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Abstract
Fix integers r > 2 and 1 < s1 < -+ < 5,1 < t and set s = H::_ll s;. Let
K = K(s1,...,8—1,t) denote the complete r-partite r-uniform hypergraph with parts
of size $1,...,8—1,t. We prove that the Zarankiewicz number z(n, K) = nr—1/s=o(1)

provided ¢t > 35T°(). Previously this was known only for ¢ > ((r — 1)(s — 1))! due
to Pohoata and Zakharov. Our novel approach, which uses Behrend’s construction
of sets with no 3 term arithmetic progression, also applies for small values of s;, for

11/4—0(1)

example, it gives z(n, K(2,2,7)) = n where the exponent 11/4 is optimal,

whereas previously this was only known with 7 replaced by 721.

1 Introduction

Write K = K(s1,...,s,) for the complete r-partite r-uniform hypergraph (henceforth r-
graph) with parts of size s; < sy < -+ <'s,. More precisely, the vertex set of K comprises
disjoint sets Sy, ...,S,, where |S;| = s; for 1 < i <r, and the edge set of K is

Hziy oy} (2,0 2) €51 X -+ X S}

Given K as above, write ex(n, K) for the maximum number of edges in an n-vertex r-graph
that contains no copy of K as a subhypergraph. Similarly, write z(n, K) for the maximum
number of edges in an r-partite r-graph H with parts X, ..., X,, each of size n, such that
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there is no copy of K(sq,...,s,)in H with S; C X; for all 1 <14 <r (there could be copies of
K in H, where for some 7, S; ¢ X;). Determining ex(n, K) = ex,(n, K) is usually called the
Turdn problem, while determining z(n, K) = z,.(n, K) is called the Zarankiewicz problem
(we will omit the subscript r if it is obvious from context). These are fundamental questions
in combinatorics with applications in analysis [1, 7], number theory [16], group theory [13],

geometry [10], and computer science [3].

A basic result in extremal hypergraph theory, due to Erdés [9], is the upper bound

ex(n, K(sy,...,5.)) = O(n"~'/%), (1)
where s = s189 -+ 5,1 (and, as before s < 55 < --- <'s,7 < 's,). Here s1,...,s, are fixed
and the asymptotic notation is taken as n — oo. As r is fixed, and z(n, K(s1,...,s,)) <

ex(rn, K(s1,...,5,)), the same upper bound as (1) holds for z(n, K(s1,...,s,)).

A major problem in extremal (hyper)graph theory is to obtain corresponding lower bounds
to (1) (or prove that no such lower bounds exist). In fact, it was conjectured in [15] that
the exponent r — 1/s in (1) is optimal. This question has been studied for graphs since
the 1930s, and results of Erdds-Rényi and Brown [5] gave optimal (in the exponent) lower
bounds for K(2,t) and K(3,t). The first breakthrough for arbitrary s; occurred in the
mid 1990’s by Kollar-Ronyai-Szabo [11] and then Alon-Ronyai-Szabo [2], who proved that
ex(n, K(s1,s2)) = Q(n*1/%1) as long as s, > (s; — 1)!. More recently, in another significant

advance, Bukh [6] has proved the same lower bound as long as sy > 9517°(s1),

For » > 3, the first nontrivial constructions that were superior to the bound given by the
probabilistic deletion method were provided in the cases s; = -+ = s,_9 = 1 and K (2,2, 3) by
the current author [15] and, soon after for K(2,2,2) by Katz-Krop-Maggioni [12] (see also [§]
for recent results on the r-uniform case K(2,...,2) that are superior to the probabilistic
deletion bound but not optimal in the exponent). Later, optimal bounds for both ex(n, K)
and z(n, K) were provided by Ma, Yuan, Zhang [14] (and independently by Verstraéte) by
extending the method of Bukh, however, the threshold for s, for which the bound holds was
not even explicitly calculated. More recently, lower bounds matching the exponent r — 1/s
from (1) have been proved for s, > ((r — 1)(s — 1))! by Pohoata and Zakharov [17]. Here
we improve this lower bound on s, substantially in the Zarankiewicz case, from factorial to
exponential at the expense of a small o(1) error parameter in the exponent. The following

1s our main result.

Theorem 1. Fix r > 3, and positive integers sy, ...,S._1,t. Then as n — oo,
ZT(na K(Sl7 <oy Sp—1, t)) > nlio(l) ' erl(n, K(817 <oy Sr=3, Sr—28r—1, t))

2



Applying Theorem 1 repeatedly (or doing induction on ) yields
ze(n, K(s1, ..., 81,t)) >n" 27 . 2 (n, K(s,1))

where s = s, ---5,_1. Bukh [6] proved that z(n, K(s,t)) = Q(n?>/*) provided t > 35+
and this yields the following corollary.

Corollary 1. Fix r > 2, and integers 1 < s1 < -+ < 5,1 < t where t > 35tos) gnd

§S=81++S._1. Then as n — oo,

zo(n, K (s1, ..., 8p-1, 1)) = '~ 1/s7o)

We remark that Theorem 1 can also be applied for small values of s;. For example, using
the result of Alon-Rényai-Szabé [2] that z(n, K (4,7)) = Q(n™/*), it gives

2(n, K(2,2,7)) > n'™°W 2(n, K(4,7)) > n'oW n7/4 = pit/i—ed)

where the exponent 11/4 is tight. For contrast, the previous best result due to Pohoata
and Zakharov [17] yields only z(n, K(2,2,721)) > Q(n''/%). If, as is widely believed,
z(n, K(4,4)) = Q(n™*), then this would imply via Theorem 1, that z(n, K(2,2,4)) =
pl1/4—o(1).

2 Proof

Write e(H) = |E(H)| for a hypergraph H. To prove Theorem 1, we need the following well-
known consequence of Behrend’s construction [4] of a subset of [n] with no 3-term arithmetic
progression (see, e.g., [18]). There exists a bipartite graph G with parts of size n and n?~°(1)
edges whose edge set is a union of n induced matchings. More precisely, there are pairwise
disjoint matchings M, ..., M, such that E(G) = U}, M, and for all 7, j the edge set M; UM,

contains no path with three edges. Additionally, e(G) = >, |M;| = n?>7°W).

Proof of Theorem 1. Let H' be an (r—1)-partite (r—1)-graph with parts X, ..., X,_3, [n]
and Y each of size n with e(H') = z,_1(n, K’) that contains no copy of the complete (r —1)-
partite (r — 1)-graph K" = K(s1,...,8,_3,S,_28._1,t). Here we only assume that there are
no copies of K’ where the ith part of size s; is a subset of X; for 1 <i <r—3, the r — 2 part
of size s,_9s,_1 is a subset of [n], and the rth part of size t is a subset of Y. Write d(j) for
the degree in H' of vertex j € [n], so e(H') = 3, d(j). By relabeling we may assume that
d(1) > d(2) > --- > d(n).



Let G be a bipartite graph with parts A and B, each of size n comprising n induced matchings
M, ..., M,, with e(G) = Y, |M;| = n?>=°1). Moreover, we may assume that |M;| > | M| >
s 2 | M.

Now define the r-partite r-graph H as follows: the parts of H are Xi,...,X,_3,A,B,Y,
each of size n. For each j € [n], let

E;={{z1,....,x,—3,a,b,y} : {z1,...,2,_3,5,y} € E(H'),(a,b) € A x B,{a,b} € M;}

and let E(H) = Uj_,E;. Observe that e(H) = >_;d(j)|M;|. In words, we have replaced
vertex j that lies in edge {z1,...,2,_3,j,y} of H' by all possible pairs ab of M; to create
|M;]| edges of H. Now Chebyshev’s sum inequality and e(G) = n?*~°W) yield

1 n - 1 n ‘ n 1 , .
ST AGIM| 2 =5 S d) D M| = —se(H)el(G) = e(H )=,
j=1 j=1 j=1

Hence e(H) = Y. d(j)|M;] = n'~*We(H') as required.

Now suppose there is a copy L of K = K(sy,...,s._1,t) in H where the part of size s; lies

in X; for 1 <i <r — 3, the part A’ of size s,_5 lies in A, the B’ part of size s,_; lies in B,
V(L)
2
from different matchings M; as the matchings are induced. Indeed, if there is an ¢ such that

and the part of size t lies in Y. Then all s,_5s,_1 pairs in ( ) within A’ x B’ must come
ab and a'b’ are distinct edges of M;, where a,a’ € A" and b,/ € B’, then ab’ cannot lie in any
edge of H, as M’ is an induced matching, but ad’ must lie in many edges of L, contradiction.
The number of these matchings M; is therefore |A’||B’| = s,_2s,_1 and each such matching
M; corresponds to a vertex j of [n]. This means that we have a forbidden copy of K’ in H’,
contradiction. O]

Remarks.

e One shortcoming of our approach is that it applies only to the Zarankiewicz problem

and not the Turan problem. It would be interesting to rectify this.

e For some r-partite r-graphs H one can define an appropriate (r — 1)-partite (r — 1)-
graph H’ such that z.(n, H) > n'=°Mz._(n, H'). This may give some further new
results for hypergraphs.
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