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1 Question

Throughout, T is a complete first-order theory, U is a monster model of T ,
and M denotes an elementary substructure of U . φ(x, y) denotes a partitioned
formula and Sφ(A) denotes the space of complete φ-types (in the free variable
tuple x) over A. A φ-formula means a positive or negative instance of φ, i.e.
φ(x, a) or ¬φ(x, a) for some a ∈ U |y|.

We wish to answer the following question: suppose {φi(x, yi)}i<n are NTP2

formulas over a model M and {bi}i<n are parameter tuples of lengths |yi|,
respectively. Assuming the formulas φi(x, bi) each divide over M , does the
disjunction

∨
i<n φi(x, bi) also divide overM? By introducing dummy variables

to the tuples yi we may assume that all tuples feature the same variables and in
fact that bi = bj for all i, j. So now we have {φi(x, y)}i<n NTP2 formulas over
M with φi(x, b) dividing over M for each i, and wish to show that

∨
i φi(x, b)

divides over M .
Suppose that there is a single indiscernible sequence (bj)j∈ω in the type

tp(b/M) such that for all i < n, {φi(x, bj)}j<ω is inconsistent. Then by pigeon-
holing and indiscernibility, the set {

∨
i<n φi(x, bj)}j<ω must be inconsistent,

and since (bj . . . bj)j<ω is an indiscernible sequence in the type tp(b . . . b/M),
this shows that the disjunction

∨
i<n φi(x, b) divides.

It will be shown in the rest of this note, with no assumptions on the ambient
theory, there is an indiscernible sequence (bi)i<ω in the type of b such that
for any NTP2 formula φ(x, y) such that φ(x, b) divides over M , in fact φ(x, b)
divides along (bi)i<ω.

The existence of such a witness follows from results in [1]. The key fact
needed is [1, Theorem 2.26] which guarantees the existence of Kim-strict invari-
ant extensions of types over models in an arbitrary theory. Morley sequences in
such types will prove to be the witnesses required above, in light of [2, Lemma
3.12] and a slight strengthening of [2, Lemma 3.14] which is given as Lemma
3.4 below. For a quick deduction of Lemma 3.4 from results of [1] concerning
NBTP, see Remark 3.5. Otherwise, the remainder of this note will isolate just
what is necessary to answer the above question.

Our affirmative answer to the above question generalizes two previously
known facts: first, the result in [2, Corollary 3.22] that forking and dividing
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over models coincide in an NTP2 theory, and second (though only partially),
the result of local stability theory that a disjunction of A-dividing stable formu-
las is also A-dividing, where A can be any parameter set in an arbitrary theory
(see, for example, [5, Lemma 2.21]). This latter fact seems to be the extent
of previous “forking equals dividing” results formulated in a local way, i.e. for
formulas rather than theories.

2 Definitions

Definition 2.1. The invariant ternary relation |⌣
i
on subsets of U is defined

by:

a
i

|⌣
A

b iff tp(a/Ab) can be extended to a global A-invariant type

|⌣
i
satisfies several properties of an abstract independence relation (see, for

example, [2, Section 2]), but only two properties will be needed in the proof
below:

Fact 2.2. |⌣
i
satisfies base monotonicity, i.e. a |⌣

i

A
bc implies a |⌣

i

Ab
c

Proof. Clear.

Fact 2.3. |⌣
i
preserves indiscernibility; that is, if I is an A-indiscernible se-

quence and a |⌣
i

A
I, then I is also Aa-indiscernible.

Proof. It suffices to suppose I = (bi)i<ω has order type ω. Let φ(x, y0, . . . , yn)
be a formula over A and suppose that |= φ(a, bi0 , . . . , bin) for some i0 < · · · < in.
Let p(x) be a global A-invariant extension of tp(a/IA). Then it must be that
φ(x, bi0 , . . . , bin) ∈ p(x). For any other j0 < · · · < jn, since bi0 . . . bin ≡A

bj0 . . . bjn and p(x) is A-invariant, it must be that φ(x, bj0 , . . . , bjn) ∈ p(x).
Since a |= p(x) |AI , conclude |= φ(a, bj0 , . . . , bjn).

The remaining terminology will follow the example of [1]. In addition to
the usual definition of dividing we need the notions of Kim-dividing (and Kim-
forking):

Definition 2.4. Say that a formula φ(x, b) Kim-divides over A if there is a
global A-invariant type p(y) ⊇ tp(b/A) such that φ(x, b) divides along some
(equivalently, any) Morley sequence in p over A. The “equivalently” is justified
by the fact that the type over A of a Morley sequence of length ω in the A-
invariant type p is determined uniquely by p. The type of this Morley sequence
is denoted p⊗ω|A

Say that a formula Kim-forks over A if it implies a disjunction of formulas
each Kim-dividing over A.

This gives rise to another independence notion:
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Definition 2.5. The ternary invariant relation |⌣
K

on subsets of U is defined
by:

a
K

|⌣
A

b iff tp(a/Ab) does not imply any formula Kim-forking over A

We will also need a characterization of non-Kim-dividing in terms of indis-
cernible sequences, similar to another standard lemma for non-dividing (this is
[3, Lemma 3.18]):

Fact 2.6. The following are equivalent:

1. tp(a/Ab) does not Kim-divide over A.

2. For any global A-invariant p ⊇ tp(b/A) and I a Morley sequence in p over
A starting with b, there is a′ ≡Ab a such that I is Aa′-indiscernible.

3. For any global A-invariant p ⊇ tp(b/A) and I a Morley sequence in p over
A starting with b, there is I ′ ≡Ab I which is Aa-indiscernible.

Next, two stronger notions of invariant types:

Definition 2.7. Say that a global A-invariant type p is strictly (resp. Kim-

strictly) A-invariant iff for any set B and realization a |= p |AB , B |⌣
f

A
a (resp.

B |⌣
K

A
a).

This gives rise to two notions further restricting Kim-dividing:

Definition 2.8. Say that φ(x, b) strictly (resp Kim-strictly) divides over A if
there is a global strictly (resp Kim-strictly) A-invariant type p ⊇ tp(b/A) such
that some φ(x, b) divides along some (equivalently any) Morley sequence in p
over A.

Lastly, the notion of universal (Kim, strict, Kim-strict)-dividing:

Definition 2.9. Say that φ(x, b) universally Kim (resp. strictly, Kim-strictly)
divides over A iff for any global A-invariant (resp. strictly invariant, Kim-
strictly invariant) extension p of tp(b/A), φ(x, b) divides along some (equiva-
lently any) Morley sequence in p over A.

Note that these definitions may be vacuously satisfied (even by a non-
dividing formula) if invariant global extensions fail to exist. In everything that
follows, the base is taken to be a model, so invariant extensions will exist (e.g.
coheirs). Still, in arbitrary theories, strictly invariant extensions may not exist.
But [1, Theorem 2.26], quoted as Theorem 3.3 below, guarantees that Kim-strict
invariant extensions do always exist (over a model).
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3 Main ideas

The context of [2, Lemma 3.12] assumes NTP2 of the ambient theory but the
proof only uses this hypothesis of the single formula in question. Hence restrict-
ing our attention to dividing over models, and taking |⌣

i
for the independence

relation in the hypothesis, that result can be phrased as follows:

Lemma 3.1. (T arbitrary) Any NTP2 formula which divides over a model M ,
Kim-divides over M .

Similarly, [2, Lemma 3.14], after noting that the proof is local, can be re-
stated as:

Lemma 3.2. (T arbitrary) Any NTP2 formula which divides over M , univer-
sally strictly divides over M .

The difficulty with using this lemma in the setting of an arbitrary theory is
that strictly invariant global extensions of a given type over a model may not
exist. However, [1, Theorem 2.26] is the following:

Theorem 3.3. (T arbitrary) Every type over a modelM has a global Kim-strict
M -invariant global extension.

The main observation to make now is that the proof of [2, Lemma 3.14] can
be easily modified to strengthen the conclusion from “universal strict dividing”
to “universal Kim-strict dividing”. The proof below is identical to that in [2]
except for the single place noted, but we include it in full for completeness’ sake:

Lemma 3.4. (T arbitrary) An NTP2 formula which divides over a model M ,
universally Kim-strictly divides over M .

Proof. Let φ(x, y) be NTP2. Suppose φ(x, a) divides over M . By Lemma 3.1
above there is p(y) ⊇ tp(a/M) a global M -invariant type such that φ divides
along every Morley sequence generated by p overM . Let I = (ai)i∈ω |= p⊗ω |M ,
so that {φ(x, ai)}i∈ω is inconsistent (in fact, k-inconsistent for some k < ω).
Suppose towards contradiction that there is a global Kim-strict M -invariant
type q(y) ⊇ tp(a/M) such that φ(x, a) does not divide along some (equivalently,
any) Morley sequence in q over M . Then there is (bi)i∈ω |= q⊗ω |M such that
{φ(x, bi)}i∈ω is consistent. We seek to build an array of parameters witnessing
TP2 to yield contradiction.

It will suffice to inductively construct rows (Ii)i<n = ((ai,j)j∈ω)i<n such
that the first term of Ii is bi, each Ii ≡M I, and each Ii is indiscernible over
MI<ib>i: for once this induction is established, it will follow by compactness
that there exists an infinite array whose rows have the same properties. Then
for each i, {φ(x, ai,j)}j<ω must be inconsistent (and hence k-inconsistent) by
Ii ≡M I. But {φ(x, ai,0)}i<ω = {φ(x, bi)}i<ω is inconsistent, so if it can be
established that all vertical paths through the array have the same type over M
(and hence all corresponding sequences of instances of φ are consistent), then
TP2 is established. For this, it will suffice to show that all vertical paths of
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length n have the same type over M . So let σ : n → ω be a sequence of length
n. We will show by decreasing induction on i ≤ n that

a0,σ(0) . . . an−1,σ(n−1) ≡M a0,σ(0) . . . ai−1,σ(i−1), bi, . . . , bn−1

The base case i = n (by which we mean the claim a0,σ(0) . . . an−1,σ(n−1) ≡M

a0,σ(0) . . . an−1,σ(n−1)) is immediate. Now suppose the claim for i. By the
inductive hypothesis, there exists an automorphism τ ∈ Aut(U/M) taking
a0,σ(0) . . . an−1,σ(n−1) to a0,σ(0) . . . ai−1,σ(i−1), bi, . . . , bn−1. By the assumption
that Ii−1 is MI<(i−1)b>(i−1)-indiscernible, there exists an automorphism ρ ∈
Aut(U/MI<(i−1)b>(i−1)) taking ai−1,σ(i−1) to bi−1. In particular, ρ fixes
a0,σ(0) . . . ai−2,σ(i−2), bi, . . . , bn−1. Therefore ρ ◦ τ takes

a0,σ(0) . . . an−1,σ(n−1) 7→ a0,σ(0) . . . ai−2,σ(i−2), bi−1, . . . , bn−1

Which proves the induction.
Now to inductively construct the rows as stipulated. For the base case, the

first row, take an M -conjugate of I whose first element is b0; this is possible
since b0 ≡M a0.

For the inductive step, suppose that rows I<n have been built as claimed.
Let b′n |= q |MI<n

. Then in particular, b′n ≡Mb<n
bn, so conjugate to find

J<n ≡Mb<n
I<n such that bn |= q |MJ<n

. Explicitly, let σ ∈ Aut(U/Mb<n) take
b′n 7→ bn. Then for any c ∈MI<n and formula ψ(y, z) we have ψ(y, σ(c)) ∈ q iff
(byM -invariance) ψ(y, c) ∈ q iff |= ψ(b′n, c) iff |= ψ(bn, σ(c)), so bn |= q |Mσ(I<n),
so we take J<n := σ(I<n).

Note that at this stage J<n still satisfies the hypotheses put on I<n. The
rest of this paragraph is the only modification of the original proof: by Kim-
strictness of q, J<n |⌣

K

M
bn and in particular tp(J<n/Mbn) does not Kim-divide

over M . As in the base case take I ′ ≡M I such that I ′ starts with bn. Then
I ′ |= p⊗ω |M with p a global M -invariant extension of tp(bn/M), so by Fact
2.6(3), there exists Jn ≡Mbn I

′ such that Jn is MJ<n-indiscernible. Note that
in particular Jn begins with bn; we take this as our new nth row.

It remains to verify that the array J≤n has all the required properties. M -
equivalence of the rows and correct first entries are immediate. As for the
indiscernibility: Jn is indiscernible over MJ<n by the above construction. For
i < n, Ji is indiscernible over MJ<ibi+1 . . . bn−1 by the induction hypothesis.
Since bn |= q |MJ<n , and q is a global M -invariant type, we get bn |⌣

i

M
J<n and

in particular (by base monotonicity), bn |⌣
i

MJ<ibi+1...bn−1
Ji. Since |⌣

i
preserves

indiscernibility, this implies that Ji is indiscernible over MJ<ibi+1 . . . bn−1bn as
required.

Remark 3.5. [1, Theorem 3.5] remarks that, in light of the equivalence between
forking and Kim-forking over models in NTP2 theories, Kim-strictly invariant
types are the same as strictly invariant types in NTP2 theories. Hence, if the
whole theory is assumed NTP2, one immediately upgrades the conclusion of
[2, Lemma 3.14] from “universally strictly divides” to “universally Kim-strictly
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divides” as above, without having to revisit the proof of the lemma. The argu-
ment above has been included to show one way that this can be done without
assuming NTP2 of the whole theory.

Lemma 3.4 could also be deduced more directly from other results in [1].
There the authors first introduce what they call New Kim’s Lemma as a com-
mon generalization of existing variants of Kim’s Lemma for NTP2 and NSOP1

theories. Namely, a theory T is said to satisfy New Kim’s Lemma if for any
formula φ(x, b) and model M , if φ(x, b) Kim-divides over M then it universally
Kim-strictly divides overM . They further define a syntactic property of formu-
las called the k-bizarre tree property (k-BTP) and say a theory T is NBTP iff
modulo T no formula has k-BTP for any k (one could just as well define BTP
and NBTP for formulas in this way). [1, Theorem 5.2] is that all NBTP the-
ories satisfy New Kim’s Lemma. The proof shows specifically that any NBTP
formula satisfies New Kim’s Lemma (in the appropriate local sense). Moreover,
[1, Proposition 5.3] proves that all NTP2 formulas are NBTP. Altogether, we
have that an NTP2 formula dividing over a model M in fact Kim-divides (by
Lemma 3.1), which (by New Kim’s Lemma) further implies that it universally
Kim-strictly divides.

4 Conclusions

Returning to the setting of several NTP2 formulas {φi(x, b)}i<ω each dividing
over a model M , Theorem 3.3 guarantees the existence of a global Kim-strict
M -invariant type p extending tp(b/M), and Lemma 3.4 guarantees that each
φi(x, b) divides along any (bi)i<ω |= p⊗ω |M , which is all that was needed to
conclude:

Theorem 4.1. (T arbitrary) Let {φi(x, yi)}i<n be a collection of NTP2 formu-
las over M . Suppose (bi)i<n are such that φi(x, bi) divides over M for every
i < n. Then ∨

i<n

φi(x, bi)

divides over M .

Applying this result to draw conclusions about φ-types for an arbitrary
NTP2 formula φ is complicated by the fact that NTP2 is not in general preserved
under boolean combinations. For example, if one wishes to take a nondividing
extension of a φ-type over one model to a complete φ-type over another, one
must exclude all dividing boolean combinations of instances of φ. Theorem 4.1
offers no help if said combinations do not happen also to be NTP2.

However, we can carry out the argument just hinted at in the case that φ is
NIP, since NIP formulas are closed under boolean combinations. For the remain-
der of this section, then, we will restrict attention to NIP formulas, obtaining a
few conclusions which generalize existing facts from local stability theory.
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Proposition 4.2. (T arbitrary) Let φ(x, y) be NIP and let π(x) be a partial
φ-type over a set A which does not divide over a model M ⊆ A. Then there
exists a global extension p(x) ∈ Sφ(U) of π(x) which does not divide over M .

Proof. Let Ψ(x) denote the collection of M -dividing boolean combinations of
instances of φ over U . It will suffice to show that the partial type π(x)∪{¬ψ(x) :
ψ(x) ∈ Ψ(x)} is consistent, since dividing of a partial type can always be wit-
nessed by dividing of some conjunction of formulas from that type. Suppose to-
wards contradiction that π(x) ∪ {¬ψ(x) : ψ(x) ∈ Ψ(x)} is not consistent. Then
by compactness, it must be that π(x) ⊢

∨
i<n ψi(x) for some {ψi(x)}i<n ⊆ Ψ(x).

But each ψi(x) is NIP, being a boolean combination of NIP formulas; then since
each ψi(x) divides over M , so does the disjunction

∨
i<n ψi(x) by Theorem 4.1.

This contradicts the assumption that π(x) does not divide over M .

This non-dividing extension is, moreover, M -invariant, by the following
proposition:

Proposition 4.3. Let φ(x, y) be an NIP formula and let p(x) ∈ Sφ(U) be a
global φ-type, nondividing over a model M . Then p(x) is also M -invariant.

Proof. This is essentially the argument given in [4, Proposition 5.21], which we
restate just to show that it is local: Suppose p(x) is notM -invariant. Then there
must be a ≡M b such that p(x) ⊢ φ(x, a) ∧ ¬φ(x, b). Since a ≡M b, there exists
some parameter c such that a, c and c, b each begin M -indiscernible sequences,
say I, J respectively. Either p(x) ⊢ ¬φ(x, c) or p(x) ⊢ φ(x, c) so by taking
I or J respectively, we obtain an M -indiscernible sequence (ci)i<ω such that
p(x) ⊢ φ(x, c0)∧¬φ(x, c1). The collection {φ(x, c2i)∧¬φ(x, c2i+1)}i<ω must be
inconsistent by finiteness of alternation rank for the NIP formula φ(x, y). But
the sequence (c2ic2i+1)i<ω is an M -indiscernible sequence in tp(c0c1/M). This
shows that φ(x, c0) ∧ ¬φ(x, c1) divides over M , so p(x) divides over M .

Summarizing:

Corollary 4.4. If π(x) is a a partial φ-type for φ an NIP formula and π(x)
does not divide over a model M , then π(x) can be extended to a complete global
M -invariant φ-type.

As another conclusion we have the following:

Corollary 4.5. Let φ(x, y) be an NIP formula and suppose that φ(x, b) does
not divide over a model M . Then the collection {φ(x, b′) : b′ ≡M b} does not
divide over M .

Proof. By Proposition 4.2 extend {φ(x, b)} to p(x) ∈ Sφ(U) nondividing over
M . By Proposition 4.3, p(x) is invariant over M and so contains the collection
{φ(x, b′) : b′ ≡M b} which therefore does not divide over M .

Corollary 4.5 also grants the equivalence of dividing, Kim-dividing, and Kim-
forking over models for NIP formulas in an arbitrary theory, via another theorem
of [1], which we mention here along with the definition of quasi-dividing:
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Definition 4.6. A formula φ(x, b) quasi-divides over a set A if there exist
(bi)i<n such that each bi ≡A b and

∧
i<n φ(x, bi) is inconsistent.

Fact 4.7. [1, Corollary 2.25] Any formula which Kim-forks over a model M
quasi-divides over M .

Now we can prove:

Proposition 4.8. Let φ(x, y) be an NIP formula,M a model, and b a parameter
tuple of length |y|. Then φ(x, b) divides over M iff it Kim-divides over M iff it
Kim-forks over M iff it quasi-divides over M .

Proof. Dividing =⇒ Kim-dividing is Lemma 3.1. Kim-dividing =⇒ Kim-
forking is immediate from definitions. Kim-forking =⇒ quasi-dividing is Fact
4.7. Lastly, if φ(x, b) quasi-divides over M , then {φ(x, b′) : b′ ≡M b} is incon-
sistent, so by Corollary 4.5, φ(x, b) divides over M .
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