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Abstract

Let ES¢(n) be the minimum N such that every N-element point set in the plane contains either £
collinear members or n points in convex position. We prove that there is a constant C' > 0 such that, for
each ¢,n > 3,

(30 —1)-2"7% < ESi(n) < ¢*.onTCVnlosn,

A similar extension of the well-known Erdds—Szekeres cups-caps theorem is also proved.

1 Introduction

Given an n-element point set P in the plane, we say that P is in convez position if P is the vertex set
of a convex n-gon. We say that P is in general position if no three members of P are collinear. In 1935,
addressing a problem raised by Klein, Erdés and Szekeres [4] proved that, for every integer n > 3, there
is a minimal integer ES(n) such that any set of ES(n) points in the plane in general position contains
n members in convex position. Moreover, they showed that ES(n) < (27?__24) +1 = 47t°(™) Many years
later [5], they proved that ES(n) > 2"~2 41, a bound that they had already conjectured to be tight in their
earlier paper. It remained an open problem for several decades to improve the bound ES(n) < 4"+o() by
any significant factor. This was finally accomplished by Suk [13], who proved that ES(n) = 2"+°(") coming
close to matching Erd6s and Szekeres’ lower bound and proving their conjecture. The best explicit bound
for the o(n) term to date is due to Holmsen et al. [6], who optimized the argument in [13] and showed that
ES(n) < 2++0/aToEm),

In this paper, we extend these results to arbitrary point sets in the plane (see, for example, Exercise 3.1.3
in [8] for the corresponding qualitative result). Let ESy(n) be the minimum N such that every N-point set
in the plane contains either ¢ collinear points or n points in convex position. Hence, ES3(n) = ES(n). For
¢ > 3, a simple upper bound can be obtained as follows. Given an N-element point set P in the plane, if P
contains ¢ collinear members, then we are done. Hence, we can assume that P does not contain ¢ collinear
members. By the Szemerédi-Trotter theorem [14], there are at most O(N? + ¢2N) collinear triples in P. A
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standard probabilistic argument shows that we can find a subset P’ C P of size Q(N/v/' N + ¢?) such that P’
is in general position. Therefore, as long as |P’| > 2n+o(n) we can apply the results above to find n members
in convex position. Unfortunately, this only implies that ES(n) < 22n+0(Vnrlogn) 4 g gntO(Vnlogn) = Quy
main result is the following.

Theorem 1.1. There exists C > 0 such that, for each £,n >3, ESy(n) < ¢?.2n+CVnlogn,

The proof of Theorem 1.1 is based on both a new cups-caps theorem for arbitrary point sets in the plane
and a new positive fraction Erd6s—Szekeres theorem. In the case where n is fixed and ¢ tends to infinity,
our cups-caps theorem implies that ESy(n) = O(¢), which is best possible up to constants. In turn, our
lower bound for the cups-caps theorem implies the following lower bound for ESy(n), which agrees with the
Erd6és—Szekeres lower bound in the ¢ = 3 case.

Theorem 1.2. For each {,n >3, ES;(n) > (3¢ —1)-2"75 4+ 1.

It remains an interesting open problem to determine the correct dependence of ESy(n) on £.

The paper is organized as follows. In the next section, we prove our cups-caps theorem for arbitrary point
sets and Theorem 1.2. In Section 3, we establish a positive fraction Erd6s—Szekeres theorem for arbitrary
point sets. Finally, in Section 4, we prove Theorem 1.1. For the sake of clarity, we omit floor and ceiling
signs whenever they are not crucial. We assume throughout that our point sets have distinct z-coordinates,
since we can slightly rotate the plane otherwise.

2 A cups-caps theorem for arbitrary point sets

Let X be a k-element point set in the plane with distinct z-coordinates. We say that X forms a k-cup
(k-cap) if X is in convex position and its convex hull is bounded above (below) by a single segment. The
length of a k-cup (k-cap) is k — 1. Write fy(m,n) for the minimum N such that every N-point set in the
plane contains either ¢ collinear members, an m-cup or an n-cap. Erdés and Szekeres [4] proved that

A = ("5 1)

n—2
For ¢ > 3, we prove the following.

Theorem 2.1. There is an absolute constant ¢ > 1 such that, for m,n,£ > 3,

—4

fe(m,n) < c(min{m —1,n—1} 4+ ¢) - (m+n2 )

n—

The proof of this theorem is based on a connection between down-sets and (1) discovered by Moshkovitz
and Shapira [9]. We will also need the following lemma due to Beck (Theorem 1.2 in [1]).

Lemma 2.2. There is an absolute constant € > 0 such that every t-element point set in the plane contains
either et collinear points or determines at least 5(;) distinct lines.

Proof of Theorem 2.1. Let € > 0 be the absolute constant from Lemma 2.2 and set ¢ = 10/e. Let P be an
N-element point set in the plane where N = ¢ - (min{m — 1,n — 1} +¢) - (m;f;4). We may assume that P
does not contain £ collinear members, since otherwise we would be done. Given points p,q € P, we write
p < q if the z-coordinate of p is less than the z-coordinate of ¢q. For the sake of contradiction, suppose P
contains neither an m-cup nor an n-cap. Hence, the longest cup in P has length at most m — 2 and the

longest cap in P has length at most n — 2.



Let p, g € P be such that p < g. We label the pair pg with the ordered pair (2,4, Ypq), Wwhere x,4 is the length
of the longest cup ending at pq and y,, is the length of the longest cap ending at pq. Let L(m —2,n — 2) be
the poset on [m — 2] x [n — 2] where (z,y) < (2/,y') iff x <2’ and y <y'. Then a set D C [m — 2] X [n — 2]
is called a down-set if (xz,y) € D implies that (z',y') € D for all (2/,y') < (z,y). For each ¢ € P, let
S(q) = {(%pg: Ypq) 1P € P, p < q}. Let

D(q) = {(z,y) € L(m — 2,n —2) : A(Tpq, Ypq) € S(@); (¥, ¥) 2 (Tpg: Ypg) }

be the down-set in L(m — 2,n — 2) generated by S(q).

The number of down-sets in L(m — 2,n — 2) is (™" %) (see, e.g., [9, Observation 2.1]). Hence, by the
pigeonhole principle, there are points ¢; < go < -++ < ¢¢ in P with ¢t > ¢- (min{m — 1,n — 1} 4+ ¢) such that
D(q;) = D(q;) for all ¢ < j. Set @ = {q1,...,¢}. By Lemma 2.2, ) contains either et collinear members
or determines at least E(;) distinct lines. In the former case, we have et > /£ collinear points, which is a
contradiction. Hence, () determines at least E(;) distinct lines. By averaging, there is a point p € () and a
subset Q' C Q of size at least et/2 > min{m — 1,n — 1} such that p < ¢ for each ¢ € Q' and there are |Q’|
distinct lines between p and @’. Consider the labels on pg for each ¢ € @Q’. Since the maximum size of an
antichain in L(m — 2,n — 2) is min{m — 1,n — 1}, by the pigeonhole principle, we obtain points p, ¢, ¢’ such
that p < ¢ < ¢’ and

L. D(p) = D(q) = D(¢) and
=

2. (Zpq, Ypg) = (Tpa's Ypa') OF (Tpgs Ypa) = (Tpg's Ypa')-

Let us assume by symmetry that (Zpq, Ypg) = (Tpgrs Ypg')- Since D(p) = D(q), there exists (z,y) € S(p) C
D(p) such that (z,y) = (@pq, Ypg) and, by transitivity, (z,y) = (pe, Ype ). By the definition of S(p), there
exists p’ < p such that & = z,, and y = y,,. Since p, ¢, ¢’ are not collinear, one of p'pg, p’pq’ is not collinear.
Without loss of generality, we can assume that p’pq is not collinear, since the other case is symmetric. Then
the triple p’pg is either a cup or a cap. In the former case, the longest cup ending at p'p with length x,,
can be extended to end at pg, which is a contradiction. If instead p’pq is a cap, then the longest cap ending
at p'p with length y,/, can be extended to end at pg, again a contradiction. O

In the other direction, we prove the following.

fe(m,n)2H<m+n_4> —M<m+n_6)+1.

Theorem 2.3.
2 n—2 2 n—3

Proof. Set

{—1/m+n—4 {—3/m+n—=6
he(m,n) = —5 n-2 ) "2 n-3 )

In what follows, we will recursively construct planar point sets Xy ,,, n With | Xy 1 0| > he(m, n) that contain
neither ¢ collinear points, m-cups nor n-caps. Consider a regular m-gon, whose vertices are located at
(cos(2mi/m),sin(2mi/m)) € R2, for i = 1,...,m. We refer to the sides of the m-gon as segments. For
¢,m > 3, we construct Xy ,, 3 by taking the lower half of the regular m-gon that lies below the z-axis and, on
[(m —1)/2] of these non-vertical segments (sides of the m-gon), placing £ — 1 collinear points in the interior
of the segment. If m — 1 is odd, then add another point on an empty segment by itself (adding more than
one point to this segment would create an m-cup). Hence, we have no ¢ collinear points, no m-cup and no
3-cap. Moreover,

(¢—1)m=t if m — 1 is even

|X€,m,3| =
((—1)2=2+1 ifm—1is odd.
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Figure 1: Construction of Xy ,, ,, from Xy 1, and Xy n—1.

Hence, for all m > 3,
1 {—3

V—
Kemal 2 5= (m—1) = === = he(m,3),

as desired. We construct Xy 3, similarly such that

|X€,3,n| > u(n - 1) - 673 = hg(-?),’fl)
2 2
For the recursive step, assume that we have constructed Xy ,,,/ s for all m’ < m or n’ < n. We construct
Xi¢.mn as follows. Take a very flat copy of X¢ ,—1, and a very flat copy of Xy mn—1 such that Xy, n_1
is very high and far to the right of Xy ,,_1,, the line spanned by any two points in Xy ,,—1, lies below
X¢,m,n—1 and the line spanned by any two points in Xp , ,—1 lies above Xy 1 5. See Figure 1.

Hence, the resulting set does not contain ¢ collinear points and neither an m-cup nor an n-cap. Finally,

| Xesmnl = | Xem—1,n] + | Xe,m,n—1]

Y

he(m —1,n) + he(m,n — 1)
-1 (/m+n-5 _8—3 m+n—7 +£—1 m+n-—>5 _6—3 m4+n—17T
2 n—2 2 n—3 2 n—3 2 n—4
-1 (m+n—-4 76—3 m+n—=6
2 n—2 2 n—3 )

as required. O

2.1 Proof of Theorem 1.2

We now use Theorem 2.3 to prove Theorem 1.2, the statement that ESy(n) > (3¢ — 1) -2"75 + 1 for all
l,n > 3.

Proof of Theorem 1.2. Let Xy, be the point set from the proof of Theorem 2.3 with no ¢ collinear points,
no m-cup and no n-cap, recalling that

(—1(/m+n—-4\ (-3/m+n—6
| Xemn| = he(m,n) = 2( >< )
n—2 2 n—3



Figure 2: The lower bound construction for ES,(n).

Let S be a unit circle in the plane centered at the origin and consider the arc « along S from (0,1) to
(1,0). Place a very small flat copy of Xy, 3 near (0,1) and a very small flat copy of X 3, near (1,0). Then
evenly spread out very small flat copies of Xy 24, X¢n-35,..., Xe.n—2—i44i;---,X¢4n—2 along o from top
to bottom, between X, ,, 3 and Xy 3 ,. We make each copy flat enough that the line generated by any two
points in Xy ,—o_jay; lies below Xy ,_o_j 44, for j < ¢ and lies above Xy, _o_j44; for j > 4. This implies
that the union of such sets contains no £ collinear points. See Figure 2. Let P be the resulted point set

n—2
XonsU (U Xé,n+2i,i> UXe3n-

=4

Then

e (D) (E6)6)- () (E05) (7))

i=0 i=0
_ 6_12n72_€_ gn—4
2 2
= (3¢—1)2"".

Now suppose that K C P is a subset in convex position. If K C Xy ,,_o_; 4+; for some ¢ > 0, then |K| < n.
If K C Xy¢n.3, then |K| < n by the structure of X, 3. A similar argument holds if K C X3 .

Suppose then that K has a non-empty intersection with at least two of the parts. Let ¢ be the minimum
integer such that K N X, p_0_;ayi # () and j be the maximum integer such that K N Xon—2—jat+j # .
Assume that 0 < i < j < n — 6, that is, that K omits both the highest and lowest sets in our construction.
By the flatness condition, for all ¢ < s < j, we have |K N X ,,—2_s44s| < 1. Hence,

K|<(4+i-1)+(G—-i-1)+(n-2-j—-1)=n—1.

Suppose now that |[K' N Xy, 3| # 0 and the largest j such that K N Xy, _o_ja1; # 0 satisfies 0 < j <n—6
(or that no such j exists) and |[K N Xy 3,|=0. If |[K N X, 3] > 3, then K N X, 3 is a cup, which means
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Figure 3: Regions T; in the support of X.

that K C X, 3 and hence |K| <n — 1. Otherwise, |[K N Xy, 3| <2and |K| <24+ (n—-3—-j)+j=n—1.
A similar argument applies if |[K N Xy 3, # 0. Finally, if |[K N X, 3] # 0 and |[K N Xy 3, # 0, then
|K| <2+ (n—5)+2=mn—1. Hence, ES¢(n) > (3¢ — 1)2"~° + 1, as required. O

3 A positive fraction cups-caps theorem for arbitrary point sets

In this subsection, we establish a positive fraction cups-caps theorem for arbitrary point sets. Given a k-cap
(k-cup) X = {z1,...,zr}, where the points appear in order from left to right, we define the support of X
to be the collection of open regions C = {11, ...,T}}, where T; is the region outside of conv(X) bounded by
the segment T;z;;1 and by the lines ©;,_12;, T;41%;+2 (where xp11 = @1, T2 = X2, etc.). See Figure 3.

Theorem 3.1. There is a constant ¢y such that the following holds. Let P be an N-point planar set with
no ¢ points on a line and N > c1£ - 23%% . Then there is a k-element subset X C P that is either a k-cup
or a k-cap such that, for the regions T1,...,Tx_1 from the support of X, the point sets P; = P N'T; satisfy
|P;| > N/23%k. In particular, every (k—1)-tuple obtained by selecting one point from each P;, i =1,..., k—1,
s tn convexr position.

Let us remark that a positive-fraction cups-caps theorem for point sets in general position was first proved
by Pach and Solymosi [10] and can be found more explicitly in [12]. Its proof is a simple supersaturation
argument using (1). Unfortunately, this approach for point sets with no ¢ collinear members gives a rather
poor dependency on ¢. Instead, we will make use of simplicial partitions together with the probabilistic
method. First, we need some simple definitions. A cell A C R? is a 1 or 2-dimensional simplex, i.e., closed
segments or triangles. Given a cell A C R?, we say that a line L crosses A if L intersects, but does not
contain, A.

Lemma 3.2 ([2], Section 3). Let P be a set of N points in the plane. Then, for any integer 1 < r < N,
there are pairwise disjoint subsets Py,..., P, of P and disjoint cells A1,..., A, in R2, with P; C A;, such
that |P;| > N/(8r) and every line in the plane crosses at most O(\/r) cells A;.



Let us remark that in the original version of simplicial partitions due to Matousek [7], the cells A; may not
necessarily be disjoint. However, in a newer version due to Chan [2], disjointness can also be guaranteed.

Proof of Theorem 3.1. Let ¢; > ¢y be large constants that will be determined later. Set 7 = ¢22'%*. Then we
apply Lemma 3.2 with parameter r to obtain pairwise disjoint subsets P, ..., P, C P and pairwise disjoint
cells Ay,..., A, C R? such that |P;| > N/(8r) and P, C A;. Moreover, every line in the plane crosses at
most O(y/r) cells A;. Since

32k
‘R‘Zg> 0162
r

= Begarer 7 b

no line contains a cell A;. We call a triple (P;, P;, Ps) of parts bad if there is a line intersecting all three cells
A, Aj and A,. Otherwise, we call the triple (P;, P, Ps) good.

If there are three disjoint cells A;, Aj, A; and a line L that intersects all three, then we can translate and
rotate L so that L is tangent to two of the cells and intersects the third. Hence, for every bad triple
(P;, P}, Ps), there is a line L tangent to two of the cells, say A; and A, such that L intersects A,. For every
pair {7,j}, there are at most 4 tangent lines for A; and A; and, by our application of Lemma 3.2, there are
at most O(+/r) parts A, that intersect any of these 4 lines. Hence, the number of bad triples (P;, P;, P;) is
at most O(r2\/r) = ¢/r%/2, where ¢ is an absolute constant.

We pick each part P; with probability p = 1/( 4¢3/ 4). Then the expected number of parts chosen is pr
and the expected number of bad triples among them is at most

p3c/7"5/2 < p201T5/2 Spr/4.

Hence, by the Chernoff bound, we can select at least 3pr/4 parts P; such that the number of bad triples
among them is at most pr/2. By deleting one part from each bad triple, we obtain pr/4 parts P; such that
every triple among them is good.

For simplicity, let Py, ..., P; be the remaining parts, where t = pr/4 = O(r'/*). By sweeping a vertical line
from left to right, we can greedily pick subsets P/ C P;, 1 < i < ¢, such that no vertical line intersects any
two of the convex sets C; = conv(P/) and

|P| > |Pi|/t > Q(N/r®/%).

Without loss of generality, we can assume that the subsets Py, ..., P; appear from left to right. That is,
the z-coordinate of each point in P/ is less than the z-coordinate of each point in P]f for i < j. Let @ be
the t-element point set obtained by selecting one point from each of the remaining P/. Then @ is in general
position. By setting ¢y sufficiently large, we have |Q| =t = pr/4 > 4%*. By the Erdds-Szekeres cups-caps
theorem (1), there is either a (2k)-cup or a (2k)-cap X C Q. We will assume that X is a (2k)-cap, since a
symmetric argument works otherwise. Let X = {1,...,29;} be the points of X ordered from left to right

and let us now assume that P/ is the part that corresponds to the point z; € X.

Observation 3.3. If 1 € P[,...,qo € Py, then qu,...,qox forms a (2k)-cap.

Proof. Tt suffices to show that every triple in {q1, ..., gax } forms a cap. For the sake of contradiction, suppose
(¢i,9j,qs) is a cup. Since (z;,7;,2;) is a cap, this implies that the convex sets conv(F;), conv(P;), conv(P;)
can be pierced by a line, a contradiction. O

Set X' = {x1,23,...,226-1}. Let T1,..., T} be the support of X’. Then the k parts Pj, Pj,..., Pj, must
lie in 71, ..., Tk, respectively. Moreover, by setting ¢; sufficiently large, each such part Pj; satisfies

N N
/
[Py > Q2 (1“5/4) > 53k



as required. O

4 Big line or big convex polygon — Proof of Theorem 1.1

For the proof of Theorem 1.1, we will need the following more general version of Theorem 2.1. Let K be a
convex set in the plane. Then we say that the point set P avoids K if the line generated by any two points
in P is disjoint from K. We say that K and P are separated if there is a line that separates K and conv(P).
Suppose now that K is a convex set in the plane, P is a finite point set that avoids K and K and P are
separated. Then, given a subset X C P, we say that X is an inner-cap with respect to K if, for each point
x € X, there is a line that separates z from (X \ {z}) U K. Similarly, we say that X C P is an outer-cup
with respect to K if, for each point x € X, there is a line that separates {z} U K from X \ {x}.

Theorem 4.1. There is an absolute constant ¢ > 0 such that the following holds. Let K be a convez set in
the plane and let P be a finite point set in the plane that avoids K. If K and P are separated and

—4
|P| > ¢(min{m —1,n—1} +¢) - <m;—n2 ),

then P contains either £ collinear points, an outer-cup with respect to K of size m or an inner-cap with
respect to K of size n.

Proof. Let |P| = N. Without loss of generality, we can assume that the line L which separates K and P is
horizontal, that K lies below L and that P lies above L. By considering conv(K U {p}) for each p € P, we
can radially order the elements in P = {p1,...,pn} with respect to K in clockwise order, from left to right.

Notice that every non-collinear triple in P is either an inner-cap with respect to K or an outer-cup with
respect to K. Moreover, for ¢ < j < s < t, if {p;,p;,ps} and {p;,ps,p:} are both inner-caps with respect
to K (outer-cups with respect to K), then every triple in {p;,p;, ps,p:} is an inner-cap with respect to K
(outer-cup with respect to K). Thus, by following the proof of Theorem 2.1 almost verbatim, the statement
follows. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let P be an N-element point set in the plane, where N = (2 . 2n+Cvnlogn with ¢
a sufficiently large absolute constant. We can assume that no two points in P have the same z-coordinate.
Moreover, we can assume that there are no ¢ collinear members in P, since otherwise we would be done.

For the sake of contradiction, suppose P does not contain n points in convex position. Set k = 2[y/nlogn].
We apply Theorem 3.1 to P with parameter k + 3, obtaining a subset X = {x1,..., 243} C P such that X
is either a cup or a cap, where we assume that the points of X appear in order from left to right. Moreover,
the regions 71, ..., Tk42 in the support of X satisfy

Set P; C T; N P to be the set of points of P in the interior of T;, for : = 1,...,k + 2. Hence,

30>

N
|Pi| > 932 = W'

(k+3)

We will now assume that X is a cap, since a symmetric argument works in the other case.



Consider the subset P; C P and the region T; for some fixed i € {2,...,k 4+ 1}. Let B; be the closed
segment T;_17;12. The point set P; naturally comes with a partial order <;, where p <; ¢ if p # ¢ and
p € conv(B; Uq). Note that p <; ¢ if p lies on the boundary of conv(B; U q). Following Holmsen et al. [6],
for each P;, let

—_

. h; be the size of the longest antichain with respect to <;,
2. v; be the size of the longest chain with respect to <;,
a; be the size of the largest inner-cap with respect to x;41 that is also a chain with respect to <;,

b; be the size of the largest inner-cap with respect to x; that is also a chain with respect to <;,

AN

w; be the size of the largest inner-cap with respect to B; that is also an antichain with respect to <;
and

6. z; be the size of the largest outer-cup with respect to B; that is also an antichain with respect to <;.

By Dilworth’s theorem [3], we have v;h; > |P;|. We also clearly have z;,a;,b;, w; < n. We now make the
following observations.

Observation 4.2.
Wy +Wq+ - F+wp<n

and
w3 + ws + -+ W1 < N

Proof. Recall that k = 2[/nlogn] is even. Let us consider the sets P, Py, ..., P;. Suppose we have subsets
Sy C Py, 84 C Py,...,Sk C Py such that S; is an antichain with respect to <;, an inner-cap with respect
to B; and satisfies |S;| = w;. Then we claim that S = Sy U Sy U---U Sk is a cap and, therefore, in convex
position. Let p € S;. Then there is a line L through p that has the property that all of the other points in
S; lie below L and L does not intersect B;. Since L does not intersect B;, all of the points in S\ {p} must
lie below L. But then, we must have that

we +wy + -+ w = |S] < n,

as required. A similar argument works for the parts Ps, Ps, ..., Py+1 to prove the second inequality. O

By Observation 4.2, we have

wy + w3 + -+ Wrp1 < 2n.

Let P/ C P; be a chain with respect to <;. Clearly P/ avoids z; and z;+1. Moreover, if P/ contains an

outer-cup with respect to x;, then it must be an inner-cap with respect to ;1. Therefore, if

m+n4>

P/ i —1,n-1 0) -
|P/| > c¢(min{m — 1,n — 1} + ¢) ( "9

then, by Theorem 4.1 applied to the convex set K = {x;}, the set P/ contains either an outer-cup with
respect to x; of size m, which is an inner-cap with respect to x;41 of size m, or an inner-cap with respect to

x; of size n. See Figure 4.

Observation 4.3. If there are subsets Y;_1 C P;_1 and Y; C P; such that Y;_1 is a chain with respect to
<i—1 and an inner-cap with respect to x; and Y; is a chain with respect to <; and an inner-cap with respect
to x;, then Y;_1 UY; is in convex position.
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Figure 4: Four points in P/ that form an outer-cup with respect to x;, which is an inner-cap with respect to

Lit1-

Figure 5: An inner-cap of size 3 with respect to x; in P;_; and an inner-cap of size 4 in P; with respect to
x;, which gives 7 points in convex position.

Proof. Tt suffices to show that every four points in Y;_; UY; are in convex position. If all four points lie
in Y;, then they are in convex position. Likewise, if they all lie in Y;_1, they are again in convex position.
Suppose we take two points pi,ps € Y;_1 and two points p3,ps € Y;. Since Y;_; and Y; are both chains
with respect to <;_; and <; respectively, the line spanned by pi,ps does not intersect the region 7; and
the line spanned by ps,ps does not intersect the region T; 1. Hence, p1,p2,ps3, p4 are in convex position.
Now suppose we have pi,ps,p3 € Y;_1 and py € Y;. Since the three lines Li, Lo, L3 spanned by p1, ps, p3
all intersect the segment B;_1, both z; and p4 lie in the same region in the arrangement of L; U Ly U L3.
Therefore, p1, p2, p3, ps are in convex position. The same argument works for the case where p; € Y;_; and
D2,P3,pa € Y;. See Figure 5. O

By Observation 4.3, we have a; + b;11 < n for all . By applying Theorem 4.1 with K = {z;}, we have

o <c(1z+n)((“" *6(3;(11’)@21)_4) :c(un)(a";lfl‘z).
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Likewise, by applying Theorem 4.1 with K = B;, we have

hi < c(é-i—n)((wi +(110)i1(f;_+21) _4> =c(t+n) (wJZ_ y 2)'

Putting everything together, we obtain

Nk k+1
=2

k+1

H ’Uihi
=2

k+1

i +bi—2 i T2 —2
H02(£+”)2 a; + w; + 2
. ai—l wi—l
=2
k+1

< H (0 4 n)?2%t0i (2p)wi
i=2

IN

IN

< (e(0+ n))2kolh+1)nt2nlog(2n)

where c is the absolute constant from Theorem 4.1. Therefore, we have
N < C2(£+n)22n+3(n/k’) 10g(2n)+40k.
Since k = 2[y/nlogn], this gives us
N < 62 . 2n+O(\/n10gn).

Since |P| = N = 2 . 2ntCVnlogn 1y setting C sufficiently large, we have a contradiction. O

Acknowledgements. This research was initiated during a visit to the American Institute of Mathematics
under their SQuaREs program. We are grateful to Sam Spiro for pointing out a typographical error in a
previous version of this paper.

References

[1] J. Beck, On the lattice property of the plane and some problems of Dirac, Motzkin and Erdés in
combinatorial geometry, Combinatorica 3 (1983), 281-297.

[2] T. M. Chan, Optimal partition trees, Discrete Comput. Geom. 47 (2012), 661-690.
[3] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161-166.
[4] P. Erdés and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935), 463-470.

[5] P. Erdés and G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci.
Budapest. Edtvos Sect. Math. 3-4 (1960/1961), 53-62.

[6] A. Holmsen, H. N. Mojarrad, J. Pach and G. Tardos, Two extensions of the Erdds—Szekeres problem,
J. Eur. Math. Soc. 22 (2020), 3981-3995.

11



[7] J. Matousek, Efficient partition trees, Discrete Comput. Geom. 8 (1992), 315-334.
[8] J. Matousek, Lectures on Discrete Geometry, Springer-Verlag, New York, Inc., 2002.

[9] G. Moshkovitz and A. Shapira, Ramsey theory, integer partitions and a new proof of the Erdés—Szekeres
theorem, Adv. Math. 262 (2012), 1107-1129.

[10] J. Pach and J. Solymosi, Canonical theorems for convex sets, Discrete Comput. Geom. 19 (1998),
427-435.

[11] K. Phelps and V. Rddl, Steiner triple systems with minimum independence number, Ars Combin. 21
(1986), 167-172.

[12] A. Pér and P. Valtr, The partitioned version of the Erdés—Szekeres theorem, Discrete Comput. Geom.
28 (2002), 625-637.

[13] A. Suk, On the Erdés—Szekeres convex polygon problem, J. Amer. Math. Soc. 30 (2017), 1047-1053.

[14] E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983),
381-392.

12



	Introduction
	A cups-caps theorem for arbitrary point sets
	Proof of Theorem ??

	A positive fraction cups-caps theorem for arbitrary point sets
	Big line or big convex polygon – Proof of Theorem ??

