in a natural way
into a separative quotient by identifying equivalent possibilities, such as duplicated
possibilities.

Definition 3.4. Let M = (P, R,<,V) be a possibility model. Let X ~, Y if and
only if X >, Y and Y >, X; this is an equivalence relation. Write [X] for the
equivalence class of X under ~;. Let:

(1) P’ be the equivalence classes under ~,,
(2) [XIR'[Y] if there are X’ ~¢; X and Y’ ~; Y with X'RY”,
(3) V([X],p) =T if V(X,p) =T and V'([X],p) =F if V(X,p) = F; otherwise
VI([X],p)="7.
M, = (P, R, =5, V') is the separative quotient of M.

This is well-defined. There is a natural embedding of a possibility model into its
separative quotient, and this embedding maintains truth.

Proposition 3.5 (Proposition 4.10 of [Holl5]). Let M = (P, R,<,V) be a possi-
bility model. M is a separative possibility model, and

M, X | p <= M, [X] E o

3.3. Strong possibility models. The following condition on possibility models,
which is essentially a refinability condition on the accessibility relation, has been
studied by Holliday:

Definition 3.6 (Section 2.3 of [Holl5]). Let M = (P,R,<,V) be a possibility
model. M is strong if whenever it is the case that for all Y’/ > Y there is Y > Y’
such that XRY”, we already have XRY .

This condition implies, for example, that if every strict refinement of a possi-
bility X sees, via the accessibility relation, a possibility Y, then X sees Y. Any
possibilization is strong. Once again, every possibility model embeds in a natural
way into a strong model (Proposition 2.37 of [Holl5]).

Proposition 3.7. Let M = (P,R,<,V) be a possibility model. Define a new
accessibility relation R’ by XR'Y if and only if for all Y’ >Y there is Y > Y’
with XRY". Then M’ = (P, R',<,V) is a strong possibility model and

MXEpe=M XEoq

If M was separative, so is M’, since we have not altered <.

4. WORLDIFICATIONS AND THE PROOF OF THE MAIN THEOREM

In this section, we will give the proof of our representation theorem. Given a
countable possibility model M, we show how to build a (weak) worldification K
of that model. But this is not enough to show that M is a possibilization of K;
we need to know that K is a strong worldification of M (i.e., that K satisfies one
additional condition), and to build such a I we need to know that M is a strong
possibility model. Once we have a strong worldification of M, if we also know that
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M is separative, then we can show that M is isomorphic to a possibilization of I,
and thus M is isomorphic to the possibilization of a Kripke model.

To begin this section, we will first define weak and strong worldifications in
Section Then in Section |4.2| we will show that the existence of strong worldifi-
cations is enough to prove the representation theorem. Finally, in Section we
will first prove that every possibility model has a worldification. Then we will add
an extra module to this proof to show that every strong possibility model has a
strong worldification, completing the proof of the representation theorem.

4.1. Worldifications. We say that a Kripke model K is a worldification of a possi-
bility model M if, informally speaking, each possibility in M is part of a total world
from /C, and each total world in K is a limit of more and more refined possibilities.
The definition is motivated in part by its use in the representation theorem, but it
is also of independent interest.

Definition 4.1. Let M = (P, R, <, V) be a possibility model and let £ = (W, S,U)
be a Kripke model. K is a weak worldification of M via an embedding ® : W —
©(P) which assigns to each total world w € W a non-empty set of possibilities
o (w) C P if:
(W1) for each world w € W, ®(w) is a mazimal order ideal in the poset (P, <),
ie.,
(a) ®(w) is downwards-closed under refinement,
(b) any two elements of ®(w) have a common refinement in ®(w), and
(¢) ®(w) is maximal with these two properties;
(W2) for each possibility X € P, there is a world w € W such that X € ®(w);
(W3) any two distinct total worlds v, w € W are separated by possibilities, that
is, there is X € ®(v) \ ®(w);
(W4) for each world w € W, and for each sentence ¢, K,w | ¢ if and only if
there is some X € ®(w) such that M, X |= ¢; and
(W5) for each pair of worlds w,v € W, wSv if and only if for each X € ®(w)
there is Y € ®(v) such that XRY.

We say that K is a worldification of M if the ® which makes K a worldification is
understood from the context.

When our models are countable, ®(w) is determined by some increasing chain in
M. Note that if X, Y € ®(w), then they have a common refinement, so we cannot
have M, X = ¢ and M,Y = —p.

While the conditions [(W1) look like the corresponding conditions in the

definition of a possibilization, differs greatly from [(P5)} [(P5)|seems like the
natural way to induce an accessibility relation on possibilities, given such a relation

on worlds, while seems like the natural way to induce an accessibility relation
on worlds given one on possibilities. Unfortunately, the two do not agree. To rectify
this, we introduce strong worldifications, which place an additional condition on the
accessibility relation.
Definition 4.2. Let M = (P, R, <, V) be a possibility model and let £ = (W, S,U)
be a Kripke model. K is a strong worldification of M via an embedding ® : W —
p(P) which assigns to each total world w € W a non-empty set of possibilities
®(w) C P if, in addition to [[WI)(W5)]

(W6) XRY if and only if for all w with ¥ € ®(w) there is v with X € ®(v) and

vSw.
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Remark 4.3. The notion of worldification bears some similarity with what one
would obtain by taking the Jénsson-Tarski ultrafilter frame (see Section 5.3 of
[BARVO01]) of the modal algebra associated with a possibility frame (for details on
the duality between possibility frames and modal algebras, see [Hol15]). However,
such a construction does not seem like it can be used to prove our representation
theorem. For example, suppose that we start with a possibility model which has
countably many distinct possibilities X7, Xs,..., none of which are refinements
of any of the others. The Kripke model which we might try to build using the
Jénsson-Tarski construction has a world for each ultrafilter in the Boolean algebra
associated with the possibility frame, which in the case of the possibility model just
described is simply the powerset algebra. The principal ultrafilters are generated
by the singleton sets {X;} and correspond to treating X, Xs, ... as total worlds.
But the non-principal ultrafilters would not be contained in any of the possibilities
X1,Xs,..., and so of Definition would not be satisfied. We might try
to not include these non-principal ultrafilters in the Kripke model, but it is not
clear how to do this without having problems with the accessibility relation; for
example, if Q¢ is satisfied at some world as witnessed by a non-principal ultrafilter,
it is not clear that Q¢ will still hold after removing that non-principal ultrafilter.
One can think of the construction of a worldification given below as providing a
way of making the choice of which ultrafilters to include in order to both satisfy

(P1)| of Definition and to satisfy the correct formulas.

4.2. Proof of the Main Theorem. We will take as a black box the existence of
strong worldifications, which will be proved in Section [£.3}

Theorem 4.4. FEvery strong countable possibility model in a countable language
has a strong worldification.

We will now prove the representation theorem: up to isomorphism of possibility
models, every countable, separative, and strong possibility model in a countable
language is the possibilization of a Kripke model.

Proof of Theorem[1.1. Let M = (P, R, <,V ) be a countable, separative, and strong
possibility model. Using Theorem let K= (W,S8,U) be a strong worldification
of M via &: P — p(W).

Given X € P, let Sx = {w e W: X € ®(w)}. We claim that Sx = Sy if and
only if X = Y; this is where we use the fact that M is separative. Suppose that
Sx = Sy. We claim that X ~, Y where ~; is defined as in Definition If
X' > X, then by there is v such that X’ € ®(v). So X € ®(v) and since
Sx =Sy, Y € ®(v). So there is X" € ®(v) with X” > X')Y. Thus X >, Y. By
interchanging X and Y, we see that X ~, Y. Since M is separative, X = Y as
desired.

Identify X € P with Sx. We can interpret R, <, and V' as acting on the sets
Sx. Let M’ be the possibility model with possibilities Sx. We claim that M’ is a
possibilization of K. In verifying properties [(P1)H(P6)| of a possibilization, we will
write X interchangeably with Sx (so that we write v € X for v € Sx).

(P1)k This follows from |(W4)

(P2)k This follows from |(W3)

(P3)k Suppose that v € XNY. Then by|(W1)] thereis Z withv € Zand Z > XY,
e, ZCXNY.
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(P4): If X > Y, then by whenever v € X, veY. So X CY.
(P5)¢ This follows from
(P6); If M, X |= ¢, then by K,w [= ¢ for all w € X. On the other hand,
if, M, X ¥ ¢, then there is Y > X such that M,Y | —p. Then, picking
weY, bywe have that K, w = —¢. But w € X, and so it is not the

case that for all w € X, IC,w = . O

4.3. Constructing worldifications. We will prove Theorem which says that
every countable possibility model in a language with countably many propositional
variables has a worldification, and Theorem [£.4] which says that every countable
strong possibility model in a countable language has a strong worldification. The
proof is essentially to construct infinite ascending chains while managing the ac-
cessibility relation to get the appropriate properties. Doing this is surprisingly
complicated. We will begin with a warmup in which we use the stronger condition
R** from Section 2.1

Theorem 4.5. Let M be a countable possibility model in a countable language,
satisfying R . Then there is a Kripke model K which is a worldification of M.

Proof. For each X € M, we will define an increasing chain of possibilities Ax =
(Ax (n))new- These chains will form the total worlds of the model K. Let (X,)new
be an enumeration of the possibilities in M and ¢g, 1, ... an enumeration of the
sentences in the language. For simplicity, we occasionally write A; for Ax,. We
define the chains Ax using a recursive construction. Begin with Ax(0) = X for
each X.

The idea is that we need to extend the chains in such a way that every formula
is decided at some point in each chain, and also so that if the chain does not satisfy
Ue at some point X, there is a witnessing possibility Y at which —¢ holds so
that any refinement of X is still related via the accessibility relation to Y. As we
extend the chains, we alternate between these two requirements, at each step either
deciding some new formula using the refinability property, or using R™" to lock in
a witness to 0.

Suppose that we have defined Ax(0),..., Ax(n) for each X. We will now define
Ax(n+1) for each X. We have two cases, depending on whether n is odd or even.

n is even: Write n = 2k. For each X € M, choose X' > Ax(n) such that
M, X' E ¢ or M, X' E =g, Now, if X > X', set Ax(n+1) = Xj, and
otherwise set Ax(n+1) = X'

n is odd: Write n = 2(k,i) + 1 where (-,-) : w? — w is bijective. If there is
Y such that A;(n)RY and M,Y = ¢, then we also have A;(n)RAy (n)
since Ay(n) > Y. Using R*", choose X > A;(n) such that for all X’ >
X, X'RAy(n). Set A;(n+ 1) = X. For each other possibility Z, set
Az(n+1) = Az(n). If no such Y exists, set Az(n+1) = Az(n) for all Z.

This completes the construction of the sequences Ax. Let A x be the order ideal
which is the downwards closure of Ax. At even stages, we ensure that for each Y,
either Y is part of the chain Ax or there is some n such that Y is not a refinement
of Ax(n). So Ax is maximal. Now let W be the set of these order ideals and note
that there may be possibilities X and Y such that A x = gy. Such an order ideal
is included in W only once. We will define a total world model K with domain W
which is a worldification of M via the identity function. The accessibility relation
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FIGURE 1. The extensions of possibilities in the construction. The
dotted line shows the relation R. For all X’ as shown, R relates
X" and Ay (n).

will be §. For I,J € W, define ISJ if and only if there is a Y € J such that for
all X € I, XRY. Have a propositional variable p hold at I € W if and only if for
some X € I, M, X |=p. We make p false at I € W if and only if for some X € I,
M, X | —p . By construction, for each formula ¢ and I € W, there is X € I such
that either M, X = ¢ or M, X |= —p. Also, if for some Y € I = A\X, MY = o,
then there is some n such that Ax(n) > Y and so M, Ax(n) = ¢.

Properties and of a worldification are immediate. To
complete the proof, we check [(W4)[from the definition of worldification. The proof
is by induction on the complexity of formulas. For a propositional variable p, let
I €W and let X € M be such that EX = 1. Then

K, IEpe ()M, Ax(n) Ep
since, for some n, either M, Ax(n) = p or M, Ax(n) = —p. For ¢ A,
K,JJEeNYy & K IEpand K, Iy
& (AX eM, X Egpand (Y e DM,Y =9
& (AZel)M,ZE=pNy

where, given X and Y witnesses to the second line, the witness Z to the third line
is a common refinement of X and Y. For -,

K,IE-p & KIEp
& VXel M XEp
& AX e )M, X E -

since for some X € I, either M, X = ¢ or M, X = —p.

Finally, we have the case Uy. Suppose that for all X € I, M, X ¥ Oyp. Let
X be such that I = A\X where X = X; and let k& be such that - = ;. Then
at stage n = 2(k,i) + 1 of the construction, we have Ax(n) ¥ Op, so there is
some Y € M with XRY such that M,Y F ¢; refining Y if necessary, we may
assume that M,Y = —¢ while still maintaining XRY by P2. Then (possibly for
some different Y such that ¥ = —¢ and XRY) we have Ay (n+ 1) > Y and for
all Z > Ax(n+1), ZRAy(n + 1). Hence, for each £ > n+ 1 and m > n + 1,
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Ax(0)RAy (m). Thus AxSAy. Since K, Ay | -, K, Ax ¥ Op. Thus we have
shown that if K, I = O, then for some X € I, M, X = Oep.

Now suppose that for some Y € A\X, M,Y | Oyp. Then by persistence and the
fact that A is the downwards closure of the chain Ax, M, Ax (n) k= O for some n.
Let Z be such that AxSAz. Then there is some m such that Ax (n)RAz(m), and

o~

so M, Az(m) £ ¢. Hence K, Az |= . Since Z was arbitrary, K, Ax = Oe. O

Now for Theorem we must use R which is weaker than R™1. While using
R we were able to lock in the witness to ¢—y in a single step, this is no longer
possible with R. Instead, we have to constantly make sure that we maintain the
same witness for each chain. We will keep track of the witnesses in a tree, so that
there are no circular witness requirements. (By a circular witness requirement, we
mean for example that Y is a witness for X, Z is a witness for Y, and X is a witness
for Z.) This makes the proof somewhat complicated.

Proof of Theorem[I.3. For each X € P, we will define infinitely many increasing
chains of possibilities A% = (A% (n))new with A% (0) = X. Let (X,)new be an
enumeration of the worlds in P and g, ¢1,... an enumeration of the sentences
in the language £. The chains A% will be defined using a recursive construction.
First, we must define an auxiliary object that we will build during the construction.

A tree is a graph such that between any two edges there is a unique path. A
rooted tree is a tree with a distinguished node. Each edge in a rooted tree has a
natural direction, towards or away from the root. Thus a rooted tree can be viewed
as a directed tree, a tree in which each edge has a specified direction pointing away
from the root. Our trees will always be directed and rooted. A forest is the disjoint
union of trees. Let T be a forest. We denote the edge relation of T by T as well.
We say that b is a child of a if T'(a,b). We say that a node a is a leaf if it has no
children. A connected component of a forest is a maximal set of nodes which are
pairwise connected by an undirected path; each connected component of a forest is
a tree.

At each stage n of the construction, we will have a forest T,, with domain w x P,
representing the pairs (s, X) corresponding to some chain A% via some bijection.
Each T,, will have only finitely many edges and the T,, will be nested; that is, if
m < n, and (s,X) is a child of (¢,Y) in T,, then the same is true in T;, (but
not necessarily vice versa). If there is an edge in T, involving (s, X), then after
stage n, we will only add edges outward from (s, X), and never inward. Thus the
roots of any non-trivial connected components in 7,, will remain the roots of their
connected components. We will satisfy the requirement:

(x) : If (s,X) is a child of (¢,Y) in Ty, then for all Y’ > Al (n),
there is X’ > A% (n) such that YRX'.

Begin the construction with A% (0) = X for each X € P and s € w. Suppose that
we have defined A% (0), ..., A% (n) for each (s, X). Write n+1 = 2(s, 4, k) +€ where
eis0or 1. Let X = X; and ¢ = ¢i. Let (to, Yo), (t1,Y1),..., (te, Yo), (s, X) be a
path from the root (tg, Yp) of the connected component of (s, X) in T),. Essentially
what we want to do is to extend A% (n) as we did in the warm-up proof. But to
maintain (%), we first need to “prepare” the path (to, Yo), (t1,Y1), ..., (ts, Y2), (s, X)
by extending each of those chains using (*) (and losing (*) in the process), then
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extend A% (n), and then use R to recover the property (x). See Figure 2 for a
diagram showing how we do these extensions.

Y- - -5 X

\4 3
Yo Vi Yy Y, X

[ g

Ve
e
o~ ~ ~ 7 ~
T 7 sV, - - -5 X
7
Ve
Ve

AR (n) Ay, (n) AR (n) = A¥, (n) A

FIGURE 2. The extensions of possibilities in the construction. The
dotted line shows the relation R. For all Y’ as shown, there is an
X' filling in the diagram.

Let Yy = Ai}’o (n). By (x), there is Y, > A§}1 (n) such that YoRY;. Then Y; >
A§}1 (n), so again by (x) there is Yo > AtYQ2 (n) such that Y1 RY,. Continuing in this
way, we get that R relates }/}0 to }7’1, }Afl to }/}2, and so on until i}z is related to
X > A% (n). This completes the “preparation.”
Now in each case ¢ = 0 or € = 1, we will define X > X.
¢ =0: Choose X > X such that either X E ¢ or X = @k, and so that either
X > X, or X and X, have no common refinement.

¢ = 1: If there is Z € P such that XRZ and Z |= ¢y, choose u such that (u, Z) has
no edge in T, and is greater than any other pair connected to any edge in
T,. Let T, 41 be T,, with an additional edge from (s, X) to (u, Z). Using
R, choose X > X such that for all X’ > )Z', there is Z' > A% (n) with
X'RZ' (this is to satisfy (x)).

Now we need to recover (x). Note that R relates Ve to X by P2. Using R,
choose }N/g > i}g such that for all Y, > }N/n, there is X” > X with Y”RX". Then
using R again, choose }7@_1 > }A/g_l such that for all ¥;" | > }74_1 there is Y;)" > }7@
with Y,” |/ RY,’. Continue in this way to define Yo, ..., Y. Set Ag} (n+1)= Y;. Set
A (n+1) = X. For each other (u,Z), set AL(n+1) = A%(n). It is easy to see
that (%) remains satisfied. Also, Agﬁl (n) is related by R to A% (n+ 1).

This completes the construction. Let T" be the union of the T;, (i.e., all of the
edges which were in any of the T,,).

Claim 1. For each X € P, s € w, and formula @, there is an n such that A% (n) |=
v or A% (n) = —p. Similarly, for each X € P, s € w, and possibility Y, there is
an n such that A% (n) >Y, or A% (n) and Y have no common refinements.

Proof. Let k be such that ¢ = ¢, and i be such that X = X;. Let n+1 = 2(s, 4, k);
then at stage n + 1 of the construction, we set A% (n + 1) to be a refinement of a
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possibility X’ with X’ |= ¢ or X’ = —¢; by persistence, either A% (n+ 1) = ¢ or
A% (n+1) = —p. The proof of the second claim is similar. O

Claim 2. For each X,Y € P and s,t € w with an edge from (s, X) to (t,Y) in T,
and for every n, there is m such that A% (n)RA% (m).

Proof. Recall that if i is the index of Y, then at each stage n +1 = 2(¢,i,k) + €
for any k and €, we ensured that A% (n)RA% (n+ 1). Thus for infinitely many n,
there is m such that A% (n)RA% (m). So each n has some n’ > n and m such that
A5 (n")RAL (m); by P1, A% (n)RAY (m). This suffices to prove the claim. O

Claim 3. Let X € P, s € w, and let ¢ be a formula. Suppose that for each m,
there is Y, with Y, = ¢ and A% (m)RY,,. Then there are Y and t, with Y |= ¢,
such that T((s, X), (t,Y)).

Proof. Let i be such that X = X; and k such that ¢ = ;. Let n be such that
n+1=2(s,i,k) + 1. Let Y be such that Y = ¢ and A% (n + 1)RY; then, for the
X' < A% (n+1) defined at stage n+1, X'RY . So at stage n+ 1 of the construction,
we find such a Y and ¢, and we put an edge between (s, X) and (¢,Y) in T,,4;. O

We are now ready to define our Kripke model X = (W, S,U). For each (s, X),
let ;13( be the downwards closure of the chain A%. By Claim 1, this is a maximal
order ideal. Let W = {E} : X € Pand s € w}. Define ISJ if for each X € I,
there is Y € J with XRY. Claim 2 implies that if in 7" there is an edge from
(s, X) to (t,Y), then A%SAS. Define U(I,p) = T if, for some X € I, V(X,p) =T;
similarly, define U(I,p) = F if, for some X € I, V(X,p) = F. By Claim 1, we are
in exactly one of these two cases.

Claim 4. For each sentence @, K, I |= ¢ if and only if for some X € I, M, X = .

Proof. Let (s, X) be such that I = /Ali( Then for some Y € I, M, Y E ¢ if and
only if for some n, M, A% (n) = ¢. The proof is by induction on the complexity of
the formula . If ¢ is p, then this follows from the definition of U. For a sentence

oA,
& K, A% Epand K, A% =9
& @M, A (m) = ¢ and (En)M, A% (n) =
& ()M, Ak (n) | ¢ and M, Ax(n) = ¢
& (@M, Ax(n) Ee Ay
using persistence on the third line. For —,
KA E-» & KAx e

& ()M, Ak (n) = ¢

& (@AM, A% (n) E ¢
since by Claim 1, for some n M, A% (n) = ¢ or M, A% (n) = —.

For Oy, suppose that for all n, M, A% (n) = Op. Then, for each n, there is

a Y such that A% (n)RY and M,Y ¥ ¢; refining Y if necessary, we may assume
that M,Y | —¢. Then by Claim 3, there is some suEh Y and t cw with an
edge between (s,X) and (¢t,Y) in T. By Claim 2, A5SAL. Now K, Al = —p, so
K, A% ¥ Op. Thus we have shown that if IC, A% = Oy, then M, A% (n) = Oy for

some n.

K, A% E oy
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Now suppose that for some n, M, A%(n) = Op. Let (¢,Y) be such that
A5 SAL. Then there is m such that A% (n)RAL (m), and so M, A% (m) = o.
Hence M, A}, = ¢. Since (t,Y) was arbitrary, K, A% = Op. O

Now we will prove Theorem [£:4] We now assume that our possibility model is
strong, and we have to produce a strong worldification. To meet the requirements
for we must add new edges to our tree, except that they behave differently
from the edges we added previously. To deal with this, we use the colours red and
blue to distinguish between the edges of different types.

Proof of Theorem[[.J] Let M be a strong countable possibility model in a count-
able language. We modify the construction from Theorem We will make a
small modification to the trees from that theorem. In 7T, we will now have two
types of edges, red and blue. The edges we added in Theorem will be the red
edges, and the blue edges will be added for the sake of the extra condition in the
statement of this theorem. We call (s, X) a red child of (¢,Y") if there is a red edge
from (¢,Y) to (s, X), and a blue child if there is a blue edge. (*) from Theorem [I.2]
will hold for the red edges:

(%) : If (s, X) is a red child of (¢,Y) in T}, then for all Y" > A% (n),

there is X’ > A% (n) such that Y'RX'.
We have a new property (1) for the blue edges:

(1) : If (s, X) is a blue child of (¢,Y) in T}, then A% (n)RA% (n).
Note that the direction of the accessibility relation here is the opposite of that in
().

The construction begins in the same way with A% (0) = X for each X € P
and s € w. Suppose that we have defined A% (0),..., A% (n) for each (s, X). Write
n+1=3(s,i,k)+ewhereeis 0, 1, or 2. Let X = X;. Let (to, Yo), ..., (te, Yo), (5, X)
be a path from the root (tg, Yp) of the connected component of (s, X) in T,,; some
of the edges in this path may be red, and others may be blue. Choose Yy = Ag}’o (n).
Now, if (t1,Y1) is a red child of (to,Yp), using (*) choose Y; > A§}1 (n) such that
?OR)AG. If (t1,Y7) is a blue child of (¢, Ys), using R choose }71 > A§}1 (n) such
that for all }71’ > }A/l, there is 170’ > }70 with 171’ RT’O' . Continuing in this way, we
get Yo > AP (n),Y1 > AY (n),. Atl( ), and X > A% (n) such that if
(tiv1,Yiy1) is ared chlld of (t“ K) then YRYZH, and if (¢ ( i1, z+1> is a blue child
of (t;,Y;), then for all YH_1 > Y11, there is Y > Y; with Y IRY’

Recall that n + 1 = 3(s, i, k) + €. Now for each €, we will define X>X.

e = 0: Same as Theorem Choose X > X such that either X = o or X E g,
and so that either X > X, or X and X 1 have no common refinement.

€ = 1: Same as Theorem adding a red edge. If there is Z € P such that XRZ
and Z | ¢k, choose u such that (u,Z) has no edge in T, and is greater
than any other pair connected to any edge in T,,. Let T},4+1 be T,, with an
additional red edge from (s, X) to (u, Z). Using R, choose X > X such
that for all X’ > X, there is 2’ > A%(n) with X"RZ’ (this is to satisfy

(%))-
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€ =2: Let Z = X,. If ZRX, then choose u such that (u, Z) has no edge in T,, and
is greater than any other pair connected to any edge in T,,. Let T},4+1 be
T,, with an additional blue edge from (s, X) to (u, Z).

Now we need to recover (%) and (f). If (s, X) is a red child of (ts, Ye), then note
that R relates Yg to X by P2. Using R, choose Yg > Yg such that for all Y;" > Yn,
there is X’ > X with Y”RX”. Thus we have recovered (x) between (s, X) and
(te,Ye). If (s, X) is a blue child of (t¢,Yr), then by choice of Yy, there is Yy > Y,
such that XRY;. Thus we have recovered (1) between (s, X) and (¢, Yy). Continue
in this way to define YO,...,Yg. Set At (n +1) = Y;. Set A(n+1) = X. For
each other (u, Z), set A%(n+1) = A“( ). Note that both (x) and (f) have the
property that if they held between (u, Z) and its child (v, Z’) at stage n, and if
Ab(n+1) > A%(n) and A%, (n+1) = A%, (n), then (x) and (1) hold between (u, Z)
and (u’, Z’) at stage n + 1. Thus () and (}) both hold for T}, ;1.

Define the model K in the same way as before. The proofs of the claims in
Theorem [T.2] still hold for the red edges and so K is a worldification of M via .
Also, if there is a blue edge from (s, X') to (t,Y’) in T', then (t) implies that A SAS

We now have a new claim.

Claim 5. XRY if and only if for all w with Y € ®(w) there is v with X € ®(v)
and vSw.

Proof. Suppose that XRY. Let w = ESZ be such that ¥ € ®(w). Then, for
sufficiently large n, XRA%(n). So at some stage, we put a blue edge from (s, Z)
o (u, X). Then /AIUXSw Note that X € @(A\“X)

Suppose that =X RY. Then since M is strong, there is Y’ > Y such that for all
Y">Y', - XRY". Fix w with Y’ € ®(w). Then it follows from that for all
v with X € ®(v), ~vSw. O

This completes the proof. ([l

5. UNCOUNTABLE MODELS

The representation theorem, Theorem and the theorem on worldifications,
Theorem required that the possibility model and the language were countable.
We will now construct two possibility models, one which shows that the assumption
that the language was countable was required to prove both theorems, and a second
that shows that there are uncountable models with no worldifications. This second
model can easily be made to be separative, but the example seems to rely in an
essential way on not being strong. We do not know whether the representation
theorem can be extended to uncountable models.

Proposition 5.1. There is a separative and strong possibility model M with count-
ably many possibilities in a language with uncountably many propositional variables
which does not have any worldifications and which is not isomorphic to the possi-
bilization of any Kripke model.

In fact, M will not even use the refinability relation.

Proof. Let 2<% be the infinite binary tree, that is, the elements of 2<% are the finite
string of 0’s and 1’s. Let 2“ be the set of infinite binary strings, which we view
as paths through 2<“. Let P be a set of continuum-many propositional variables.
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Let f: P — 2“ be a bijection between P and 2*. Let P = 2<“. The refinement
relation < is the natural extension relation on strings. The accessibility relation
R is trivially empty. Define V(o,p) as follows. Let @ = f(p). Either ¢ is an
initial segment of 7, in which case we set V(o,p) = ?, or there is some smallest
initial segment 7 of o which is not an initial segment of 7 (so every proper initial
segment of 7 is an initial segment of m, but the last entry of 7 differs from the
corresponding entry of 7). If 7 = o, i.e., if o differs only from 7 at its last entry,
then set V(o,p) = 7. Otherwise, if o extends 771, set V(o,p) = T, and otherwise
if o extends 770, set V(o,p) = F. Then M = (P,R,<,V) is a possibility model;
it also trivially strong as the accessibility relation is trivial, and it is not hard to
see that it is also separative. Every ascending chain in P corresponds to a path
7 through 2%, and this path does not decide whether p = f~1(7) is true or false.
Thus by none of the ascending chains in P can be in a worldification. By
there are no worldifications of this model.

One sees from the definitions that if the possibilization of a Kripke model has
empty accessibility relation, then the associated Kripke model is a worldification of
the possibilization. Thus M is not isomorphic to a possibilization. O

Now we will give the second example, which is more complicated than the first.
While this model is not separative, it can easily be transformed into a separative
model which is still a counterexample. However, the fact that it is not strong seems
to be used in an essential way.

Proposition 5.2. There is a possibility model M with uncountably many possi-
bilities in a language with countably many propositional variables which does not
have any worldifications, and which is not isomorphic to the possibilization of any
Kripke model.

Proof. By a tree, we now mean a poset (7', 3) such that {b:b < a} is well-ordered
for each a. We call the order type of {b: b < a} the height of a, height(a). The
height of a tree is the supremum of the heights of its elements. A path through a
tree is a linearly ordered set in the tree closed under predecessor. Let (T, 3) be a
well-pruned Aronszajn tree, that is, a tree with:
(1) height wy,
(2) every element of T has countable height,
(3) every path in T is countable,
(4) for each element a of height a, and each § with wy > B > a, there is an
element b 2~ a of height 3.

The first three properties are what it means to be an Aronszajn tree, and the last
says that the tree is well-pruned (see [Kun80, pp. 69-72]). Let P be the disjoint
union of wy and T Define the refinement relation < on P by making it the natural
ordering on wi, and the tree ordering on 7', but having elements of w; and of T" be
incomparable. Set aRo if & € wy and o € T and height(o) > a. We will have one
propositional variable p. Set V(X,p) =T for all X € P. Let M = (P,R,<,V).
For P1, if aRo and 8 < «, then height(c) > a > § and so SRo. For P2, if
oRo and 7 7 o, then height(7) > height(c) > a and so aR7. For R, suppose
that aRo so that height(c) > «. Then for all 5 > «, since T is well-pruned there

50One can make the model separative by replacing wi with the tree 2<“!, using the ordinal
length of a string in 2<“1 to define the accessibility relation.
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is 7 77 o of height at least 3, and hence SR7. Refinement and Persistence are
clear. Thus M is a possibility model.

Now we claim that there is no worldification of M. Suppose that there was, say
K = W,S8,U). Then U(w,p) = T for all w by [W4)} By [[W2)] let w be such
that 0 € ®(w) (where 0 € wy); in fact, by we get ®(w) = wy. Then, since
0R@ (where @ € T is the empty string) and V(@,p) = T, M,0 = Op. By [[W4)]
K,w = Op. Let v be such that wSv and K, v | p. By ®(v) C T is a path
through T'. Since T is an Aronszajn tree, there is a countable bound on the height
of the elements of ®(v). On the other hand, by for each o € wy, there is
o € ®(v) with aRo and hence height(c) > «, so that the heights of elements of
®(v) are unbounded below wy. This is a contradiction. So M has no worldification.

A similar argument will show that M is not isomorphic to the possibilization of
a Kripke model. Suppose that it was isomorphic to the possibilization of a Kripke
model £ = (W, S,U), and identify the possibilities of M with the possibilities of
this Kripke model. By U(w,p) =T for all w € W. Now the possibility 0 is
identified with a non-empty set of total worlds; fix an element w from this set. [

6. FRAMES

In this last section we will discuss what one might do to extend the worldification
construction to frames. One can of course consider the representation theorem for
frames, but our goal here is just to give a little bit of the flavour and to leave the
rest for future work.

6.1. No worldifications of Basic Possibility Frames. Recall from Definition
the definition of a basic possibility frame. In this section we will consider world-
ifications on the level of frames. By a frame-worldification of a possibility frame
F, we mean a Kripke frame K satisfying ((W1)H(W3)| and [(W5)| of the definition
of a worldification and such that any possibility model based on F gives rise to a
model-worldification based on K.

Definition 6.1. Let G = (P,R,<) be a (basic) possibility frame and let F =
(W, S) be a Kripke model. F is a frame-worldification of G via an embedding
® : W — p(P) which assigns to each total world w € W a non-empty set of
possibilities ®(w) C P if:
(W1) for each world w € W, ®(w) is a mazimal order ideal in the poset (P, <),
ie.,
(a) ®(w) is downwards-closed under refinement,
(b) any two elements of ®(w) have a common refinement in ®(w), and
(¢) ®(w) is maximal with these two properties;
(W2) for each possibility X € P, there is a world w € W such that X € ®(w);
(W3) any two distinct total worlds v, w € W are separated by possibilities, that
is, there is X € ®(v) \ ®(w); and
(W5) for each pair of worlds w,v € W, wSv if and only if for each X € ®(w)
there is Y € ®(v) such that XRY;
and such that:
e for any possibility model M based on G, there is a Kripke model K based
on F such that I is a worldification of M via ®, and

e for any Kripke model I based on F, there is a possibility model M based
on G such that K is a worldification of M via ®.
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There are basic possibility frames without a worldification. The issue is that in
the construction of Theorem [1.2] at some stages we extended a possibility X to
a further refinement X’ which decided some formula . This required us to have
countably many definable sets of possibilities; but there may be uncountably many
sets of possibilities which are definable in some model based on a countable frame.

Proposition 6.2. There is a countable basic frame F with no frame-worldification.

Proof. Consider the following example of a basic possibility frame G which is similar
to Proposition Let P be the infinite binary tree 2<%. The accessibility relation
R is trivially empty, and < is the natural relation on extension of strings. We claim
that there cannot possibly be a frame-worldification of G = (P, R, <).

Given a frame-worldification F of G, pick a world w in F; w corresponds to some
infinite path 7 through the binary tree. Now, using a single propositional variable,
we can define a valuation V' to get a possibility model M based on G. Define V (o, p)
as in Proposition [5.1] as follows. Either o is an initial segment of 7, in which case
we set V(o,p) = 7, or there is some smallest initial segment 7 of o which is not an
initial segment of 7 (so every proper initial segment of 7 is an initial segment of m,
but the last entry of 7 differs from the corresponding entry of 7). If 7 = o, i.e., if
o differs only from m at its last entry, then set V(o,p) = 7. Otherwise, if o extends
71, set V(o,p) =T, and otherwise if o extends 770, set V(o,p) =F.

Then V satisfies Persistence and Refinability. However, the ascending chain
7 never decides p, and so there is no model-worldification of M based on F. Thus
F is not a frame-worldification of G. O

Note that while we know that, for every valuation V on G, the model obtained
from this valuation admits a worldification, the proof shows that there is no single
frame-worldification F of G that works for every valuation.

6.2. Worldifications of General Possibility Frames. If we are willing to work
with general frames, then we can make a worldification construction. Holliday
[Holl5l Definition 2.21] has a natural definition of a general possibility frame.

Definition 6.3. F = (P, R, <, A) is a (general) possibility frame if (P, R, <) is a
basic possibility frame and A C p(P), the set of admissible propositions, satisfies:
(1) @,P € A;
(2) Given A,Be A, ANB € A;
(3) Given Aec A, A*={X eP:VY > XY ¢ A} € A,
(4) Given Ac A, OA={XeP:(VY)XRY =Y € A} € 4;
(5) Each A € A is regular open in the upset topology of (P, <).

A set A is regular open set in the upset topology if and only if it satisfies the
following conditions of persistence and refinability for sets:
(i) for each X € Aand X' > X, X' € A, and
(ii) for each X € P, if X ¢ A, then there is X’ > X such that for all X" > X',
X" ¢ A.
A possibility model M = (P,R,<,V) is based on F = (P,R,<,A) if {X :
V(X,p) =T} € A for each X and p.

Condition (3) corresponds to the usual condition (for general Kripke frames) of
closure under complements. (For a review of general Kripke frames, see Section 5.5
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of BARVO01].) If M is a possibility model based on a general frame F, then the
sets of possibilities definable in M are all admissible in F

If F is a general possibility frame, (p;);cs are propositional variables, and (A;);ecr
are admissible sets, then setting V(X,p;) = Tif X € 4;, V(X,p;) =Fif X €
Af, and V(X,p;) = ? otherwise determines a possibility model based on F. The
requirement that each admissible set be regular open ensures that Persistence and
Refinability are satisfied.

We can define frame-worldifications of general possibility frames as follows.

Definition 6.4. Let G = (P,R,<,A) be a general possibility frame and let
F = W,S,B) be a general Kripke frame. F is a frame-worldification of G via
an embedding ® : W — p(P) which assigns to each total world w € W a non-
empty set of possibilities ®(w) C P if:
(W1) for each world w € W, ®(w) is a mazimal order ideal in the poset (P, <),
ie.,
(a) ®(w) is downwards-closed under refinement,
(b) any two elements of ®(w) have a common refinement in ®(w), and
(¢) ®(w) is maximal with these two properties;
(W2) for each possibility X € P, there is a world w € W such that X € ®(w);
(W3) any two distinct total worlds v, w € W are separated by possibilities, that
is, there is X € ®(v) \ ®(w); and
(W5) for each pair of worlds w,v € W, wSv if and only if for each X € ®(w)
there is Y € ®(v) such that XRY;

and such that:

e for any possibility model M based on G, there is a Kripke model K based
on F such that I is a worldification of M via ®, and

e for any Kripke model K based on F, there is a possibility model M based
on G such that K is a worldification of M via ®.

(Note this is almost word-for-word the same definition as for basic frames, though
some of the words, such as “based on”, now have a different meaning.)

We now prove Theorem [L.3] which says that a countable possibility frame with
countably many admissible sets has a frame-worldification.

Proof of Theorem[1.3 Let G = (P,R,<,A) be a countable general possibility
frame with countably many admissible sets. For each A € A, we will have a
propositional variable p 4. Define M a possibility model based on G with valuation
V(X,pa)=Tit X € A V(X,pa)=Fif X € A*, and V(X,pa) = ? otherwise.

M is a countable model in a countable language. By Theorem [[.2] M has a
worldification X = (W, S,U), say via ®. Let B be the collection of sets

Ba={weW: KwEpa}={weW:(3X € d(w))X € A}.
Claim 1. F = (W, S,B) is a general Kripke frame.

Proof. U(w,pg) =F for allw € W, so Bg =9 € B.

To see that B is closed under complements, we show that for A € A, the comple-
ment of By is BY. We must show that for w € W, if I, w ¥ p4, then K, w = pa-.
Since K, w = —pa, there is some X € ®(w) such that M, X | —pa. So for all
Y>X,Y ¢ A Thus X € A*, and so M, X = pa~. But then K, w = pa-.
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Now we will see that B is closed under intersections. Given A, A’ € A, we will
show that B4 N Ba» = Banar. Suppose that w € By N Bys. Then K,w |=pa APy,
and so there are X € ®(w) with X € A and X’ € ®(w) with X’ € A. But then
there is X" € ®(w) with X” > X, X', and so X" € AN A’. Hence M, X = pana,
and so K, w |= panas. Thus © € Bynar. The other direction is similar.

Finally, given A € A, we will show that OB4 = {w € W : (Vo)wSv = v € Ba}
is equal to Boy. First, suppose that for all v with wSv, v € B4. Thus for all such
v, KC,v Epa. So K,w = Opa. There must be some X € ®(w) with M, X = UOpay.
So for all Y with XRY, M,Y &= p4 and so X € OA. Thus M, X E poa and so
K,w = pga. The other direction is similar. O

Finally, we want to check that F is a frame-worldification of G via ®. Since K is
a worldification of M via ®, it suffices to check that for each possibility model M’
based on G there is a Kripke model K’ based on F such that K’ is a worldification
of M’ via @, and that for each Kripke model K’ based on F there is a possibility
model M’ based on G such that K’ is a worldification of M’ via ®.

Claim 2. For each possibility model M’ based on G, there a Kripke model K' based
on F such that K' is a worldification of M’ via ®.

Proof. Let M’ = (P, R, <,V’) be a possibility model based on G. Define a valuation
U' on F as follows. For each propositional variable ¢, let A, € A be such that
Ag ={X : M',X |= q}. Then define U'(w,q) = T if w € B, and U'(w, q) = F if
w ¢ Ba,. So K'=(W,S,U’) a Kripke model based on F.

Note that we have both that M’, X |= ¢ if and only if M, X = p4,, and that
K',w = ¢ if and only if K, w = pa,. Given a formula ¢ in the language of M’, we
can translate ¢ to a formula ¢* in the language of M by replacing each variable ¢
with pa,. Then M’, X |= ¢ if and only if M, X |= ¢*, and K', w |= ¢ if and only if
K, w | ¢*. Since K is a worldification of M, it follows that K’ is a worldification
of M. O

Claim 3. For each Kripke model K' based on F, there a possibility model M’ based
on G such that K' is a worldification of M’ via ®.

Proof. Let K' = (W, S,U) be a Kripke model based on F. Define a valuation
V' on G as follows. For each propositional variable ¢, let A, € A be such that
Ba, = {w: K',w |= ¢}. Then define V'(X,q) = Tif X € A, and V'(X,q) =F if
X ¢ A,. The rest of the argument is similar to the previous claim. O

So we have shown that F is a frame-worldification of G, completing the proof of
the theorem. O

Though we used Theorem on worldifications of countable possibility models
in a countable language, to prove Theorem [I.3] the latter should be viewed as
a generalization of the former. We can see this as follows. A possibility model
M = (P,R,<,V) for a countable language induces a general possibility frame
G = (P, R, <, A) with a countable set .4 of admissible sets, namely the sets definable
by formulas in M. Then, applying Theorem[I.3|to G, we get a frame-worldification
F of G, and by the last sentence of Definition @ there is a worldification of M
based on F.
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