CONFLICT-FREE HYPERGRAPH MATCHINGS AND COVERINGS
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ABSTRACT. Recent work showing the existence of conflict-free almost-perfect hypergraph match-
ings has found many applications. We show that, assuming certain simple degree and codegree
conditions on the hypergraph H and the conflicts to be avoided, a conflict-free almost-perfect
matching can be extended to one covering all vertices in a particular subset of V(#), by using
an additional set of edges; in particular, we ensure that our matching avoids all additional
conflicts, which may consist of both old and new edges.

This setup is useful for various applications in design theory and Ramsey theory. For ex-
ample, our main result provides a crucial tool in the recent proof of the high girth existence
conjecture due to Delcourt and Postle. It also provides a black box which encapsulates many
long and tedious calculations, greatly simplifying the proofs of results in generalised Ramsey
theory.

1. INTRODUCTION

Hypergraph matching problems can be used to model various central questions in combinat-
orics, and consequently have been studied for many years. Notably, Frankl and Rédl [11], as
well as Pippenger [17], proved that any k-uniform hypergraph (k fixed) on n vertices, in which
each vertex belongs to roughly d edges and any pair of vertices belongs to at most o4(d) edges,
contains a matching covering (1 — o4(1))n vertices. These theorems have undoubtedly had a
vast number of applications.

More recently, Delcourt and Postle [7], as well as Glock, Joos, Kim, Kiihn, and Lichev [12],
generalised this result by introducing so-called conflict-free matchings. Here a conflict is a set
of disjoint edges which is forbidden to be a subset of the matching. The main contribution
in [7, 12] is as follows: under the same conditions as Frankl, Rodl, and Pippenger, and under
sensible conditions on the set of conflicts, one can find an almost perfect matching that avoids all
conflicts. This can again be applied to a number of problems, such as high girth decompositions,
problems considered by Brown, Erdés and Sés [4] and various questions in generalised Ramsey
theory [1, 3, 13, 14, 16].

The unfortunate drawback of these theorems is that they deal only with almost-perfect match-
ings, whereas in many applications it is desirable to obtain perfect matchings or at least almost
perfect matchings that cover a specified vertex subset entirely. Delcourt and Postle describe a
setup in which this obstacle can be overcome in a particular setting. Specifically, they consider
hypergraphs which are bipartite in the sense that the vertex set can be partitioned into two
parts A and B with each edge containing exactly one vertex from A (and they assume that
the vertex degrees in A are slightly higher than in B), in which case they find a conflict-free
matching covering all vertices of A (the matching is A-perfect). The primary limitation of the
bipartite hypergraphs in [7] is the fact that edges are only allowed to contain exactly one vertex
from A, whereas in several applications this is not the case.

Our main contribution is to obtain a stronger theorem in a more general setup: we work
with a ‘tripartite’ hypergraph for which the vertex set has a partition into three sets P,Q, R,
and we seek a P-perfect matching. The edge set is divided into two parts: edges containing p
vertices from P and ¢ vertices from (), and edges containing one vertex from P and r vertices
from R. In this setup we prove the existence of a P-perfect matching, avoiding conflicts which
may consist of both types of edges (almost all vertices in P are covered by edges of the first
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FI1GURE 1. Two matchings M1 C H; and My C Hs in the hypergraph H, whose
union forms a P-perfect matching M; here p =2,q =4,r = 2.

type and a few vertices in P are covered by edges of the second type). The proof generalises a
‘two-stage method’ for constructions in generalised Ramsey theory, first introduced by Bennett,
Cushman, Dudek, and Pratat [2], and subsequently used to prove various other results in this
area; our theorem simplifies all such proofs significantly so that all technical computations are
no longer needed, and mostly back-of-the-envelope calculations are sufficient.

This framework also turns out to be useful in other settings, including high-girth coverings
and designs; these applications are discussed further in Section 2. We expect that there will be
further applications in future.

1.1. Tripartite Matching Theorem. Given two hypergraphs H and C, say that C is a conflict
hypergraph for H if V(C) = E(H), and in this case call the edges of C conflicts. Say that a set
of edges ¥ C H is C-free if it does not contain any conflict from C. Suppose that we are given
the following setup:

S1) integers £ > 2,d > 0,p>1,q > 0,r > 1 with p+ ¢ > 2 and real € > 0;

2) disjoint sets P, @, R with d* < |P| < |[PUQ| < exp(das);

hypergraph H; whose edges consist of p vertices from P and q vertices from Q;
hypergraph Ho whose edges consist of a single vertex from P and r vertices from R;
conflict hypergraph C for H;;

conflict hypergraph D for H := H1 U Ho.

Assume that H satisfies suitable degree conditions, and further that both C and D satisfy
suitable boundedness conditions, all of which are specified in Section 3 in terms of d and e.

—

(

(S
(S3
(S4
(S5
(S6

Theorem 1.1. Given p,q,r,{ as above, there exists £g > 0 such that for all € € (0,¢¢), there
exists dg such that given the above setup, the following holds for all d > dy: there exists a
P-perfect C U D-free matching M C H. Furthermore, at most d_54]P] vertices of P belong to
an edge in Hqo N M.

The proof of Theorem 1.1, given in Section 5, consists of two stages, as mentioned: we first
apply Theorem 4.2, a variant of the original conflict-free hypergraph matching theorem [12],
to the hypergraph H; in order to obtain a C-free matching M; covering all but at most a
d—=" fraction of the vertices of P with edges from H;. In the proof of Theorem 4.2 (which we
apply as a black box), this matching is chosen randomly one edge at a time, and accordingly
can be thought of as ‘pseudorandom’ in an appropriate sense; specifically, we are able to show
that certain weight functions on edge sets have roughly their ‘expected’ value when summed
over M1. To extend M to a P-perfect matching, for each vertex x € P which is not already
covered, we randomly choose some edge from Hs to cover x, and use the Lovédsz Local Lemma
to show that with non-zero probability the resulting set My of edges is indeed a matching,
and the union M of our two matchings is D-free. In order to apply the local lemma, we use
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the aforementioned weight functions to bound the number of potential conflicts which could be
introduced when choosing an edge from Hs to cover each xz € P.

1.2. Notation. Write [i,n] = {i,...,n}, so [n] = [1,n]. Unless otherwise stated we identify
hypergraphs with their edge sets, writing e € G to mean e € E(G). Given a set of vertices
U C V(G) in a hypergraph G, write dg(U) for the degree of U in G, that is the number of
edges of G containing U; in the cases U = {u} and U = {u, v}, where U consists of one or two
vertices, we just write dg(u) and dg(u,v) respectively. We omit the subscript if G is obvious
from context. Write A;(G) for the maximum degree dg(U) among sets U C V(G) of j vertices.
Given a subset of the vertices V' C V(G), write Ay (G) for the maximum degree dg(u) of any
single vertex u € V, and similarly dy(G) for the minimum degree; assume V' = V(G) if not
specified. Given j € N, write GU) := {E € G:|E| = j} for the subhypergraph of G containing
only those edges of size j.

We omit ceiling and floor symbols whenever they do not affect the argument. We refer readers
to the Glossary section at the end of the paper for a summary of more specific notation which
appears throughout the paper.

1.3. This paper. We start by outlining two significant applications of Theorem 1.1 in Section 2.
We then complete the formal statement in Section 3 by listing the various conditions required on
our hypergraph and conflicts. In Section 4, we state our prerequisites, in particular Theorem 4.2,
a variant of the main theorem from [12], as well as a more complicated but weaker set of
conditions, for which we will in fact prove our main theorem. Finally, the proof itself is given
in Section 5, which begins with a more detailed outline.

2. APPLICATIONS
We briefly discuss here two applications of Theorem 1.1.

2.1. Conflict-free coverings and large girth designs. For a hypergraph #H, we call a set
of edges M C H a covering of H if all vertices belong to some edge in M, and say it is perfect
if each vertex belongs to exactly one edge. In the setting of Frankl, R6dl and Pippenger, the
existence of almost perfect matchings and almost perfect coverings (coverings in which most
vertices belong to exactly one edge) is equivalent and one object can easily be transformed into
the other one. However, it is not obvious that just greedily adding edges to turn an almost
perfect matching into an almost perfect covering can be done without introducing conflicts;
Theorem 2.1, which follows easily from Theorem 1.1, resolves this problem. It represents the
natural analogue of Theorem 4.1, providing a covering in place of a matching.

Theorem 2.1. Fiz {,k > 2. There exists ey such that for all € € (0,eq), there exists dy such
that for all d > dy the following holds. Suppose H is a k-graph onn < exp(d‘ss) vertices. Assume
that (1 —d=5)d < 6(H) < A(H) < d and Ax(H) < d*=¢. Let C be a (d, £, )-bounded conflict
hypergraph for H. Then there is a C-free covering M C H such that all but d="n vertices are
covered exactly once, and no vertex is covered more than twice.

One of the original motivations for studying hypergraph matchings, and in particular conflict-
free matchings, was the problem of finding almost-perfect Steiner systems of large girth. In
general, a partial (m, s,t)-Steiner system is a collection S of subsets of [m], each of size s, such
that every subset of [m] of size ¢ is contained in at most one element of S; it is approzimate if
it has size (1 —o0(1))("?)/({). The girth of S is the smallest integer g > 2 such that some set of
(s —t)g + t vertices induces at least g sets in S.

Recently, Delcourt and Postle [8] proved the existence of perfect (m, s, t)-Steiner systems of
large girth, via a new refined absorption method. Their result provides a common generalization
of the existence conjecture for designs originating from the 1800s and Erdés’ conjecture from
1973 on the existence of high girth Steiner triple systems. Our main result, Theorem 1.1, is a
crucial tool in their proof (Theorem 2.10 in [8]). As noted earlier, our proof method uses the
main result of [12] which employs the random greedy process. On the other hand, Delcourt
and Postle’s proof (to appear in a forthcoming version of [7]) of their Theorem 2.10 from [8]
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uses the nibble method. A simpler version of Theorem 1.1, without conflicts, is also used by
Delcourt and Postle [9], as well as by Delcourt, Postle, and Kelly [5, 6] in other applications of
their refined absorption method.

Conflict-free hypergraph matchings can also be used to find approximate systems for a much
more general class of quasirandom hypergraphs, where, for example, we restrict the choice of
elements of S to a randomly chosen subset of ([T:]); see Theorem 1.4 of [12]. The following
analogous covering result can be easily deduced from our Theorem 2.1. Given real numbers
a,b,c, we writea=btctomeanb—c<a<b+ec

Theorem 2.2. For all cg > 0, > 2 and s > t > 2, there exists g > 0 such that for all
e € (0,e9), there exists mo such that the following holds for all m > mgy and ¢ > ¢o. Let G be a
t-graph on m vertices and let IC be a collection of sets of size s which induce cliques in G such
that any edge is contained in (1 £m=%)em*~t elements of K.

Then, there exists a subset S C K such that every edge of G is contained in at least one
element of S, the proportion of edges of G contained in more than one element of S is op (1),
none are contained in more than two, and any subset of S of size j, where j € [2,(], whose
elements have pairwise intersections of size at most t — 1, spans more than (s —t)j +t points.

2.2. Generalised Ramsey numbers. Given graphs G and H, and ¢ € N, define the gener-
alised Ramsey number r(G, H,q) to be the minimum number of colours needed to colour the
edges of G in such a way that every copy of H receives at least ¢ distinct colours. Bennett,
Cushman, Dudek, and Pralat [2] showed that r(K,, K4,5) = 5n/6 + o(n), answering a ques-
tion of Erdés and Gyérfas, by introducing the aforementioned two-stage method in which they
first colour most of the edges of K, using a modified triangle removal process (requiring com-
plicated technical analysis), and then complete this to a full colouring using the Lovasz Local
Lemma. Joos and Mubayi [14] simplified this method greatly by encoding the first stage as a
suitable conflict-free hypergraph matching problem and applying the main theorem from [12] as
a black box, and demonstrated its versatility further by showing that r(K,, Cy,3) = n/2+o(n).
This approach has subsequently been used to prove various similar and more general results
[1, 3, 13, 14, 16].

Our main theorem (Theorem 1.1) formalises this two-stage method in a single statement,
from which all of these colouring results follow; another main contribution of this paper is to
consolidate all of the calculations required for the second stage, so that applications need only
focus on constructing appropriate hypergraphs and conflicts satisfying our conditions. This
massively simplifies the proofs of all existing results, since it now suffices to only check the
orders of magnitude of the numbers of different types of conflicts. For example, one may obtain
a concise proof of the following result which was stated (without proof) very recently by Bal,
Bennett, Heath, and Zerbib [1]. Given k > 2, write Kfi for the complete k-graph on n vertices,
and Cé“ for the k-uniform tight cycle of length ¢; that is, edges e1,...,ep on vertices vy, ..., vy
such that e; = {v;,...,vi4x-1} (modulo ¢) for each ¢ € [¢].

Theorem 2.3. For all k > 2 and £ > k + 2, we have r(KF,CF k+ 1) <n/(f — k) + o(n).

We remark that the factor £ — k above is best possible assuming a well-known conjecture
about the Turdn number of tight paths in hypergraphs.

The proofs of Theorems 2.1, 2.2 and 2.3 are fairly routine and short. For the convenience of
the reader we provide them in the arXiv version of this paper in the appendix [15].

3. CONDITIONS FOR THE MAIN THEOREM

We now specify the conditions on H,C, and D required for Theorem 1.1 to hold, thus com-
pleting its formal statement. Throughout this section, we work in the setup from Section 1.1,
recalling (S1)—(S6).

3.1. Degree conditions on H. We require that the hypergraph H = H{UHs with Hy, Ho # )
satisfies the following conditions.

(H1) (1—d=5)d < 6p(H1) < A(H1) < d;
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(H2) Ag(Hy) < d- &,
(H3) Ap(Hy) < d 5P(7'f2)
(H4) d(z,v) < d <0p(H2) for each x € P and v € R.

This means that H; is essentially regular for vertices in P and has small codegrees, although
vertices in ) are allowed to have much lower (but not higher) degrees. Meanwhile in Hs, every
vertex in P must have degree at least a d—" proportion of the maximum degree in R, and few
edges in common with any particular vertex in R. These conditions are used to ensure that
we may choose an edge of Hy containing each x € P such that the set of edges chosen do not
overlap.

3.2. Boundedness conditions on C. The conflicts of C consist only of edges from #H1, and
are avoided directly by Theorem 4.2, so require the same boundedness conditions as in [12]; the
conditions we present here are not the most general possible, but suffice for most applications.
For any edge e € H;, we write NC(,Z)( ) ={f€Hi:{e, f} €C}. Given £ > 2 and d,e > 0, say
that C is (d, ¢, e)-bounded if
(C1) 2<|C| < /L forall C e
(C2 (C(J ) < td?= for all j € [2,4];
(C3) Ay(CU ) d7=7'=¢ for all j € [2,¢] and j' € 2,7 — 1];
(C4 |{f 6 N ( ) ve fH <d¢forall e € E(H1) and v € V(H);
(C5 |N ( )ﬁN ( )| < d'~¢ for all disjoint e, f € E(H1).

Note that, in many applications, all conflicts of C have size at least 3, so conditions (C4) and

(C5) are vacuously true. For further intuition behind conditions (C1)—(C5), we refer the reader
to the proof overview (Section 1.1) in [12].

)
) A
)
)

3.3. Boundedness conditions on D. Since it may be the case that the conflicts of D consist
only of edges from Hs, or of two parts from H; and Ha, they must satisfy a new set of conditions
to be avoided. We extend our previous notation by writing DU1:72) for the set of conflicts in D
consisting of j; edges from H; and js edges from Ho. Similarly, we now write

(3.1) Aj; (D) = max {dp(pl UR):F € (Hl) Fy € (H,?) } .

]1 J2
Given a vertex = € P, write also D, for the set of conflicts in D containing x in their Ho-part,
and likewise D, ,, for those containing both z and y. Then say that D is (d, ¢, €)-simply-bounded
if the following hold for all z,y € P, and j; € [0, /], jo € [2,/].
(D1) 2< \D NHa| < ]D| < ¢ for each conflict D € D;
(D2) |D 2| < @ir+e' 5 p(Hy )i2;
(D3) Ay (DI ) < I <6 (Mo for each € [
(D4) ID a2 | < d20p(Ha).

Referring to the brief proof outline in Section 1.1, the bound in (D2) can be understood
heuristically as follows. For D € D, to be contained in M, all edges of D N1 must be chosen
in M7 and all edges of DNHo must be chosen in Ms; note in particular that, for the latter to be
possible, all vertices y € PN{J(DNHz2) must be left uncovered by M;. Under the heuristic that
edges are chosen roughly uniformly and independently by Theorem 4.2, the probability of the j;
edges of DN H; all being contained in M is roughly d~7*. Under the heuristic that M/ covers
vertices of P roughly uniformly, the probability that even one vertex y € PN |J(D NHs) \ {x}
is left uncovered is roughly a—=". Therefore, after choosing M7, we expect there to be at most
d€4_636p(7-[2)j2 conflicts D € D, which pose a threat when choosing Ms. Ignoring issues of
dependence, each of the remaining jo edges of D are then included in My with probability at
most §p(Hz) ™!, so in total we expect at most d°' =" = o(1) conflicts from D, to be contained
in M. Intuitively, (D3) and (D4) behave similarly to (C3), to ensure that conflicts are ‘well
spread-out’ in the hypergraph, which avoids the number of potential conflicts being dominated
by rare events with large effects.
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We may now formally re-state Theorem 1.1.

Theorem 3.1. Given p,q,r,{ satisfying (S1), there exists g > 0 such that for all € € (0, ),
there exists dy such that, for all d > dy, given H,C, D satisfying (S2)-(S6), the following holds.
Assume that ‘H satisfies (H1)-(H4), C is (d, ¥, e)-bounded, and D is (d,?,¢e)-simply-bounded.
Then there exists a P-perfect C U D-free matching M C H. Furthermore, at most d*€4]P|
vertices of P belong to an edge in Ho N M.

We actually prove Theorem 3.1 for a slightly more general set of conditions, given in Sec-
tion 4.3, which in particular allow for conflicts D with j, = |D NHz| = 1; in many applications,
however, this type of conflict does not occur.

4. PREPARATION FOR THE PROOF

In this section, we begin by deducing our required variant of the conflict-free hypergraph
matchings theorem of [12], as well as giving the more general set of conditions under which we
prove Theorem 3.1. We then proceed with the proof itself in Section 5.

4.1. The Conflict-Free Hypergraph Matchings Theorem. To state the theorem we need,
we must first make a further definition; assume ¢ is a given integer, as in Section 1.1. Recalling
that we write H to refer to E(#), and given j € N U {0},! say that w: (?) — [0,4] is a
j-uniform /¢-test function for H if w(E) = 0 whenever E € (?j) is not a matching. Write
w(X) = cxw(z) for X C (7;), and w(E) = w((f)) for general £ C H.

Given a vertex v in a hypergraph H, the link of v in H is the hypergraph H_, = {E\{v}: E €
H,v € E} on vertex set V(H)\{v}, that is the set of all partial edges which are completed by v to
form an edge of H. Now say that a pair of edges e, f € H is an (¢, C)-conflict-sharing pair (or just
e-conflict-sharing pair since C is usually obvious from context) if |(C_.)U") N (C_;)VU)| > @/’ ~=
for some j' € [¢ — 1]. Then given a conflict hypergraph C for H, a j-uniform /-test function w
for H, and d,e > 0, we say that w is (d,e,C)-trackable if

(W1) w(H) > d'*s;

(W2) w({E € () : ED E'}) <w(H)/d""*/? for all j € [j — 1] and E' € ();
(W3) w(FE) =0 for any E € (?J{) with e, f € E for some 2e-conflict-sharing pair e, f € H;
(W4) w(E)=0for all E € (7;) which are not C-free.

We will make use of trackable test functions in our proof to bound the number of mixed
conflicts whose H;i-part is chosen in the first matching, meaning that their Ho-part needs to
be avoided in the second matching. For some intuition behind conditions (W1)—-(W4), we refer
the reader again to [12], specifically the explanation of their conditions (Z1)-(Z4) in Section 3.
We may now state the original theorem, a simplified variant of the main result from [12]. Note
that the absence of conflict-sharing pairs in the matching is not given by any of the theorem
statements in the original paper, but follows from the proof, in which such pairs are added as
conflicts of size 2.2

Theorem 4.1. For all k,¢ > 2, there exists £g > 0 such that for all € € (0,e0), there exists
do such that the following holds for all d > dy. Suppose H is a k-graph on n < 2exp(d53)
vertices with (1 —d=°)d < 6(H) < A(H) < d and Ax(H) < d*¢ and suppose C is a (d, £, €)-
bounded conflict hypergraph for H. Suppose also that ) is a set of (d,e/10,C)-trackable (-test
functions for H of uniformity at most £ with |Y| < exp(dsg). Then, there exists a C-free matching

INote that in the original paper j is assumed to be strictly positive, but the conclusion of the theorem still
holds in the trivial case j = 0. This will simplify our notation later.

2See Lemmas 8.5 and 8.6 in [12], which refer to conflict-sharing pairs as bad pairs; note that while the
statements given there only avoid e/4-conflict-sharing pairs, this can easily be improved to €/2 by being more
conservative with ¢, provided that all test functions are zero on sets containing an ¢/2-conflict-sharing pair; this
follows from (W3), noting that our condition (W3) uses 2¢ in place of ¢, unlike in the original paper. Similarly,
taking such extra care allows us to require only that test functions are (d,e/4,C)-trackable, rather than with e
as in the original statement, and to replace € by €/2 in condition (W2).
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M CH of size at least (1 — d*253)% with w(M) = (1 £d~=")dJw(H) for all j-uniform w € Y.
Furthermore, M contains no (¢/2,C)-conflict-sharing pairs.

In order to prove Theorem 3.1, we require a slight extension, for which we make another defin-
ition; we say a j-uniform test function w is (d, e, C)-semi-trackable if it satisfies the alternative
conditions

(W1*) w(H) < di+?;
(W2*) w{E e () : EDE'}) <e 'di™ for all j € [j — 1] and E' € (7));

as well as (W3) and (W4). Observe also here that, if (W1) holds, then (W2*) implies (W2), so
we will usually just check (W2*) when proving that test functions are trackable.

For such functions, it is not in general possible to guarantee the same estimate w(M) =
(1+ d_ag)d_j w(H), because the heuristically expected value is too small and therefore subject
to outlying events; for a simple example, let v € V(H), choose Z to be some set of size d(v)/2 of
edges that contain v, and take w as the indicator function of Z, then (heuristically, imagining
M to be appropriately pseudorandom), the expected value of w(M) is (approximately) 1/2
but clearly we cannot guarantee concentration close to 1/2 since w takes values in {0,1}. It
is however obvious in this case that w(M) can be bounded from above, namely by 1. More
generally, we might hope that for semi-trackable test functions, we can make use of the bound
on w(H) to guarantee that at least w(M) is not too large; indeed, this turns out to be possible.

Theorem 4.2. Assume the setup of Theorem 4.1, but allow Y to contain also some (d,e/10,C)-
semi-trackable (-test functions. Then there exists a C-free matching M C H of size at least
(1— d_‘fg)%, containing no (£/2,C)-conflict-sharing pairs, with w(M) = (1+d~")d~Jw(H) for
all j-uniform trackable w € Y and w(M) < d*/* for all semi-trackable w € Y.

Proof. Our strategy will be to extend H using some new dummy vertices and edges, allowing
us to extend w to a new test function w’ which agrees with w on H, but is also positive on
sufficiently many subsets of the new edges to satisfy (W1). We then obtain the usual estimate
for the value of w’(M), which in particular gives us the required crude upper bound for w(M).

Let S be a set of m new vertices, disjoint from V (), with m chosen such that (1 —d¢)d <
(Tkn:ll) < d, noting that this is possible for e < (k — 1)~'. Note that m < kd'/(#~1 and d¢ <
m < n since d < (Zj) Let K be the complete k-graph on vertex set S, and define H’ to be the
(disjoint) union of H with ¢ vertex-disjoint copies of K, say K1,..., Ky on vertex sets Sy, ..., Sy,
respectively. Then, by definition, H’ is essentially regular as required for Theorem 4.1, and
Ay (K) < mF=2 < kF=2q1=1/(k=1) < =4 as we can choose g9 < (k —1)~1/2.

For each i € [(], choose any subset T; C S; of size t = 2d°/°, and enumerate its vertices
arbitrarily as v!,...,vi. For each j € [¢], define

!/ !/
Z; = {{el,...,ej} € <7;7L> :3s € [t] such that e; N T; = {v'} Vi € []]} C <7j>
We claim that the indicator function 1(Z;) is a (d,e/5,C)-trackable ¢-test function, for each
Jj el

Clearly every element of Z; is a matching. For (W1), observe that d//°> < |Z;| < 2d7+5/5,
since there are t = 2d°/% possible choices of s, and then at least (1 — d~</3)d (and at most d)
choices for each edge e;. Indeed, the number of choices for e; is exactly the number of edges
containing v’ but no other element of T;; by (H2), the number of edges containing v’ and any
other element u € T} is bounded by 2d/5 - d*~¢ < 2d'~¢/%, so the desired bound follows.

For (W2*), note that given a set E’ € (?/) for some j' € [j — 1], which belongs to some set
E € Zj, the choice of s € [t] is fixed by E’, as are j' of the edges of E. Hence 1(Z;)({F €
(7;) :E D E'}) <d’77'. The conditions (W3) and (W4) are trivial since there are no conflicts
containing edges from H’ \ H.
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Now we may define, for each® j € [/] and each j-uniform semi-trackable w € ), a new
test function w’: (7;[/) — [0,1] by w'(E) = w(E) + 1(Z;)(E) for E C H, and w'(E) = 0
otherwise, and observe that w’ is (d,e/10,C)-trackable. Indeed, w'(H') = w'(H) > |Z;] >
dte/5 so (W1) is satisfied, and (W2) follows from (W2*) for w and 1(Z;), using the fact
that (e 4+ 1)d/~7" < d=7'~¢/19%/(#). The remaining conditions (W3) and (W4) for w’ follow
immediately from the fact that they hold for w and 1(Z;). Note that C is also (d, ¢, €)-bounded
for H' by definition. Since also w'(H) < 3d7*+¢/>, applying Theorem 4.1 to #' with each w
replaced by the corresponding w’ gives us a C-free matching M’ C H' containing no (g/2,C)-
conflict-sharing pairs such that w'(M') = (1 +d~")d~Iw/(H') < 4d°/5.

Let M == M'NH. Then w(M) < w'(M’) < d*/* as required. Clearly M is C-free and
contains no conflict-sharing pairs. Since |V (H')| < (¢4 1)|V(H)], it follows that M covers all
but a d—="-fraction of H. O

4.2. The Lovasz Local Lemma. We now state our other prerequisite, the well-known Lovész
Local Lemma, a version of which was originally introduced by Erdés and Lovész [10]. The form
we use is an immediate corollary to the general form proved by Spencer [18].

Lemma 4.3. Let A = {A;,..., A,} be a finite set of events in a probability space, and suppose
that, for each i € [n], there exists a set B(i) C [n] such that A; is mutually independent
from {A; : j € [n]\ B(i)}. Suppose also that for each i € [n] we have P[A;] < 1/2 and
> jem(i) P[4j] < 1/4. Then PIAT N--- N AJ] > 0.

4.3. More general conditions. We prove Theorem 3.1 using slightly weaker conditions than
those given in Section 1.1, allowing the case jo = |D N Ha| = 1, and giving more freedom to
high-degree vertices in P. Given a set of edges £ C H, write

Vp(E) ={y € P:yceforsomeec ENHsz}

for the set of vertices of P found in edges of Hs in E. A limitation of conditions (D1)—(D4) is
that the number of conflicts is governed uniformly by the the minimum degree in Hs. Intuitively,
given some conflict E € D, if the vertices in Vp(F) have much higher degrees in Hs, then it
should be easier to avoid F because we have more flexibility when choosing edges of Ho which
are used to cover the vertices of Vp(E) in M. As such, we can afford to have more conflicts
involving vertices of P with higher degrees in Hs; this motivates the following quantity, which
allows us to weight these conflicts accordingly when bounding their number.
We define the unavoidability of E to be

(4.1) AE) =[] &),
yEVp(E)

and extend this definition to a conflict hypergraph G by taking the sum over all conflicts, that
is A(G) == > peg A(EF). This has a natural interpretation. Suppose we select for each vertex
v € P one edge in Hy containing v independently and uniformly at random. Then A(G) is the
expected number of conflicts in G of which all edges are selected.

Given 71,75 € [¢] and sets C' € (7;/1) and D € (7;,2), write Giop) = {£ € G: CUD C E}.
Then we may define ' ’

A —
(4.2) Aji,jé(g) = Ce(’;,?)lit?e(’;?) A(Gic,n));
1 2

which can be thought of as analogous to the maximum (ji, j3)-degree Ay 5 (G) (recalling the
definition (3.1)), but with each conflict weighted by its unavoidability. Say that D is (d, ¢, ¢, 6)-
mized-bounded if the following hold for all z,y € P and j; € [0, /], j2 € [/].
(E1) [IDNHz| > 1 and |D| € [2,¢] for each conflict D € D;
(E2) A('Dg(gjl’jz)) < dj1+5;
(E3) AﬁO(Dg(gjl’jQ)) < d=3'=¢ for each j' € [41];

3Note that the case 7 =0 is trivial.
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(E4) A(Dgfijh)) < d~¢ whenever js > 2;
(E5) Ag1(DY"Y) < fdir;
(E6) ijﬁl(Dg(cjl’l)) < d=7'=¢ for each j' € [j; — 1].

Observe that the conditions (E2), (E3), (E4) are analogous to (D2), (D3), (D4), except
conflicts are now weighted by their unavoidability; in particular, for a conflict E € DU142) it is
always the case that A(E) < dp(Hz) ™72, so (d, £, ¢)-simply-bounded implies (d, ¢, e, e*)-mixed-
bounded. Indeed, (D2), (D3), (D4) imply (E2), (E3), (E4), respectively, using the fact that
A(E) < |E|6p(H2) ™72 for every E C DUt72) If (D1) holds then so does (E1), and in this
case both of the conditions (E5) and (E6) are vacuous. Note also that conditions (E5) and
(E6) are stronger versions of (E2) and (E3) in the case that jo = 1, requiring small degrees
and codegrees for every individual edge e € Hs, rather than just for the sum over all such e
containing a particular vertex = € P.

In a similar fashion, we may also weaken the degree conditions (H3) and (H4) slightly. Define
analogously the unavoidability of a vertex v € R to be

Aw) =Y M

P d?—[z (.7})

Then we may require only that for all z € P and v € R,

(H3') A(v) < ¢ (and in particular §p(Ha) > 1);

(He') dyy, (,v) < d™ dyyy ().

Recalling that each edge of Ho contains exactly one vertex of P, note that by definition
Aw)op(Hz) < Y epd(z,v) = dy,(v) so (H3) implies (H3'), and clearly (H4) implies (H4').
Observe furthermore that (H3') and (H4') together imply that dp(Hs2) > d°; indeed, by (H3')
we must have dy, (x) > 1 for every x € P, so there is some v € R with dy,(z,v) > 1, and then
by (H4') this means dyy, () > d°.

5. PROOF OF THEOREM 3.1

We assume the setting described in Theorem 3.1, and devote the entirety of this section to
its proof. However, write D’ in place of D, and assume that it is a (d, ¢, , €*)-mixed-bounded
conflict hypergraph. Introduce new constants ¢/, T',i* € N according to the hierarchy 0 < 1/d <
eI/l < T < 1/i* <1/, 1/E.

5.1. Proof outline. Recall our two-stage proof method outlined in Section 1.1. We first apply
Theorem 4.2 to H; to give a conflict-free matching M C H; covering most of the vertices
of P. We then extend this to a covering of P by randomly choosing, for each vertex x € P
which is not already covered by M1, some edge from Ho to cover x; call the resulting set of
edges Mo C Ho. Using the Lovasz Local Lemma, we show that with non-zero probability M
is indeed a matching, and the full matching M = M; U M is conflict-free. This approach
presents several challenges which must be overcome.

Firstly, Theorem 4.2 requires H; to be essentially vertex-regular, but (H1) provides no lower
bound on the degrees of vertices in ). We solve this in Section 5.2 by adding dummy vertices
and edges to increase the vertex degrees in (). Secondly, it need not be the case that the
randomly chosen edges of Ms form a matching. We solve this in Section 5.3 by simply adding
non-disjoint pairs of edges in Hs as additional conflicts of size 2, replacing D’ by a larger conflict
hypergraph D, and thus forcing Ms to be a matching.

The next challenge is to ensure that we can choose My such that M is conflict-free. The
conflicts we must avoid are of the form C'U D, where two conditions hold: C' C M7 and no edge
in D contains a vertex of P which has already been chosen in M. If the second condition does
not hold, we say that D is blocked. In order to ensure that no such D is contained in Mo, we
seek to bound from above the total number of unblocked potential conflicts involving a given
vertex € P in some edge of D C Ho; since most vertices of P are already covered by M, this
significantly reduces the number of conflicts we need to consider. In Section 5.4, we define test
functions to track the number of partial conflicts appearing in the matching M1, as well as the
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number of those which are blocked; by taking the difference of these two values we later obtain
the desired bound.

The final challenge to overcome is that this approach to blocking conflicts fails when js = 1,
since the conflicts contain no other edges of Hs which might be blocked. We therefore require
the stricter bound ¢d’! in (E5) on the number of such conflicts of a given size j; containing
a given edge e € Ho. Under the assumption that edges in H; appear in the matching M;j
‘pseudorandomly with probability d~!’ in some suitable sense, this allows the ‘expected number’
of potential conflicts (of any size) for each e to be up to £2; so choosing e purely at random still
will not suffice. To overcome this, we observe that, assuming that the Poisson paradigm applies
to our concept of pseudorandomness, there should be a constant proportion (specifically, at
least exp(—£?)) of the edges e containing any given vertex = with no potential conflicts arising
from M. Hence for each vertex x € P we may restrict our random choice of My to only these
safe edges. We encode this ‘pseudorandom’ behaviour in a further set of test functions, defined
in Section 5.5.

In Section 5.6, we apply Theorem 4.2 to obtain our matching M, randomly choose Mo,
and use the previously defined test functions to bound the number of potential conflicts in each
case, so that My is conflict-free with non-zero probability.

5.2. Regularising H;. First, in order to apply Theorem 4.2 to the hypergraph H;, we need to
ensure that all vertices in H; have degree roughly d, rather than just those in P; since we only
require a P-perfect matching, and make no statement about which vertices of ) are covered,
we can achieve this by simply adding dummy edges to boost the degrees of vertices in Q.
Assume that ¢ > 0 (otherwise we may skip this step), and let m = |@Q|. For each vertex
v e Q,let d :=d— dy,(v) and add d’' new edges, each containing v and a set of k — 1 new
vertices, such that each new vertex is only ever contained in one edge. Refer to the set of new
vertices as Q" and the set of new edges as £g. Add further new vertices until Q' contains |Q|dm
vertices. Next, let 7' be a binomial random k-graph with vertex set @’ and expected degree
(1 —d¢/2)d. Tt is routine to show that, with high probability, (1 — d™¢)d < dz(v) < d -1
and dz (u,v) < d'~¢ for all distinct u,v € Q'; take F to be a graph satisfying these properties.
Note that each v € @’ belongs to at most one edge in £, so in total dy(v) < d. Define the
hypergraph H} == H1 U &g U F, which we will use in place of #; later in the proof.

5.3. Ensuring a Matching in Hs. Let £ = {{e, f} C Ho: 0 # en f C R} be the conflict
hypergraph containing as conflicts all pairs of edges in Ho that overlap (only) in R. We show
that £ is a (d,?,¢/2,2*)-mixed bounded hypergraph by verifying that it satisfies (E1)-(E6).
Note that in particular this implies that D := D' U is (d, £, /3, 3e*)-mixed-bounded; indeed,
(E1) is trivial, the bounds in conditions (E2), (E3), (E4) are additive and the bounds in (E5)
and (E6) are unaffected by £.

Indeed, the condition (E1) is clear and (E3), (E5), (E6) are trivial. For (E2), note that we
need only consider the case (j1, j2) = (0,2) and suppose that D = {e, f} is a conflict containing
xe€P;sayxece,andlet veen fNRand y € fN P, noting that x # y. The number of such
conflicts D, given z,v,y, is exactly dy, (z,v)dy,(y,v). Moreover, recalling definitions (4.1) and
(4.2), as [eN P| = |f N P| =1, we have A(D) = du,(x) 'du,(y) ™!, so we obtain

dgazde, dy, (z,v 4
I RSP ”Ez))zzgﬂi(x))A(v)gr.d,

d
De&, vERyeEP HQ vER

which suffices, using the fact that A(v) < " by (H3'), and noting that we allow the case y = x
in the sum, as we seek only an upper bound. For (E4), observe that similarly

<Zd7-l2xvd7{2(ya )(H<4)d Zd"ﬂz‘rv)_ d—
y vER de 7'[2( ) N 'Hz( )

which suffices. The rest of the proof will show that all of the conflicts in D can indeed be
avoided when choosing M.

vER
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5.4. Tracking mixed conflicts: the case jy > 2. In this section, we define a set of test
functions and show that they are either trackable or semi-trackable. These will be useful in
Section 5.6.4 for showing that the expected number of unblocked conflicts can be appropriately
bounded from above such that the Lovédsz Local Lemma can be used to avoid them.

For the remainder of this section, we fix j; € [0, /] and j2 € [2,/], and consider only conflicts
with j1 and j2 edges from H; and Hs respectively; for ease of notation, let G = D1:72) (recalling
the notation from Section 3.3). For i € [2], we write E;(G) .= {ENH,; : E € G} for the set of
‘H;-parts of conflicts in G.

5.4.1. Defining test functions. We extend our previous notation from Section 4.3 by writing
Giey = Gic.0) G010 = (Gic))z and Gio) 2y = (G(c))z,y, for any C C H; and z,y € P. For the
remainder of this section, fix a vertex x € P. We first define w,,: (Hl) — R>0 by

J1
wy(C) = A(G[c)2)

recalling (4.1). Given a matching M; C H; containing C (but not covering x), if we choose
My C Hg randomly, then the function w,(C') represents the expected number of conflicts from
G present in M = My U My which have C as their Hi-part and contain x in their Hs-part.
As such, w; (M) represents the expected number of conflicts containing x in their Hs-part for
which the Hp-part is covered by M;.

Next, in order to ensure that the test functions we define are trackable, we make an in-
termediate definition. Say that a set of edges F C H is testable if it satisfies the following
conditions:

e F N H; is a matching;

o I is C-free;

e E contains no ¢/2-conflict-sharing pairs of edges (as defined in Section 4.1).
Say that FE is untestable if it is not testable.? We may (and do henceforth) assume without
loss of generality that all of the conflicts in D are testable. Indeed, letting D C D be the set
of all testable conflicts, it is clear that D is also (d, ¢, /3, 3¢*)-mixed-bounded. Furthermore, if
we are able to find a matching My C Hs such that M = M; U My is D-free, with M C H;4
obtained from Theorem 4.2, then M; may not contain any untestable set, which in particular
means that M is also D-free. Similarly we may assume that w,(C) = 0 for any C containing
x, because if C' is covered by M then no edge containing = can be chosen in Mas.

We may now define further w!,: (J?ﬂ:l) — R>¢ by

wh (C") :== 1(C’ testable) Z Z A(Gionfel]ay)-
eeC’ ye(enP)\{z}

Observe that the function w/,(C”) represents the sum, over each possible partition C' = CU{e},
of the expected number of those conflicts counted by w, (C) whose Ho-part shares some vertex
y € P\ {z} with the edge e € H;. In particular this means w/,(M;) represents the expected
number of those conflicts counted by w;(M;1) whose Ha-part shares some vertex y € P with
some edge e € M. In our proof, we will consider the quantity w,(M;)—w/ (M), which counts
the number of conflicts (containing x in their Hs-part) for which the #;-part is contained in
My, and the Ho-part is at risk of being contained in Ms. By bounding this quantity from
above, we can ensure that all such conflicts can be avoided when choosing Ms. Observe also
that both function definitions still make sense when j; = 0, in which case w, is defined only on
the empty set, and w!, is defined on single edges.

5.4.2. Ignoring untestable sets. The goal of this section is to prove (5.1) below. For any given
C € Ei(G), and any vertex y € P not contained in an edge of C, we write bc, = |{e € H; :
y € e and C' Ue is testable}|, and claim that

(5.1) (1—d/3)d < bc, < d.

4This name reflects the fact that we must ignore such sets when defining our test functions, in order to ensure
that the functions are trackable (as per the definition in Section 4.1).
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In other words, restricting to testable sets only removes a negligible proportion of the total
number of edges e containing y for which w/,(C U {e}) would otherwise be positive. Indeed,
we estimate bc, by bounding from above the number of e € H; such that y € e but C Ue is
untestable. Firstly, for an Hi-part C of size ji, observe that C' covers in total kj; vertices z,
and for each of these there are at most Ag(H1) edges e € H; with y,z € e. Thus the total
number of e € H; with y € e for which C' U e is not a matching is at most j1kd' ¢ by (H2).
Secondly, by (C3), the number of such e for which C'U e contains a conflict from C is at most

¢
Z Z Aj_1(CY)) < e2rd' e,

1= re(;9)

where F' represents a subset of C for which F'Ue is a conflict of size j.° Thirdly, we bound the
number of e for which C'Ue contains a conflict-sharing pair.% For each edge f € H; and j € [/],
let PJ = {e € H1:|(Ce)¥) N (Cp)Y)| > d7~5/2}. Observe that by definition we may rewrite

SNl nepP= Y D aCueecity< Y [eeH;:C'ueecUtVy

ecP} Cre(Cp)V) eeP] Cre(Cp)@

and applying conditions (C2) and (C3), we obtain that

> HeeHi:C'ueecU™} < ACY)A;(CUTY) < di e,
C'E(Cf)(j)
where the second expression is the product of the number of choices for C’ given f and the
number of choices for e given C’. Then, by the definition of P/, we see that

(5.2) [Pl < d*77 > " |(C)W N (Cp) D) < a2,

J
eEPf

Hence, summing over each f € C and j € [¢], this means that in total there are at most jrldr—¢/?
edges e € H; for which C' U {e} contains a conflict-sharing pair. We finish by subtracting the
three bounds we have obtained from (H1) to see that (5.1) holds.

5.4.3. Estimating values of test functions. In this section we use (5.1) to show that ignoring
untestable sets in the definition of w/, does not significantly affect the value of w/,(H1), compared
to what its value would be if they were included. Specifically, we evaluate w,(H1) and w’,(H1)
and show that w),(H1) ~ (j2 — 1)dw,(H1). Recalling the definition of Vp(-) from Section 4.3,
begin by rewriting

Z Z 1(C U e testable) Z A(Gic),2,y)

C’e(ﬂl) ecH1\C ye(enP)\{z}

Z Z (C U e testable) Z Z 1(y € Vp(D))A(D)
Ce(?‘ll) 667‘[1\0 ye(eﬂP)\{x} DEEQ(Q[C]’I)

Z Z A(D) Z {e € H1\ C :y € e and C U e testable}|
Ce(?l) DeE2(G01,2) yeVp(D)\{z}

1
=) AE) D ey

Eeg, yeVp(E)\{z}

Note here that £ = C U D and recall that G = D(jl’jQ), so there is an obvious bijection
between the set of pairs C,D in the sum and the set G,. Now observe that by definition

SRecall here that C is testable by our assumption on D, so this is the only way in which C'U {e} may contain
a conflict.

6Note that e must be one element of this pair, by testability of C.
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wz(H1) = A(Gz) = X peg, A(E). Therefore, recalling that |Vp(£) \ {z}| = j2 — 1 and applying
each of the two bounds in (5.1) to the inner sum above, we obtain that

(5.3) (1 —d~*/%)(ja — V) dwy(H1) < W' (H1) < (jo — 1)dwe(H1).

We use these estimates in Section 5.6.4 to ensure that the choice of M; leaves very few
unblocked potential conflicts, by showing that (j2—1)w.(M1) ~ w}, (M), so that most potential
conflicts are in fact blocked; this will give an upper bound on the expected number of unblocked
conflicts containing x which are present in M.

5.4.4. C’hecking test function conditions. In order to use Theorem 4.2 to track the values of w,
and w/,, we must first scale them appropriately so that they take values in the interval [0, ¢'].
In order to do this, define o, = max{ca., o/}, where
o, = max d’ JlA 0(Gz), and o == d~ a1 maXA(gx y)s
'€l yeP

recalling the definitions in (4.1) and (4.2). Note that o, < d=%/3 by (E3) and (E4). We show now
that either both of the functions o lw, and aglw! are (d,e/10,C)-trackable, or the function
az;lw, is (d, /10, C)-semi-trackable. Observe that we need not consider the case a, = 0, since
in this case w, = w), = 0 are trivially trackable.

Firstly, the case j/ = ji in o/, ensures that a;'w,(C) < 1 < ¢ for all C € (7;11). Also

L’ (C") < azl(j1 + 1)pA a O(Ql«) < (j1 + 1)p < ¢ by the definition of «,, recalling that
U < 1/0,1/E. Clearly both a, 'w, and aj'w!, are zero on any set of edges which is not a
matching, recalling the assumption that all conflicts in G are testable., so they are indeed both
¢'-test functions (which are ji-uniform and (j; + 1)-uniform, respectively).

Observe that conditions (W3) and (W4) for o, 'w, are immediate from the assumption
that no element of G contains a conflict from C or conflict-sharing pair, and they both hold
for a; tw! by deﬁnition We prove that both functions satisfy (W2*). Given j’ € [0,¢] and

E e ( '), write Z ={Z e (Hl) Z D E} for each j € [§/,¢]. Then for j' € [j1 — 1], we have
a; wx(Z(jl)) a; A(g[ 12) < d77" by the definition of o, so (W2*) holds for w,.

For a; twl, let 5’ € [j1 + 1 — 1] = [j1], consider a sum over ¢’ = C' U {e} with E C C’, and
split into two cases depending on whether £ C C. Specifically, write

(5.4) w2 < ST Y Y AGienieey) < 51+ S,
C'e Z(]1+1) ecC’ ye(enP)\{z}
where
D Y Ay
Cezgl) e€H1 ye(enP)\{z}
and

SQ = Z Z Z A(Q[C]@,y).

eckE Cezl(sj\l{) , ye(enP)\{z}
Firstly for the case FF C (', we may rearrange sums to see that

X Y Y 1yeveD)yee)AD)

CEZgl) e€M1 yeP\{z} DEE>(G(c),2)
> Y. AD) ) du(y)
CEZgl) DEEQ(g[C]’I) yeVp(D)\{z}
We can bound this from above by
(55)  S1<(a-1d > ST AD) = (jo — Ddwa(ZFY) < (jo — Dagd I+,
cez{v) DEE2(Yo),0)

using the fact that dy, (y) < d and |Vp(D) \ {z}| = j2 — 1, and then the definition of w, and
the condition (W2*) for wy.
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For the case that e € E, we in fact split into two subcases, according to whether 7/ > 1. If
j' > 1, then we can rearrange and use (W2*) for w, similarly to see that

(5.6) $<Y Y PAGI) =Y w2, < Jpagd T
ecE (1) eeE
CEZE\{ }

If however j/ = 1, then E = {e} and we are summing over all possible C' € ( ) which is why
we need the definition of o] to give

(5.7) So= Y A(Gay) < pagd T
ye(enP)\{z}

Plugging the bounds (5.5), (5.6), and (5.7) back into (5.4) gives ajlw/ (Zg1+1)) <
C’Mdﬁ“_jl for some constant Cy, depending only on ¢ and k, as required for (W2*).

Hence if o) L, (Hy) < d1+¢/5, then o 'w, is (d, /10, C)-semi-trackable. If instead o, 'w, (H1) >
d+¢/5 then by the estimate (5.3) we have a;'w’,(H1) > d*+175/10 50 (W1) holds for both
functions. In this case, the condition (W2*) implies (W2), so they are both (d, /10, C)-trackable.

5.5. Tracking mixed conflicts: the case js = 1. In this section, we suppose jo = 1, noting
that j; > 1 by (E1), and define a further set of test functions; these are used in Section 5.6.2
to show that such conflicts can be avoided. We fix x € P for the remainder of this section, and
for ease of notation we write N, := {e € Ha : € e} and d; == dy,(z) = |Ng|. Furthermore, in
this section, we define G := Ujle[g]D(jl’l), noting that we now consider only jo = 1, but for all
values of j; together.

5.5.1. Defining test functions. Recall that we fixed a constant i* € N with 1/i* < 1/¢. Let m €
[i*], s" € [m{], s € [s'], and consider any collection C':= {C}}c[ of m edge sets C; € Hy, each
with size |Cy| € [€], such that 37,1 |Ci| = 8" but |Uyepm Ctl = s. Let P(C) = (| Mser Ctl)rcim]
encode the sizes of the C; and their intersections, and let 77* m.s,s D€ the set of all possible values of
P(C). We consider C to be unordered, and identify elements in P, 5.« Which arise from different
orderings of the same C, thus ensuring that P(C) is still well-defined. Given P & Pr.s.e and a
set E C H; of size |E| = s, write C(E, P) for the set of all such collections C with Usepm Ct = E

and P(C) = P. We may now define a function wp** : : (") = Rxg by

s (B Y > ZHH (CiUe€G).

PeP; o CeC(E,P)€eENy I= 1

m,s,s

Given a matching M; C H; containing E (but not covering z), if we choose e € N, C Hy
randomly, then the function @?’S’S/(E) represents the expected number of collections C €
Upep- , C(E,P) for which CyUe is a conflict from G for every t € [m]. As such o (M)
represzgf; the expected number of m-sets of Hi-parts Ci,...,C,, present in My such that
Yiepm) |Gl = 8" but |Uyep Ctl = s and each part individually forms a conflict with the
randomly chosen Hz-edge e € N,. We are interested in the value of w?’ss (M), but the
function wy" M55 it self may not technically be trackable, so we define further

wm,s,s'(E) = 1(F is testable)w)"* s (E),

which approximates @,">* and is trackable, as we will show.

5.5.2. Checking trackability. We again define a normalising constant (3., analogously to ay, by
Bz = max{S., B2}, where

/

%o ma s (GO, and B = d s A oG9
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Note again that 3, < d=¢/3 by (E6). Likewise, observe that A(E) = d;' for any E € gg(cjl’l), SO

Aﬁ 0(Ga (1.1 )) =d; A}, 0(Gs G, )) from which it follows that 87 < d=5/3 by the j' = j; case of

(E3). We now fix m, s, s’ and aim to prove that the function 3, lw;"* " is either (d,e/10,C)-
trackable or (d,e/10 C) -semi-trackable. By the definition of 3/, we have that

wps (B <dt Y Y dgienn(C1) < dp TP < Bl
PeP* ’ 6€C(E,77)

m,s,s

recalling that 1/¢' < 1/I" < 1/i* and thus noting that [Py, _ [ +[C(E,P)| <T'. We hence see
that S, lwy"™ I < By 17%% is an f'-test function, and observe also that By L% satisfies
(W3) and (W4) by the definition of testability.

Next, we verify that 871w satisfies (W2*). To this end, let ' C H; be an edge set of
size j' € [s — 1], and recall that ZFS) ={Z e (7?) 1 Z D F}. Given P € P o, let F(F,P)
be the set of all collections F := {F}};c[y of m subsets F; C F such that Usepm) Ft = F and
there exists some collection C' C 2%t with P(C) = P and C; N F = F; for every t € [m].
Note that any collection C' with F' C |JC uniquely determines some such F € F(F,P(C)).
Given F € F(F,P) and e € N,, we aim to bound ¢(F, P) := > een, q(F,P,e), where we define
q(F,P,e) as the number of collections C' = {Ct}epm) with P(C) = P for which F;, = C; N F
and C; Ue € G for every t € [m)].

Suppose we have already chosen C1, ..., C;_1 such that their intersections are compatible with
P, and for every t’ € [t — 1] we have Fyy C Cy and Cpy Ue € G. Write C} =C1U---UC,_1UF
and let a; and aj denote the desired sizes of C; N C} and C; \ Cf, respectively, noting that these
are uniquely determined by P and F. If a;,a} > 0, then to choose C; given e, we have at
most 2° choices for C; N CY, each yielding at most A, 1(G(@*9%: 1) choices for C; \ C4, so by the
definition of B, we obtain at most 2Sﬁ;d“2 total choices for Cy. If a; = 0, then the number of
choices for C; given e is at most £d% by (E5). If a} = 0, then the number of choices for C; is at
most 2°, and this is compatible with most A, o(G(*1) < 8d, choices for e, by the definition
of ;. Note that by definition it is always the case that 1, a; = s — j', and without loss
of generality we may assume that a; # 0, so that the number of choices for (C,e) is at most
253,d"% d,, in all cases. As such we obtain that ¢(F, P) < T'8,d* 7' d,, recalling that 1T < 1/i*.
Observe also that [P* _ |+ |F(F,P)| <T. We may thus bound

ES
m,s,s

@;n,s,s’ (ZI(:‘S)) — d;l Z Z FSB e ]

PEP;, . o FEF(F,P)

Therefore 8, lwy"™* (Z(S ) < 6;1@?’8’8/(23}55)) < e71d5=7', which implies that 87 lwl"** sat-
isfies (WQ*) Note that it is always the case that at least one of (W1) and (W1*) holds, so
B 1wl is either (d,e/10,C)-trackable or (d,e/10,C)-semi-trackable.

5.5.3. Ignoring untestable sets. In this subsection, we again fix m, s, s’, and claim that
(5.8) if E;”’S’S,(’Hl) > ds_ag, then (1 —d~ E/5) wms (H1) < wm’s’s (H1) < wmss (H1).

Note that in particular, in this case, we have that 85 lwy"™ ¢ satisfies (W1), so is trackable.
Indeed, the upper bound is trivial, so we proceed to prove the lower bound. Start by writing

w;n,s,s’(E) > w;n ,5,8 (E) _ f(E) _ g(E) — h(E) where
(E not a matching)wh"* s’ (E),

3 3
i

1
E) = 1(E contains a conflict in C)w"** (E),
1

(
(E contains a conflict-sharing pair)w>* (E).

We first bound f(#;) from above by considering the number of choices of C = {Ci}yem)
for which F = Ute[m] C} is not a matching. Given P € P, _, and e € N,, we aim to bound

»S,S
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q(P,e), which we define as the number of collections C' = {Ci},¢[n for which C; Ue € G for
every t € [m], P(C) = P, and there exist e; € C1,e3 € Cy with some vertex v € ej N ez; note
that this case suffices without loss of generality, since we regard C as unordered.

Let o) and d, be the sizes of Cq and Cy \ C4, respectively, which are prescribed by P. There
are at most £d® choices for Cy by (E5), then at most @) (p + ) choices for v € |JCy, d choices
for eg € Hq with v € es, and 2‘1'152061“,2_1 choices for Cy C Hq with ey € Cy and Cy Ue € G.7

As in the previous section, suppose that 3 <t < m and we have already chosen C1,...,C;_1
such that their intersections are compatible with P. Similarly, let a; and a} be the desired sizes
of CyN(C1U---UCy—1) and Cy \ (C1U---UCy_1), respectively, as determined by P. As before,
we see that the number of choices for C; is at most 25Aat71(g(“f+aé’1)) < 25€da2, in all cases,
by (E5) and (E6). Hence, noting that >_,c(,,; a; = s, we obtain that ¢(P,e) < I'8.d°. This in
particular means that

fH) =d;t Y > q(Pe) <T?B,d°.

PeP*  ,e€Ng
m,s,s

Therefore, since 8, < d~%/3, and by the assumption that Egl’s’s/(%l) > d3_83, we obtain that
F(Ha) < d= s (Hy).
By the very same argument, but using instead the degree conditions on C and the bound
from (5.2) on the number of £/2-conflict-sharing pairs {e, f} given any fixed edge e € Hj,

respectively, we obtain that g(H;) < diE/ngl,s,s' (H1) and h(H;) < d*€/3@g%s,s' (H1). Hence
the lower bound in (5.8) follows by subtracting these three bounds.

5.5.4. Useful estimates. We finish this section by computing two bounds which we will need in
Section 5.6.2. Firstly, we bound the order of magnitude of our test functions, specifically

(5.9) o () < T2d8.

Indeed, we use a similar counting argument to the previous sections. Fix P € 737’;7875, and
e € N, and attempt to count the number of collections C' = {Ci}sefy with P(C) = P and
CyUe € G for every t € [m]. For each t € [m], let a; and a} be the sizes of C; N (C1U---UC_1)
and Cy \ (C1 U---UCy_1), respectively, as prescribed by P. Suppose now that we have chosen
sets C1,...,C;_1 compatible with P. If a; = 0 then we have at most ¢d% choices for C; by
(E5). If a} = 0 then we have at most 2° choices for C;. Otherwise we have at most 2°d% /3
choices for Cy by (EG6). Since >, cp a; = s by definition, we obtain in total at most I'd® choices

for the collection C. Thus we may bound

@?»S,S’(Hl) < d;l Z Z Ids < F2d8,
PEP:;L 55l SGNz

as required, recalling that 1/I" < 1/i*.
Secondly, given m € [i*] and s € [m{ — 1], we claim further that
meé
(5.10) W) = Y wps(B) < d
s'=s+1

Indeed, consider following the argument above when s < s’, in which case there must exist some
t € [m] with a; # 0 # a}. We therefore obtain the improved bound

@?,s,s/ (,Hl) < F2ds—e/37
from which the desired result follows.

5.6. Constructing the matching. We are now ready to construct the matching in two stages,
as described previously.

"Note that ez & C1, since we assumed that all conflicts in D are matchings.
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5.6.1. Obtaining M;. We start by applying Theorem 4.2 to the hypergraph H} defined in
Section 5.2. Since H) may have many more vertices than #;, we need to ensure that only are
a small proportion of the vertices in P are left uncovered. To do this, simply define another
1-uniform test function (for H})
wi(e) = 1(e € Hy).

For any matching N' C H/, the value pw; (N) is equal to the number of vertices of P covered by
N. Note that wy is a (d,e/10,C)-trackable ¢'-test function since (H1) and the fact that |P| > d°
(recalling (S2)) imply that wy(H1) = |H1| > |P|d/2p > d*+¢/2, and (W2)~(W4) hold trivially.
Observe also that for every other test function w that we have defined previously on subsets of
H1, we may extend w to subsets of H) by setting w(E) = 0 for all E with E ¢ H;, without
affecting whether w is trackable or semi-trackable.

We may therefore apply Theorem 4.2 to the hypergraph ], the set of all test functions we
have defined, and the conflict hypergraph C, with ¢ in place of £, to obtain a matching M} C H].
Since all of our test functions are zero on H} \ Hi, this induces a C-free matching M; C H;
such that, for each of the j-uniform test functions w which we have defined, we have w(M;) =
(14 d=")d-dw(H,) if w is trackable, and w(M;) < d*/* if w is semi-trackable. In particular,
applied to wy, this means that | M| = |M{NHy| > (1—d~=")d " Hy| > (1—d ") (1—d~¢)|P|/p
by the degree condition (H1). Hence at most (1 — (1 —d~=")(1 — d~))|P| < d~="/2|P| vertices
of P are left uncovered by M. Write this set as P’ := {x1,...,xp} for M < d*€3]P|.

5.6.2. Restricting to safe edges. As discussed, in order to avoid conflicts in the case jo = 1, we
restrict to a smaller set of safe edges for each vertex in P’ when choosing Ms. Recalling that
N, ={e € Hy: x € e} and d, = |N,|, we show now that for each x € P’, there exists a subset
N3 C N, of safe edges such that if C Ue € D is a conflict with C' € (/\ﬁl) for some j; € [¢] and
e € N, then e € N3.

We use the inclusion-exclusion principle to bound the number of safe edges from below,
showing that we can choose N? of positive density; that is, we ensure that |N3| > Ad,, for some
constant A > 0 to be specified, so that restricting to N does not significantly limit our choice
of edges for Ms. To do this, we need to estimate the number of m-sets {C1, ..., Cp,} such that
each Cy C M forms a conflict with the same edge e. This is possible because M is sufficiently
pseudorandom, in an appropriate sense, which we show using the test functions w}"** , defined
in Section 5.5. For the remainder of this section, we again write G = | el DY) for simplicity,
recalling our notation from Section 3.3. Fix x € P’, and recall that i* € N satisfies 1/i* < 1//.

For each C' C H1, start by defining Bo = {e € N, : C'Ue € G} to be the set of edges in Ha
containing x which complete a conflict with C, and for each m € [i*], recalling the definition of

E;(-) from Section 5.4, set
-y | Ev(Gp.e) N 2|
tm = < m

ecN,

as the sum over all e € N, of the numbers of m-sets of partial conflicts (of any sizes) in My, all
of which form a conflict with e. Define N; := {e € N, : E1(Gjp¢)) N 2M1 = (J} to be the set of
safe edges. We may assume that ¢* is chosen to be odd, so by the inclusion-exclusion principle,
we obtain that

(5.11) INJ| =[N\ |J Be|>de—a1+az—az+--—ap.
CCM;y
We now aim to show that this is suitably close to an exponential series, which guarantees that

a constant proportion of the edges of N, belong to N;.
Fix m € [i*] then, considering all of the possible sizes and intersections of a set of m conflicts,

we see by the definition of wgl’s’s/ in Section 5.5.1 that

(5.12) U =dy Y Y wT (M),

s'e[mil] s€[s’]
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We first claim that
(5.13) W™ (My) = (1 £d = 2)d=sw> (Hy) £ d /2

for every s’ € [mf] and s € [s']. Indeed, we must consider three cases. Firstly, if A7 1w is
semi-trackable, then Theorem 4.2 tells us that w!"** (My ) < Bpd/t < d—e/12 recalhng that
Be < d=¢/3. Secondly, if B lwy"® " is trackable but w? 88" (H1) < d*~=°, then we obtain that
W (M) = (1 d=")dwl (Ha) < 2000 (1) < 24", Since d-TI (M) <
d=<" in both of these cases, it is certalnly true that w;ns 8! (My) =d~ s (7—[1) + d—"/2.
Finally, if 3, 1wy’ % {5 trackable and w? 58’ (#1) > d*~<", then the estimate from Theorem 4.2,

combined with (5.8) gives us that w"* (My) = (1 +d~ 53/2)d* swi>*' (H1), so (5.13) holds in
all cases. Plugging (5.13) into (5.12) and recalling (5.10), we obtaln that

(1:|:d_ 3/2d Z Zd 5 mss 7_[1>:|:d—83/2dx
s'e[ml] sels’]
(5.14) = (QEd = P)dy D0 dw () £ d Py
s'e[md]
In order to approximate this value, for each e € N, and j € [/], define v, ; == d ™~/ |g G, 1)] </

(by (E5)). Then set ve = cpVe,j < /2, as an estimate for the total number of partial conﬂlcts
completed by e, of any size, which we expect to appear in M. For each s’ € [m/], write Q,, ¢
for the set of sequences b = (b;) ;e with >- ;e b5 = m and >4 jb; = s’. Considering the
number of ways to choose m conflicts containing e with the sum of sizes of Hi-parts equal to
s', we see that we may write

(5.15) 3 dar (1) = Y ZH<‘9M> Y Y 12 7Jidsfl/2d

s€ls’] beQ,, s eEN, jeld] eENy beQ,, s je[l] b;!

where the error term is obtained using the fact that (Z) = nF/k! £ f(n) for a polynomial f of
degree at most k — 1, as well as the fact that |Q[(g’el])] < {d’ by (E5). Recalling (5.9), we see that
all summands with s < s’ contribute lower order terms to (5.15), so in fact

(5.16) Ay (Hy) =d > ) H ﬂeﬂ +24° /24,
e€Nz beQ,, ]e[é]

Plugging (5.16) into (5.14) gives

(5.17) an=(1£d2) 3 S % H%’”id g,

s'e[ml] eENg bEQ,, o jE[(]

Now observe by the multinomial theorem that

m b

(5.19) = (S| =m0 T

JjE] s'elml] beQ,, . jE[/]

Hence, plugging (5.18) into (5.17), we obtain the estimate

(5.19) am = (1+d "2 )y = Je. SEd /4q,.
eer

For z € R, define S(z) = 32 _ (—x)™/m!. Now plugging (5.19) into (5.11) gives

m=0

s 1 i* .k g—g3 —e3
(5.20) INS > ) 1=+ 2|7€ =g Eid Mdy > > S(1e) — d = /Pd,.
eEN, ’ eEN,
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To bound Y.y S(7e) from below, let § := exp(—£?)/3 > 0, then recalling that 1/i* < 1/¢, we
see that for every 0 < z < £2, we have S(z) = exp(—x) £ 4. The choice of such an i*, depending
only upon ¢, is possible by the uniform convergence of the exponential series on the interval
[0, ¢2]. Then, since 0 < 7, < ¢2 for every e € N,,, we obtain

1

ST 8(re) > D exp(—ye) — dad > dyexp <dx 3y %) — dyb > dy(exp(—£2) — )
e€EN, eEN, e€EN,

by convexity of the exponential function and the bound on ~.. Substituting this back into

(5.20), we see that |NZ| > d(exp(—£2) — 20) > d, exp(—F?)/3. Hence we may take \ = )\; =

exp(—£2)/3 > 0.

5.6.3. Choosing M. We may now proceed to choose the edges of My randomly from the sets
we have defined. Recall that P’ = {x1,..., 2/} is the subset of P not yet covered by M;, and
define H, := Ho[P" U R]. For each i € [M], choose an edge e; uniformly at random from the set
N3, so each possible edge e € N, is taken with probability

(5.21) Ple; = €] < (M, (2:)) 74

Recall also that (H3') and (H4') together imply that dy,(z;) > d°, so [Ng | > Ad® > 0. Set
My = {ei1,...,en} and take M = M; U My to be the combination of our matching in H;
with these new edges chosen from Hy. We now use Lemma 4.3 to ensure that M is D-free;
recall that by excluding the conflicts added in Section 5.3, this will also ensure that My is a
matching.

For each js € [2,/], define bad events Bp = {D C My} for each D € (7;;2) which could
appear as the Ho-part of a conflict in DUL72) for some j; € [0,/], that is D € EQ(D[(ét(})Jf))
for some C € (/;./111).8 Let 2 be the set of all such events, for any (j1,72), which we aim to
avoid. Note that, for each event Bp € 2, we have P[Bp] < A~'d~¢ < 1/2, so in order to apply
Lemma 4.3, it suffices to show that we also have }_ yco5py P[A] < 1/4, where B(D) := {Bp €

2A: D' € Ey(D,) for some x € Vp(D)}, recalling the definition of Vp(-) from Section 4.3; since
the event Bp depends only upon the edge choices for the vertices z € Vp(D), it is mutually
independent from the set of all events Bps for which Vp(D) N Vp(D') = 0.

Now fix some j; € [0,4], j» € [2,4], and z € P’, and again write G := DU172) for ease of
notation. Further write GM1 = {CUD € G:C C M; and D C H,}. Because |[Vp(D)| = jo < ¢,
and there are at most £ choices for j; and js, it is (more than) sufficient to show that

(5.22) S PDC Mo <d
DeEy(g2")

Given C € (7;.[11), say that an Ha-part D € Ea(Gjc),) is blocked if Vp(D) £ P, that is

some vertex y € Vp(D) is already covered by M. Note that such conflicts can be ignored as
they will never be present in M, because no edge containing y is chosen in My; the remainder
of the proof is therefore concerned with bounding unblocked conflicts. We define B(C,x) =
{D € E3(Gi),e) : D is blocked} and U(C,z) == {D € E2(G|c),) : D is not blocked}. Then by
definition
(5.23) By (G = |J u(c ).

ce(’h)
Furthermore, observe that by (5.21), and the independence of edge choices for distinct vertices
of P, we have

(5.24) PIDC M) < [ Mdu,()™" = A2A(D)
yeVp (D)

8Recall here our notation from Sections 3.3, 4.3, and 5.4.
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for any (unblocked) D € (HQ). Hence to show (5.22), using (5.23) and (5.24), it is enough to
prove that

(5.25) > AU )< d =3,
(Je(’}"ll)
We now prove (5.25) using the test functions we have defined, as discussed previously.

5.6.4. Bounding unblocked conflicts. We consider first the case that the function ajlw, is

(d,£/10,C)-semi-trackable, so Theorem 4.2 tells us that a; 'w,(M;) < d/*. By the definition
of w, and the bound o, < d_5/3, this means that

Z A(g[c],x) = wy(M;) < ard8/4 < d—e/12’
Ce(/‘j/‘ll)
which in particular is sufficient for (5.25).

Assume instead that both of the functions oy 'w, and aj 'w’, are (d,e/10,C)-trackable. In
order to obtain (5.25), we rewrite

(5.26) S OAUC ) = > AGc.) — Y., ABCz
ce() ce(ih) ce(ih)

and use w, and w!, to estimate the two sums respectively.
Firstly, by definition and the conclusion of Theorem 4.2, we have that

(5.27) > A(Gige) = we(Miy) = (14£d° N wy(Hy) < (14 d = )d 7 A(G,).
Ce(“‘j"ll)

To obtain a lower bound for the second term in (5.26), start by observing that, given D €
E»(Gy), we have |Vp(D) \ P'| < (jo — 1)1(Vp(D) \ P’ # 0) = (jo — 1)1(D blocked). Therefore,

> OABC )= Y. >~ A(D)L(D blocked)

Ce(/‘j”ll) Ce(Ml) DeE2(Gic),2)

2_1 Y. X AD)IVR(D)\ P

Ce(Ml) DeE2(G0),2)

S OY oam Y Y tweq

Ce Ml)DEEz(g[c ) y€Vp(D)\{z} ee M

J2—

1

(5.27) = 1w P (My).
To see the penultimate equality, note that y € P\ P’ if and only if there is exactly one edge
e € M containing y. For the final equality, recall the definition of w/, in Section 5.4.1, and
note further that if C Ue C M1, then C U e cannot contain any conflict-sharing pair or conflict
from C.

Now by Theorem 4.2 and the estimate (5.3), we see that
(5.28) wi (M) = (L£d)d 7wl (He) > (o — 1)1 — d /2 d T w,(Hy).

Hence combining (5.27) and (5.28) we obtain the bound
(5.29) ST OABC @) > (1 - d A AG).
Ce(l‘j’;l)
We finish by plugging (5.29) and (5 27) back into (5.26) to obtain

S AU(C,2) < 207 Pa P AG,) < a3,
Ce(/}"ll)
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by (E2), as required for (5.25). Note that all of the arguments made here still work for j; = 0,
when w, is defined simply on the empty set.

6. ACKNOWLEDGMENTS.

We are grateful to Michelle Delcourt and Luke Postle for helpful comments and for informing
us about some references. We would also like to thank the referees for their extensive and
helpful comments.

GLOSSARY

C-free: contains no conflict from C. 2

dg(u,v): codegree of vertices u and v in hypergraph G. 3

Ay (G): maximum degree of all vertices in V- C V(G). 3

GU): subhypergraph of G consisting of edges of size j. 3

Né2)(e): set of edges forming a conflict of size two with e. 5

(d,?,e)-bounded: conflict hypergraph satisfying (C1)—(C5). 5

DU1:32): conflicts consisting of j1, jo edges from M1, Ha, respectively. 5

Ajidé (D): maximum codegree among edge sets consisting of ji,j2 edges from Hi, Ha,
respectively. 5

D,: conflicts containing vertex x in their Ha-part. 5

D, y: conflicts containing both x and y in their Ho-part. 5

(d,?,e)-simply-bounded: conflict hypergraph satisfying (D1)—(D4). 5

j-uniform /-test function: [0, ¢]-valued function on sets of j edges which is non-zero
only for matchings. 6

H_,: link hypergraph (all sets whose union with v form an edge in H). 6

(e,C)-conflict-sharing pair: two edges with large link hypergraph in C. 6

(d,e,C)-trackable: test function satisfying (W1)-(W4). 6

(d,e,C)-semi-trackable: test function satisfying (W1*), (W2*), (W3), (W4). 7

Vp(E): all vertices of P covered by Ha-part of E. 8

A(FE): unavoidability of edge set E. 8

Jic,py: conflicts in G containing C, D in their Hj, Ho-parts, respectively. 8

A}? Jé(g): maximum codegree weighted by unavoidability. 8

(d,?,e,d)-mixed-bounded: conflict hypergraph satisfying (E1)—(E6). 8

A(v): unavoidability of vertex v. 9

¢',T,7*: constants used in proof. 9

E;(G): H;-parts of conflicts in G. 11

Jic): conflicts of G containing edge set C' in their H;-part. 11

Jic),«¢ conflicts containing edge set C' and vertex x in their H;, Ho-parts, respectively. 11

J(C).e.y¢ conflicts containing edge set C' and vertices x, y in their Hy, Ha-parts, respectively.

w,: test function used to count all potential conflicts containing x. 11

testable: edge set which is a conflict-free matching with no conflict-sharing pairs. 11
wl: test function used to count blocked potential conflicts containing z. 11

bcy: edges containing y which could block conflicts containing C'. 11

a: scaling constant for test functions w,,w),. 13

Zg): all edge sets of size j containing edge set E. 13

N,: edges in Ho containing vertex x. 14

dy: size of N,. 14

P(C): encoding of all intersections of a collection C' of edge sets. 14

% ot all possible P(C) for m sets with sum of sizes s’ and union size s. 14

__m,s,s’

Wyt
1. 14

! !
055 s restriction of wa”® to testable sets. 14

function used to count m-sets of potential conflicts with common Ho-part of size

w
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11.

12.

13.

14.

15.

16.

17.

18.

Glossary

Bzt scaling constant for test functions TS w14
wi: test function used to count vertices in P left uncovered by My. 17
NZ: edges in ‘Ha containing x which do not form a conflict with jo = 1. 17
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