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Abstract. Let r, k, ℓ be integers such that 0 ≤ ℓ ≤
(k
r

)
. Given a large r-uniform hypergraph G, we

consider the fraction of k-vertex subsets which span exactly ℓ edges. If ℓ is 0 or
(k
r

)
, this fraction can

be exactly 1 (by taking G to be empty or complete), but for all other values of ℓ, one might suspect
that this fraction is always significantly smaller than 1.

In this paper we prove an essentially optimal result along these lines: if ℓ is not 0 or
(k
r

)
, then this

fraction is at most (1/e)+ε, assuming k is sufficiently large in terms of r and ε > 0, and G is sufficiently
large in terms of k. Previously, this was only known for a very limited range of values of r, k, ℓ (due to
Kwan–Sudakov–Tran, Fox–Sauermann, and Martinsson–Mousset–Noever–Trujić). Our result answers
a question of Alon–Hefetz–Krivelevich–Tyomkyn, who suggested this as a hypergraph generalisation of
their edge-statistics conjecture. We also prove a much stronger bound when ℓ is far from 0 and

(k
r

)
.

1. Introduction

Given a k-vertex graph H, what is the maximum possible number of k-vertex subsets of an n-vertex
graph that induce a copy of H? Denote this number by N(n,H), so we have 0 ≤ N(n,H) ≤

(
n
k

)
. A

simple averaging argument shows that N(n,H)/
(
n
k

)
is nonincreasing in n (for n ≥ k), so we can define

ind(H) = lim
n→∞

N(n,H)(
n
k

) . (1.1)

This quantity is called the inducibility or the maximum induced density of H. It was first considered in
1975 by Pippenger and Golumbic [19], and has been studied intensively in the intervening decades.

In general, it is very difficult to determine ind(H), even for small graphs H (for example, the in-
ducibility of the 4-vertex path is still unknown). However, we do know the minimum of ind(H), among
all k-vertex graphs H (provided k is sufficiently large): indeed, Pippenger and Golumbic [19] showed
that if H has k vertices then

ind(H) ≥ k!

kk − k
, (1.2)

and it is known (see [2, 10]) that if k = 5 or if k is sufficiently large, there is a choice of H that attains
this bound.

What about the maximum value of ind(H)? It is easy to see that ind(H) = 1 when H is a complete
or empty graph; if we exclude these “trivial” examples then we arrive at the so-called large inducibility
conjecture of Alon, Hefetz, Krivelevich and Tyomkyn [1, Conjecture 1.2]. Namely, they identified several
(nontrivial) infinite classes of graphs H with ind(H) > 1/e, and conjectured that the maximum of ind(H)
over all nontrivial k-vertex graphs H tends to 1/e as k → ∞.

Alon, Hefetz, Krivelevich and Tyomkyn also made a second much stronger conjecture called the
edge-statistics conjecture [1, Conjecture 1.1], concerning a much looser variant of graph inducibility.
Specifically, for 0 ≤ ℓ ≤

(
k
2

)
, let N2(n, k, ℓ) be the maximum possible number of k-vertex subsets of an

n-vertex graph which induce exactly ℓ edges, and let

ind2(k, ℓ) = lim
n→∞

N2(n, k, ℓ)(
n
k

) . (1.3)

For each value of k, say that 0 and
(
k
2

)
are the “trivial” values of ℓ; the edge-statistics conjecture says that

the maximum of ind2(k, ℓ) over all nontrivial ℓ tends to 1/e as k → ∞. This conjecture has significance
beyond its consequences for graph inducibility: it can be interpreted as giving a limit on “how uniform”
a graph can be, with respect to statistics of edges in small subsets.
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STRUCT” No. 101076777. Mubayi was supported by NSF grant DMS-2153576. Tran was supported by the National Key
Research and Development Program of China 2023YFA101020.
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It is equally natural to consider the large inducibility and edge-statistics conjectures for hypergraphs;
these generalisations were actually explicitly suggested in the same paper of Alon, Hefetz, Krivelevich,
and Tyomkyn, though they wrote “needless to say that we expect these questions to be difficult”. To
be precise, for an r-uniform hypergraph H and for 0 ≤ ℓ ≤

(
k
r

)
, we define N(n,H) and Nr(k, ℓ) to be

the maximum possible numbers of k-vertex subsets in an n-vertex r-uniform hypergraph which induce a
copy of H and which induce exactly ℓ edges, respectively. Then we can define ind(H) and indr(k, ℓ) as in
(1.1) and (1.3), and use these notions to generalise the large inducibility and edge-statistics conjectures
in the obvious ways: namely, the maximum value of ind(H), over all k-vertex r-uniform hypergraphs
which are neither empty or complete, and the maximum value of indr(k, ℓ) over all 0 < ℓ <

(
k
r

)
, both

tend to 1/e as k → ∞ (holding r fixed).
In a combination of papers by Kwan, Sudakov and Tran [14], Fox and Sauermann [9], and Martinsson,

Mousset, Noever and Trujić [17], the edge-statistics conjecture for graphs (i.e. r = 2), and therefore the
large inducibility conjecture for graphs, have been resolved. These papers also provide evidence for the
hypergraph edge-statistics conjecture, establishing it in the special cases where ℓ = o(k) and where r = 3
and ℓ = Ω(k3). Our first main theorem completely resolves the hypergraph edge statistics conjecture,
and therefore the hypergraph large inducibility conjecture.

Theorem 1.1. Fix any r ∈ N and ε > 0. Suppose k is sufficiently large in terms of r, ε. If ℓ /∈ {0,
(
k
r

)
},

then
indr(k, ℓ) ≤

1

e
+ ε.

Consequently, for any k-vertex r-uniform hypergraph H that is neither empty nor complete,

ind(H) ≤ 1

e
+ ε.

Alon, Hefetz, Krivelevich and Tyomkyn were also interested in the value of ind2(k, ℓ) when ℓ is far
from 0 and

(
k
2

)
. They made several conjectures in this direction [1, Conjecture 6.1 and 6.2], which have

since been resolved by Kwan, Sudakov and Tran [14] and Kwan and Sauermann [13]. We also prove a
theorem along these lines for hypergraphs.

Theorem 1.2. Fix any r ∈ N and ε > 0. If α
(
k
r

)
≤ ℓ ≤ (1 − α)

(
k
r

)
for some α ∈ (0, 1/2], and if αk is

sufficiently large in terms of r, ε, then

indr(k, ℓ) ≤
1

(αk)1/2−ε
.

We note that Kwan, Sudakov and Tran [14, Theorem 1.3] previously proved the r = 3 case of The-
orem 1.2 in the “extremely dense” regime where α is a constant which may not vary with k (using the
induced hypergraph removal lemma).

Theorems 1.1 and 1.2 are both essentially optimal, as follows. Write N(G, k, ℓ) for the number of
k-vertex subsets with ℓ edges, in an r-uniform hypergraph G.

• It was observed by Fox and Sauermann [9] that for every r the constant “1/e” in Theorem 1.1
cannot be improved. To briefly explain why: for any 1 ≤ s ≤ r, let F be a random s-uniform
hypergraph on n vertices, in which every possible edge is present with probability 1/

(
k
s

)
inde-

pendently. Then, let G be the r-uniform hypergraph on the same vertex set whose edges are
the r-sets which are supersets of some edge of F . For ℓ =

(
k−s
r−s

)
, it is easy to establish the

convergence in probability

N(G, k, ℓ)(
n
k

) P→

(
1− 1(

k
s

))(ks)−1

>
1

e
(1.4)

as n → ∞, which implies that indr(k, ℓ) > 1/e.
• It is easy to see that the exponent “1/2” in Theorem 1.2 cannot be improved. Indeed, consider

any α ∈ (0, 1/2) and k ∈ N such that αk is an integer, and consider any n divisible by k. Let
G be an n-vertex r-uniform hypergraph with a distinguished set S of αn vertices, whose edges
are the r-sets that intersect S in exactly one vertex. Then, with ℓ = αk

(
k−αk
r−1

)
(so ℓ has order of

magnitude α
(
k
r

)
), one can compute

lim
n→∞

N(G, k, ℓ)(
n
k

) =

(
k

αk

)
ααk(1− α)(1−α)k ≥ c

(αk)1/2
(1.5)

for some absolute constant c > 0, which implies that indr(k, ℓ) > c(αk)−1/2.
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The estimates in (1.4) and (1.5) can be confirmed via direct computation, but from a more conceptual
point of view, they can also be intuitively understood in terms of two different approximations for the
binomial distribution, which lead to two different anticoncentration bounds (i.e., upper bounds on point
probabilities). On the one hand, a binomial distribution with a low success probability can be closely
approximated by a Poisson distribution. The bound in (1.4) is related to the fact that a Poisson random
variable with parameter 1 is equal to 1 with probability 1/e, and this is the maximum possible probability
for any Poisson random variable to take any particular nonzero value. On the other hand, a binomial
distribution with k trials and success probability α ∈ (0, 1/2) can be approximated by a Gaussian
distribution with standard deviation about

√
αk. The point probabilities of such a binomial distribution

are at most about 1/
√
αk; this corresponds to the fact that the corresponding Gaussian distribution has

density at most about 1/
√
αk.

The proofs of Theorems 1.1 and 1.2 both crucially depend on anticoncentration inequalities that
vastly generalise the above two observations about binomial distributions. Specifically, we need two
general anticoncentration inequalities for low-degree polynomials of independent random variables: (a
strengthened form of) a “Poisson-type” anticoncentration inequality due to Fox, Kwan and Sauermann [8],
and bounds on the so-called polynomial Littlewood–Offord problem due to Meka, Nguyen and Vu [18].

Recall that indr(k, ℓ) can be defined in terms of quantities of the form N(G, k, ℓ), which can be
understood as the probability that a random k-vertex subset of G has exactly ℓ edges. It is not hard to
interpret the number of edges in a random k-vertex subset of G as a polynomial evaluated at a random
vector (namely, at a random point on a “slice of the Boolean hypercube”). Unfortunately, since the entries
of this random vector are not independent, one cannot directly apply the aforementioned polynomial
anticoncentration inequalities (in fact, it is easy to see that the conclusions of these inequalities are in
general false on a slice of the Boolean hypercube). The key new contributions in this paper are several
different ways to “transfer” polynomial anticoncentration inequalities to slices of the Boolean hypercube.
For the proof of Theorem 1.2, we generalise a coupling lemma due to Kwan, Sudakov and Tran [14], and
combine it with a result of Bollobás and Scott [3] related to discrepancy of hypergraphs. For the proof
of Theorem 1.1, we additionally use a classical estimate on hypergeometric distributions due to Ehm [6]
which allows us to transfer Poisson-type anticoncentration inequalities to functions of the slice which
only depend on a few vertices. Then, we prove a delicate combinatorial lemma which says that every
hypergraph has a small vertex subset Y which “only sees large matchings”. We use our Poisson-type
anticoncentration inequality to understand “what happens inside Y ”, and then after conditioning on this
information we apply polynomial Littlewood–Offord bounds (which are effective for hypergraphs with
large matchings).

1.1. Further directions. There is nearly unlimited potential to ask more precise questions about the
quantities indr(k, ℓ). Most obviously, there is the question of removing the “ε” in the exponent of
Theorem 1.2: in the setting of Theorem 1.2 we conjecture that

indr(k, ℓ) ≤
Cr

(αk)1/2
(1.6)

for some constant Cr depending only on r (this also appears as [14, Conjecture 5]). In the case r = 2, this
bound was recently proved by Kwan and Sauermann [13], via new progress on the so-called quadratic
Littlewood–Offord problem. Actually, our proof of Theorem 1.2 reduces the general-r case of (1.6) to
a well-known conjecture in Littlewood–Offord theory. We introduce the polynomial Littlewood–Offord
problem properly, and discuss these aspects further, in Section 2.

One could also ask about the “ε” in Theorem 1.1: for each r, k, what is the exact maximum value
of indr(k, ℓ), among all ℓ /∈ {0,

(
k
r

)
}? We wonder if the maximum is always attained at ℓ = 1. We

remark that the exact value of ind2(k, 1), for all k, was recently found by Liu, Mubayi and Reiher [16,
Theorem 1.13] (see also [11] for earlier work in the case k = 4).

It is also interesting to consider the maximum possible value of indr(k, ℓ) among all pairs (k, ℓ)

satisfying ℓ /∈ {0,
(
k
r

)
}. In the case r = 2, it was suggested by Alon, Hefetz, Krivelevich and Tyomkyn [1]

that this maximum value might be ind2(3, 1) = 3/4.
Finally, it would be very interesting to investigate “stability” in the settings of Theorems 1.1 and 1.2.

Although the constant “1/e” in Theorem 1.1 is best-possible in general, we conjecture that it can be
improved when min(ℓ,

(
k
r

)
− ℓ) is not of the form

(
k−s
r−s

)
(a related theorem was very recently proved by

Ueltzen [22] in the setting of graph inducibility). Similarly, although the exponent “1/2” in Theorem 1.2
is best-possible in general, we conjecture that there is δr > 0 such that indr(k, ℓ) ≤ k−1/2−δr for “generic”
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ℓ (i.e., for a 1 − o(1) fraction of ℓ in the range 0 ≤ ℓ ≤
(
k
r

)
, where asymptotics are as k → ∞, holding

r fixed). This seems to be related to a conjecture of Costello [4, Conjecture 3] on “stability” for the
polynomial Littlewood–Offord problem.

1.2. Notation. We use standard graph theory notation throughout. For a hypergraph G, we write e(G)
for the number of edges in G, and for a vertex subset U , we write G[U ] to denote the subgraph of G
induced by U .

We also use asymptotic notation throughout. For functions f = f(n) and g = g(n), we write f = O(g)
or f ≲ g to mean that there is a constant C such that |f | ≤ C|g|, f = Ω(g) or f ≳ g to mean that there
is a constant c > 0 such that f(n) ≥ c|g(n)| for sufficiently large n, and f = o(g) to mean that f/g → 0
as n → ∞. Subscripts on asymptotic notation indicate quantities that should be treated as constants.

For parameters α, β1, . . . , βq, we write α ≪ β1, . . . , βq to mean “α is sufficiently small in terms of
β1, . . . , βq” (i.e., it is shorthand for a statement of the form “α ≤ f(β1, . . . , βq)”, for some function f
which we do not wish to specify explicitly). Similarly, we write α ≫ β1, . . . , βq to mean “α is sufficiently
large in terms of β1, . . . , βq”.

For a positive integer n and an integer 0 ≤ d ≤ n, we write [n] = {1, . . . , n} and denote the set
of all size-d subsets of [n] by

(
[n]
d

)
. For a real number x, the floor and ceiling functions are denoted

⌊x⌋ = max(i ∈ Z : i ≤ x) and ⌈x⌉ = min(i ∈ Z : i ≥ x). We will however sometimes omit floor
and ceiling symbols and assume large numbers are integers, when divisibility considerations are not
important. All logarithms in this paper without an explicit base are to base e, and the natural numbers
N do not include zero.

For a vector x⃗ ∈ Rn, we write x1, . . . , xn for its coordinates, and for W ⊆ [n], we write x⃗W to denote
the monomial

∏
i∈W xi. For a multilinear polynomial P ∈ R[x1, . . . , xn], we denote the coefficient of the

monomial x⃗W by P̂ (W ).

1.3. Organisation of the paper. In Section 2, we introduce the polynomial Littlewood–Offord problem
(on anticoncentration of polynomials of independent random variables) and describe the best known
bounds for this problem. These results will play a crucial role in the proofs of both Theorems 1.1
and 1.2, but in order to actually apply them we need a general coupling lemma for polynomials “on a
slice of the Boolean hypercube”, which we present in Section 3. In Section 4 we prove Theorem 1.2, using
the above tools and a result of Bollobás and Scott [3].

Then, in the rest of the paper, we focus on Theorem 1.1. First, in Section 5 we apply the above tools
in a different way, to prove an anticoncentration bound for “sparse” polynomials with “large matchings”.
In Section 6, we state and prove our Poisson-type anticoncentration inequality, and in Section 7 we show
how to use an estimate of Ehm [6] to compare certain functions “on a slice of the Boolean hypercube”
with corresponding functions of product distributions. Then, in Section 8 we prove a lemma showing
that every hypergraph has a small set of vertices which “only sees large matchings”. Finally, after some
technical variance estimates in Section 9, we prove Theorem 1.1 in Section 10.

Acknowledgments. We would like to thank Lisa Sauermann for helpful comments. We would also like
to thank Alex Grebennikov for identifying an oversight in the application of Theorem 7.1 (in a previous
version of this paper).

2. The polynomial Littlewood–Offord problem

In this section we introduce the polynomial Littlewood–Offord problem, concerning anticoncentration
of polynomials of independent random variables. More specifically, let P ∈ R[x1, . . . , xk] be a k-variable
polynomial and let ξ1, . . . , ξk be i.i.d. Rademacher random variables (i.e., P[ξi = −1] = P[ξi = 1] = 1/2).
What upper bounds can be proved on the maximum point probability

sup
ℓ∈R

P[P (ξ1, . . . , ξk) = ℓ],

in terms of simple combinatorial information about the polynomial P? The most well-known theorem
in this direction is due to Erdős [7]: improving a theorem of Littlewood and Offord [15], Erdős proved
that if P is a linear form with at least m nonzero coefficients, then

P[P (ξ1, . . . , ξk) = ℓ] ≤

(
m

⌊m/2⌋
)

2m
≲

1√
m
.

By letting P (x1, . . . , xk) = x1 + · · · + xm and ℓ = 2⌊m/2⌋ − m, we see that this bound is exactly
best-possible.
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For higher-degree polynomials, one cannot hope for a comparable bound in terms of the number of
nonzero coefficients: indeed, the multilinear polynomial P (x1, . . . , xk) = (x1 + x2)(x3 + · · · + xk) has
2k− 4 nonzero coefficients, but we have P[P (ξ1, . . . , ξk) = 0] ≥ P[x1 ̸= x2] = 1/2. There are a number of
different ways that rule out this kind of degenerate situation; in this paper, we will parameterise P by
the matching number of a certain hypergraph associated with P .

Definition 2.1. For a multilinear polynomial P ∈ R[x1, . . . , xk] and a ≥ 0, let H(d)
a (P ) be the d-uniform

hypergraph on the vertex set [k] with an edge I ∈
(
[k]
d

)
whenever the coefficient of the monomial xI has

absolute value strictly greater than a.

Definition 2.2. A matching in a hypergraph H is a collection of edges which are pairwise vertex-disjoint.
Let ν(H) be the maximum number of edges in a matching in H.

It was first proved by Razborov and Viola [20] (building on work of Rosiński and Samorodnitsky [21]
and Costello, Tao and Vu [5]) that if ν(H(d)

0 (P )) ≥ m then

sup
ℓ∈R

P[P (ξ1, . . . , ξk) = ℓ] ≲d m−cd (2.1)

for some cd > 0 depending only on d. That is to say, if P has many degree-d terms with nonzero
coefficients, featuring disjoint sets of variables, then P (ξ1, . . . , ξk) is anticoncentrated.

The bound in (2.1) has since been improved, but in general the best possible bound is still unknown.
To ensure that the results in this paper are compatible with potential future improvements, we define a
function to describe “the best possible bound for the polynomial Littlewood–Offord problem”, as follows.

Definition 2.3. For d,m ≥ 0, let

LOd(m) = sup
P,ℓ,k

P[P (ξ1, . . . , ξk) = ℓ],

where the supremum ranges over all ℓ ∈ R, all k ∈ N and all multilinear polynomials P ∈ R[x1, . . . , xk] of
degree at most d with ν(H

(d)
0 (P )) ≥ m, and we take ξ1, . . . , ξk to be i.i.d. Rademacher random variables.

By considering the multilinear polynomial obtained from (x1 + · · ·+ xm)d by substituting x2
i = 1 for

all i, it is easy to see that

LOd(m) ≳
1√
m
.

It is widely believed1 that the matching upper bound LOd(m) ≲d 1/
√
m should also hold. In the case

d = 1 this is a classical result of Littlewood–Offord and Erdős, and in the case d = 2 this was recently
proved by Kwan and Sauermann [13] (improving intermediate results by Costello [4]). For general d, the
best available bound is due to Meka, Nguyen and Vu [18] (via a theorem of Kane [12]), as follows.

Theorem 2.4. For any d,m ∈ N,

LOd(m) ≲d
(logm)Od(1)

√
m

.

We remark that the “ε” in Theorem 1.2 is entirely due to the logarithmic factors in Theorem 2.4;
if we knew that LOd(m) ≲d 1/

√
m, we would be able to obtain the optimal result (1.6). Also, we

remark that while the proof of Theorem 2.4 is a little involved, Razborov and Viola’s proof of the bound
LOd(m) ≲d m−cd is very simple, and this weaker bound is enough for our proof of Theorem 1.1.

We will need a version of Theorem 2.4 that takes terms of all degrees into account (not just the
degree-d terms), as follows.

Corollary 2.5. Consider a multilinear polynomial P ∈ R[x1, . . . , xk] of degree at most d ≥ 0, and for
each f ∈ {0, . . . , d} let bf be an upper bound on the absolute values of all degree-f coefficients. Suppose
that for some f ∈ {0, . . . , d} and t ∈ N we have ν(H

(f)
a(f,t)) ≥ t, where a(f, t) = tbf+1+t2bf+2+· · ·+td−fbd.

Then
sup
ℓ∈R

P[P (ξ1, . . . , ξk) = ℓ] ≲d sup
f≤d

LOf (Ωd(t)).

1A conjecture along these lines seems to have been first posed by Nguyen and Vu (see [18,20]).
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Proof. We prove the desired statement by induction on d. The case d = 0 holds vacuously, since
ν(H

(0)
a (P )) ≤ 1 for any P, a. Fix d ≥ 1 and suppose that the desired bound is true for smaller d.

Fix a degree-d multilinear polynomial P ∈ R[x1, . . . , xk], and suppose that for some f ≤ d we have
ν(H

(f)
a(f,t)(P )) ≥ t.

We split into cases. First, suppose that ν(H
(d)
0 (P )) ≥ t/(2d). In this case we have

sup
ℓ∈R

P[P (ξ1, . . . , ξk) = ℓ] ≤ LOd(t/(2d)),

as desired.
Otherwise, we have ν(H

(d)
0 (P )) < t/(2d). This means that f ≤ d− 1. Consider a maximum matching

M in H
(d)
0 (P ), and let I ⊆ [k] be the set of vertices in this matching, so |I| = d|M | ≤ t/2. Let

ξ⃗[I] := (ξi)i∈I , and consider any outcome ξ⃗[I] = (ξi)i∈I ∈ {−1, 1}I . Let Pξ⃗[I] ∈ R[xi : i /∈ I] be the
multilinear polynomial obtained from P (x1, . . . , xk) by substituting xi = ξi for all i ∈ I. Since M is a
maximum matching, Pξ⃗[I] has degree at most d− 1. Also, note that the multilinear degree-f coefficients
in Pξ⃗[I] differ from the corresponding coefficients in P by at most(

|I|
1

)
bf+1 +

(
|I|
2

)
bf+2 + · · ·+

(
|I|

d− f

)
bd ≤ a(f, t)− a(f, t/2),

so all the edges of the induced subgraph H
(f)
a(f,t)(P )[[k]\I] are also edges of H(f)

a(f,t/2)(Pξ⃗[I]), and therefore,

ν(H
(f)
a(f,t/2)(Pξ⃗[I])) ≥ t− |I| ≥ t/2.

The induction hypothesis then yields

sup
ℓ∈R

P
[
P (ξ1, . . . , ξk) = ℓ

]
≤ sup

ξ⃗[I]

sup
ℓ∈R

P
[
Pξ⃗[I](ξi : i /∈ I) = ℓ

∣∣ ξ⃗[I]] ≲d sup
f≤d−1

LOf (Ωd(t)),

as desired. □

3. Describing the slice via a product measure

In this section we record a general lemma describing polynomials of “slice” measures in terms of
polynomials of independent Rademacher random variables. This is necessary to apply the results from
Section 2 to study the parameters indr(k, ℓ), which can naturally be understood as being about polyno-
mials evaluated on a slice measure.

Specifically, for any hypergraph G on the vertex set [n], and any k-vertex subset U , we can express

e(G[U ]) =
∑

W∈E(G)

σ⃗W ,

where E(G) is the set of edges of G, and σ⃗ is the vector in {0, 1}n with exactly k ones, defined by setting
σi = 1 if i ∈ U and σi = 0 otherwise. When U is a uniformly random k-vertex subset, the corresponding
σ⃗ is a uniformly random vector in {0, 1}n with exactly k ones (this is called a “slice of the Boolean
hypercube”).

Definition 3.1. For an r-uniform hypergraph G on the vertex set [n], let λG ∈ R[x1, . . . , xn] denote the
polynomial

∑
W∈E(G) x⃗

W . In other words, the coefficient λ̂G(W ) of x⃗W is 1 if W is an edge of G, and
0 if W is not an edge of G.

Definition 3.2. Slice(n, k) denotes the subset of vectors in {0, 1}n with exactly k different 1-entries.
We write σ⃗ ∼ Slice(n, k) to mean that the random vector σ⃗ is uniformly distributed on Slice(n, k).

Now, note that we can obtain Slice(n, k) (for n ≥ 2k) by first randomly choosing k pairs of disjoint
vertices, then flipping an unbiased coin for each pair to decide which of the pair to actually take (as a
1-entry). We introduce notation for this, as follows.

Definition 3.3. Consider k, n ∈ N. Let

v⃗ =
(
v1(−1), v1(1), . . . , vk(−1), vk(1)

)
be a uniformly random sequence of 2k distinct elements of [n], and let Vv⃗ be the set of elements in
v⃗. Independently from v⃗, let ξ⃗ = (ξ1, . . . , ξk) be a sequence of k i.i.d. Rademacher random variables.

6



Let Uv⃗,ξ⃗ = {v1(ξ1), . . . , vk(ξk)}, so Uv⃗,ξ⃗ is a uniformly random subset of k elements of [n]. Define
σ⃗v⃗,ξ⃗ = (σ1, . . . , σn) ∈ {0, 1}n by

σv =

{
1 if v ∈ Uv⃗,ξ⃗,

0 otherwise,

so σ⃗v⃗,ξ⃗ ∼ Slice(n, k).

The setup in Definition 3.3 allows us to interpret a polynomial on the slice as a polynomial in
Rademacher random variables, as follows (a similar slightly weaker result appears as [14, Lemma 2.8]).

Lemma 3.4. Recall the setup in Definition 3.3, and consider an n-variable multilinear polynomial λ =∑
W⊆[n] λ̂(W )x⃗W ∈ R[x1, . . . , xn]. Then, λ(σ⃗v⃗,ξ⃗) is a multilinear polynomial of ξ⃗, with coefficients that

depend on v⃗. Specifically, we have
λ(σ⃗v⃗,ξ⃗) =

∑
I⊆[k]

Av⃗(I)ξ⃗
I ,

for coefficients Av⃗(I) given explicitly by

Av⃗(I) =
∑

W∈Wv⃗(I)

(−1)|W∩{vi(−1):i∈I}|λ̂(W )2−|W |,

where Wv⃗(I) is the collection of all subsets W ⊆ Vv⃗ satisfying |W ∩ {vi(−1), vi(1)}| = 1 for every i ∈ I.

Remark 3.5. In particular, if λ has degree at most d and all coefficients of λ have absolute value at most
q, then for any I ⊆ [k], we have

|Av⃗(I)| ≤ q · |Wv⃗(I) ∩ {W ⊆ [n] : |W | ≤ d}| ≤ q2|I|nd−|I|.

Additionally, if |I| > d, then Wv⃗(I) ∩ {W ⊆ [n] : |W | ≤ d} = ∅, so that Av⃗(I) = 0.

Proof. For convenience of notation, write σ⃗ = σ⃗v⃗,ξ⃗. Then, σvi(1) = (1 + ξi)/2 and σvi(−1) = (1 − ξi)/2

for all i ∈ [k], and σw = 0 for all other w. Let Wv⃗ denote the set of all subsets W ⊆ Vv⃗ which satisfy
|W ∩ {vi(−1), vi(1)}| ≤ 1 for each i. Note that if W /∈ Wv⃗, then σ⃗W = 0. Therefore,

λ(σ⃗) =
∑

W⊆[n]

λ̂(W )σ⃗W =
∑

W∈Wv⃗

λ̂(W )σ⃗W

=
∑

W∈Wv⃗

λ̂(W )2−|W |
∏

i:vi(1)∈W

(1 + ξi)
∏

j:vj(−1)∈W

(1− ξj)

=
∑
I⊆[k]

 ∑
W∈Wv⃗(I)

(−1)|W∩{vi(−1):i∈I}|λ̂(W )2−|W |

ξ⃗ I =
∑
I⊆[k]

Av⃗(I)ξ⃗
I . □

4. A strong bound for edge-statistics “in the bulk”

In this section we prove Theorem 1.2. It will be a simple consequence of the following anticoncentration
inequality for edge-statistics of dense hypergraphs.

Lemma 4.1. Let n = 2k, let β ∈ (0, 1/2] and let G be an n-vertex r-uniform hypergraph with β
(
n
r

)
≤

e(G) ≤ (1− β)
(
n
r

)
. Then, for U a uniformly random subset of k vertices of G, we have

sup
ℓ∈R

P[e(G[U ]) = ℓ] ≲r sup
f≤r

LOf (Ωr(βn)).

Before proving Lemma 4.1, we see how to deduce Theorem 1.2.

Proof of Theorem 1.2 given Lemma 4.1. Recall that we are to prove that indr(k, ℓ) ≤ (αk)−1/2+ε, where
indr(k, ℓ) = limn→∞ Nr(n, k, ℓ)/

(
n
k

)
and Nr(n, k, ℓ) is the maximum possible number of k-vertex subsets

of an n-vertex graph which induce exactly ℓ edges. Let n = 2k, let G be an n-vertex graph and let U be
a uniformly random subset of k vertices of G. Due to the fact that Nr(n, k, ℓ)/

(
n
k

)
is nonincreasing in n,

it suffices to prove that

P[e(G[U ]) = ℓ] ≤ 1

(αk)1/2−ε
.

when αk is sufficiently large in terms of ε, r.
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We may assume that G has at least α
(
k
r

)
edges and at least α

(
k
r

)
non-edges; otherwise it is impossible

to have e(G[U ]) = ℓ. Recalling that n = 2k (so
(
k
r

)
≳
(
n
r

)
), this means that the assumption in Lemma 4.1

is satisfied for some β ≳ α, and Lemma 4.1 implies that

P[e(G[U ]) = ℓ] ≲r sup
f≤r

LOf (Ωr(αk)).

The desired result then follows from Theorem 2.4. □

We need a few key ingredients to prove Lemma 4.1. First, we need a lemma essentially due to Bollobás
and Scott [3].

Definition 4.2. Consider an r-uniform hypergraph G on the vertex set [n]. For W ∈
(
[n]
r

)
, let Ĝ(W ) = 1

when W is an edge and let Ĝ(W ) = 0 when W is not an edge. For s ∈ [r] define

Qs(G) =
∑
x⃗

∣∣∣∣∣∑
W

(−1)|W∩{x1(−1),...,xs(−1)}|Ĝ(W )

∣∣∣∣∣
where the first sum is over sequences x⃗ = (x1(−1), x1(1), . . . , xs(−1), xs(1)) of 2s distinct vertices, and
the second sum is over all W ∈

(
[n]
r

)
which satisfy |W ∩ {xi(−1), xi(1)}| = 1 for every i ∈ [s].

Lemma 4.3. Consider r, n satisfying n ≥ 3r, and consider an r-uniform hypergraph G on the vertex set
[n], satisfying β

(
n
r

)
≤ e(G) ≤ (1− β)

(
n
r

)
. Then, for some s ∈ [r], we have

Qs(G) ≳r βnr+s.

Proof. Let p := e(G)/
(
n
r

)
denote the density of G. Since β

(
n
r

)
≤ e(G) ≤ (1−β)

(
n
r

)
, we have β ≤ p ≤ 1−β.

Define the function f :
(
[n]
r

)
→ R by

f(W ) =

{
1− p if W is an edge of G,

−p if W is not an edge of G.

Then, we have

∥f∥1 =

(
e(G) · (1− p) +

((
n

r

)
− e(G)

)
· p
)

= 2p(1− p) ·
(
n

r

)
≥ 2β(1− β) ·

(
n

r

)
≳ βnr.

Let (n)2s denote the falling factorial n(n − 1) . . . (n − 2s + 1) (i.e., the number of ways to choose a
sequence of 2s different vertices); in [3], Bollobás and Scott define2 the “W -vector” of f to be the vector
(q0(f), . . . , qr(f)) given by

qs(f) =
1

(n)2s

(
n− 2s

r − s

)−1∑
x⃗

∣∣∣∣∣∑
W

(−1)|W∩{x1(−1),...,xs(−1)}|f(W )

∣∣∣∣∣
where the first sum is over sequences x⃗ = (x1(−1), x1(1), . . . , xs(−1), xs(1)) of 2s distinct vertices, and
the second sum is over all W ∈

(
[n]
r

)
which satisfy |W ∩ {xi(−1), xi(1)}| = 1 for every i ∈ [s]. Note that

qs(f) is not affected by adding a constant function to f , so

qs(f) =
1

(n)2s

(
n− 2s

r − s

)−1

Qs(G) ≲r n−r−sQs(G)

and in particular q0(f) = 0.
Then, [3, Lemma 9] says that

q0(f) + · · ·+ qr(f) ≳r n−r∥f∥1;

the desired result follows. □

Next, the following technical lemma shows that random variables of a certain type are unlikely to be
very small (this lemma is stated in slightly more general form than we need, as it will also be applied
again later in the paper). It is proved by a simple application of Chebyshev’s inequality. Given f ∈ N
and a set V , an ordered f -subset of V is a sequence of f distinct elements of V . We say that two ordered
f -subsets X⃗, Y⃗ of V are disjoint if there is no element of V that appears in both X⃗ and Y⃗ .

2Actually, they first define the W -vector in a slightly different way, and prove that the two definitions are equivalent in
[3, Lemma 8].
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Lemma 4.4. Consider f,m ∈ N and a set V , with 2f ≤ mf ≤ |V |. For each i ∈ [m], let Fi be a
collection of at least γ|V |f ordered f -subsets of V , and let X⃗1, . . . , X⃗m be uniformly random pairwise
disjoint ordered f -subsets of V . Let N be the number of i such that X⃗i ∈ Fi. Then

P[N < γm/2] ≲f
1

γm
.

Proof. Let 1i be the indicator random variable for the event that X⃗i ∈ Fi, and write n = |V |. By
linearity of expectation,

E[N ] =

m∑
i=1

E[1i] =

m∑
i=1

|Fi|
n(n− 1) . . . (n− f + 1)

≥
m∑
i=1

|Fi|
nf

≥ γm.

Then, for all i, j ∈ [m] with i ̸= j, we have

Cov[1i,1j ] ≤
|Fi| · |Fj |

n(n− 1) . . . (n− 2f + 1)
−
(

|Fi|
n(n− 1) . . . (n− f + 1)

)(
|Fj |

n(n− 1) . . . (n− f + 1)

)
≲f

|Fi|
nf

· |Fj |
nf

· 1
n
,

Var[N ] ≤
∑
i

E[1i] +
∑
i ̸=j

Cov[1i,1j ]

≲f

∑
i

|Fi|
nf

+
1

n
·

(∑
i

|Fi|
nf

)2

≤ E[N ] +
E[N ]2

n
.

By Chebyshev’s inequality, we deduce the desired result

P[N < γm/2] ≤ P
[
N < E[N ]/2

]
≤ Var[N ]

(E[N ]/2)2
≲f

1

E[N ]
+

1

n
≲

1

γm
. □

Given the conclusion of Lemma 4.3, we can apply Lemma 4.4 in the setting of Lemma 3.4, as follows.

Lemma 4.5. Consider r, k ∈ N satisfying k ≥ r, and let n = 2k. Consider an r-uniform hypergraph G
on the vertex set [n], and its corresponding polynomial λG. Suppose Qs(G) ≥ βnr+s for some β > 0 and
s ∈ [r]. Recall the coefficients Av⃗(I) from Lemma 3.4 (defined in terms of a random sequence v⃗).

Then, except with probability at most Or(1/(βn)) over the randomness of v⃗, the following holds: there
exist t ≳r βn disjoint s-sets I1, . . . , It ⊆ [k] such that |Av⃗(Ij)| ≳r βnr−s for each j.

Proof. For a sequence x⃗ = (x1(−1), x1(1), . . . , xs(−1), xs(1)) of 2s distinct indices, let

a(x⃗) =

∣∣∣∣∣∑
W

(−1)|W∩{x1(−1),...,xs(−1)}Ĝ(W )

∣∣∣∣∣
where the sum is over all W ∈

(
[n]
r

)
which satisfy |W ∩ {xi(−1), xi(1)}| = 1 for every i ∈ [s]. By

definition, we have Qs(G) =
∑

x⃗ a(x⃗). Note that we always have a(x⃗) ≤ 2snr−s, so it must be the case
that a(x⃗) ≳s βn

r−s for at least Ωs(βn
2s) different x⃗. Denote the set of all such x⃗ by F .

Now, let m = ⌊k/s⌋ ≳s n. Recall the random sequence v⃗ = (v1(−1), v1(1), . . . , vk(−1), vk(1)) from
Definition 3.3, and for each j ∈ [m], let

Ij = {s(j − 1) + 1, s(j − 1) + 2, . . . , sj},

X⃗j =
(
vs(j−1)+1(−1), vs(j−1)+1(1), . . . , vsj(−1), vsj(1)

)
.

So, in the language of Lemma 4.4, X⃗1, . . . , X⃗m are uniformly random disjoint ordered 2s-subsets of [n].
If X⃗j ∈ F , then |Av⃗(Ij)| = 2−ra(X⃗j) ≳r βnr−s. So, the desired result follows from Lemma 4.4, with
f = 2s and γ ≳r β and Fj = F for all j ∈ [m]. □

Now, it is straightforward to deduce Lemma 4.1.

Proof of Lemma 4.1. By Lemma 4.3 and Lemma 4.5, there is s ∈ [r] and t ≳r βn such that, except with
probability Or(1/(βn)) ≲ supf≤d LOf (βn) over the randomness of v⃗, the following holds: there are at
least t disjoint s-sets I1, . . . , It ⊆ [k] such that |Av⃗(Ij)| > r2rtnr−s−1 for each j. Condition on such an
outcome of v⃗.
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Recalling Remark 3.5, we have |Av⃗(I)| ≤ 2rnr−f =: bf for all I ∈
(
[k]
f

)
. So, in the notation of

Corollary 2.5, we have
|Av⃗(Ij)| > r2rtnr−s−1 ≥ a(s, t)

for each j ∈ [t]. We can therefore apply Corollary 2.5 using the randomness of ξ⃗ to obtain the desired
result. □

5. A Littlewood–Offord-type inequality for “sparse” polynomials on the slice

For the proof of Theorem 1.1 we will need one further application of polynomial Littlewood–Offord
bounds. Here we consider a degree-d polynomial λ which is “sparse” (almost all its top-degree coefficients
are zero), and give a bound in terms of the matching number of the hypergraph of nonzero degree-
d coefficients of λ. This matching number is a priori quite different to the matching number of the
polynomial obtained from Lemma 3.4; we take advantage of our sparseness assumption to relate the two
(this is actually a somewhat delicate matter, and requires a careful minimality argument).

Recall that the notation α ≫ β1, . . . , βq means “α is sufficiently large in terms of β1, . . . , βq”.

Lemma 5.1. For d, q ∈ N, there is δ > 0 such that the following holds. Consider R, k,m, n ∈ N with
2k ≤ n ≤ Rk and let λ ∈ R[x1, . . . , xn] be an n-variable multilinear polynomial with degree at most d,
whose coefficients all lie in {0, . . . , q}. Suppose ν(H

(d)
0 (λ)) ≥ m and suppose that λ has at most δnd

nonzero degree-d terms. Then, for σ⃗ ∼ Slice(n, k), provided that k ≫ d, q,R, we have

sup
ℓ∈R

P[λ(σ⃗) = ℓ] ≲d,R sup
f≤d

LOf (ΩR,d,q(m)) ≲d,R,q
1

m1/3
.

For our proof of Lemma 5.1 we use the following simple lemma, showing that if a graph G has a large
matching, then a random subset of its vertices also typically has a large matching.

Lemma 5.2. Let G be a d-uniform hypergraph whose number of vertices is between 2k and Rk, and
which satisfies ν(G) ≥ m. Let U be a uniformly random k-vertex subset, for some k ≥ 2d. Then, except
with probability Od,R(1/m), we have ν(G[U ]) ≳d,R m.

Proof. Let n be the number of vertices in G. First, note that we have the trivial upper bound m ≤
n/d ≲R k. By shrinking m if necessary, note that we can assume k/m ≫ q, δ, d,R (we would only shrink
m to a value of the form ΩR,d,q(m), so the form of the final bound would be unchanged).

Let E1, . . . , Em be the edges of a matching in G. For each i ∈ [m], let 1i be the indicator random
variable for the event Ei ⊆ U , and let N = 11+· · ·+1m. Then, with similar calculations as in Lemma 4.4
we have3

E[1i] =

(
n−d
k−d

)(
n
k

) ≳d,R 1, Cov[1i,1j ] =

(
n−2d
k−2d

)(
n
k

) −

((
n−d
k−d

)(
n
k

) )2

≲d,R 1/k,

and therefore
E[N ] ≳d,R m, Var[N ] ≲d,R m+m2/k ≲R m

(using that m ≤ (Rk)/d ≲R k). The desired result follow from Chebyshev’s inequality. □

Now, we prove Lemma 5.1.

Proof of Lemma 5.1. Recall the coefficients Av⃗(I) from Lemma 3.4, defined in terms of a random se-
quence v⃗ = (v1(−1), v1(1), . . . , vk(−1), vk(1)). Let v⃗(1) = (v1(1), . . . , vk(1)). By Lemma 5.2, over the
randomness of v⃗(1), except with probability Od,R(1/m) ≲d,R LOd(m), the subgraph of H(d)

0 (λ) induced
by the vertices of v⃗(1) has a matching of size m′ = ΩR,d(m). Condition on such an outcome of v⃗(1), and let
E1, . . . , Em′ be the edges of this matching. Given such a choice of v⃗(1), condition on an arbitrary outcome
of Vv⃗ such that Vv⃗ ⊇ {v1(1), . . . , vk(1)}. Note that there is still some randomness remaining in v⃗: namely,
v1(−1), . . . , vk(−1) is a uniformly random ordering of the vertices in U(−1) := {v1(−1), . . . , vk(−1)}.

For a set W ⊆ Vv⃗, let B(W ) be the number of nonzero coefficients λ̂(Z) of λ, among all size-d sets Z
satisfying W ⊆ Z ⊆ Vv⃗. By assumption,

B(∅) ≤ δnd. (5.1)
Consider M ≫ δ, q, d. For all j ∈ [m′], we have B(Ej) = 1 = (n/M)d−|Ej |, so we may define Fj ⊆ Ej

to be a minimal subset of Ej satisfying B(Fj) ≥ (n/M)d−|Fj |. Recalling (5.1), and assuming δ < M−d,

3Actually, with slightly more careful calculations one can see that Cov[1i,1j ] ≤ 0 (this is essentially done in the proof
of Proposition 9.1).
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we have Fj ̸= ∅. Assume without loss of generality that all the sets F1, . . . , Fm′/d have the same size
d′ ∈ [d].

Next, for each j ∈ [m′/d], let Ij = {i : vi(1) ∈ Fj} ⊆ [k]. For each j ∈ [m′/d], we have |Ij | = |Fj | = d′,
since Fj ⊆ Ej ⊆ {v1(1), . . . , vk(1)}. Define the sequence X⃗j = (vi(−1) : i ∈ Ij) and its underlying set
Xj = {vi(−1) : i ∈ Ij}. Then, note that each coefficient Av⃗(Ij) depends only on the randomness of X⃗j .
Recall that since we have conditioned on a choice of the set U(−1), the number of possibilities for X⃗j is
k(k − 1) · · · (k − d′ + 1) ≤ kd

′
.

Claim. Let M ≫ q, d,R and α ≪ q,M,R. For each j ∈ [m′/d], let Fj be the collection of all possible
outcomes of X⃗j which satisfy Av⃗(Ij) ≥ αnd−d′

. Then |Fj | ≳ kd
′
.

Proof of claim. Consider an arbitrary j ∈ [m′/d] and let ε = 1/Md−d′
, so that B(Fj) ≥ εnd−d′

. By the
definition of Fj , for every proper subset Y ⊊ Fj , we have B(Y ) < (n/M)d−|Y | ≤ (ε/M)nd−|Y |. The sum
of B(T ) over all size-d′ sets T ⊇ Y satisfying T \ Y ⊆ U(−1) is therefore at most(

d− |Y |
d′ − |Y |

)
B(Y ) ≲d,R

ε

M
nd−d′

(
k − |Y |
d′ − |Y |

)
.

That is to say, if T is uniformly random subject to the constraints T ⊇ Y and T \ Y ⊆ U(−1), then
E[B(T )] ≲d,R (ε/M)nd−d′

, so by Markov’s inequality, provided M is sufficiently large in terms of d,R,
we have

P
[
B(T ) > (ε/M1/3)nd−d′]

≤ M−1/3. (5.2)

Now, say that a set X ⊆ U(−1) is good if B(T ) ≤ (ε/M1/3)nd−d′
for every size-d′ subset T ⊆ Fj ∪X

containing at least one vertex of X. If Xj is good, then

Av⃗(Ij) ≥
∑

W⊇Fj

λ̂(W )2−|W | −
∑

W ̸⊇Fj

λ̂(W )2−|W |

≥
(
B(Fj)− d′

(
2k − 1

d− d′ − 1

))
· 2−d − q ·max

T
B(T )

≳d εnd−d′
− (ε/M1/3)nd−d′

≳d,M nd−d′

where the sums on the first line are over all W ⊆ Vv⃗ which satisfy |W ∩ {vi(−1), vi(1)}| = 1 for every
i ∈ Ij , and the “max” in the second line is over all size-d′ subsets T ⊆ Fj ∪Xj containing at least one
vertex of Xj .

So, it suffices to show that Xj is good with probability Ω(1) (recall that the randomness comes from a
uniformly random permutation of the elements of U(−1)). To this end, for each proper subset J ⊊ Ij , let
YJ = {vi(1) : i ∈ J} ⊆ Fj and let TJ be the random size-d′ set containing vi(1) for i ∈ J and vi(−1) for
i /∈ J . If B(TJ) ≤ (ε/M1/3)nd−d′

for all J ⊊ Ij , then Xj is good. But note that each TJ is a uniformly
random set satisfying TJ ⊇ Y and T \ Y ⊆ U(−1), so by (5.2) and a union bound over all J ⊊ Ij , we
see that P[Xj is not good] ≤ 2d ·M−1/3 ≤ 1/2. ■

Now, recall from Remark 3.5 that we always have |Av⃗(I)| ≤ q2f (2k)d−f =: bf for all I ∈
(
[k]
f

)
. As in

Corollary 2.5, let a(d′, t) = tbd′+1 + · · ·+ td−d′
bd ≲q,d mkd−d′−1.

In the notation of Lemma 4.4, note that X⃗1, . . . , X⃗m′/d are uniform random ordered d′-subsets of
U(−1). So, by Lemma 4.4 (with f = d′ and γ = Ω(1)) and the above claim, except with probability
O(1/m) ≲ LOd(m) we have |Av⃗(Ij)| ≳q,M,d,R kd−d′

, and therefore |Av⃗(Ij)| > a(d′, t), for t = Ω(m′/d)
different j (here we are using that k/m ≫ q, δ, d,R). Condition on an outcome of v⃗ such that this is the
case.

We may then apply Corollary 2.5, using the randomness of ξ⃗, to obtain the desired conclusion. □

6. A Poisson-type anticoncentration inequality

Another key ingredient for the proof of Theorem 1.1 is a “Poisson-type” anticoncentration inequality
for polynomials of independent random variables, strengthening a result of Fox, Kwan and Sauermann [8,
Theorem 1.8].
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Theorem 6.1. Fix γ > 0, and suppose p is sufficiently small in terms of γ. Let F ∈ R[x1, . . . , xs] be
a multilinear polynomial which has nonnegative coefficients, and zero constant coefficient. Let β1, . . . , βs

be i.i.d. Bernoulli(p) random variables. Then for any t ∈ [0,∞) and ℓ > 3st, we have

P
[
|F (β1, . . . , βs)− ℓ| ≤ t

]
≤ 1

e
+ γ.

Proof. We prove by induction on s that whenever ℓ > 3st and F ∈ R[x1, . . . , xs] is a multilinear polyno-
mial which has nonnegative coefficients and zero constant coefficient, we have

P
[
|F (β⃗)− ℓ| ≤ t

]
≤ max

n∈N
P[Xn,p = 1],

where Xn,p ∼ Bin(n, p). This suffices, because elementary estimates show that the right-hand side of the
above expression converges to 1/e as p → 0 (see [8, Lemma 3.3]).

The desired statement is vacuously true for s = 0, so fix some s ≥ 1 and assume the desired statement
is true for smaller s. Write ∥β⃗∥0 for the number of nonzero entries of β⃗.

Let ai be the coefficient of xi in F (x1, . . . , xs). First, if we have ai > (ℓ + t)/2 for all i, then we can
only have |F (β⃗)− ℓ| ≤ t if ∥β⃗∥0 = 1. Indeed, if we had ∥β⃗∥0 = 0 we would have F (β⃗) = 0, and if we had
∥β⃗∥0 ≥ 2 we would have F (β⃗)− ℓ > 2(ℓ+ t)/2− ℓ = t. The desired bound follows.

Otherwise, suppose without loss of generality that as ≤ (ℓ + t)/2. We can write F (x1, . . . , xs) =
G(x1, . . . , xs−1) + asxs + xsH(x1, . . . , xs−1), where G,H ∈ R[x1, . . . , xs−1] are multilinear polynomials
which have nonnegative coefficients, and zero constant coefficient. We will show the desired bound
conditional on both of the two possible outcomes of βs.

Let β⃗ ′ = (β1, . . . , βs−1). If βs = 0, then |F (β⃗)− ℓ| ≤ t if and only if |G(β⃗ ′)− ℓ| ≤ t, and the desired
result follows by induction. Otherwise, if βs = 1, then |F (β)−ℓ| ≤ t if and only if |(G+H)(β⃗ ′)−(ℓ−as)| ≤
t. Note that ℓ− as ≥ (ℓ− t)/2 ≥ ℓ/3 > 3s−1t, so the desired result again follows by induction. □

7. Comparison between the slice and a product measure

Recall that in order to apply bounds on the polynomial Littlewood–Offord problem, we needed a lemma
describing a slice measure in terms of a product measure (Lemma 3.4). In order to apply Theorem 6.1,
we also need a comparison between a slice measure and a product measure, but since Theorem 6.1 only
applies to polynomials with nonnegative coefficients, we will need a lemma of a rather different flavour,
for functions on the slice that only depend on a few coordinates.

For probability distributions µ, ν with the same sigma-algebra of events, recall that the total variation
distance dTV(µ, ν) is the supremum of |µ(A)− ν(A)| over all events A.

Theorem 7.1. Let k ≤ n/2. Consider any set S and function F : {0, 1}n → S, such that F (x1, . . . , xn)

only depends on x1, . . . , xs. Let σ⃗ ∼ Slice(n, k) and let β⃗ be a vector of n independent Bernoulli(k/n)
random variables. Then

dTV

(
F (σ⃗), F (β⃗)

)
≤ max(s, 2n/k)− 1

n− 1
.

We will prove Theorem 7.1 using the following theorem of Ehm [6]. Write Hyp(n, k, t) for the hy-
pergeometric distribution with k draws from a population of size n with t “featured” elements, and let
Bin(n, p) be the binomial distribution with n trials and success probability p.

Theorem 7.2 ([6, Theorem 2]). If (k/n)(1− k/n)t ≥ 1 then

dTV

(
Hyp(n, k, t),Bin(t, k/n)

)
≤ t− 1

n− 1
.

Proof of Theorem 7.1. Let t = max(s, 2n/k), so (k/n)(1 − k/n)t ≥ 1 and F (x1, . . . , xn) only depends
on x1, . . . , xt (since t ≥ s). For x⃗ ∈ {0, 1}n, let ∥x⃗∥0;t be the number of i ∈ [t] for which xi = 1.
Let σ⃗ ∼ Slice(n, k) and let β⃗ be a vector of n independent Bernoulli(k/n) random variables. Then
clearly ∥σ⃗∥0;t ∼ Hyp(n, k, t) and ∥β⃗∥0;t ∼ Bin(t, k/n). For all q in the support of both Hyp(n, k, t)
and Bin(t, k/n), the conditional distribution of F (σ⃗) given ∥σ⃗∥0;t = q is the same as the conditional
distribution of F (β⃗) given ∥β⃗∥0;t = q. So,

dTV

(
F (σ⃗), F (β⃗)

)
≤ dTV

(
∥σ⃗∥0;t, ∥β⃗∥0;t

)
≤ t− 1

n− 1
,

where the last inequality follows from Theorem 7.2. □
12



8. The vertex cover lemma

In this section we prove a lemma showing that every hypergraph G has a small vertex set Y that “only
sees large matchings”, in the sense that for any subset S ⊆ Y , if we remove all the edges intersecting S,
and we remove all the vertices of Y \S from all the remaining edges, the resulting hypergraph either has
a large matching or no edges at all.

Definition 8.1. Let G be an r-uniform hypergraph. For vertex subsets X ⊆ Y , write GY (X) = {e\X :
e ∈ G− (Y \X), e\X ̸= ∅}. In other words, delete all edges which intersect Y \X, and look at the portion
of each edge outside X. This is a mixed-uniformity hypergraph, whose edges have sizes between 1 and r.
For d ∈ [r], let G(d)

Y (X) be the subhypergraph of edges which have size exactly d.

Lemma 8.2. Let r,m ∈ N and let G be an r-uniform hypergraph. We can find a vertex set Y of size
Or,m(1) such that the following holds. Consider any X ⊆ Y such that GY (X) is nonempty, and let d be
the maximum integer such that G(d)

Y (X) is nonempty. Then G
(d)
Y (X) has a matching of size at least m.

Moreover, if Y ̸= ∅, then every edge of G has non-empty intersection with Y .

Proof. It will be more convenient to prove the following statement. Let V be the vertex set of G. For
S ⊆ Y ⊆ V , let ΓY (S) := {e\S : e ∈ G, e ∩ Y = S} (this is a hypergraph whose edges have size exactly
r − |S|). Say that S is Y -relevant if ΓY (S) is nonempty and ΓY (S

′) is empty for all S′ ⊊ S. We say
that a relevant set S is m-bad (or simply, bad), if the maximum matching in ΓY (S) has size at most
m− 1. We will show that we can choose a vertex set Y of size Or,m(1) such that there are no Y -relevant
sets S ⊆ Y which are bad. To see that this implies the conclusion of the lemma, for X ⊆ Y , let d be
the maximum integer such that G

(d)
Y (X) is nonempty. Since G

(d)
Y (X) is nonempty, there exists S ⊆ X

of size r − d such that ΓY (S) is non-empty, and since d is the largest integer satisfying this property, it
must be the case that ΓY (S

′) = ∅ for all S′ ⊊ S. In other words, S is Y -relevant. Therefore, ΓY (S) has
a matching of size at least m, and since ΓY (S) ⊆ G

(d)
Y (X), our conclusion follows.

We will construct our desired set Y iteratively, by iterating a “greedy cover” map ϕ starting from the
empty set. Specifically, fix an ordering of the vertex set, and for Z ⊆ V , we define ϕ(Z) ⊇ Z as follows.

• If there is some Z-relevant set S ⊆ Z such that ΓZ(S) has no matching of size at least m,
then consider such a set S with the smallest size (breaking ties lexicographically, according to
our ordering of the vertex set) and a maximum matching M in ΓZ(S) (again, breaking ties
lexicographically), let W be the vertex set of M , and set ϕ(Z) = Z ∪W .

• Otherwise, set ϕ(Z) = Z.
For Z ⊆ V , let ϕ∗(Z) be the result of repeatedly applying the map ϕ, starting with Z, until it

stabilises, and let Y = ϕ∗(∅). We just need to show that |Y | = Or,m(1); this will be a simple inductive
consequence of the following claim.

Claim. For Z ⊆ V and ℓ ∈ {0, . . . , r}, let Nℓ(Z) be the number of Z-relevant sets T ⊆ Z with |T | = ℓ.
If ϕ(Z) ̸= Z, then there exists d ∈ {0, . . . , r} for which the following hold:

(1) Nd(ϕ(Z)) < Nd(Z),
(2) Nf (ϕ(Z)) ≤ Nf (Z) for all f < d,
(3) |ϕ(Z)| < |Z|+ rm.
(4) Nf (ϕ(Z)) ≤ |ϕ(Z)|f < (|Z|+ rm)f for all f > d,

Proof of claim. First, parts (3) and (4) are immediate, because ϕ(Z) is obtained by adding fewer than
rm vertices to Z.

To prove parts (1) and (2), suppose ϕ(Z) ̸= Z and let S ⊆ Z be the set appearing in the definition
of ϕ(Z). Note that, by construction, Γϕ(Z)(S) = ∅. In particular, S is a Z-relevant set which is not
ϕ(Z)-relevant. Let S∗ ⊆ Z be a smallest set which is Z-relevant but not ϕ(Z)-relevant and let d = |S∗|.
This is the value of d for which we will prove parts (1) and (2). In order to do this, it suffices to show
the following: for any ϕ(Z)-relevant set T ⊆ ϕ(Z) with |T | ≤ d, it must be the case that T ⊆ Z and in
fact, that T is Z-relevant. This immediately implies (2), and since S∗ is a Z-relevant set which is not
ϕ(Z)-relevant, we also get (1).

Suppose T ⊆ ϕ(Z) is a ϕ(Z)-relevant set of size |T | ≤ d. Suppose for contradiction that either (a)
T ̸⊆ Z, or (b) T ⊆ Z but T is not Z-relevant. In either case, since Γϕ(Z)(T ) is non-empty, it follows that
ΓZ(T ∩ Z) is non-empty as well, so that there exists T ′ ⊆ T ∩ Z such that T ′ is Z-relevant. In case (a),
|T ∩ Z| < |T | ≤ d and in case (b) T ′ ⊊ T , so that in either case, |T ′| ≤ d − 1. Since S∗ is a smallest
Z-relevant set which is not ϕ(Z)-relevant, it must be the case that T ′ is ϕ(Z)-relevant. However, since
T ′ ⊆ T , this contradicts that T is ϕ(Z)-relevant. ■
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Recall that we wish to show that |Y | = |ϕ∗(∅)| = Or,m(1). For nonnegative integers N0, . . . , Nr, z,
define F (N0, . . . , Nr, z) to be the maximum of |ϕ∗(Z)|, over all Z ⊆ V with

|Z| = z, N0(Z) ≤ N0, N1(Z) ≤ N1, . . . , Nr(Z) ≤ Nr,

and over all r-uniform hypergraphs G on any vertex set V . (A priori, it is possible that no such maximum
exists, in which case we set F (N0, . . . , Nr, z) = ∞.) Since |Y | = |ϕ∗(∅)| ≤ F (1, 0, . . . , 0), our goal is to
show that F (1, 0, . . . , 0) < ∞. Since the input parameters to the function F are only r and m (via
the definition of ϕ∗(Z)), in this case it is clear that F (1, 0, . . . , 0) depends only on r and m. In fact,
writing N≥0 for the nonnegative integers, we will show that for any (N0, . . . , Nr, z) ∈ Nr+2

≥0 , we have
F (N0, . . . , Nr, z) < ∞.

To see this, note that the above claim implies a recurrence for F (N0, . . . , Nr, z): for all (N0, . . . , Nr, z),
either F (N0, . . . , Nr, z) = z or

F (N0, . . . , Nr, z) ≤ max
d∈{0,...,r}:Nd>0

F (N0, . . . , Nd−1, Nd − 1, (z + rm)d+1, . . . , (z + rm)r, z + rm) (8.1)

(here we use the convention that the maximum of the empty set is −∞; in other words, F (0, . . . , 0, z) = z,
which is also easy to see directly). Now, the desired result follows by induction (most easily described
in a “transfinite” way): since the lexicographic order on Nr+2

≥0 is a well-order, if F (N0, . . . , Nr, z) = ∞
for some (N0, . . . , Nr, z) then there must exist a lexicographically minimal (N∗

0 , . . . , N
∗
r , z

∗) for which
F (N∗

0 , . . . , N
∗
r , z

∗) = ∞. But this is impossible: we would have F (N∗
0 , . . . , N

∗
r , z

∗) ̸= z∗, so (8.1) would
contradict lexicographic minimality.

Finally, the “moreover” part is clear by construction. □

9. A variance bound for polynomials on the slice

We need one more technical ingredient for the proof of Theorem 1.1, namely a bound on the variance
of a polynomial on the slice.

Proposition 9.1. For any n ≥ k, let λ ∈ R[x1, . . . , xn] be an n-variable multilinear polynomial with
degree at most d whose coefficients all have absolute value at most q. Let σ⃗ ∼ Slice(n, k). Then

Var[λ(σ⃗)] ≲d,q n2d−1.

Proof. Since x1 + · · · + xn is constant on x⃗ ∈ Slice(n, k), it follows that Var[λ(σ⃗)] = Var[Q(σ⃗)], where
Q(x⃗) = λ(x⃗) + q(x1 + · · · + xn)

d. Since the coefficients of λ have absolute value at most q, it follows
that the coefficients of Q are non-negative and have absolute value at most Od(q). The key point is the
following: let W,T ⊆ [n] be disjoint sets with |W | = i and |T | = j. Then, writing a ≡ b if a and b have
the same sign, we have

Cov[σ⃗W , σ⃗T ] =

(
n−i−j
k−i−j

)(
n
k

) −
(
n−i
k−i

)(
n
k

) ·
(
n−j
k−j

)(
n
k

)
≡
(
n− i− j

k − i− j

)
·
(
n

k

)
−
(
n− i

k − i

)
·
(
n− j

k − j

)
≡
(
n

i

)
·
(
k − j

i

)
−
(
n− j

i

)
·
(
k

i

)
≤ 0,

where the last inequality follows since(
n
i

)
·
(
k−j
i

)(
n−j
i

)
·
(
k
i

) =

i−1∏
s=0

(n− s)(k − j − s)

(n− j − s)(k − s)
≤ 1

for k ≤ n. Note also that for any W,T ⊆ [n], we have Cov[σ⃗W , σ⃗T ] ≤ E[σ⃗W σ⃗T ] ≤ 1.
Recall that the coefficients Q̂(S) are non-negative of size at most Od(q). Moreover, Q̂(S) = 0 if

|S| > d. Putting everything together, we have

Var[Q(σ⃗)] =
∑
W,T

Q̂(W )Q̂(T ) Cov[σ⃗W , σ⃗T ] ≤
∑

W,T⊆[n]
W∩T ̸=∅

Q̂(W )Q̂(T ) Cov[σ⃗W , σ⃗T ]

≲d

∑
|W |≤d

∑
|T |≤d

T∩W ̸=∅

q2 ≲d nd · nd−1 · q2. □

14



10. Completing the proof of the hypergraph edge-statistics conjecture

Now, we combine all the ingredients collected so far to prove Theorem 1.1. Recall that the notation
α ≪ β1, . . . , βq (respectively, α ≫ β1, . . . , βq) means “α is sufficiently small in terms of β1, . . . , βq”
(respectively, “α is sufficiently large in terms of β1, . . . , βq”).

Proof of Theorem 1.1. Recall that we are to prove that if k ≫ r, ε and ℓ /∈ {0,
(
k
r

)
}, then indr(k, ℓ) ≤

1/e + ε. Since indr(k, ℓ) = indr(k,
(
k
r

)
− ℓ), it suffices to assume that ℓ ≤ ⌈

(
k
r

)
/2⌉. Further, it suffices

to prove the statement only for (say) ℓ < k−1/2
(
k
r

)
, since in the complementary regime k−1/2

(
k
r

)
≤ ℓ ≤

⌈
(
k
r

)
/2⌉, a stronger statement follows from Theorem 1.2.

So, consider integers k, ℓ satisfying 0 < ℓ < k−1/2
(
k
r

)
and fix any ε > 0. The dependence of k on

r, ε will be moderated by additional parameters R,m, q, δ, which will play a role later in the argument.
Specifically, we first need R ≫ ε, then m ≫ R, then q ≫ m, r and then δ ≪ q. Finally, k ≫ m, q, r, R, δ, ε.
To summarise, the relative sizes of various parameters should be thought of as

k ≫ 1/δ ≫ q ≫ m ≫ R ≫ 1/ε.

Let n = Rk, let G be an r-uniform hypergraph on the vertex set [n], and let U be a random subset of
k vertices of G. As Nr(n, k, ℓ)/

(
n
k

)
is nonincreasing in n, it suffices to prove that

P[e(G[U ]) = ℓ] ≤ 1/e+ ε.

Let Y be the set obtained by applying Lemma 8.2 to G (with our value of m).

Case I: Y ̸= ∅. Consider the random variable E
[
e(G[U ])

∣∣Y ∩U
]
. This can be interpreted as a multilinear

polynomial evaluated at σ⃗ ∼ Slice(n, k) (where σi = 1i∈U ), that only depends on |Y | = Om,r(1) of its
variables. Indeed, we have

E
[
e(G[U ])

∣∣Y ∩ U
]
=

∑
W∈E(G)

P
[
W ∈ E(G[U ])

∣∣Y ∩ U
]
=

∑
W∈E(G)

P[W \ Y ⊆ U ]1W∩Y⊆U∩Y

=
∑

W∈E(G)

P[W \ Y ⊆ U ] σ⃗W∩Y

where E(G) denotes the set of edges of G (cf. the expression for e(G[U ]) at the start of Section 3). Note
that this polynomial has nonnegative coefficients. Also, since we are assuming Y ̸= ∅, every edge of G
intersects Y , so the constant coefficient of this polynomial is zero. So, by Theorems 6.1 and 7.1 (with
s = |Y | and γ = ε/2 and t = 3−|Y |ℓ), since R, k ≫ ε, it follows that except with probability 1/e+ ε/2,∣∣∣E[e(G[U ]) |Y ∩ U ]− ℓ

∣∣∣ > 3−|Y |ℓ ≳r,m ℓ. (10.1)

Condition on any outcome of Y ∩ U such that (10.1) holds. The remaining randomness is comprised
of the random set U \ Y (which is a uniformly random subset of [n] \ Y of size k − |Y ∩ U |).

Recall from Definition 8.1 that GY (X) = {e\X : e ∈ G − (Y \X), e\X ̸= ∅}. If GY (Y ∩ U) = ∅,
then we are done: given our conditioning, e(G[U ]) would then take some value with probability 1, and
this value cannot be equal to ℓ since we are working with an outcome of Y ∩ U for which (10.1) holds.
Therefore, we can assume that GY (Y ∩ U) is non-empty. In this case, given our conditioning, we can
write e(G[U ]) = λ(σ⃗), where σ⃗ ∼ Slice(n − |Y |, k − |Y ∩ U |) and λ is a multilinear polynomial of some
degree d ∈ [r − 1]. Note that the coefficients of λ all lie in the set {0, 1, . . . , q} (here we are using that
q ≫ m, r, so q ≥

(|Y |
r

)
). Also, by the definition of Y , we have ν(Hd

0 (λ)) = ν(GY (Y ∩ U)) ≥ m. Our
objective is to show that P[λ(σ⃗) = ℓ] ≤ ε/2.

Recall that δ ≪ r, q and m ≫ R ≫ ε and k ≫ r, q,m. By Lemma 5.1, at least one of the following
holds:

(1) λ has at least δnd nonzero degree-d coefficients, or
(2) we have

sup
ℓ∈R

P[λ(σ⃗) = ℓ] ≲d,q
1

m1/3
≤ ε/2.

In case (2) we are done. In case (1), we have E[λ(σ⃗)] ≳ δkd ≳δ kd while Var[λ(σ⃗)] ≲d,q n2d−1 ≲d,q,R k2d−1

by Proposition 9.1. So, by Chebyshev’s inequality, except with probability at most ε/2 we have∣∣∣λ(σ⃗)− E[λ(σ⃗)]
∣∣∣ ≲d,q,R,δ,ε k

−1/2E[λ(σ⃗)].
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Recalling from (10.1) that E[λ(σ⃗)] is excluded from a range of the form (1±Ωr,m(1))ℓ, the desired result
follows for k ≫ m, q, r, R, δ, ε.

Case II: Y = ∅. If G is empty, then we are done, since ℓ ̸= 0 by assumption. Otherwise, we can write
e(G[U ]) = λG(σ⃗), where λG has degree r and σ⃗ ∼ Slice(n, k). In this case we will be able to prove the
stronger bound

P[e(G[U ]) = ℓ] = P[λG(σ⃗) = ℓ] ≤ ε/2 ≤ 1/e+ ε.

As in Case I above, we have ν(H
(r)
0 (λ)) ≥ m, and similarly arguing via Lemma 5.1, we only need to

consider the case that G has at least δnr nonzero degree-r coefficients. By the same argument as above,
except with probability at most ε/2 we have

∣∣∣λG(σ⃗)− E[λG(σ⃗)]
∣∣∣ ≲d,q,R,δ,ε k

−1/2E[G(σ⃗)].

The desired conclusion now follows for k ≫ q, r, R, δ, ε, since E[λG(σ⃗)] ≳R,δ kr, whereas by assumption
ℓ < k−1/2

(
k
r

)
≤ kr−1/2. □
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