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Abstract. Recent work showing the existence of conflict-free almost-perfect hypergraph match-
ings has found many applications. We show that, assuming certain simple degree and codegree
conditions on the hypergraph H and the conflicts to be avoided, a conflict-free almost-perfect
matching can be extended to one covering all vertices in a particular subset of V (H), by using
an additional set of edges; in particular, we ensure that our matching avoids all additional
conflicts, which may consist of both old and new edges.

This setup is useful for various applications in design theory and Ramsey theory. For ex-
ample, our main result provides a crucial tool in the recent proof of the high girth existence
conjecture due to Delcourt and Postle. It also provides a black box which encapsulates many
long and tedious calculations, greatly simplifying the proofs of results in generalised Ramsey
theory.

1. Introduction

Hypergraph matching problems can be used to model various central questions in combinat-
orics, and consequently have been studied for many years. Notably, Frankl and Rödl [11], as
well as Pippenger [17], proved that any k-uniform hypergraph (k fixed) on n vertices, in which
each vertex belongs to roughly d edges and any pair of vertices belongs to at most od(d) edges,
contains a matching covering (1 − od(1))n vertices. These theorems have undoubtedly had a
vast number of applications.

More recently, Delcourt and Postle [7], as well as Glock, Joos, Kim, Kühn, and Lichev [12],
generalised this result by introducing so-called conflict-free matchings. Here a conflict is a set
of disjoint edges which is forbidden to be a subset of the matching. The main contribution
in [7, 12] is as follows: under the same conditions as Frankl, Rödl, and Pippenger, and under
sensible conditions on the set of conflicts, one can find an almost perfect matching that avoids all
conflicts. This can again be applied to a number of problems, such as high girth decompositions,
problems considered by Brown, Erdős and Sós [4] and various questions in generalised Ramsey
theory [1, 3, 13, 14, 16].

The unfortunate drawback of these theorems is that they deal only with almost-perfect match-
ings, whereas in many applications it is desirable to obtain perfect matchings or at least almost
perfect matchings that cover a specified vertex subset entirely. Delcourt and Postle describe a
setup in which this obstacle can be overcome in a particular setting. Specifically, they consider
hypergraphs which are bipartite in the sense that the vertex set can be partitioned into two
parts A and B with each edge containing exactly one vertex from A (and they assume that
the vertex degrees in A are slightly higher than in B), in which case they find a conflict-free
matching covering all vertices of A (the matching is A-perfect). The primary limitation of the
bipartite hypergraphs in [7] is the fact that edges are only allowed to contain exactly one vertex
from A, whereas in several applications this is not the case.

Our main contribution is to obtain a stronger theorem in a more general setup: we work
with a ‘tripartite’ hypergraph for which the vertex set has a partition into three sets P,Q,R,
and we seek a P -perfect matching. The edge set is divided into two parts: edges containing p
vertices from P and q vertices from Q, and edges containing one vertex from P and r vertices
from R. In this setup we prove the existence of a P -perfect matching, avoiding conflicts which
may consist of both types of edges (almost all vertices in P are covered by edges of the first
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Figure 1. Two matchings M1 ⊆ H1 and M2 ⊆ H2 in the hypergraph H, whose
union forms a P -perfect matching M; here p = 2, q = 4, r = 2.

type and a few vertices in P are covered by edges of the second type). The proof generalises a
‘two-stage method’ for constructions in generalised Ramsey theory, first introduced by Bennett,
Cushman, Dudek, and Pra lat [2], and subsequently used to prove various other results in this
area; our theorem simplifies all such proofs significantly so that all technical computations are
no longer needed, and mostly back-of-the-envelope calculations are sufficient.

This framework also turns out to be useful in other settings, including high-girth coverings
and designs; these applications are discussed further in Section 2. We expect that there will be
further applications in future.

1.1. Tripartite Matching Theorem. Given two hypergraphs H and C, say that C is a conflict
hypergraph for H if V (C) = E(H), and in this case call the edges of C conflicts. Say that a set
of edges E ⊆ H is C-free if it does not contain any conflict from C. Suppose that we are given
the following setup:

(S1) integers ℓ ≥ 2, d > 0, p ≥ 1, q ≥ 0, r ≥ 1 with p + q ≥ 2 and real ε > 0;

(S2) disjoint sets P,Q,R with dε ≤ |P | ≤ |P ∪Q| ≤ exp(dε
3
);

(S3) hypergraph H1 whose edges consist of p vertices from P and q vertices from Q;
(S4) hypergraph H2 whose edges consist of a single vertex from P and r vertices from R;
(S5) conflict hypergraph C for H1;
(S6) conflict hypergraph D for H := H1 ∪H2.

Assume that H satisfies suitable degree conditions, and further that both C and D satisfy
suitable boundedness conditions, all of which are specified in Section 3 in terms of d and ε.

Theorem 1.1. Given p, q, r, ℓ as above, there exists ε0 > 0 such that for all ε ∈ (0, ε0), there
exists d0 such that given the above setup, the following holds for all d ≥ d0: there exists a

P -perfect C ∪ D-free matching M ⊆ H. Furthermore, at most d−ε4 |P | vertices of P belong to
an edge in H2 ∩M.

The proof of Theorem 1.1, given in Section 5, consists of two stages, as mentioned: we first
apply Theorem 4.2, a variant of the original conflict-free hypergraph matching theorem [12],
to the hypergraph H1 in order to obtain a C-free matching M1 covering all but at most a

d−ε3 fraction of the vertices of P with edges from H1. In the proof of Theorem 4.2 (which we
apply as a black box), this matching is chosen randomly one edge at a time, and accordingly
can be thought of as ‘pseudorandom’ in an appropriate sense; specifically, we are able to show
that certain weight functions on edge sets have roughly their ‘expected’ value when summed
over M1. To extend M1 to a P -perfect matching, for each vertex x ∈ P which is not already
covered, we randomly choose some edge from H2 to cover x, and use the Lovász Local Lemma
to show that with non-zero probability the resulting set M2 of edges is indeed a matching,
and the union M of our two matchings is D-free. In order to apply the local lemma, we use
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the aforementioned weight functions to bound the number of potential conflicts which could be
introduced when choosing an edge from H2 to cover each x ∈ P .

1.2. Notation. Write [i, n] = {i, . . . , n}, so [n] = [1, n]. Unless otherwise stated we identify
hypergraphs with their edge sets, writing e ∈ G to mean e ∈ E(G). Given a set of vertices
U ⊆ V (G) in a hypergraph G, write dG(U) for the degree of U in G, that is the number of
edges of G containing U ; in the cases U = {u} and U = {u, v}, where U consists of one or two
vertices, we just write dG(u) and dG(u, v) respectively. We omit the subscript if G is obvious
from context. Write ∆j(G) for the maximum degree dG(U) among sets U ⊆ V (G) of j vertices.
Given a subset of the vertices V ⊆ V (G), write ∆V (G) for the maximum degree dG(u) of any
single vertex u ∈ V , and similarly δV (G) for the minimum degree; assume V = V (G) if not

specified. Given j ∈ N, write G(j) := {E ∈ G : |E| = j} for the subhypergraph of G containing
only those edges of size j.

We omit ceiling and floor symbols whenever they do not affect the argument. We refer readers
to the Glossary section at the end of the paper for a summary of more specific notation which
appears throughout the paper.

1.3. This paper. We start by outlining two significant applications of Theorem 1.1 in Section 2.
We then complete the formal statement in Section 3 by listing the various conditions required on
our hypergraph and conflicts. In Section 4, we state our prerequisites, in particular Theorem 4.2,
a variant of the main theorem from [12], as well as a more complicated but weaker set of
conditions, for which we will in fact prove our main theorem. Finally, the proof itself is given
in Section 5, which begins with a more detailed outline.

2. Applications

We briefly discuss here two applications of Theorem 1.1.

2.1. Conflict-free coverings and large girth designs. For a hypergraph H, we call a set
of edges M ⊆ H a covering of H if all vertices belong to some edge in M, and say it is perfect
if each vertex belongs to exactly one edge. In the setting of Frankl, Rödl and Pippenger, the
existence of almost perfect matchings and almost perfect coverings (coverings in which most
vertices belong to exactly one edge) is equivalent and one object can easily be transformed into
the other one. However, it is not obvious that just greedily adding edges to turn an almost
perfect matching into an almost perfect covering can be done without introducing conflicts;
Theorem 2.1, which follows easily from Theorem 1.1, resolves this problem. It represents the
natural analogue of Theorem 4.1, providing a covering in place of a matching.

Theorem 2.1. Fix ℓ, k ≥ 2. There exists ε0 such that for all ε ∈ (0, ε0), there exists d0 such

that for all d ≥ d0 the following holds. Suppose H is a k-graph on n ≤ exp(dε
3
) vertices. Assume

that (1 − d−ε)d ≤ δ(H) ≤ ∆(H) ≤ d and ∆2(H) ≤ d1−ε. Let C be a (d, ℓ, ε)-bounded conflict

hypergraph for H. Then there is a C-free covering M ⊆ H such that all but d−ε5n vertices are
covered exactly once, and no vertex is covered more than twice.

One of the original motivations for studying hypergraph matchings, and in particular conflict-
free matchings, was the problem of finding almost-perfect Steiner systems of large girth. In
general, a partial (m, s, t)-Steiner system is a collection S of subsets of [m], each of size s, such
that every subset of [m] of size t is contained in at most one element of S; it is approximate if
it has size (1 − o(1))

(
m
t

)
/
(
s
t

)
. The girth of S is the smallest integer g ≥ 2 such that some set of

(s− t)g + t vertices induces at least g sets in S.
Recently, Delcourt and Postle [8] proved the existence of perfect (m, s, t)-Steiner systems of

large girth, via a new refined absorption method. Their result provides a common generalization
of the existence conjecture for designs originating from the 1800s and Erdős’ conjecture from
1973 on the existence of high girth Steiner triple systems. Our main result, Theorem 1.1, is a
crucial tool in their proof (Theorem 2.10 in [8]). As noted earlier, our proof method uses the
main result of [12] which employs the random greedy process. On the other hand, Delcourt
and Postle’s proof (to appear in a forthcoming version of [7]) of their Theorem 2.10 from [8]
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uses the nibble method. A simpler version of Theorem 1.1, without conflicts, is also used by
Delcourt and Postle [9], as well as by Delcourt, Postle, and Kelly [5, 6] in other applications of
their refined absorption method.

Conflict-free hypergraph matchings can also be used to find approximate systems for a much
more general class of quasirandom hypergraphs, where, for example, we restrict the choice of

elements of S to a randomly chosen subset of
(
[m]
s

)
; see Theorem 1.4 of [12]. The following

analogous covering result can be easily deduced from our Theorem 2.1. Given real numbers
a, b, c, we write a = b± c to mean b− c ≤ a ≤ b + c.

Theorem 2.2. For all c0 > 0, ℓ ≥ 2 and s > t ≥ 2, there exists ε0 > 0 such that for all
ε ∈ (0, ε0), there exists m0 such that the following holds for all m ≥ m0 and c ≥ c0. Let G be a
t-graph on m vertices and let K be a collection of sets of size s which induce cliques in G such
that any edge is contained in (1 ±m−ε)cms−t elements of K.

Then, there exists a subset S ⊆ K such that every edge of G is contained in at least one
element of S, the proportion of edges of G contained in more than one element of S is om(1),
none are contained in more than two, and any subset of S of size j, where j ∈ [2, ℓ], whose
elements have pairwise intersections of size at most t− 1, spans more than (s− t)j + t points.

2.2. Generalised Ramsey numbers. Given graphs G and H, and q ∈ N, define the gener-
alised Ramsey number r(G,H, q) to be the minimum number of colours needed to colour the
edges of G in such a way that every copy of H receives at least q distinct colours. Bennett,
Cushman, Dudek, and Pra lat [2] showed that r(Kn,K4, 5) = 5n/6 + o(n), answering a ques-
tion of Erdős and Gyárfás, by introducing the aforementioned two-stage method in which they
first colour most of the edges of Kn using a modified triangle removal process (requiring com-
plicated technical analysis), and then complete this to a full colouring using the Lovász Local
Lemma. Joos and Mubayi [14] simplified this method greatly by encoding the first stage as a
suitable conflict-free hypergraph matching problem and applying the main theorem from [12] as
a black box, and demonstrated its versatility further by showing that r(Kn, C4, 3) = n/2+o(n).
This approach has subsequently been used to prove various similar and more general results
[1, 3, 13, 14, 16].

Our main theorem (Theorem 1.1) formalises this two-stage method in a single statement,
from which all of these colouring results follow; another main contribution of this paper is to
consolidate all of the calculations required for the second stage, so that applications need only
focus on constructing appropriate hypergraphs and conflicts satisfying our conditions. This
massively simplifies the proofs of all existing results, since it now suffices to only check the
orders of magnitude of the numbers of different types of conflicts. For example, one may obtain
a concise proof of the following result which was stated (without proof) very recently by Bal,
Bennett, Heath, and Zerbib [1]. Given k ≥ 2, write Kk

n for the complete k-graph on n vertices,
and Ck

ℓ for the k-uniform tight cycle of length ℓ; that is, edges e1, . . . , eℓ on vertices v1, . . . , vℓ
such that ei = {vi, . . . , vi+k−1} (modulo ℓ) for each i ∈ [ℓ].

Theorem 2.3. For all k ≥ 2 and ℓ ≥ k + 2, we have r(Kk
n, C

k
ℓ , k + 1) ≤ n/(ℓ− k) + o(n).

We remark that the factor ℓ − k above is best possible assuming a well-known conjecture
about the Turán number of tight paths in hypergraphs.

The proofs of Theorems 2.1, 2.2 and 2.3 are fairly routine and short. For the convenience of
the reader we provide them in the arXiv version of this paper in the appendix [15].

3. Conditions for the main theorem

We now specify the conditions on H, C, and D required for Theorem 1.1 to hold, thus com-
pleting its formal statement. Throughout this section, we work in the setup from Section 1.1,
recalling (S1)–(S6).

3.1. Degree conditions on H. We require that the hypergraph H = H1∪H2 with H1,H2 ̸= ∅
satisfies the following conditions.

(H1) (1 − d−ε)d ≤ δP (H1) ≤ ∆(H1) ≤ d;
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(H2) ∆2(H1) ≤ d1−ε;

(H3) ∆R(H2) ≤ dε
4
δP (H2);

(H4) d(x, v) ≤ d−εδP (H2) for each x ∈ P and v ∈ R.

This means that H1 is essentially regular for vertices in P and has small codegrees, although
vertices in Q are allowed to have much lower (but not higher) degrees. Meanwhile in H2, every

vertex in P must have degree at least a d−ε4 proportion of the maximum degree in R, and few
edges in common with any particular vertex in R. These conditions are used to ensure that
we may choose an edge of H2 containing each x ∈ P such that the set of edges chosen do not
overlap.

3.2. Boundedness conditions on C. The conflicts of C consist only of edges from H1, and
are avoided directly by Theorem 4.2, so require the same boundedness conditions as in [12]; the
conditions we present here are not the most general possible, but suffice for most applications.

For any edge e ∈ H1, we write N
(2)
C (e) := {f ∈ H1 : {e, f} ∈ C}. Given ℓ ≥ 2 and d, ε > 0, say

that C is (d, ℓ, ε)-bounded if

(C1) 2 ≤ |C| ≤ ℓ for all C ∈ C;

(C2) ∆(C(j)) ≤ ℓdj−1 for all j ∈ [2, ℓ];

(C3) ∆j′(C(j)) ≤ dj−j′−ε for all j ∈ [2, ℓ] and j′ ∈ [2, j − 1];

(C4) |{f ∈ N
(2)
C (e) : v ∈ f}| ≤ d1−ε for all e ∈ E(H1) and v ∈ V (H1);

(C5) |N (2)
C (e) ∩N

(2)
C (f)| ≤ d1−ε for all disjoint e, f ∈ E(H1).

Note that, in many applications, all conflicts of C have size at least 3, so conditions (C4) and
(C5) are vacuously true. For further intuition behind conditions (C1)–(C5), we refer the reader
to the proof overview (Section 1.1) in [12].

3.3. Boundedness conditions on D. Since it may be the case that the conflicts of D consist
only of edges from H2, or of two parts from H1 and H2, they must satisfy a new set of conditions
to be avoided. We extend our previous notation by writing D(j1,j2) for the set of conflicts in D
consisting of j1 edges from H1 and j2 edges from H2. Similarly, we now write

(3.1) ∆j′1,j
′
2
(D) := max

{
dD(F1 ∪ F2) : F1 ∈

(
H1

j′1

)
, F2 ∈

(
H2

j′2

)}
.

Given a vertex x ∈ P , write also Dx for the set of conflicts in D containing x in their H2-part,
and likewise Dx,y for those containing both x and y. Then say that D is (d, ℓ, ε)-simply-bounded
if the following hold for all x, y ∈ P , and j1 ∈ [0, ℓ], j2 ∈ [2, ℓ].

(D1) 2 ≤ |D ∩H2| ≤ |D| ≤ ℓ for each conflict D ∈ D;

(D2) |D(j1,j2)
x | ≤ dj1+ε4δP (H2)

j2 ;

(D3) ∆j′,0(D
(j1,j2)
x ) ≤ dj1−j′−εδP (H2)

j2 for each j′ ∈ [j1];

(D4) |D(j1,j2)
x,y | ≤ dj1−εδP (H2)

j2 .

Referring to the brief proof outline in Section 1.1, the bound in (D2) can be understood
heuristically as follows. For D ∈ Dx to be contained in M, all edges of D ∩H1 must be chosen
in M1 and all edges of D∩H2 must be chosen in M2; note in particular that, for the latter to be
possible, all vertices y ∈ P ∩

⋃
(D∩H2) must be left uncovered by M1. Under the heuristic that

edges are chosen roughly uniformly and independently by Theorem 4.2, the probability of the j1
edges of D∩H1 all being contained in M1 is roughly d−j1 . Under the heuristic that M1 covers
vertices of P roughly uniformly, the probability that even one vertex y ∈ P ∩

⋃
(D ∩H2) \ {x}

is left uncovered is roughly d−ε3 . Therefore, after choosing M1, we expect there to be at most

dε
4−ε3δP (H2)

j2 conflicts D ∈ Dx which pose a threat when choosing M2. Ignoring issues of
dependence, each of the remaining j2 edges of D are then included in M2 with probability at

most δP (H2)
−1, so in total we expect at most dε

4−ε3 = o(1) conflicts from Dx to be contained
in M. Intuitively, (D3) and (D4) behave similarly to (C3), to ensure that conflicts are ‘well
spread-out’ in the hypergraph, which avoids the number of potential conflicts being dominated
by rare events with large effects.



6 FELIX JOOS, DHRUV MUBAYI, AND ZAK SMITH

We may now formally re-state Theorem 1.1.

Theorem 3.1. Given p, q, r, ℓ satisfying (S1), there exists ε0 > 0 such that for all ε ∈ (0, ε0),
there exists d0 such that, for all d ≥ d0, given H, C,D satisfying (S2)–(S6), the following holds.
Assume that H satisfies (H1)–(H4), C is (d, ℓ, ε)-bounded, and D is (d, ℓ, ε)-simply-bounded.

Then there exists a P -perfect C ∪ D-free matching M ⊆ H. Furthermore, at most d−ε4 |P |
vertices of P belong to an edge in H2 ∩M.

We actually prove Theorem 3.1 for a slightly more general set of conditions, given in Sec-
tion 4.3, which in particular allow for conflicts D with j2 = |D∩H2| = 1; in many applications,
however, this type of conflict does not occur.

4. Preparation for the Proof

In this section, we begin by deducing our required variant of the conflict-free hypergraph
matchings theorem of [12], as well as giving the more general set of conditions under which we
prove Theorem 3.1. We then proceed with the proof itself in Section 5.

4.1. The Conflict-Free Hypergraph Matchings Theorem. To state the theorem we need,
we must first make a further definition; assume ℓ is a given integer, as in Section 1.1. Recalling
that we write H to refer to E(H), and given j ∈ N ∪ {0},1 say that w :

(H
j

)
→ [0, ℓ] is a

j-uniform ℓ-test function for H if w(E) = 0 whenever E ∈
(H
j

)
is not a matching. Write

w(X) :=
∑

x∈X w(x) for X ⊆
(H
j

)
, and w(E) := w(

(
E
j

)
) for general E ⊆ H.

Given a vertex v in a hypergraph H, the link of v in H is the hypergraph H−v = {E\{v} : E ∈
H, v ∈ E} on vertex set V (H)\{v}, that is the set of all partial edges which are completed by v to
form an edge of H. Now say that a pair of edges e, f ∈ H is an (ε, C)-conflict-sharing pair (or just

ε-conflict-sharing pair since C is usually obvious from context) if |(C−e)
(j′) ∩ (C−f )(j

′)| > dj
′−ε

for some j′ ∈ [ℓ − 1]. Then given a conflict hypergraph C for H, a j-uniform ℓ-test function w
for H, and d, ε > 0, we say that w is (d, ε, C)-trackable if

(W1) w(H) ≥ dj+ε;

(W2) w({E ∈
(H
j

)
: E ⊇ E′}) ≤ w(H)/dj

′+ε/2 for all j′ ∈ [j − 1] and E′ ∈
(H
j′

)
;

(W3) w(E) = 0 for any E ∈
(H
j

)
with e, f ∈ E for some 2ε-conflict-sharing pair e, f ∈ H;

(W4) w(E) = 0 for all E ∈
(H
j

)
which are not C-free.

We will make use of trackable test functions in our proof to bound the number of mixed
conflicts whose H1-part is chosen in the first matching, meaning that their H2-part needs to
be avoided in the second matching. For some intuition behind conditions (W1)–(W4), we refer
the reader again to [12], specifically the explanation of their conditions (Z1)–(Z4) in Section 3.
We may now state the original theorem, a simplified variant of the main result from [12]. Note
that the absence of conflict-sharing pairs in the matching is not given by any of the theorem
statements in the original paper, but follows from the proof, in which such pairs are added as
conflicts of size 2.2

Theorem 4.1. For all k, ℓ ≥ 2, there exists ε0 > 0 such that for all ε ∈ (0, ε0), there exists

d0 such that the following holds for all d ≥ d0. Suppose H is a k-graph on n ≤ 2 exp(dε
3
)

vertices with (1 − d−ε)d ≤ δ(H) ≤ ∆(H) ≤ d and ∆2(H) ≤ d1−ε and suppose C is a (d, ℓ, ε)-
bounded conflict hypergraph for H. Suppose also that Y is a set of (d, ε/10, C)-trackable ℓ-test

functions for H of uniformity at most ℓ with |Y| ≤ exp(dε
3
). Then, there exists a C-free matching

1Note that in the original paper j is assumed to be strictly positive, but the conclusion of the theorem still
holds in the trivial case j = 0. This will simplify our notation later.

2See Lemmas 8.5 and 8.6 in [12], which refer to conflict-sharing pairs as bad pairs; note that while the
statements given there only avoid ε/4-conflict-sharing pairs, this can easily be improved to ε/2 by being more
conservative with ε, provided that all test functions are zero on sets containing an ε/2-conflict-sharing pair; this
follows from (W3), noting that our condition (W3) uses 2ε in place of ε, unlike in the original paper. Similarly,
taking such extra care allows us to require only that test functions are (d, ε/4, C)-trackable, rather than with ε
as in the original statement, and to replace ε by ε/2 in condition (W2).
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M ⊆ H of size at least (1− d−2ε3)nk with w(M) = (1± d−ε3)d−jw(H) for all j-uniform w ∈ Y.
Furthermore, M contains no (ε/2, C)-conflict-sharing pairs.

In order to prove Theorem 3.1, we require a slight extension, for which we make another defin-
ition; we say a j-uniform test function w is (d, ε, C)-semi-trackable if it satisfies the alternative
conditions

(W1∗) w(H) ≤ dj+2ε;

(W2∗) w({E ∈
(H
j

)
: E ⊇ E′}) ≤ ε−1dj−j′ for all j′ ∈ [j − 1] and E′ ∈

(H
j′

)
;

as well as (W3) and (W4). Observe also here that, if (W1) holds, then (W2∗) implies (W2), so
we will usually just check (W2∗) when proving that test functions are trackable.

For such functions, it is not in general possible to guarantee the same estimate w(M) =

(1 ± d−ε3)d−jw(H), because the heuristically expected value is too small and therefore subject
to outlying events; for a simple example, let v ∈ V (H), choose Z to be some set of size d(v)/2 of
edges that contain v, and take w as the indicator function of Z, then (heuristically, imagining
M to be appropriately pseudorandom), the expected value of w(M) is (approximately) 1/2
but clearly we cannot guarantee concentration close to 1/2 since w takes values in {0, 1}. It
is however obvious in this case that w(M) can be bounded from above, namely by 1. More
generally, we might hope that for semi-trackable test functions, we can make use of the bound
on w(H) to guarantee that at least w(M) is not too large; indeed, this turns out to be possible.

Theorem 4.2. Assume the setup of Theorem 4.1, but allow Y to contain also some (d, ε/10, C)-
semi-trackable ℓ-test functions. Then there exists a C-free matching M ⊆ H of size at least

(1− d−ε3)nk , containing no (ε/2, C)-conflict-sharing pairs, with w(M) = (1± d−ε3)d−jw(H) for

all j-uniform trackable w ∈ Y and w(M) ≤ dε/4 for all semi-trackable w ∈ Y.

Proof. Our strategy will be to extend H using some new dummy vertices and edges, allowing
us to extend w to a new test function w′ which agrees with w on H, but is also positive on
sufficiently many subsets of the new edges to satisfy (W1). We then obtain the usual estimate
for the value of w′(M), which in particular gives us the required crude upper bound for w(M).

Let S be a set of m new vertices, disjoint from V (H), with m chosen such that (1 − d−ε)d ≤(
m−1
k−1

)
≤ d, noting that this is possible for ε < (k − 1)−1. Note that m ≤ kd1/(k−1) and dε ≤

m ≤ n since d ≤
(
n−1
k−1

)
. Let K be the complete k-graph on vertex set S, and define H′ to be the

(disjoint) union of H with ℓ vertex-disjoint copies of K, say K1, . . . ,Kℓ on vertex sets S1, . . . , Sℓ,
respectively. Then, by definition, H′ is essentially regular as required for Theorem 4.1, and
∆2(K) ≤ mk−2 ≤ kk−2d1−1/(k−1) ≤ d1−ε, as we can choose ε0 < (k − 1)−1/2.

For each i ∈ [ℓ], choose any subset Ti ⊆ Si of size t := 2dε/5, and enumerate its vertices
arbitrarily as vi1, . . . , v

i
t. For each j ∈ [ℓ], define

Zj :=

{
{e1, . . . , ej} ∈

(
H′

j

)
: ∃s ∈ [t] such that ei ∩ Ti = {vis} ∀i ∈ [j]

}
⊆
(
H′

j

)
.

We claim that the indicator function 1(Zj) is a (d, ε/5, C)-trackable ℓ-test function, for each
j ∈ [ℓ].

Clearly every element of Zj is a matching. For (W1), observe that dj+ε/5 ≤ |Zj | ≤ 2dj+ε/5,

since there are t = 2dε/5 possible choices of s, and then at least (1 − d−ε/3)d (and at most d)
choices for each edge ei. Indeed, the number of choices for ei is exactly the number of edges
containing vis but no other element of Ti; by (H2), the number of edges containing vis and any

other element u ∈ Ti is bounded by 2dε/5 · d1−ε ≤ 2d1−ε/5, so the desired bound follows.

For (W2∗), note that given a set E′ ∈
(H′

j′

)
for some j′ ∈ [j − 1], which belongs to some set

E ∈ Zj , the choice of s ∈ [t] is fixed by E′, as are j′ of the edges of E. Hence 1(Zj)({E ∈(H
j

)
: E ⊇ E′}) ≤ dj−j′ . The conditions (W3) and (W4) are trivial since there are no conflicts

containing edges from H′ \ H.
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Now we may define, for each3 j ∈ [ℓ] and each j-uniform semi-trackable w ∈ Y, a new

test function w′ :
(H′

j

)
→ [0, 1] by w′(E) := w(E) + 1(Zj)(E) for E ⊆ H, and w′(E) := 0

otherwise, and observe that w′ is (d, ε/10, C)-trackable. Indeed, w′(H′) = w′(H) ≥ |Zj | ≥
dj+ε/5 so (W1) is satisfied, and (W2) follows from (W2∗) for w and 1(Zj), using the fact

that (ε−1 + 1)dj−j′ ≤ d−j′−ε/10w′(H). The remaining conditions (W3) and (W4) for w′ follow
immediately from the fact that they hold for w and 1(Zj). Note that C is also (d, ℓ, ε)-bounded

for H′ by definition. Since also w′(H) ≤ 3dj+ε/5, applying Theorem 4.1 to H′ with each w
replaced by the corresponding w′ gives us a C-free matching M′ ⊆ H′ containing no (ε/2, C)-

conflict-sharing pairs such that w′(M′) = (1 ± d−ε3)d−jw′(H′) ≤ 4dε/5.

Let M := M′ ∩ H. Then w(M) ≤ w′(M′) ≤ dε/4 as required. Clearly M is C-free and
contains no conflict-sharing pairs. Since |V (H′)| ≤ (ℓ + 1)|V (H)|, it follows that M covers all

but a d−ε3-fraction of H. □

4.2. The Lovász Local Lemma. We now state our other prerequisite, the well-known Lovász
Local Lemma, a version of which was originally introduced by Erdős and Lovász [10]. The form
we use is an immediate corollary to the general form proved by Spencer [18].

Lemma 4.3. Let A = {A1, . . . , An} be a finite set of events in a probability space, and suppose
that, for each i ∈ [n], there exists a set B(i) ⊆ [n] such that Ai is mutually independent
from {Aj : j ∈ [n] \ B(i)}. Suppose also that for each i ∈ [n] we have P[Ai] < 1/2 and∑

j∈B(i) P[Aj ] ≤ 1/4. Then P[AC
1 ∩ · · · ∩AC

n ] > 0.

4.3. More general conditions. We prove Theorem 3.1 using slightly weaker conditions than
those given in Section 1.1, allowing the case j2 = |D ∩ H2| = 1, and giving more freedom to
high-degree vertices in P . Given a set of edges E ⊆ H, write

VP (E) := {y ∈ P : y ∈ e for some e ∈ E ∩H2}
for the set of vertices of P found in edges of H2 in E. A limitation of conditions (D1)–(D4) is
that the number of conflicts is governed uniformly by the the minimum degree in H2. Intuitively,
given some conflict E ∈ D, if the vertices in VP (E) have much higher degrees in H2, then it
should be easier to avoid E because we have more flexibility when choosing edges of H2 which
are used to cover the vertices of VP (E) in M2. As such, we can afford to have more conflicts
involving vertices of P with higher degrees in H2; this motivates the following quantity, which
allows us to weight these conflicts accordingly when bounding their number.

We define the unavoidability of E to be

(4.1) A(E) :=
∏

y∈VP (E)

d−1
H2

(y),

and extend this definition to a conflict hypergraph G by taking the sum over all conflicts, that
is A(G) :=

∑
E∈G A(E). This has a natural interpretation. Suppose we select for each vertex

v ∈ P one edge in H2 containing v independently and uniformly at random. Then A(G) is the
expected number of conflicts in G of which all edges are selected.

Given j′1, j
′
2 ∈ [ℓ] and sets C ∈

(H1

j′1

)
and D ∈

(H2

j′2

)
, write G[C,D] := {E ∈ G : C ∪ D ⊆ E}.

Then we may define

(4.2) ∆A
j′1,j

′
2
(G) := max

C∈(H1
j′1

),D∈(H2
j′2

)
A(G[C,D]),

which can be thought of as analogous to the maximum (j′1, j
′
2)-degree ∆j′1,j

′
2
(G) (recalling the

definition (3.1)), but with each conflict weighted by its unavoidability. Say that D is (d, ℓ, ε, δ)-
mixed-bounded if the following hold for all x, y ∈ P and j1 ∈ [0, ℓ], j2 ∈ [ℓ].

(E1) |D ∩H2| ≥ 1 and |D| ∈ [2, ℓ] for each conflict D ∈ D;

(E2) A(D(j1,j2)
x ) ≤ dj1+δ;

(E3) ∆A
j′,0(D

(j1,j2)
x ) ≤ dj1−j′−ε for each j′ ∈ [j1];

3Note that the case j = 0 is trivial.
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(E4) A(D(j1,j2)
x,y ) ≤ dj1−ε whenever j2 ≥ 2;

(E5) ∆0,1(D(j1,1)
x ) ≤ ℓdj1 ;

(E6) ∆j′,1(D
(j1,1)
x ) ≤ dj1−j′−ε for each j′ ∈ [j1 − 1].

Observe that the conditions (E2), (E3), (E4) are analogous to (D2), (D3), (D4), except

conflicts are now weighted by their unavoidability; in particular, for a conflict E ∈ D(j1,j2), it is
always the case that A(E) ≤ δP (H2)

−j2 , so (d, ℓ, ε)-simply-bounded implies (d, ℓ, ε, ε4)-mixed-
bounded. Indeed, (D2), (D3), (D4) imply (E2), (E3), (E4), respectively, using the fact that

A(E) ≤ |E|δP (H2)
−j2 for every E ⊆ D(j1,j2). If (D1) holds then so does (E1), and in this

case both of the conditions (E5) and (E6) are vacuous. Note also that conditions (E5) and
(E6) are stronger versions of (E2) and (E3) in the case that j2 = 1, requiring small degrees
and codegrees for every individual edge e ∈ H2, rather than just for the sum over all such e
containing a particular vertex x ∈ P .

In a similar fashion, we may also weaken the degree conditions (H3) and (H4) slightly. Define
analogously the unavoidability of a vertex v ∈ R to be

A(v) :=
∑
x∈P

dH2(x, v)

dH2(x)
.

Then we may require only that for all x ∈ P and v ∈ R,

(H3′) A(v) ≤ dε
4

(and in particular δP (H2) ≥ 1);
(H4′) dH2(x, v) ≤ d−εdH2(x).

Recalling that each edge of H2 contains exactly one vertex of P , note that by definition
A(v)δP (H2) ≤

∑
x∈P d(x, v) = dH2(v) so (H3) implies (H3′), and clearly (H4) implies (H4′).

Observe furthermore that (H3′) and (H4′) together imply that δP (H2) ≥ dε; indeed, by (H3′)
we must have dH2(x) ≥ 1 for every x ∈ P , so there is some v ∈ R with dH2(x, v) ≥ 1, and then
by (H4′) this means dH2(x) ≥ dε.

5. Proof of Theorem 3.1

We assume the setting described in Theorem 3.1, and devote the entirety of this section to
its proof. However, write D′ in place of D, and assume that it is a (d, ℓ, ε, ε4)-mixed-bounded
conflict hypergraph. Introduce new constants ℓ′,Γ, i∗ ∈ N according to the hierarchy 0 < 1/d ≪
ε ≪ 1/ℓ′ ≪ 1/Γ ≪ 1/i∗ ≪ 1/ℓ, 1/k.

5.1. Proof outline. Recall our two-stage proof method outlined in Section 1.1. We first apply
Theorem 4.2 to H1 to give a conflict-free matching M1 ⊆ H1 covering most of the vertices
of P . We then extend this to a covering of P by randomly choosing, for each vertex x ∈ P
which is not already covered by M1, some edge from H2 to cover x; call the resulting set of
edges M2 ⊆ H2. Using the Lovász Local Lemma, we show that with non-zero probability M2

is indeed a matching, and the full matching M := M1 ∪ M2 is conflict-free. This approach
presents several challenges which must be overcome.

Firstly, Theorem 4.2 requires H1 to be essentially vertex-regular, but (H1) provides no lower
bound on the degrees of vertices in Q. We solve this in Section 5.2 by adding dummy vertices
and edges to increase the vertex degrees in Q. Secondly, it need not be the case that the
randomly chosen edges of M2 form a matching. We solve this in Section 5.3 by simply adding
non-disjoint pairs of edges in H2 as additional conflicts of size 2, replacing D′ by a larger conflict
hypergraph D, and thus forcing M2 to be a matching.

The next challenge is to ensure that we can choose M2 such that M is conflict-free. The
conflicts we must avoid are of the form C∪D, where two conditions hold: C ⊆ M1 and no edge
in D contains a vertex of P which has already been chosen in M1. If the second condition does
not hold, we say that D is blocked. In order to ensure that no such D is contained in M2, we
seek to bound from above the total number of unblocked potential conflicts involving a given
vertex x ∈ P in some edge of D ⊆ H2; since most vertices of P are already covered by M1, this
significantly reduces the number of conflicts we need to consider. In Section 5.4, we define test
functions to track the number of partial conflicts appearing in the matching M1, as well as the
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number of those which are blocked; by taking the difference of these two values we later obtain
the desired bound.

The final challenge to overcome is that this approach to blocking conflicts fails when j2 = 1,
since the conflicts contain no other edges of H2 which might be blocked. We therefore require
the stricter bound ℓdj1 in (E5) on the number of such conflicts of a given size j1 containing
a given edge e ∈ H2. Under the assumption that edges in H1 appear in the matching M1

‘pseudorandomly with probability d−1’ in some suitable sense, this allows the ‘expected number’
of potential conflicts (of any size) for each e to be up to ℓ2; so choosing e purely at random still
will not suffice. To overcome this, we observe that, assuming that the Poisson paradigm applies
to our concept of pseudorandomness, there should be a constant proportion (specifically, at
least exp(−ℓ2)) of the edges e containing any given vertex x with no potential conflicts arising
from M1. Hence for each vertex x ∈ P we may restrict our random choice of M2 to only these
safe edges. We encode this ‘pseudorandom’ behaviour in a further set of test functions, defined
in Section 5.5.

In Section 5.6, we apply Theorem 4.2 to obtain our matching M1, randomly choose M2,
and use the previously defined test functions to bound the number of potential conflicts in each
case, so that M2 is conflict-free with non-zero probability.

5.2. Regularising H1. First, in order to apply Theorem 4.2 to the hypergraph H1, we need to
ensure that all vertices in H1 have degree roughly d, rather than just those in P ; since we only
require a P -perfect matching, and make no statement about which vertices of Q are covered,
we can achieve this by simply adding dummy edges to boost the degrees of vertices in Q.

Assume that q > 0 (otherwise we may skip this step), and let m := |Q|. For each vertex
v ∈ Q, let d′ := d − dH1(v) and add d′ new edges, each containing v and a set of k − 1 new
vertices, such that each new vertex is only ever contained in one edge. Refer to the set of new
vertices as Q′ and the set of new edges as EQ. Add further new vertices until Q′ contains |Q|dm
vertices. Next, let F ′ be a binomial random k-graph with vertex set Q′ and expected degree
(1 − d−ε/2)d. It is routine to show that, with high probability, (1 − d−ε)d ≤ dF ′(v) ≤ d − 1
and dF ′(u, v) ≤ d1−ε for all distinct u, v ∈ Q′; take F to be a graph satisfying these properties.
Note that each v ∈ Q′ belongs to at most one edge in EQ, so in total dH(v) ≤ d. Define the
hypergraph H′

1 := H1 ∪ EQ ∪ F , which we will use in place of H1 later in the proof.

5.3. Ensuring a Matching in H2. Let E := {{e, f} ⊆ H2 : ∅ ≠ e ∩ f ⊆ R} be the conflict
hypergraph containing as conflicts all pairs of edges in H2 that overlap (only) in R. We show
that E is a (d, ℓ, ε/2, 2ε4)-mixed bounded hypergraph by verifying that it satisfies (E1)-(E6).
Note that in particular this implies that D := D′ ∪ E is (d, ℓ, ε/3, 3ε4)-mixed-bounded; indeed,
(E1) is trivial, the bounds in conditions (E2), (E3), (E4) are additive and the bounds in (E5)
and (E6) are unaffected by E .

Indeed, the condition (E1) is clear and (E3), (E5), (E6) are trivial. For (E2), note that we
need only consider the case (j1, j2) = (0, 2) and suppose that D = {e, f} is a conflict containing
x ∈ P ; say x ∈ e, and let v ∈ e ∩ f ∩R and y ∈ f ∩ P , noting that x ̸= y. The number of such
conflicts D, given x, v, y, is exactly dH2(x, v)dH2(y, v). Moreover, recalling definitions (4.1) and
(4.2), as |e ∩ P | = |f ∩ P | = 1, we have A(D) = dH2(x)−1dH2(y)−1, so we obtain

A(Ex) =
∑
D∈Ex

A(D) ≤
∑
v∈R

∑
y∈P

dH2(x, v)dH2(y, v)

dH2(x)dH2(y)
=
∑
v∈R

dH2(x, v)

dH2(x)
A(v) ≤ r · dε4 ,

which suffices, using the fact that A(v) ≤ dε
4

by (H3′), and noting that we allow the case y = x
in the sum, as we seek only an upper bound. For (E4), observe that similarly

A(Ex,y) ≤
∑
v∈R

dH2(x, v)

dH2(x)

dH2(y, v)

dH2(y)

(H4′)
≤ d−ε

∑
v∈R

dH2(x, v)

dH2(x)
= rd−ε,

which suffices. The rest of the proof will show that all of the conflicts in D can indeed be
avoided when choosing M2.
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5.4. Tracking mixed conflicts: the case j2 ≥ 2. In this section, we define a set of test
functions and show that they are either trackable or semi-trackable. These will be useful in
Section 5.6.4 for showing that the expected number of unblocked conflicts can be appropriately
bounded from above such that the Lovász Local Lemma can be used to avoid them.

For the remainder of this section, we fix j1 ∈ [0, ℓ] and j2 ∈ [2, ℓ], and consider only conflicts

with j1 and j2 edges from H1 and H2 respectively; for ease of notation, let G = D(j1,j2) (recalling
the notation from Section 3.3). For i ∈ [2], we write Ei(G) := {E ∩ Hi : E ∈ G} for the set of
Hi-parts of conflicts in G.

5.4.1. Defining test functions. We extend our previous notation from Section 4.3 by writing
G[C] = G[C,∅], G[C],x = (G[C])x and G[C],x,y = (G[C])x,y, for any C ⊆ H1 and x, y ∈ P . For the

remainder of this section, fix a vertex x ∈ P . We first define wx :
(H1

j1

)
→ R≥0 by

wx(C) := A(G[C],x),

recalling (4.1). Given a matching M1 ⊆ H1 containing C (but not covering x), if we choose
M2 ⊆ H2 randomly, then the function wx(C) represents the expected number of conflicts from
G present in M = M1 ∪ M2 which have C as their H1-part and contain x in their H2-part.
As such, wx(M1) represents the expected number of conflicts containing x in their H2-part for
which the H1-part is covered by M1.

Next, in order to ensure that the test functions we define are trackable, we make an in-
termediate definition. Say that a set of edges E ⊆ H is testable if it satisfies the following
conditions:

• E ∩H1 is a matching;
• E is C-free;
• E contains no ε/2-conflict-sharing pairs of edges (as defined in Section 4.1).

Say that E is untestable if it is not testable.4 We may (and do henceforth) assume without
loss of generality that all of the conflicts in D are testable. Indeed, letting D ⊆ D be the set
of all testable conflicts, it is clear that D is also (d, ℓ, ε/3, 3ε4)-mixed-bounded. Furthermore, if
we are able to find a matching M2 ⊆ H2 such that M = M1 ∪M2 is D-free, with M1 ⊆ H1

obtained from Theorem 4.2, then M1 may not contain any untestable set, which in particular
means that M is also D-free. Similarly we may assume that wx(C) = 0 for any C containing
x, because if C is covered by M1 then no edge containing x can be chosen in M2.

We may now define further w′
x :
( H1

j1+1

)
→ R≥0 by

w′
x(C ′) := 1(C ′ testable)

∑
e∈C′

∑
y∈(e∩P )\{x}

A(G[C′\{e}],x,y).

Observe that the function w′
x(C ′) represents the sum, over each possible partition C ′ = C∪{e},

of the expected number of those conflicts counted by wx(C) whose H2-part shares some vertex
y ∈ P \ {x} with the edge e ∈ H1. In particular this means w′

x(M1) represents the expected
number of those conflicts counted by wx(M1) whose H2-part shares some vertex y ∈ P with
some edge e ∈ M1. In our proof, we will consider the quantity wx(M1)−w′

x(M1), which counts
the number of conflicts (containing x in their H2-part) for which the H1-part is contained in
M1, and the H2-part is at risk of being contained in M2. By bounding this quantity from
above, we can ensure that all such conflicts can be avoided when choosing M2. Observe also
that both function definitions still make sense when j1 = 0, in which case wx is defined only on
the empty set, and w′

x is defined on single edges.

5.4.2. Ignoring untestable sets. The goal of this section is to prove (5.1) below. For any given
C ∈ E1(G), and any vertex y ∈ P not contained in an edge of C, we write bC,y := |{e ∈ H1 :
y ∈ e and C ∪ e is testable}|, and claim that

(5.1) (1 − d−ε/3)d ≤ bC,y ≤ d.

4This name reflects the fact that we must ignore such sets when defining our test functions, in order to ensure
that the functions are trackable (as per the definition in Section 4.1).
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In other words, restricting to testable sets only removes a negligible proportion of the total
number of edges e containing y for which w′

x(C ∪ {e}) would otherwise be positive. Indeed,
we estimate bC,y by bounding from above the number of e ∈ H1 such that y ∈ e but C ∪ e is
untestable. Firstly, for an H1-part C of size j1, observe that C covers in total kj1 vertices z,
and for each of these there are at most ∆2(H1) edges e ∈ H1 with y, z ∈ e. Thus the total
number of e ∈ H1 with y ∈ e for which C ∪ e is not a matching is at most j1kd

1−ε by (H2).
Secondly, by (C3), the number of such e for which C ∪ e contains a conflict from C is at most

ℓ∑
j=2

∑
F∈( C

j−1)

∆j−1(C(j)) ≤ ℓ2j1d1−ε,

where F represents a subset of C for which F ∪ e is a conflict of size j.5 Thirdly, we bound the
number of e for which C ∪ e contains a conflict-sharing pair.6 For each edge f ∈ H1 and j ∈ [ℓ],

let P j
f := {e ∈ H1 : |(Ce)(j) ∩ (Cf )(j)| ≥ dj−ε/2}. Observe that by definition we may rewrite∑

e∈P j
f

|(Ce)(j) ∩ (Cf )(j)| =
∑

C′∈(Cf )(j)

∑
e∈P j

f

1(C ′ ∪ e ∈ C(j+1)) ≤
∑

C′∈(Cf )(j)
|{e ∈ H1 : C ′ ∪ e ∈ C(j+1)}|,

and applying conditions (C2) and (C3), we obtain that∑
C′∈(Cf )(j)

|{e ∈ H1 : C ′ ∪ e ∈ C(j+1)}| ≤ ∆(C(j))∆j(C(j+1)) ≤ dj+1−ε,

where the second expression is the product of the number of choices for C ′ given f and the

number of choices for e given C ′. Then, by the definition of P j
f , we see that

(5.2) |P j
f | ≤ dε/2−j

∑
e∈P j

f

|(Ce)(j) ∩ (Cf )(j)| ≤ d1−ε/2.

Hence, summing over each f ∈ C and j ∈ [ℓ], this means that in total there are at most j1ℓd
1−ε/2

edges e ∈ H1 for which C ∪ {e} contains a conflict-sharing pair. We finish by subtracting the
three bounds we have obtained from (H1) to see that (5.1) holds.

5.4.3. Estimating values of test functions. In this section we use (5.1) to show that ignoring
untestable sets in the definition of w′

x does not significantly affect the value of w′
x(H1), compared

to what its value would be if they were included. Specifically, we evaluate wx(H1) and w′
x(H1)

and show that w′
x(H1) ≈ (j2 − 1)dwx(H1). Recalling the definition of VP (·) from Section 4.3,

begin by rewriting

w′
x(H1) =

∑
C∈(H1

j1
)

∑
e∈H1\C

1(C ∪ e testable)
∑

y∈(e∩P )\{x}

A(G[C],x,y)

=
∑

C∈(H1
j1

)

∑
e∈H1\C

1(C ∪ e testable)
∑

y∈(e∩P )\{x}

∑
D∈E2(G[C],x)

1(y ∈ VP (D))A(D)

=
∑

C∈(H1
j1

)

∑
D∈E2(G[C],x)

A(D)
∑

y∈VP (D)\{x}

|{e ∈ H1 \ C : y ∈ e and C ∪ e testable}|

=
∑
E∈Gx

A(E)
∑

y∈VP (E)\{x}

bE∩H1,y.

Note here that E = C ∪ D and recall that G := D(j1,j2), so there is an obvious bijection
between the set of pairs C,D in the sum and the set Gx. Now observe that by definition

5Recall here that C is testable by our assumption on D, so this is the only way in which C ∪ {e} may contain
a conflict.

6Note that e must be one element of this pair, by testability of C.
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wx(H1) = A(Gx) =
∑

E∈Gx
A(E). Therefore, recalling that |VP (E) \ {x}| = j2 − 1 and applying

each of the two bounds in (5.1) to the inner sum above, we obtain that

(5.3) (1 − d−ε/3)(j2 − 1)dwx(H1) ≤ w′
x(H1) ≤ (j2 − 1)dwx(H1).

We use these estimates in Section 5.6.4 to ensure that the choice of M1 leaves very few
unblocked potential conflicts, by showing that (j2−1)wx(M1) ≈ w′

x(M1), so that most potential
conflicts are in fact blocked; this will give an upper bound on the expected number of unblocked
conflicts containing x which are present in M1.

5.4.4. Checking test function conditions. In order to use Theorem 4.2 to track the values of wx

and w′
x, we must first scale them appropriately so that they take values in the interval [0, ℓ′].

In order to do this, define αx := max{α′
x, α

′′
x}, where

α′
x := max

j′∈[j1]
dj

′−j1∆A
j′,0(Gx), and α′′

x := d−j1 max
y∈P

A(Gx,y),

recalling the definitions in (4.1) and (4.2). Note that αx ≤ d−ε/3 by (E3) and (E4). We show now
that either both of the functions α−1

x wx and α−1
x w′

x are (d, ε/10, C)-trackable, or the function
α−1
x wx is (d, ε/10, C)-semi-trackable. Observe that we need not consider the case αx = 0, since

in this case wx = w′
x = 0 are trivially trackable.

Firstly, the case j′ = j1 in α′
x ensures that α−1

x wx(C) ≤ 1 ≤ ℓ′ for all C ∈
(H1

j1

)
. Also

α−1
x w′

x(C ′) ≤ α−1
x (j1 + 1)p∆A

j1,0
(Gx) ≤ (j1 + 1)p ≤ ℓ′ by the definition of α′

x, recalling that

ℓ′ ≪ 1/ℓ, 1/k. Clearly both α−1
x wx and α−1

x w′
x are zero on any set of edges which is not a

matching, recalling the assumption that all conflicts in G are testable., so they are indeed both
ℓ′-test functions (which are j1-uniform and (j1 + 1)-uniform, respectively).

Observe that conditions (W3) and (W4) for α−1
x wx are immediate from the assumption

that no element of G contains a conflict from C or conflict-sharing pair, and they both hold
for α−1

x w′
x by definition. We prove that both functions satisfy (W2∗). Given j′ ∈ [0, ℓ] and

E ∈
(H1

j′

)
, write Z(j)

E := {Z ∈
(H1

j

)
: Z ⊃ E} for each j ∈ [j′, ℓ]. Then for j′ ∈ [j1 − 1], we have

α−1
x wx(Z(j1)

E ) = α−1
x A(G[E],x) ≤ dj1−j′ by the definition of α′

x, so (W2∗) holds for wx.

For α−1
x w′

x, let j′ ∈ [j1 + 1 − 1] = [j1], consider a sum over C ′ = C ∪ {e} with E ⊆ C ′, and
split into two cases depending on whether E ⊆ C. Specifically, write

(5.4) w′
x(Z(j1+1)

E ) ≤
∑

C′∈Z(j1+1)
E

∑
e∈C′

∑
y∈(e∩P )\{x}

A(G[C′\{e}],x,y) ≤ S1 + S2,

where
S1 :=

∑
C∈Z(j1)

E

∑
e∈H1

∑
y∈(e∩P )\{x}

A(G[C],x,y),

and
S2 :=

∑
e∈E

∑
C∈Z(j1)

E\{e}

∑
y∈(e∩P )\{x}

A(G[C],x,y).

Firstly for the case E ⊆ C, we may rearrange sums to see that

S1 =
∑

C∈Z(j1)
E

∑
e∈H1

∑
y∈P\{x}

∑
D∈E2(G[C],x)

1(y ∈ VP (D), y ∈ e)A(D)

=
∑

C∈Z(j1)
E

∑
D∈E2(G[C],x)

A(D)
∑

y∈VP (D)\{x}

dH1(y).

We can bound this from above by

(5.5) S1 ≤ (j2 − 1)d
∑

C∈Z(j1)
E

∑
D∈E2(G[C],x)

A(D) = (j2 − 1)dwx(Z(j1)
E ) ≤ (j2 − 1)αxd

j1−j′+1,

using the fact that dH1(y) ≤ d and |VP (D) \ {x}| = j2 − 1, and then the definition of wx and
the condition (W2∗) for wx.
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For the case that e ∈ E, we in fact split into two subcases, according to whether j′ > 1. If
j′ > 1, then we can rearrange and use (W2∗) for wx similarly to see that

(5.6) S2 ≤
∑
e∈E

∑
C∈Z(j1)

E\{e}

pA(G[C],x) = p
∑
e∈E

wx(Z(j1)
E\{e}) ≤ j′pαxd

j1−j′+1.

If however j′ = 1, then E = {e} and we are summing over all possible C ∈
(
H1

j1

)
, which is why

we need the definition of α′′
x to give

(5.7) S2 =
∑

y∈(e∩P )\{x}

A(Gx,y) ≤ pαxd
j1−j′+1.

Plugging the bounds (5.5), (5.6), and (5.7) back into (5.4) gives α−1
x w′

x(Z(j1+1)
E ) ≤

Cℓ,kd
j1+1−j′ for some constant Cℓ,k depending only on ℓ and k, as required for (W2∗).

Hence if α−1
x wx(H1) ≤ dj1+ε/5, then α−1

x wx is (d, ε/10, C)-semi-trackable. If instead α−1
x wx(H1) ≥

dj1+ε/5, then by the estimate (5.3) we have α−1
x w′

x(H1) ≥ dj1+1+ε/10 so (W1) holds for both
functions. In this case, the condition (W2∗) implies (W2), so they are both (d, ε/10, C)-trackable.

5.5. Tracking mixed conflicts: the case j2 = 1. In this section, we suppose j2 = 1, noting
that j1 ≥ 1 by (E1), and define a further set of test functions; these are used in Section 5.6.2
to show that such conflicts can be avoided. We fix x ∈ P for the remainder of this section, and
for ease of notation we write Nx := {e ∈ H2 : x ∈ e} and dx := dH2(x) = |Nx|. Furthermore, in

this section, we define G := ∪j1∈[ℓ]D(j1,1), noting that we now consider only j2 = 1, but for all
values of j1 together.

5.5.1. Defining test functions. Recall that we fixed a constant i∗ ∈ N with 1/i∗ ≪ 1/ℓ. Let m ∈
[i∗], s′ ∈ [mℓ], s ∈ [s′], and consider any collection C := {Ct}t∈[m] of m edge sets Ct ⊆ H1, each

with size |Ct| ∈ [ℓ], such that
∑

t∈[m] |Ct| = s′ but |
⋃

t∈[m]Ct| = s. Let P(C) := (|
⋂

t∈T Ct|)T⊆[m]

encode the sizes of the Ct and their intersections, and let P∗
m,s,s′ be the set of all possible values of

P(C). We consider C to be unordered, and identify elements in P∗
m,s,s′ which arise from different

orderings of the same C, thus ensuring that P(C) is still well-defined. Given P ∈ P∗
m,s,s′ and a

set E ⊆ H1 of size |E| = s, write C(E,P) for the set of all such collections C with
⋃

t∈[m]Ct = E

and P(C) = P. We may now define a function wm,s,s′
x :

(H1

s

)
→ R≥0 by

wm,s,s′
x (E) := d−1

x

∑
P∈P∗

m,s,s′

∑
C∈C(E,P)

∑
e∈Nx

m∏
t=1

1(Ct ∪ e ∈ G).

Given a matching M1 ⊆ H1 containing E (but not covering x), if we choose e ∈ Nx ⊆ H2

randomly, then the function wm,s,s′
x (E) represents the expected number of collections C ∈⋃

P∈P∗
m,s,s′

C(E,P) for which Ct ∪ e is a conflict from G for every t ∈ [m]. As such wm,s,s′
x (M1)

represents the expected number of m-sets of H1-parts C1, . . . , Cm present in M1 such that∑
t∈[m] |Ct| = s′ but |

⋃
t∈[m]Ct| = s and each part individually forms a conflict with the

randomly chosen H2-edge e ∈ Nx. We are interested in the value of wm,s,s′
x (M1), but the

function wm,s,s′
x itself may not technically be trackable, so we define further

wm,s,s′
x (E) := 1(E is testable)wm,s,s′

x (E),

which approximates wm,s,s′
x and is trackable, as we will show.

5.5.2. Checking trackability. We again define a normalising constant βx, analogously to αx, by
βx := max{β′

x, β
′′
x}, where

β′
x := max

j1∈[ℓ]
max

j′∈[j1−1]
dj

′−j1∆j′,1(G(j1,1)
x ), and β′′

x := d−1
x max

j1∈[ℓ]
∆j1,0(G(j1,1)

x ).
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Note again that β′
x ≤ d−ε/3 by (E6). Likewise, observe that A(E) = d−1

x for any E ∈ G(j1,1)
x , so

∆A
j1,0

(G(j1,1)
x ) = d−1

x ∆j1,0(G
(j1,1)
x ), from which it follows that β′′

x ≤ d−ε/3 by the j′ = j1 case of

(E3). We now fix m, s, s′ and aim to prove that the function β−1
x wm,s,s′

x is either (d, ε/10, C)-
trackable or (d, ε/10, C)-semi-trackable. By the definition of β′′

x, we have that

wm,s,s′
x (E) ≤ d−1

x

∑
P∈P∗

m,s,s′

∑
C∈C(E,P)

dG(|C1|,1)
x

(C1) ≤ d−1
x Γ2dxβ

′′
x ≤ βxℓ

′,

recalling that 1/ℓ′ ≪ 1/Γ ≪ 1/i∗ and thus noting that |P∗
m,s,s′ | + |C(E,P)| ≤ Γ. We hence see

that β−1
x wm,s,s′

x ≤ β−1
x wm,s,s′

x is an ℓ′-test function, and observe also that β−1
x wm,s,s′

x satisfies
(W3) and (W4) by the definition of testability.

Next, we verify that β−1
x wm,s,s′

x satisfies (W2∗). To this end, let F ⊆ H1 be an edge set of

size j′ ∈ [s − 1], and recall that Z(s)
F = {Z ∈

(H1

s

)
: Z ⊃ F}. Given P ∈ P∗

m,s,s′ , let F(F,P)

be the set of all collections F := {Ft}t∈[m] of m subsets Ft ⊆ F such that
⋃

t∈[m] Ft = F and

there exists some collection C ⊆ 2H1 with P(C) = P and Ct ∩ F = Ft for every t ∈ [m].
Note that any collection C with F ⊆

⋃
C uniquely determines some such F ∈ F(F,P(C)).

Given F ∈ F(F,P) and e ∈ Nx, we aim to bound q(F ,P) :=
∑

e∈Nx
q(F ,P, e), where we define

q(F ,P, e) as the number of collections C = {Ct}t∈[m] with P(C) = P for which Ft = Ct ∩ F
and Ct ∪ e ∈ G for every t ∈ [m].

Suppose we have already chosen C1, . . . , Ct−1 such that their intersections are compatible with
P, and for every t′ ∈ [t− 1] we have Ft′ ⊆ Ct′ and Ct′ ∪ e ∈ G. Write C ′

t := C1 ∪ · · · ∪Ct−1 ∪ F
and let at and a′t denote the desired sizes of Ct ∩C ′

t and Ct \C ′
t, respectively, noting that these

are uniquely determined by P and F . If at, a
′
t > 0, then to choose Ct given e, we have at

most 2s choices for Ct ∩C ′
t, each yielding at most ∆at,1(G(at+a′t,1)) choices for Ct \C ′

t, so by the

definition of β′
x we obtain at most 2sβ′

xd
a′t total choices for Ct. If at = 0, then the number of

choices for Ct given e is at most ℓda
′
t by (E5). If a′t = 0, then the number of choices for Ct is at

most 2s, and this is compatible with most ∆at,0(G(at,1)) ≤ β′′
xdx choices for e, by the definition

of β′′
x. Note that by definition it is always the case that

∑
t∈[m] a

′
t = s − j′, and without loss

of generality we may assume that a1 ̸= 0, so that the number of choices for (C1, e) is at most

2sβxd
a′1dx in all cases. As such we obtain that q(F ,P) ≤ Γβxd

s−j′dx, recalling that 1/Γ ≪ 1/i∗.
Observe also that |P∗

m,s,s′ | + |F(F,P)| ≤ Γ. We may thus bound

wm,s,s′
x (Z(s)

F ) = d−1
x

∑
P∈P∗

m,s,s′

∑
F∈F(F,P)

q(F ,P) ≤ Γ3βxd
s−j′ .

Therefore β−1
x wm,s,s′

x (Z(s)
F ) ≤ β−1

x wm,s,s′
x (Z(s)

F ) ≤ ε−1ds−j′ , which implies that β−1
x wm,s,s′

x sat-
isfies (W2∗). Note that it is always the case that at least one of (W1) and (W1∗) holds, so

β−1
x wm,s,s′

x is either (d, ε/10, C)-trackable or (d, ε/10, C)-semi-trackable.

5.5.3. Ignoring untestable sets. In this subsection, we again fix m, s, s′, and claim that

(5.8) if wm,s,s′
x (H1) ≥ ds−ε3 , then (1 − d−ε/5)wm,s,s′

x (H1) ≤ wm,s,s′
x (H1) ≤ wm,s,s′

x (H1).

Note that in particular, in this case, we have that β−1
x wm,s,s′

x satisfies (W1), so is trackable.
Indeed, the upper bound is trivial, so we proceed to prove the lower bound. Start by writing

wm,s,s′
x (E) ≥ wm,s,s′

x (E) − f(E) − g(E) − h(E) where

f(E) := 1(E not a matching)wm,s,s′
x (E),

g(E) := 1(E contains a conflict in C)wm,s,s′
x (E),

h(E) := 1(E contains a conflict-sharing pair)wm,s,s′
x (E).

We first bound f(H1) from above by considering the number of choices of C = {Ct}t∈[m]

for which E =
⋃

t∈[m]Ct is not a matching. Given P ∈ P∗
m,s,s′ and e ∈ Nx, we aim to bound
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q(P, e), which we define as the number of collections C = {Ct}t∈[m] for which Ct ∪ e ∈ G for

every t ∈ [m], P(C) = P, and there exist e1 ∈ C1, e2 ∈ C2 with some vertex v ∈ e1 ∩ e2; note
that this case suffices without loss of generality, since we regard C as unordered.

Let a′1 and a′2 be the sizes of C1 and C2 \C1, respectively, which are prescribed by P. There

are at most ℓda
′
1 choices for C1 by (E5), then at most a′1(p + q) choices for v ∈

⋃
C1, d choices

for e2 ∈ H1 with v ∈ e2, and 2a
′
1β′

xd
a′2−1 choices for C2 ⊆ H1 with e2 ∈ C2 and C2 ∪ e ∈ G.7

As in the previous section, suppose that 3 ≤ t ≤ m and we have already chosen C1, . . . , Ct−1

such that their intersections are compatible with P. Similarly, let at and a′t be the desired sizes
of Ct ∩ (C1 ∪ · · · ∪Ct−1) and Ct \ (C1 ∪ · · · ∪Ct−1), respectively, as determined by P. As before,

we see that the number of choices for Ct is at most 2s∆at,1(G(at+a′t,1)) ≤ 2sℓda
′
t , in all cases,

by (E5) and (E6). Hence, noting that
∑

t∈[m] a
′
t = s, we obtain that q(P, e) ≤ Γβ′

xd
s. This in

particular means that

f(H1) = d−1
x

∑
P∈P∗

m,s,s′

∑
e∈Nx

q(P, e) ≤ Γ2β′
xd

s.

Therefore, since βx ≤ d−ε/3, and by the assumption that wm,s,s′
x (H1) ≥ ds−ε3 , we obtain that

f(H1) ≤ d−ε/4wm,s,s′
x (H1).

By the very same argument, but using instead the degree conditions on C and the bound
from (5.2) on the number of ε/2-conflict-sharing pairs {e, f} given any fixed edge e ∈ H1,

respectively, we obtain that g(H1) ≤ d−ε/2wm,s,s′
x (H1) and h(H1) ≤ d−ε/3wm,s,s′

x (H1). Hence
the lower bound in (5.8) follows by subtracting these three bounds.

5.5.4. Useful estimates. We finish this section by computing two bounds which we will need in
Section 5.6.2. Firstly, we bound the order of magnitude of our test functions, specifically

(5.9) wm,s,s′
x (H1) ≤ Γ2ds.

Indeed, we use a similar counting argument to the previous sections. Fix P ∈ P∗
m,s,s′ and

e ∈ Nx, and attempt to count the number of collections C = {Ct}t∈[m] with P(C) = P and
Ct ∪ e ∈ G for every t ∈ [m]. For each t ∈ [m], let at and a′t be the sizes of Ct ∩ (C1 ∪ · · · ∪Ct−1)
and Ct \ (C1 ∪ · · · ∪ Ct−1), respectively, as prescribed by P. Suppose now that we have chosen

sets C1, . . . , Ct−1 compatible with P. If at = 0 then we have at most ℓda
′
t choices for Ct by

(E5). If a′t = 0 then we have at most 2s choices for Ct. Otherwise we have at most 2sda
′
t−ε/3

choices for Ct by (E6). Since
∑

t∈[m] a
′
t = s by definition, we obtain in total at most Γds choices

for the collection C. Thus we may bound

wm,s,s′
x (H1) ≤ d−1

x

∑
P∈P∗

m,s,s′

∑
e∈Nx

Γds ≤ Γ2ds,

as required, recalling that 1/Γ ≪ 1/i∗.
Secondly, given m ∈ [i∗] and s ∈ [mℓ− 1], we claim further that

(5.10) ŵm,s
x (E) :=

mℓ∑
s′=s+1

wm,s,s′
x (E) ≤ ds−ε/4.

Indeed, consider following the argument above when s < s′, in which case there must exist some
t ∈ [m] with at ̸= 0 ̸= a′t. We therefore obtain the improved bound

wm,s,s′
x (H1) ≤ Γ2ds−ε/3,

from which the desired result follows.

5.6. Constructing the matching. We are now ready to construct the matching in two stages,
as described previously.

7Note that e2 ̸∈ C1, since we assumed that all conflicts in D are matchings.
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5.6.1. Obtaining M1. We start by applying Theorem 4.2 to the hypergraph H′
1 defined in

Section 5.2. Since H′
1 may have many more vertices than H1, we need to ensure that only are

a small proportion of the vertices in P are left uncovered. To do this, simply define another
1-uniform test function (for H′

1)

w1(e) := 1(e ∈ H1).

For any matching N ⊆ H′
1, the value pw1(N ) is equal to the number of vertices of P covered by

N . Note that w1 is a (d, ε/10, C)-trackable ℓ′-test function since (H1) and the fact that |P | ≥ dε

(recalling (S2)) imply that w1(H1) = |H1| > |P |d/2p > d1+ε/2, and (W2)–(W4) hold trivially.
Observe also that for every other test function w that we have defined previously on subsets of
H1, we may extend w to subsets of H′

1 by setting w(E) = 0 for all E with E ̸⊆ H1, without
affecting whether w is trackable or semi-trackable.

We may therefore apply Theorem 4.2 to the hypergraph H′
1, the set of all test functions we

have defined, and the conflict hypergraph C, with ℓ′ in place of ℓ, to obtain a matching M′
1 ⊆ H′

1.
Since all of our test functions are zero on H′

1 \ H1, this induces a C-free matching M1 ⊆ H1

such that, for each of the j-uniform test functions w which we have defined, we have w(M1) =

(1 ± d−ε3)d−jw(H1) if w is trackable, and w(M1) ≤ dε/4 if w is semi-trackable. In particular,

applied to w1, this means that |M1| = |M′
1∩H1| ≥ (1−d−ε3)d−1|H1| ≥ (1−d−ε3)(1−d−ε)|P |/p

by the degree condition (H1). Hence at most (1 − (1 − d−ε3)(1 − d−ε))|P | ≤ d−ε3/2|P | vertices

of P are left uncovered by M1. Write this set as P ′ := {x1, . . . , xM} for M ≤ d−ε3 |P |.

5.6.2. Restricting to safe edges. As discussed, in order to avoid conflicts in the case j2 = 1, we
restrict to a smaller set of safe edges for each vertex in P ′ when choosing M2. Recalling that
Nx = {e ∈ H2 : x ∈ e} and dx = |Nx|, we show now that for each x ∈ P ′, there exists a subset

N s
x ⊆ Nx of safe edges such that if C ∪ e ∈ D is a conflict with C ∈

(M1

j1

)
for some j1 ∈ [ℓ] and

e ∈ Nx, then e ̸∈ N s
x.

We use the inclusion-exclusion principle to bound the number of safe edges from below,
showing that we can choose N s

x of positive density; that is, we ensure that |N s
x| ≥ λdx, for some

constant λ > 0 to be specified, so that restricting to N s
x does not significantly limit our choice

of edges for M2. To do this, we need to estimate the number of m-sets {C1, . . . , Cm} such that
each Ct ⊆ M1 forms a conflict with the same edge e. This is possible because M1 is sufficiently

pseudorandom, in an appropriate sense, which we show using the test functions wm,s,s′
x , defined

in Section 5.5. For the remainder of this section, we again write G =
⋃

j∈[ℓ]D(j,1) for simplicity,

recalling our notation from Section 3.3. Fix x ∈ P ′, and recall that i∗ ∈ N satisfies 1/i∗ ≪ 1/ℓ.
For each C ⊆ H1, start by defining BC := {e ∈ Nx : C ∪ e ∈ G} to be the set of edges in H2

containing x which complete a conflict with C, and for each m ∈ [i∗], recalling the definition of
Ei(·) from Section 5.4, set

am :=
∑
e∈Nx

(
|E1(G[∅,e]) ∩ 2M1 |

m

)
as the sum over all e ∈ Nx of the numbers of m-sets of partial conflicts (of any sizes) in M1, all
of which form a conflict with e. Define N s

x := {e ∈ Nx : E1(G[∅,e]) ∩ 2M1 = ∅} to be the set of
safe edges. We may assume that i∗ is chosen to be odd, so by the inclusion-exclusion principle,
we obtain that

(5.11) |N s
x| =

∣∣∣∣∣∣Nx \
⋃

C⊆M1

BC

∣∣∣∣∣∣ ≥ dx − a1 + a2 − a3 + · · · − ai∗ .

We now aim to show that this is suitably close to an exponential series, which guarantees that
a constant proportion of the edges of Nx belong to N s

x.
Fix m ∈ [i∗] then, considering all of the possible sizes and intersections of a set of m conflicts,

we see by the definition of wm,s,s′
x in Section 5.5.1 that

(5.12) am = dx
∑

s′∈[mℓ]

∑
s∈[s′]

wm,s,s′
x (M1).
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We first claim that

(5.13) wm,s,s′
x (M1) = (1 ± d−ε3/2)d−swm,s,s′

x (H1) ± d−ε3/2

for every s′ ∈ [mℓ] and s ∈ [s′]. Indeed, we must consider three cases. Firstly, if β−1
x wm,s,s′

x is

semi-trackable, then Theorem 4.2 tells us that wm,s,s′
x (M1) ≤ βxd

ε/4 ≤ d−ε/12, recalling that

βx ≤ d−ε/3. Secondly, if β−1
x wm,s,s′

x is trackable but wm,s,s′
x (H1) < ds−ε3 , then we obtain that

wm,s,s′
x (M1) = (1 ± d−ε3)d−swm,s,s′

x (H1) ≤ 2d−swm,s,s′
x (H1) ≤ 2d−ε3 . Since d−swm,s,s′

x (H1) ≤
d−ε3 in both of these cases, it is certainly true that wm,s,s′

x (M1) = d−swm,s,s′
x (H1) ± d−ε3/2.

Finally, if β−1
x wm,s,s′

x is trackable and wm,s,s′
x (H1) ≥ ds−ε3 , then the estimate from Theorem 4.2,

combined with (5.8), gives us that wm,s,s′
x (M1) = (1± d−ε3/2)d−swm,s,s′

x (H1), so (5.13) holds in
all cases. Plugging (5.13) into (5.12) and recalling (5.10), we obtain that

am = (1 ± d−ε3/2)dx
∑

s′∈[mℓ]

∑
s∈[s′]

d−swm,s,s′
x (H1) ± d−ε3/2dx

= (1 ± d−ε3/2)dx
∑

s′∈[mℓ]

d−s′wm,s′,s′
x (H1) ± d−ε3/3dx.(5.14)

In order to approximate this value, for each e ∈ Nx and j ∈ [ℓ], define γe,j := d−j |G(j,1)
[∅,e] | ≤ ℓ

(by (E5)). Then set γe :=
∑

j∈ℓ γe,j ≤ ℓ2, as an estimate for the total number of partial conflicts

completed by e, of any size, which we expect to appear in M1. For each s′ ∈ [mℓ], write Qm,s′

for the set of sequences b = (bj)j∈[ℓ] with
∑

j∈[ℓ] bj = m and
∑

j∈[ℓ] jbj = s′. Considering the

number of ways to choose m conflicts containing e with the sum of sizes of H1-parts equal to
s′, we see that we may write

(5.15)
∑
s∈[s′]

dxw
m,s,s′
x (H1) =

∑
b∈Qm,s′

∑
e∈Nx

∏
j∈[ℓ]

(|G(j,1)
[∅,e] |
bj

)
= ds

′ ∑
e∈Nx

∑
b∈Qm,s′

∏
j∈[ℓ]

γ
bj
e,j

bj !
± ds

′−1/2dx,

where the error term is obtained using the fact that
(
n
k

)
= nk/k! ± f(n) for a polynomial f of

degree at most k− 1, as well as the fact that |G(j,1)
[∅,e] | ≤ ℓdj by (E5). Recalling (5.9), we see that

all summands with s < s′ contribute lower order terms to (5.15), so in fact

(5.16) dxw
m,s′,s′
x (H1) = ds

′ ∑
e∈Nx

∑
b∈Qm,s′

∏
j∈[ℓ]

1

bj !
γ
bj
e,j ± 2ds

′−1/2dx.

Plugging (5.16) into (5.14) gives

(5.17) am = (1 ± d−ε3/2)
∑

s′∈[mℓ]

∑
e∈Nx

∑
b∈Qm,s′

∏
j∈[ℓ]

γ
bj
e,j

bj !
± d−ε3/4dx.

Now observe by the multinomial theorem that

(5.18) γme =

∑
j∈[ℓ]

γe,j

m

= m!
∑

s′∈[mℓ]

∑
b∈Qm,s′

∏
j∈[ℓ]

γ
bj
e,j

bj !
.

Hence, plugging (5.18) into (5.17), we obtain the estimate

(5.19) am = (1 ± d−ε3/2)
∑
e∈Nx

γme
m!

± d−ε3/4dx.

For x ∈ R, define S(x) =
∑i∗

m=0(−x)m/m!. Now plugging (5.19) into (5.11) gives

(5.20) |N s
x| ≥

∑
e∈Nx

1 − γe +
1

2!
γ2e − · · · − 1

i∗!
γi

∗
e ± i∗d−ε3/4dx ≥

∑
e∈Nx

S(γe) − d−ε3/5dx.
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To bound
∑

e∈Nx
S(γe) from below, let δ := exp(−ℓ2)/3 > 0, then recalling that 1/i∗ ≪ 1/ℓ, we

see that for every 0 ≤ x ≤ ℓ2, we have S(x) = exp(−x)± δ. The choice of such an i∗, depending
only upon ℓ, is possible by the uniform convergence of the exponential series on the interval
[0, ℓ2]. Then, since 0 ≤ γe ≤ ℓ2 for every e ∈ Nx, we obtain∑

e∈Nx

S(γe) ≥
∑
e∈Nx

exp(−γe) − dxδ ≥ dx exp

(
− 1

dx

∑
e∈Nx

γe

)
− dxδ ≥ dx(exp(−ℓ2) − δ)

by convexity of the exponential function and the bound on γe. Substituting this back into
(5.20), we see that |N s

x| ≥ dx(exp(−ℓ2) − 2δ) ≥ dx exp(−ℓ2)/3. Hence we may take λ = λℓ :=
exp(−ℓ2)/3 > 0.

5.6.3. Choosing M2. We may now proceed to choose the edges of M2 randomly from the sets
we have defined. Recall that P ′ = {x1, . . . , xM} is the subset of P not yet covered by M1, and
define H′

2 := H2[P
′ ∪R]. For each i ∈ [M ], choose an edge ei uniformly at random from the set

N s
xi

, so each possible edge e ∈ N s
xi

is taken with probability

(5.21) P[ei = e] ≤ (λdH2(xi))
−1.

Recall also that (H3′) and (H4′) together imply that dH2(xi) ≥ dε, so |N s
xi
| ≥ λdε > 0. Set

M2 := {e1, . . . , em} and take M := M1 ∪ M2 to be the combination of our matching in H1

with these new edges chosen from H2. We now use Lemma 4.3 to ensure that M is D-free;
recall that by excluding the conflicts added in Section 5.3, this will also ensure that M2 is a
matching.

For each j2 ∈ [2, ℓ], define bad events BD := {D ⊆ M2} for each D ∈
(H′

2
j2

)
which could

appear as the H2-part of a conflict in D(j1,j2) for some j1 ∈ [0, ℓ], that is D ∈ E2(D(j1,j2)
[C,∅] )

for some C ∈
(M1

j1

)
.8 Let A be the set of all such events, for any (j1, j2), which we aim to

avoid. Note that, for each event BD ∈ A, we have P[BD] ≤ λ−1d−ε < 1/2, so in order to apply
Lemma 4.3, it suffices to show that we also have

∑
A∈B(D) P[A] ≤ 1/4, where B(D) := {BD′ ∈

A : D′ ∈ E2(Dx) for some x ∈ VP (D)}, recalling the definition of VP (·) from Section 4.3; since
the event BD depends only upon the edge choices for the vertices x ∈ VP (D), it is mutually
independent from the set of all events BD′ for which VP (D) ∩ VP (D′) = ∅.

Now fix some j1 ∈ [0, ℓ], j2 ∈ [2, ℓ], and x ∈ P ′, and again write G := D(j1,j2) for ease of
notation. Further write GM1 := {C∪D ∈ G : C ⊆ M1 and D ⊆ H′

2}. Because |VP (D)| = j2 ≤ ℓ,
and there are at most ℓ2 choices for j1 and j2, it is (more than) sufficient to show that

(5.22)
∑

D∈E2(G
M1
x )

P[D ⊆ M2] ≤ d−ε3/3.

Given C ∈
(H1

j1

)
, say that an H2-part D ∈ E2(G[C],x) is blocked if VP (D) ̸⊆ P ′, that is

some vertex y ∈ VP (D) is already covered by M1. Note that such conflicts can be ignored as
they will never be present in M, because no edge containing y is chosen in M2; the remainder
of the proof is therefore concerned with bounding unblocked conflicts. We define B(C, x) :=
{D ∈ E2(G[C],x) : D is blocked} and U(C, x) := {D ∈ E2(G[C],x) : D is not blocked}. Then by
definition

(5.23) E2(GM1
x ) =

⋃
C∈(M1

j1
)

U(C, x).

Furthermore, observe that by (5.21), and the independence of edge choices for distinct vertices
of P ′, we have

(5.24) P[D ⊆ M2] ≤
∏

y∈VP (D)

(λdH2(y))−1 = λ−j2A(D)

8Recall here our notation from Sections 3.3, 4.3, and 5.4.



20 FELIX JOOS, DHRUV MUBAYI, AND ZAK SMITH

for any (unblocked) D ∈
(H′

2
j2

)
. Hence to show (5.22), using (5.23) and (5.24), it is enough to

prove that

(5.25)
∑

C∈(M1
j1

)

A(U(C, x)) ≤ d−ε3/3.

We now prove (5.25) using the test functions we have defined, as discussed previously.

5.6.4. Bounding unblocked conflicts. We consider first the case that the function α−1
x wx is

(d, ε/10, C)-semi-trackable, so Theorem 4.2 tells us that α−1
x wx(M1) ≤ dε/4. By the definition

of wx and the bound αx ≤ d−ε/3, this means that∑
C∈(M1

j1
)

A(G[C],x) = wx(M1) ≤ αxd
ε/4 ≤ d−ε/12,

which in particular is sufficient for (5.25).
Assume instead that both of the functions α−1

x wx and α−1
x w′

x are (d, ε/10, C)-trackable. In
order to obtain (5.25), we rewrite

(5.26)
∑

C∈(M1
j1

)

A(U(C, x)) =
∑

C∈(M1
j1

)

A(G[C],x) −
∑

C∈(M1
j1

)

A(B(C, x)),

and use wx and w′
x to estimate the two sums respectively.

Firstly, by definition and the conclusion of Theorem 4.2, we have that

(5.27)
∑

C∈(M1
j1

)

A(G[C],x) = wx(M1) = (1 ± d−ε3)d−j1wx(H1) ≤ (1 + d−ε3)d−j1A(Gx).

To obtain a lower bound for the second term in (5.26), start by observing that, given D ∈
E2(Gx), we have |VP (D) \ P ′| ≤ (j2 − 1)1(VP (D) \ P ′ ̸= ∅) = (j2 − 1)1(D blocked). Therefore,∑

C∈(M1
j1

)

A(B(C, x)) =
∑

C∈(M1
j1

)

∑
D∈E2(G[C],x)

A(D)1(D blocked)

≥ 1

j2 − 1

∑
C∈(M1

j1
)

∑
D∈E2(G[C],x)

A(D)|VP (D) \ P ′|

=
1

j2 − 1

∑
C∈(M1

j1
)

∑
D∈E2(G[C],x)

A(D)
∑

y∈VP (D)\{x}

∑
e∈M1

1(y ∈ e)

=
1

j2 − 1
w′
x(M1).(5.27)

To see the penultimate equality, note that y ∈ P \ P ′ if and only if there is exactly one edge
e ∈ M1 containing y. For the final equality, recall the definition of w′

x in Section 5.4.1, and
note further that if C ∪ e ⊆ M1, then C ∪ e cannot contain any conflict-sharing pair or conflict
from C.

Now by Theorem 4.2 and the estimate (5.3), we see that

(5.28) w′
x(M1) = (1 ± d−ε3)d−j1−1w′

x(H1) ≥ (j2 − 1)(1 − d−ε3/2)d−j1wx(H1).

Hence combining (5.27) and (5.28) we obtain the bound

(5.29)
∑

C∈(M1
j1

)

A(B(C, x)) ≥ (1 − d−ε3/2)d−j1A(Gx).

We finish by plugging (5.29) and (5.27) back into (5.26) to obtain∑
C∈(M1

j1
)

A(U(C, x)) ≤ 2d−ε3/2d−j1A(Gx) ≤ d−ε3/3,
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by (E2), as required for (5.25). Note that all of the arguments made here still work for j1 = 0,
when wx is defined simply on the empty set.
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Glossary

C-free: contains no conflict from C. 2
dG(u, v): codegree of vertices u and v in hypergraph G. 3
∆V (G): maximum degree of all vertices in V ⊆ V (G). 3

G(j): subhypergraph of G consisting of edges of size j. 3

N
(2)
C (e): set of edges forming a conflict of size two with e. 5

(d, ℓ, ε)-bounded: conflict hypergraph satisfying (C1)–(C5). 5

D(j1,j2): conflicts consisting of j1, j2 edges from H1,H2, respectively. 5
∆j′1,j

′
2
(D): maximum codegree among edge sets consisting of j1, j2 edges from H1,H2,

respectively. 5
Dx: conflicts containing vertex x in their H2-part. 5
Dx,y: conflicts containing both x and y in their H2-part. 5
(d, ℓ, ε)-simply-bounded: conflict hypergraph satisfying (D1)–(D4). 5
j-uniform ℓ-test function: [0, ℓ]-valued function on sets of j edges which is non-zero

only for matchings. 6
H−v: link hypergraph (all sets whose union with v form an edge in H). 6
(ε, C)-conflict-sharing pair: two edges with large link hypergraph in C. 6
(d, ε, C)-trackable: test function satisfying (W1)–(W4). 6
(d, ε, C)-semi-trackable: test function satisfying (W1∗), (W2∗), (W3), (W4). 7
VP (E): all vertices of P covered by H2-part of E. 8
A(E): unavoidability of edge set E. 8
G[C,D]: conflicts in G containing C,D in their H1,H2-parts, respectively. 8

∆A
j′1,j

′
2
(G): maximum codegree weighted by unavoidability. 8

(d, ℓ, ε, δ)-mixed-bounded: conflict hypergraph satisfying (E1)–(E6). 8
A(v): unavoidability of vertex v. 9
ℓ′,Γ, i∗: constants used in proof. 9
Ei(G): Hi-parts of conflicts in G. 11
G[C]: conflicts of G containing edge set C in their H1-part. 11
G[C],x: conflicts containing edge set C and vertex x in their H1,H2-parts, respectively. 11
G[C],x,y: conflicts containing edge set C and vertices x, y in their H1,H2-parts, respectively.

11
wx: test function used to count all potential conflicts containing x. 11
testable: edge set which is a conflict-free matching with no conflict-sharing pairs. 11
w′
x: test function used to count blocked potential conflicts containing x. 11

bC,y: edges containing y which could block conflicts containing C. 11
αx: scaling constant for test functions wx, w

′
x. 13

Z(j)
E : all edge sets of size j containing edge set E. 13

Nx: edges in H2 containing vertex x. 14
dx: size of Nx. 14
P(C): encoding of all intersections of a collection C of edge sets. 14
P∗
m,s,s′: all possible P(C) for m sets with sum of sizes s′ and union size s. 14

wm,s,s′
x : function used to count m-sets of potential conflicts with common H2-part of size
1. 14

wm,s,s′
x : restriction of wm,s,s′

x to testable sets. 14
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βx: scaling constant for test functions wm,s,s′
x , wm,s,s′

x . 14
w1: test function used to count vertices in P left uncovered by M1. 17
N s

x: edges in H2 containing x which do not form a conflict with j2 = 1. 17
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