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ABsTRACT. Let 7, k, £ be integers such that 0 < £ < (’;) Given a large r-uniform hypergraph G, we

consider the fraction of k-vertex subsets which span exactly £ edges. If £ is 0 or (i), this fraction can
be exactly 1 (by taking G to be empty or complete), but for all other values of ¢, one might suspect
that this fraction is always significantly smaller than 1.

In this paper we prove an essentially optimal result along these lines: if £ is not 0 or (’j), then this
fraction is at most (1/e) +¢, assuming k is sufficiently large in terms of r and € > 0, and G is sufficiently
large in terms of k. Previously, this was only known for a very limited range of values of r, k, £ (due to
Kwan—Sudakov—Tran, Fox—Sauermann, and Martinsson—-Mousset—Noever—Truji¢). Our result answers
a question of Alon—Hefetz—Krivelevich—-Tyomkyn, who suggested this as a hypergraph generalisation of
their edge-statistics conjecture. We also prove a much stronger bound when ¢ is far from 0 and (’:)

1. INTRODUCTION

Given a k-vertex graph H, what is the maximum possible number of k-vertex subsets of an n-vertex
graph that induce a copy of H? Denote this number by N(n, H), so we have 0 < N(n, H) < (") A

k
simple averaging argument shows that N(n, H)/ (Z) is nonincreasing in n (for n > k), so we can define
N(n,H
ind(H) = lim # (1.1)
n—oo ()

This quantity is called the inducibility or the mazimum induced density of H. It was first considered in
1975 by Pippenger and Golumbic [19], and has been studied intensively in the intervening decades.

In general, it is very difficult to determine ind(H), even for small graphs H (for example, the in-
ducibility of the 4-vertex path is still unknown). However, we do know the minimum of ind(H), among
all k-vertex graphs H (provided k is sufficiently large): indeed, Pippenger and Golumbic [19] showed

that if H has k vertices then N

ind(H) > P (1.2)
and it is known (see [2,10]) that if ¥ = 5 or if k is sufficiently large, there is a choice of H that attains
this bound.

What about the mazimum value of ind(H)? Tt is easy to see that ind(H) = 1 when H is a complete
or empty graph; if we exclude these “trivial” examples then we arrive at the so-called large inducibility
conjecture of Alon, Hefetz, Krivelevich and Tyomkyn [1, Conjecture 1.2]. Namely, they identified several
(nontrivial) infinite classes of graphs H with ind(H) > 1/e, and conjectured that the maximum of ind(H)
over all nontrivial k-vertex graphs H tends to 1/e as k — oo.

Alon, Hefetz, Krivelevich and Tyomkyn also made a second much stronger conjecture called the
edge-statistics conjecture [1, Conjecture 1.1], concerning a much looser variant of graph inducibility.
Specifically, for 0 < ¢ < (’;), let Ny(n,k,£) be the maximum possible number of k-vertex subsets of an
n-vertex graph which induce exactly ¢ edges, and let

indy(k, £) = lim w (1.3)
oo ()

For each value of k, say that 0 and (g) are the “trivial” values of ¢; the edge-statistics conjecture says that
the maximum of inds(k, £) over all nontrivial £ tends to 1/e as k — oo. This conjecture has significance
beyond its consequences for graph inducibility: it can be interpreted as giving a limit on “how uniform”
a graph can be, with respect to statistics of edges in small subsets.
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STRUCT” No. 101076777. Mubayi was supported by NSF grant DMS-2153576. Tran was supported by the National Key
Research and Development Program of China 2023YFA101020.
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It is equally natural to consider the large inducibility and edge-statistics conjectures for hypergraphs;
these generalisations were actually explicitly suggested in the same paper of Alon, Hefetz, Krivelevich,
and Tyomkyn, though they wrote “needless to say that we expect these questions to be difficult”. To
be precise, for an r-uniform hypergraph H and for 0 < £ < (:f), we define N(n, H) and N,.(k,{) to be
the maximum possible numbers of k-vertex subsets in an n-vertex r-uniform hypergraph which induce a
copy of H and which induce exactly ¢ edges, respectively. Then we can define ind(H) and ind,.(k,£) as in
(1.1) and (1.3), and use these notions to generalise the large inducibility and edge-statistics conjectures
in the obvious ways: namely, the maximum value of ind(H), over all k-vertex r-uniform hypergraphs
which are neither empty or complete, and the maximum value of ind, (k,¢) over all 0 < £ < (’;), both
tend to 1/e as k — oo (holding r fixed).

In a combination of papers by Kwan, Sudakov and Tran [14], Fox and Sauermann [9], and Martinsson,
Mousset, Noever and Truji¢ [17], the edge-statistics conjecture for graphs (i.e. r = 2), and therefore the
large inducibility conjecture for graphs, have been resolved. These papers also provide evidence for the
hypergraph edge-statistics conjecture, establishing it in the special cases where ¢ = o(k) and where r = 3
and ¢ = Q(k?). Our first main theorem completely resolves the hypergraph edge statistics conjecture,
and therefore the hypergraph large inducibility conjecture.

Theorem 1.1. Fiz any r € N and € > 0. Suppose k is sufficiently large in terms of r,e. If £ ¢ {0, (i)},
then

1
ind,(k,0) < - +e.
e

Consequently, for any k-vertex r-uniform hypergraph H that is neither empty nor complete,
1
ind(H) < — +e.
e

Alon, Hefetz, Krivelevich and Tyomkyn were also interested in the value of inds(k, ¢) when £ is far
from 0 and (g) They made several conjectures in this direction [1, Conjecture 6.1 and 6.2], which have
since been resolved by Kwan, Sudakov and Tran [14] and Kwan and Sauermann [13]. We also prove a

theorem along these lines for hypergraphs.

Theorem 1.2. Fiz anyr € N and e > 0. If a(’:) </i<(1- a)(’;) for some a € (0,1/2], and if ak is
sufficiently large in terms of r,e, then
1
ind,(k, ¢) < R

We note that Kwan, Sudakov and Tran [14, Theorem 1.3] previously proved the r = 3 case of The-
orem 1.2 in the “extremely dense” regime where « is a constant which may not vary with & (using the
induced hypergraph removal lemma).

Theorems 1.1 and 1.2 are both essentially optimal, as follows. Write N (G, k,¢) for the number of
k-vertex subsets with ¢ edges, in an r-uniform hypergraph G.

o It was observed by Fox and Sauermann [9] that for every r the constant “1/€” in Theorem 1.1
cannot be improved. To briefly explain why: for any 1 < s < r, let F' be a random s-uniform
hypergraph on n vertices, in which every possible edge is present with probability 1/ (i) inde-
pendently. Then, let G be the r-uniform hypergraph on the same vertex set whose edges are
the r-sets which are supersets of some edge of F'. For ¢ = (’::g), it is easy to establish the
convergence in probability

N(G, k.0 T
NG kD (1 - k) > - (1.4)
(k) (s) ¢

as n — oo, which implies that ind,(k,¢) > 1/e.

e It is easy to see that the exponent “1/2” in Theorem 1.2 cannot be improved. Indeed, consider
any « € (0,1/2) and k € N such that ok is an integer, and consider any n divisible by k. Let
G be an n-vertex r-uniform hypergraph with a distinguished set S of an vertices, whose edges
are the r-sets that intersect S in exactly one vertex. Then, with ¢ = ok (kr_f‘lk) (so £ has order of
magnitude «(¥)), one can compute

r

3 j (: ’k7€) k ak (1—0()k c

for some absolute constant ¢ > 0, which implies that ind,.(k,£) > c(ak)~1/2.
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The estimates in (1.4) and (1.5) can be confirmed via direct computation, but from a more conceptual
point of view, they can also be intuitively understood in terms of two different approximations for the
binomial distribution, which lead to two different anticoncentration bounds (i.e., upper bounds on point
probabilities). On the one hand, a binomial distribution with a low success probability can be closely
approximated by a Poisson distribution. The bound in (1.4) is related to the fact that a Poisson random
variable with parameter 1 is equal to 1 with probability 1/e, and this is the maximum possible probability
for any Poisson random variable to take any particular nonzero value. On the other hand, a binomial
distribution with k& trials and success probability o € (0,1/2) can be approximated by a Gaussian
distribution with standard deviation about v/ak. The point probabilities of such a binomial distribution
are at most about 1/ Vak; this corresponds to the fact that the corresponding Gaussian distribution has
density at most about 1/v/ak.

The proofs of Theorems 1.1 and 1.2 both crucially depend on anticoncentration inequalities that
vastly generalise the above two observations about binomial distributions. Specifically, we need two
general anticoncentration inequalities for low-degree polynomials of independent random variables: (a
strengthened form of ) a “Poisson-type” anticoncentration inequality due to Fox, Kwan and Sauermann [§],
and bounds on the so-called polynomial Littlewood—Offord problem due to Meka, Nguyen and Vu [18§].

Recall that ind,(k,¢) can be defined in terms of quantities of the form N(G,k,¥), which can be
understood as the probability that a random k-vertex subset of G has exactly ¢ edges. It is not hard to
interpret the number of edges in a random k-vertex subset of G as a polynomial evaluated at a random
vector (namely, at a random point on a “slice of the Boolean hypercube”). Unfortunately, since the entries
of this random vector are not independent, one cannot directly apply the aforementioned polynomial
anticoncentration inequalities (in fact, it is easy to see that the conclusions of these inequalities are in
general false on a slice of the Boolean hypercube). The key new contributions in this paper are several
different ways to “transfer” polynomial anticoncentration inequalities to slices of the Boolean hypercube.
For the proof of Theorem 1.2, we generalise a coupling lemma due to Kwan, Sudakov and Tran [14], and
combine it with a result of Bollobés and Scott [3] related to discrepancy of hypergraphs. For the proof
of Theorem 1.1, we additionally use a classical estimate on hypergeometric distributions due to Ehm [6]
which allows us to transfer Poisson-type anticoncentration inequalities to functions of the slice which
only depend on a few vertices. Then, we prove a delicate combinatorial lemma which says that every
hypergraph has a small vertex subset Y which “only sees large matchings”. We use our Poisson-type
anticoncentration inequality to understand “what happens inside Y”, and then after conditioning on this
information we apply polynomial Littlewood—Offord bounds (which are effective for hypergraphs with
large matchings).

1.1. Further directions. There is nearly unlimited potential to ask more precise questions about the
quantities ind,(k,£). Most obviously, there is the question of removing the “c” in the exponent of
Theorem 1.2: in the setting of Theorem 1.2 we conjecture that

Cr

ind,.(k,¢) < (k)12

(1.6)

for some constant C,. depending only on r (this also appears as [14, Conjecture 5]). In the case r = 2, this
bound was recently proved by Kwan and Sauermann [13], via new progress on the so-called quadratic
Littlewood—Offord problem. Actually, our proof of Theorem 1.2 reduces the general-r case of (1.6) to
a well-known conjecture in Littlewood—Offord theory. We introduce the polynomial Littlewood—Offord
problem properly, and discuss these aspects further, in Section 2.

One could also ask about the “£” in Theorem 1.1: for each r, k, what is the exact maximum value
of ind,(k, ), among all ¢ ¢ {0, (f)}“’ We wonder if the maximum is always attained at £ = 1. We
remark that the exact value of inds(k, 1), for all k, was recently found by Liu, Mubayi and Reiher [16,
Theorem 1.13] (see also [11] for earlier work in the case k = 4).

It is also interesting to consider the maximum possible value of ind,(k,¢) among all pairs (k,{)
satisfying ¢ ¢ {0, (’:)} In the case r = 2, it was suggested by Alon, Hefetz, Krivelevich and Tyomkyn [1]
that this maximum value might be inds(3,1) = 3/4.

Finally, it would be very interesting to investigate “stability” in the settings of Theorems 1.1 and 1.2.
Although the constant “1/€” in Theorem 1.1 is best-possible in general, we conjecture that it can be
improved when min(¥, (’;) — ¢) is not of the form (i:;) (a related theorem was very recently proved by
Ueltzen [22] in the setting of graph inducibility). Similarly, although the exponent “1/2” in Theorem 1.2
is best-possible in general, we conjecture that there is 8, > 0 such that ind,(k, ) < k=/2=% for “generic”
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¢ (i.e., for a 1 — o(1) fraction of ¢ in the range 0 < £ < (:f), where asymptotics are as k — oo, holding
r fixed). This seems to be related to a conjecture of Costello [4, Conjecture 3] on “stability” for the
polynomial Littlewood—Offord problem.

1.2. Notation. We use standard graph theory notation throughout. For a hypergraph G, we write e(G)
for the number of edges in G, and for a vertex subset U, we write G[U] to denote the subgraph of G
induced by U.

We also use asymptotic notation throughout. For functions f = f(n) and g = g(n), we write f = O(g)
or f < g to mean that there is a constant C' such that |f] < C|g|, f = Q(g) or f = g to mean that there
is a constant ¢ > 0 such that f(n) > c|g(n)| for sufficiently large n, and f = o(g) to mean that f/g — 0
as n — 0o. Subscripts on asymptotic notation indicate quantities that should be treated as constants.

For parameters a, 81, ...,08y, we write a < B1,...,08, to mean “« is sufficiently small in terms of
B1,...,84" (ie., it is shorthand for a statement of the form “a < f(Bi,...,08,)”, for some function f
which we do not wish to specify explicitly). Similarly, we write o > 1, ..., 8, to mean “« is sufficiently
large in terms of B31,..., 3"

For a positive integer n and an integer 0 < d < n, we write [n] = {1,...,n} and denote the set

of all size-d subsets of [n] by ([Z]). For a real number x, the floor and ceiling functions are denoted
|z] = max(i € Z : i < z) and [z] = min(i € Z : i > z). We will however sometimes omit floor
and ceiling symbols and assume large numbers are integers, when divisibility considerations are not
important. All logarithms in this paper without an explicit base are to base e, and the natural numbers
N do not include zero.

For a vector & € R", we write z1,...,z, for its coordinates, and for W C [n], we write ¥ to denote
the monomial [,y ;. For a multilinear polynomial P € R[x1,...,%,], we denote the coefficient of the

monomial ZV by ﬁ(W)

1.3. Organisation of the paper. In Section 2, we introduce the polynomial Littlewood—Offord problem
(on anticoncentration of polynomials of independent random variables) and describe the best known
bounds for this problem. These results will play a crucial role in the proofs of both Theorems 1.1
and 1.2, but in order to actually apply them we need a general coupling lemma for polynomials “on a
slice of the Boolean hypercube”, which we present in Section 3. In Section 4 we prove Theorem 1.2, using
the above tools and a result of Bollobas and Scott [3].

Then, in the rest of the paper, we focus on Theorem 1.1. First, in Section 5 we apply the above tools
in a different way, to prove an anticoncentration bound for “sparse” polynomials with “large matchings”.
In Section 6, we state and prove our Poisson-type anticoncentration inequality, and in Section 7 we show
how to use an estimate of Ehm [6] to compare certain functions “on a slice of the Boolean hypercube”
with corresponding functions of product distributions. Then, in Section 8 we prove a lemma showing
that every hypergraph has a small set of vertices which “only sees large matchings”. Finally, after some
technical variance estimates in Section 9, we prove Theorem 1.1 in Section 10.

Acknowledgments. We would like to thank Lisa Sauermann for helpful comments. We would also like
to thank Alex Grebennikov for identifying an oversight in the application of Theorem 7.1 (in a previous
version of this paper).

2. THE POLYNOMIAL LITTLEWOOD—OFFORD PROBLEM

In this section we introduce the polynomial Littlewood—Offord problem, concerning anticoncentration
of polynomials of independent random variables. More specifically, let P € Rx1, ..., x] be a k-variable
polynomial and let &, ..., &, be i.i.d. Rademacher random variables (i.e., P[§; = —1] = P[§; = 1] = 1/2).
What upper bounds can be proved on the maximum point probability

SupP[P(fla v 76/6) = 6]7
LeR

in terms of simple combinatorial information about the polynomial P? The most well-known theorem
in this direction is due to Erdés [7]: improving a theorem of Littlewood and Offord [15]|, Erdés proved
that if P is a linear form with at least m nonzero coefficients, then
(Lmn/Lz j) < 1

2am ™~ /m’
By letting P(z1,...,25) = 21 + -+ + x, and £ = 2|m/2] — m, we see that this bound is exactly
best-possible.

PP(&1,..., &) =4 <



For higher-degree polynomials, one cannot hope for a comparable bound in terms of the number of
nonzero coefficients: indeed, the multilinear polynomial P(x1,...,zx) = (21 + 22)(x3 + -+ + ) has
2k — 4 nonzero coeflicients, but we have P[P(&1,...,&) = 0] > P[z1 # x2] = 1/2. There are a number of
different ways that rule out this kind of degenerate situation; in this paper, we will parameterise P by
the matching number of a certain hypergraph associated with P.

Definition 2.1. For a multilinear polynomial P € R[zq, ..., x| and a > 0, let HL(ld)(P) be the d-uniform
hypergraph on the vertex set [k] with an edge I € ([5}) whenever the coefficient of the monomial x! has
absolute value strictly greater than a.

Definition 2.2. A matching in a hypergraph H is a collection of edges which are pairwise vertex-disjoint.
Let v(H) be the mazimum number of edges in a matching in H.

It was first proved by Razborov and Viola [20] (building on work of Rosiriski and Samorodnitsky [21]
and Costello, Tao and Vu [5]) that if V(Héd)(P)) > m then

sup P[P(&1, ..., &) = ] Sam™ (2.1)
LeR

for some ¢4 > 0 depending only on d. That is to say, if P has many degree-d terms with nonzero
coefficients, featuring disjoint sets of variables, then P(&y, ..., &) is anticoncentrated.

The bound in (2.1) has since been improved, but in general the best possible bound is still unknown.
To ensure that the results in this paper are compatible with potential future improvements, we define a
function to describe “the best possible bound for the polynomial Littlewood—Offord problem”; as follows.

Definition 2.3. For d,m > 0, let

LOg(m) = sup P[P(&1,..., &) = 4],

e

where the supremum ranges over all ¢ € R, all k € N and all multilinear polynomials P € R[x1, ..., x] of
degree at most d with I/(H(gd)(P)) > m, and we take &1, ..., & to be i.i.d. Rademacher random variables.

By considering the multilinear polynomial obtained from (z; + - -- + x,,)? by substituting z? =1 for
all 7, it is easy to see that

1
LO z —.

It is widely believed® that the matching upper bound LO,4(m) <4 1/+/m should also hold. In the case
d = 1 this is a classical result of Littlewood—Offord and Erdds, and in the case d = 2 this was recently
proved by Kwan and Sauermann [13] (improving intermediate results by Costello [4]). For general d, the
best available bound is due to Meka, Nguyen and Vu [18] (via a theorem of Kane [12]), as follows.

Theorem 2.4. For any d,m € N,
(logm)©@a(t)
LO <, X e 7
a(m) Sa Jm
We remark that the “” in Theorem 1.2 is entirely due to the logarithmic factors in Theorem 2.4;
if we knew that LOg4(m) <4 1/y/m, we would be able to obtain the optimal result (1.6). Also, we
remark that while the proof of Theorem 2.4 is a little involved, Razborov and Viola’s proof of the bound
LO4(m) <q m~—° is very simple, and this weaker bound is enough for our proof of Theorem 1.1.
We will need a version of Theorem 2.4 that takes terms of all degrees into account (not just the
degree-d terms), as follows.

Corollary 2.5. Consider a multilinear polynomial P € R[z1,..., x| of degree at most d > 0, and for
each f €{0,...,d} let by be an upper bound on the absolute values of all degree-f coefficients. Suppose
that for some f € {0,...,d} andt € N we have Z/(H((l{} t)) > t, where a(f,t) = thyi1+t2bp o+ -+t by.
Then

sup P[P (&1, ..., &) = €] Sasup LO(Qa(t)).
teR f<d

LA conjecture along these lines seems to have been first posed by Nguyen and Vu (see [18,20]).
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Proof. We prove the desired statement by induction on d. The case d = 0 holds vacuously, since
v(H"(P)) < 1 for any P,a. Fix d > 1 and suppose that the desired bound is true for smaller d.
Fix a degree-d multilinear polynomial P € R[xy,...,x], and suppose that for some f < d we have
o))
I/(Ha(f’t) (P)) > t.
We split into cases. First, suppose that I/(H(gd) (P)) > t/(2d). In this case we have

?elﬂglf"[l’(&, &) = 1] <LOg(t/(2d)),

as desired.

Otherwise, we have V(Héd)(P)) < t/(2d). This means that f < d—1. Consider a maximum matching
M in Héd)(P), and let I C [k] be the set of vertices in this matching, so |I| = d|M| < ¢/2. Let
€[I] := (&)ier, and consider any outcome £[I] = (&)ies € {—1,1}. Let Pay € R[z; : i ¢ I] be the
multilinear polynomial obtained from P(z1,...,zx) by substituting z; = & for all i € I. Since M is a
maximum matching, Pg[ I has degree at most d — 1. Also, note that the multilinear degree-f coefficients
in Pg[ 1 differ from the corresponding coefficients in P by at most

<|11T|>bf+1 N <g>bm . (Jf'f)bd < a(f,t) — alf.t)2),

so all the edges of the induced subgraph Hé{}’t) (P)[[k]\I] are also edges of H(S,](C))”,t/Q) (PE[I])’ and therefore,

V(H(f)

atr.1/2) (g

) >t 1] > /2.

The induction hypothesis then yields

supP[P(&,...,&) =1(] < supsupIP[Pgm(fi vigI)=1| E[I]] Sa sup LO¢(Q4(2)),
¢eR £l1) LeR f<d—1

as desired. O

3. DESCRIBING THE SLICE VIA A PRODUCT MEASURE

In this section we record a general lemma describing polynomials of “slice” measures in terms of
polynomials of independent Rademacher random variables. This is necessary to apply the results from
Section 2 to study the parameters ind,.(k, £), which can naturally be understood as being about polyno-
mials evaluated on a slice measure.

Specifically, for any hypergraph G on the vertex set [n], and any k-vertex subset U, we can express

eGU)= Y v,
WEE(G)
where F(QG) is the set of edges of G, and & is the vector in {0, 1}™ with exactly k ones, defined by setting
o; =11ifi € U and 0; = 0 otherwise. When U is a uniformly random k-vertex subset, the corresponding
& is a uniformly random vector in {0,1}" with exactly k ones (this is called a “slice of the Boolean
hypercube”).

Definition 3.1. For an r-uniform hypergraph G on the vertex set [n], let A\¢ € R[xy,...,x,] denote the
polynomial ZWeE(G) W, In other words, the coefficient A\g(W) of 2V is 1 if W is an edge of G, and
0 if W is not an edge of G.

Definition 3.2. Slice(n, k) denotes the subset of vectors in {0,1}" with exactly k different 1-entries.
We write & ~ Slice(n, k) to mean that the random vector & is uniformly distributed on Slice(n, k).

Now, note that we can obtain Slice(n, k) (for n > 2k) by first randomly choosing k pairs of disjoint
vertices, then flipping an unbiased coin for each pair to decide which of the pair to actually take (as a
l-entry). We introduce notation for this, as follows.

Definition 3.3. Consider k,n € N. Let
U= (1]1(_1),’01(1), s 7Uk(_1)a Uk(l))

be a uniformly random sequence of 2k distinct elements of [n], and let Vi be the set of elements in

¥. Independently from U, let E: (&1,.-.,&) be a sequence of k i.i.d. Rademacher random variables.
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¢ = {vi(&),- .-, o(&)}, so Uyg is a uniformly random subset of k elements of [n]. Define
(Jl, s 7Un) € {0, 1}n by

o, = {1 ifve Ua@

0 otherwise,

50 G ¢ ~ Slice(n, k).

The setup in Definition 3.3 allows us to interpret a polynomial on the slice as a polynomial in
Rademacher random variables, as follows (a similar slightly weaker result appears as [14, Lemma 2.§]).
LemmaA3.4. Recall the setup in Definition 3.3, and consider an n-variable multilinear polynomial A\ =
ng[n] AWV € Rlzy,...,x,]. Then, (@ 5) is a multilinear polynomial of &, with coefficients that
depend on U. Specifically, we have

Mase) = > As(D)E",
IC[K]
for coefficients Az(I) given explicitly by
A{;(I) _ Z (_1)|Wﬂ{vi(—1):1’6[}\/)\\(I/V)Q—H/I/l7
WeWsz(I)
where Wy(I) is the collection of all subsets W C Vg satisfying |W N {v;(=1),v;(1)}| =1 for everyi € I.
Remark 3.5. In particular, if A has degree at most d and all coefficients of A have absolute value at most
q, then for any I C [k], we have
[As(D)] < q- Ws(I) N{W C [n] : [W] < d}| < q2Tn?~ 111,
Additionally, if |I| > d, then Wz(I) N {W C [n] : |[W| < d} =0, so that Az(I) = 0.
Proof. For convenience of notation, write ¢ = & . Then, 0,,(1) = (1+&)/2 and 0y, (—1) = (1 — &)/2

for all i € [k], and o, = 0 for all other w. Let Wy denote the set of all subsets W C V5 which satisfy
W N {v;(=1),v;(1)}| <1 for each i. Note that if W ¢ Wy, then ¢ = 0. Therefore,

ME) = D AW)EY = > aw)e”

WCln) Wews

= > dwmez™ JT a+e) [ a-¢)
WeWs v (1)eW j;(—1)ew

_ Z Z (_1)|Wﬂ{vi(—1):i61}\/)\\(W)2—|W\ gI _ Z Ag([)gl 0
ICIK] \Wews(I) IC[K]

4. A STRONG BOUND FOR EDGE-STATISTICS “IN THE BULK”

In this section we prove Theorem 1.2. It will be a simple consequence of the following anticoncentration
inequality for edge-statistics of dense hypergraphs.

Lemma 4.1. Let n = 2k, let § € (0,1/2] and let G be an n-vertex r-uniform hypergraph with ﬂ(:’) <
e(G)<(1-p) (") Then, for U a uniformly random subset of k vertices of G, we have

supPle(G[U]) = ] <r sup LO¢(Q2,-(8n)).
LeR f<r

Before proving Lemma 4.1, we see how to deduce Theorem 1.2.

Proof of Theorem 1.2 given Lemma 4.1. Recall that we are to prove that ind,.(k, ¢) < (ak)~'/?*¢, where
ind,(k,£) = lim, o Ny(n,k, )/ () and Ny.(n, k, ) is the maximum possible number of k-vertex subsets
of an n-vertex graph which induce exactly ¢ edges. Let n = 2k, let G be an n-vertex graph and let U be
a uniformly random subset of k vertices of G. Due to the fact that N, (n,k,£)/(}) is nonincreasing in n,
it suffices to prove that

1

Pe(GIU]) = 4] < e

when ak is sufficiently large in terms of ¢, r.



We may assume that G has at least a(]:) edges and at least a(f) non-edges; otherwise it is impossible
to have e(G[U]) = ¢. Recalling that n = 2k (so (f) 2 (")), this means that the assumption in Lemma 4.1

~

is satisfied for some 8 2 «, and Lemma 4.1 implies that

Pe(GIU]) = 1) S supLO; (2 (k).

The desired result then follows from Theorem 2.4. O

We need a few key ingredients to prove Lemma 4.1. First, we need a lemma essentially due to Bollobas
and Scott [3].

Definition 4.2. Consider an r-uniform hypergraph G on the vertex set [n]. For W € ([7;]), let CA;(W) =1
when W is an edge and let G(W) = 0 when W is not an edge. For s € [r] define

Qu(G) = 30|31t D NG
& lw
where the first sum is over sequences & = (x1(—1),z1(1),...,zs(—1),24(1)) of 2s distinct vertices, and
the second sum is over all W € ([:‘]) which satisfy |W N {z;(=1),2;(1)}| = 1 for every i € [s].

Lemma 4.3. Consider r,n satisfying n > 3r, and consider an r-uniform hypergraph G on the vertex set
[n], satisfying B(7) < e(G) < (1—B)(7). Then, for some s € [r], we have

QS(G) 2 /Bnr+s-
Proof. Letp := e(G)/(Z) denote the density of G. Since 6(:) <e(G) < (1—6)(:), we have 8 < p < 1-p.
Define the function f : ([:]) — R by

1—p if W is an edge of G,
f(W)={ X

—p if W is not an edge of G.

Then, we have

191 = (@@= + (1) = e@) -») =201 =) () 22500 () 2

Let (n)as denote the falling factorial n(n — 1)...(n — 2s 4+ 1) (i.e., the number of ways to choose a
sequence of 2s different vertices); in [3], Bollobas and Scott define? the “W-vector” of f to be the vector

(qo(f),---,qr(f)) given by

wn=a- (") T

T

w

Z(l)lWﬂ{ml(l)w,ms(1)}|f(W)|

where the first sum is over sequences & = (z1(—1),z1(1),...,zs(—1),24(1)) of 2s distinct vertices, and
the second sum is over all W e ([Z]) which satisfy |W N {z;(—1),z;(1)}| = 1 for every i € [s]. Note that
gs(f) is not affected by adding a constant function to f, so

1 (n—2s5\""
= — < —r—s
qs(f) (n)2s ( r—s ) Qs(G) Srm Qs(G)
and in particular go(f) = 0.

Then, [3, Lemma 9| says that

(Jo(f) + 4+ QT(.f) ZT n_THle;
the desired result follows. O

Next, the following technical lemma shows that random variables of a certain type are unlikely to be
very small (this lemma is stated in slightly more general form than we need, as it will also be applied
again later in the paper). It is proved by a simple application of Chebyshev’s inequality. Given f € N
and a set V', an ordered f-subset of V is a sequence of f distinct elements of V. We say that two ordered
f-subsets X , Y of V are disjoint if there is no element of V' that appears in both X and Y.

2Actually, they first define the W-vector in a slightly different way, and prove that the two definitions are equivalent in
[3, Lemma 8§].
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Lemma 4.4. Consider f,m € N and a set V, with 2f < mf < |V| For each i € [m], let F; be a
collection of at least y|V|! ordered f-subsets of V, and let Xl, .. X be uniformly random pairwise

disjoint ordered f-subsets of V. Let N be the number of i such that Xz € F;. Then
1
P[N 2] Sp —.
N <ym/2 S5

Proof. Let 1; be the indicator random variable for the event that X, € F;, and write n = [V]. B
linearity of expectation,

N]—;E[ Znn—l n_f+1Z;an’Ym

=1

Then, for all 4, j € [m] with ¢ # j, we have

o | Fil - |F5] 3 | Fil |75

e PAs By ¥ vy (n(n1)...(nf+1))<n(n1)...(nf+1))
Wl 1AL L
nf  nf n

Var[N ZE +ZCOV[]1i,]1j]

i#E]
2
|Fl 1 | F ] E[N]?
< 4+ . — | <E[N]4+ —/——.
Vo) =B
By Chebyshev’s inequality, we deduce the desired result

Var[N] < 1
(E[N]/2)2 ~/ E[N]

<

~ J

1ot .
n "™~ ym’

P[N < ym/2] < P[N < E[N]/2] < +

Given the conclusion of Lemma 4.3, we can apply Lemma 4.4 in the setting of Lemma 3.4, as follows.

Lemma 4.5. Consider r,k € N satisfying k > r, and let n = 2k. Consider an r-uniform hypergraph G
on the vertex set [n], and its corresponding polynomial Ag. Suppose Qs(G) > Bn"+s for some B > 0 and
€ [r]. Recall the coefficients Az(I) from Lemma 3.4 (defined in terms of a random sequence T).
Then, except with probability at most O,(1/(8n)) over the randomness of U, the following holds: there
exist t 2, fn disjoint s-sets Ir,..., I, C [k] such that |Az(I1;)| 2, Bn"~* for each j.

Proof. For a sequence T = (x1(—1),21(1),...,25(—1),24(1)) of 2s distinct indices, let

a(@) = [>_(-1)WNe D (CDIG()

w

where the sum is over all W € ([Z]) which satisfy |W N {z;(—1),2z;(1)}| = 1 for every ¢ € [s]. By
definition, we have Qs(G) = >_ - a(Z). Note that we always have a(Z) < 2°n"°, so it must be the case
that a(%) 24 Bn"~* for at least Q,(4n?*) different #. Denote the set of all such Z by F.

Now, let m = |k/s| 25 n. Recall the random sequence ¥ = (vi(—1),v1(1),...,v5(—1),vg(1)) from
Definition 3.3, and for each j € [m], let

Ii={s(j—-1)+1,s(j—1)+2,...,sj},

—

X; = (Us(jfl)wtl(_l)a Vs(j—1)+1(1), .., vg5(=1), Usj(l))-
So, in the language of Lemma 4.4, X Tye-- ,Xm are uniformly random disjoint ordered 2s-subsets of [n].
If X; € F, then |Az(I;)] = 27"a(X;) Z» Bn"~*. So, the desired result follows from Lemma 4.4, with
f=2sand v 2, g and F; = F for all j € [m]. O

Now, it is straightforward to deduce Lemma 4.1.

Proof of Lemma 4.1. By Lemma 4.3 and Lemma 4.5, there is s € [r] and ¢ =, Sn such that, except with
probability O,.(1/(6n)) < sups<,LOs(Bn) over the randomness of @, the following holds: there are at
least ¢ disjoint s-sets I,..., I+ C [k] such that |Az(I;)| > r2"tn"=*~! for each j. Condition on such an
outcome of .
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Recalling Remark 3.5, we have [Az(I)| < 2"'n"~/ =: by for all I € (“;]). So, in the notation of
Corollary 2.5, we have
|Az(1;)] > r2"tn" 571 > a(s,t)
for each j € [t]. We can therefore apply Corollary 2.5 using the randomness of E to obtain the desired
result. (]

5. A LITTLEWOOD—OFFORD-TYPE INEQUALITY FOR “SPARSE” POLYNOMIALS ON THE SLICE

For the proof of Theorem 1.1 we will need one further application of polynomial Littlewood-Offord
bounds. Here we consider a degree-d polynomial A which is “sparse” (almost all its top-degree coefficients
are zero), and give a bound in terms of the matching number of the hypergraph of nonzero degree-
d coefficients of A. This matching number is a priori quite different to the matching number of the
polynomial obtained from Lemma 3.4; we take advantage of our sparseness assumption to relate the two
(this is actually a somewhat delicate matter, and requires a careful minimality argument).

Recall that the notation a > B4,. .., 3, means “« is sufficiently large in terms of Bi,..., 3"
Lemma 5.1. For d,q € N, there is 6 > 0 such that the following holds. Consider R,k,m,n € N with
2k < n < Rk and let A € Rlzy,...,xz,] be an n-variable multilinear polynomial with degree at most d,

whose coefficients all lie in {0,...,q}. Suppose V(Héd)()\)) > m and suppose that A has at most on?
nonzero degree-d terms. Then, for & ~ Slice(n, k), provided that k > d, q, R, we have

. 1
sup PIA(F) = {] Sa,r supLOf(Qr.a.4(m)) Sa,re —73-
£€R f<d m

For our proof of Lemma 5.1 we use the following simple lemma, showing that if a graph G has a large
matching, then a random subset of its vertices also typically has a large matching.

Lemma 5.2. Let G be a d-uniform hypergraph whose number of vertices is between 2k and Rk, and
which satisfies v(G) > m. Let U be a uniformly random k-vertex subset, for some k > 2d. Then, except
with probability Oq r(1/m), we have v(G[U]) Za4,r M.

~

Proof. Let n be the number of vertices in G. First, note that we have the trivial upper bound m <
n/d <g k. By shrinking m if necessary, note that we can assume k/m > q,d,d, R (we would only shrink
m to a value of the form Qg 4,(m), so the form of the final bound would be unchanged).

Let Ey,..., E,, be the edges of a matching in G. For each i € [m], let 1; be the indicator random
variable for the event E; C U, and let N = 1;+---+1,,. Then, with similar calculations as in Lemma 4.4
we have®

n—d n—2d n—d 2
E[]ll] — (k*d) Zd,R 17 COV[]lZ‘, 1]] — (k72d) _ <(kd)> ,Sd,R 1/]{:7

(%) (%) (¢)

E[N] Z4,rm, Var[N] <qr m+m?/k <pm

~ ~

(using that m < (Rk)/d <g k). The desired result follow from Chebyshev’s inequality. O

and therefore

Now, we prove Lemma 5.1.

Proof of Lemma 5.1. Recall the coefficients Az(I) from Lemma 3.4, defined in terms of a random se-
quence U = (v1(=1),v1(1),...,vx(=1),vk(1)). Let ¥(1) = (v1(1),...,vx(1)). By Lemma 5.2, over the
randomness of ¥(1), except with probability Og4 r(1/m) Sq.r LO4(m), the subgraph of H(gd)()\) induced
by the vertices of ¥(1) has a matching of size m’ = Qg 4(m). Condition on such an outcome of #(1), and let
Eq, ..., E, be the edges of this matching. Given such a choice of 7(1), condition on an arbitrary outcome
of Vi such that V3 D {v1(1),...,vx(1)}. Note that there is still some randomness remaining in ¢: namely,
v1(=1),...,vx(=1) is a uniformly random ordering of the vertices in U(—1) := {v1(=1),...,vx(=1)}.
For a set W C Vg, let B(W) be the number of nonzero coefficients X(Z) of A\, among all size-d sets Z
satisfying W C Z C Vz. By assumption,
B(0) < on. (5.1)
Consider M > 6, q,d. For all j € [m’'], we have B(E;) = 1 = (n/M)% %l so we may define F; C E;
to be a minimal subset of E; satisfying B(F;) > (n/M)?~!Fil. Recalling (5.1), and assuming § < M ¢,

3Actually, with slightly more careful calculations one can see that Cov[l;,1;] < 0 (this is essentially done in the proof
of Proposition 9.1).
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we have Fj # (). Assume without loss of generality that all the sets Fi,..., F,, sa have the same size
d € [d].

Ne[zx]t, for each j € [m’/d], let I; = {i : v;(1) € F;} C [k]. For each j € [m’/d], we have |I;| = |F;| = d',
since F; C Ej C {vi(1),...,vx(1)}. Define the sequence X'j = (vi(—1) : ¢ € I;) and its underlying set
X; ={vi(—1) : i € I;}. Then, note that each coefficient Az(I;) depends only on the randomness of Xj.
Recall that since we have conditioned on a choice of the set U(—1), the number of possibilities for X ; is
E(k—1)---(k—d +1) < k.

Claim. Let M > ¢,d,R and a < ¢, M,R. For each j € [m'/d], let F; be the collection of all possible
outcomes of X}- which satisfy Ag(I;) > an® 4. Then |F;| > k7.

Proof of claim. Consider an arbitrary j € [m’/d] and let & = 1/M9 % so that B(F;) > en®=%. By the
definition of F}, for every proper subset Y C F}, we have B(Y) < (n/M)4= Y| < (¢/M)n®=1Yl. The sum
of B(T) over all size-d' sets T D Y satisfying T\ Y C U(—1) is therefore at most

d—1Y]| € aa(k—1Y]
B(Y)<ar — .
) L e P
That is to say, if T is uniformly random subject to the constraints 7' 2 Y and T'\'Y C U(—1), then
E[B(T)] <a.r (¢/M)n?% so by Markov’s inequality, provided M is sufficiently large in terms of d, R,

we have

P[B(T) > (¢/M"/?)nd=4] < M~13, (5.2)

Now, say that a set X C U(—1) is good if B(T) < (¢/M'3)n9=?" for every size-d’ subset T C F; U X
containing at least one vertex of X. If X; is good, then

Ag() > 7 Aw)27WI— N Xw)2-IVI
WDF; W 2F;

> (s - (1)) 2 - e

> E?’Ld_dl o (E/Ml/B)nd—d’

d—d’
Zd.M T

~

where the sums on the first line are over all W C Vi which satisfy |W N {v;(—1),v;(1)}| = 1 for every
i € I, and the “max” in the second line is over all size-d’ subsets T' C F; U X containing at least one
vertex of X;.

So, it suffices to show that X is good with probability ©(1) (recall that the randomness comes from a
uniformly random permutation of the elements of U(—1)). To this end, for each proper subset J C I, let
Y; ={v;(1):i € J} C Fj and let T; be the random size-d’ set containing v;(1) for i € J and v;(—1) for
i¢ J. If B(Ty) < (e/M"/3)n4= for all J C I;, then X; is good. But note that each T’ is a uniformly
random set satisfying Ty D Y and T'\'Y C U(—1), so by (5.2) and a union bound over all J C I;, we
see that P[X; is not good] < 2¢. M~1/3 < 1/2. [ |

Now, recall from Remark 3.5 that we always have |A5(I)| < ¢2/(2k)?~/ =: by for all I € ([;ﬁ]). As in
Corollary 2.5, let a(d’,t) = thgr41 + -+ - + td=d'p, Sq.d mkd—d' =1,

In the notation of Lemma 4.4, note that Xl, . ,Xm//d are uniform random ordered d’-subsets of
U(-1). So, by Lemma 4.4 (with f = d’ and v = Q(1)) and the above claim, except with probability
O(1/m) < LOa(m) we have |Az(I;)| Zgarar k%%, and therefore |Az(I;)| > a(d',t), for t = Q(m’/d)
different j (here we are using that k/m > ¢, 4, d, R). Condition on an outcome of ¢ such that this is the
case.

We may then apply Corollary 2.5, using the randomness of 5 to obtain the desired conclusion. O

6. A POISSON-TYPE ANTICONCENTRATION INEQUALITY

Another key ingredient for the proof of Theorem 1.1 is a “Poisson-type” anticoncentration inequality
for polynomials of independent random variables, strengthening a result of Fox, Kwan and Sauermann |8,
Theorem 1.8].
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Theorem 6.1. Fiz v > 0, and suppose p is sufficiently small in terms of v. Let F € R[xy,...,xs] be
a multilinear polynomial which has nonnegative coefficients, and zero constant coefficient. Let B, ..., B
be i.i.d. Bernoulli(p) random variables. Then for any t € [0,00) and £ > 3°t, we have

Proof. We prove by induction on s that whenever £ > 3%t and F € R[zy,...,x;] is a multilinear polyno-
mial which has nonnegative coefficients and zero constant coefficient, we have

P[|F(F) — (| <] < max PX,,, = 1],

where X, , ~ Bin(n, p). This suffices, because elementary estimates show that the right-hand side of the
above expression converges to 1/e as p — 0 (see [8, Lemma 3.3]).

The desired statement is vacuously true for s = 0, so fix some s > 1 and assume the desired statement
is true for smaller s. Write |||y for the number of nonzero entries of 3.

Let a; be the coefficient of x; in F(x1,...,zs). First, if we have a; > (£ +¢)/2 for all i, then we can
only have |F(3) — ] <t if ||5]lo = 1. Indeed, if we had ||5]|o = 0 we would have F(j3) = 0, and if we had
I18llo > 2 we would have F () — € > 2(£ 4 t)/2 — £ = t. The desired bound follows.

Otherwise, suppose without loss of generality that as < (¢ +t)/2. We can write F(z1,...,25) =
G(z1,...,xs-1) + asxs + xsH(x1,...,25_1), where G, H € R[x1,...,25_1] are multilinear polynomials
which have nonnegative coefficients, and zero constant coefficient. We will show the desired bound
conditional on both of the two possible outcomes of fs.

Let f' = (B1,-.-,8s—1). If Bs =0, then |F(B) —/¢| <t if and only if |G(B") —¢| < t, and the desired
result follows by induction. Otherwise, if 8, = 1, then |F(3)—¢| < t if and only if |(G+H) (")~ ({—as)| <
t. Note that £ —as > (£ —t)/2 > £/3 > 3571, so the desired result again follows by induction. O

7. COMPARISON BETWEEN THE SLICE AND A PRODUCT MEASURE

Recall that in order to apply bounds on the polynomial Littlewood—Offord problem, we needed a lemma
describing a slice measure in terms of a product measure (Lemma 3.4). In order to apply Theorem 6.1,
we also need a comparison between a slice measure and a product measure, but since Theorem 6.1 only
applies to polynomials with nonnegative coefficients, we will need a lemma of a rather different flavour,
for functions on the slice that only depend on a few coordinates.

For probability distributions u, v with the same sigma-algebra of events, recall that the total variation
distance dry(u,v) is the supremum of |u(A) — v(A)| over all events A.

Theorem 7.1. Let k < n/2. Consider any set S and function F : {0,1}" — S, such that F(z1,...,2y,)
only depends on x1,...,xs. Let & ~ Slice(n, k) and let 8 be a vector of n independent Bernoulli(k/n)

random variables. Then
. " max(s,2n/k) — 1
doy (F(8), F(F)) < ax(&:2n/k) =1

n—1

We will prove Theorem 7.1 using the following theorem of Ehm [6]. Write Hyp(n, k,t) for the hy-
pergeometric distribution with k& draws from a population of size n with t “featured” elements, and let
Bin(n,p) be the binomial distribution with n trials and success probability p.

Theorem 7.2 ([6, Theorem 2|). If (k/n)(1 — k/n)t > 1 then

t—1
dTv(Hyp(n,k‘,t),Bin(t,k/n)) < —
Proof of Theorem 7.1. Let t = max(s,2n/k), so (k/n)(1 —k/n)t > 1 and F(x1,...,2,) only depends
on xi,...,x; (since t > s). For & € {0,1}", let ||Z]/o;+ be the number of ¢ € [¢] for which x; = 1.

Let ¢ ~ Slice(n,k) and let B be a vector of n independent Bernoulli(k/n) random variables. Then
clearly [||lo.c ~ Hyp(n,k,t) and ||B]lox ~ Bin(¢, k/n). For all ¢ in the support of both Hyp(n,k,t)
and Bin(¢, k/n), the conditional distribution of F(&) given ||&|lo;; = ¢ is the same as the conditional
distribution of F(ﬁ) given HB”O;t =q. So,
. > . = t—1

drv (F(3), F(8)) < dov([1@]loie, [1Blloie) < et

where the last inequality follows from Theorem 7.2. O
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8. THE VERTEX COVER LEMMA

In this section we prove a lemma showing that every hypergraph G has a small vertex set Y that “only
sees large matchings”, in the sense that for any subset S C Y, if we remove all the edges intersecting S,
and we remove all the vertices of Y\ S from all the remaining edges, the resulting hypergraph either has
a large matching or no edges at all.

Definition 8.1. Let G be an r-uniform hypergraph. For vertex subsets X CY, write Gy (X) = {e\X :
e€ G—(Y\X), e\X # 0}. In other words, delete all edges which intersect Y\X, and look at the portion
of each edge outside X. This is a mized-uniformity hypergraph, whose edges have sizes between 1 and r.
Ford e [r], let Ggf) (X)) be the subhypergraph of edges which have size exactly d.

Lemma 8.2. Let r,m € N and let G be an r-uniform hypergraph. We can find a vertex set Y of size
Oy m(1) such that the following holds. Consider any X CY such that Gy (X) is nonempty, and let d be

the mazimum integer such that Ggﬁi) (X) is nonempty. Then Ggi)(X) has a matching of size at least m.
Moreover, if Y # (), then every edge of G has non-empty intersection with Y.

Proof. Tt will be more convenient to prove the following statement. Let V be the vertex set of G. For
SCY CV,let T'y(S):={e\S: e€ G, enY =S} (this is a hypergraph whose edges have size exactly
r —|S|). Say that S is Y-relevant if T'y(S) is nonempty and I'y(S’) is empty for all S” C S. We say
that a relevant set S is m-bad (or simply, bad), if the maximum matching in 'y (S) has size at most
m — 1. We will show that we can choose a vertex set Y of size O, ,,(1) such that there are no Y-relevant
sets S C Y which are bad. To see that this implies the conclusion of the lemma, for X C Y, let d be
the maximum integer such that Ggfl )(X ) is nonempty. Since Ggfl ) (X) is nonempty, there exists S C X
of size r — d such that T'y (S) is non-empty, and since d is the largest integer satisfying this property, it
must be the case that I'y (S") = for all S’ C S. In other words, S is Y-relevant. Therefore, 'y (S) has
a matching of size at least m, and since I'y (S) C Gg}j ) (X), our conclusion follows.

We will construct our desired set Y iteratively, by iterating a “greedy cover” map ¢ starting from the
empty set. Specifically, fix an ordering of the vertex set, and for Z C V', we define ¢(Z) D Z as follows.

o If there is some Z-relevant set S C Z such that I'z(S) has no matching of size at least m,
then consider such a set S with the smallest size (breaking ties lexicographically, according to
our ordering of the vertex set) and a maximum matching M in I'z(S) (again, breaking ties
lexicographically), let W be the vertex set of M, and set ¢(Z) = ZUW.

e Otherwise, set ¢(Z) = Z.

For Z C V, let ¢*(Z) be the result of repeatedly applying the map ¢, starting with Z, until it
stabilises, and let Y = ¢*(0). We just need to show that |Y| = O, ,,,(1); this will be a simple inductive
consequence of the following claim.

Claim. For Z CV and £ € {0,...,r}, let No(Z) be the number of Z-relevant sets T C Z with |T| = £.
If §(Z) # Z, then there exists d € {0,...,r} for which the following hold:

(1) Na(¢(Z)) < Na(Z),

(2) Ny(6(2)) < Ng(Z) for all f < d,

(3) |9(2)| < |Z] +rm.

(4) N¢(6(2)) < |o(2)) < (12| +rm)? for all f > d,

Proof of claim. First, parts (3) and (4) are immediate, because ¢(Z) is obtained by adding fewer than
rm vertices to Z.

To prove parts (1) and (2), suppose ¢(Z) # Z and let S C Z be the set appearing in the definition
of ¢(Z). Note that, by construction, I'yz)(S) = 0. In particular, S is a Z-relevant set which is not
¢(Z)-relevant. Let S* C Z be a smallest set which is Z-relevant but not ¢(Z)-relevant and let d = |S*|.
This is the value of d for which we will prove parts (1) and (2). In order to do this, it suffices to show
the following: for any ¢(Z)-relevant set T C ¢(Z) with |T'| < d, it must be the case that T C Z and in
fact, that T is Z-relevant. This immediately implies (2), and since S* is a Z-relevant set which is not
¢(Z)-relevant, we also get (1).

Suppose T' C ¢(Z) is a ¢(Z)-relevant set of size |T| < d. Suppose for contradiction that either (a)
T Z Z,or (b) T C Z but T is not Z-relevant. In either case, since I'y(z)(T) is non-empty, it follows that
I'z(T N Z) is non-empty as well, so that there exists 7/ C T'N Z such that T” is Z-relevant. In case (a),
ITNZ| < |T| <dandin case (b) T’ C T, so that in either case, |T"| < d — 1. Since S* is a smallest
Z-relevant set which is not ¢(Z)-relevant, it must be the case that T” is ¢(Z)-relevant. However, since
T’ C T, this contradicts that T is ¢(Z)-relevant. [ |
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Recall that we wish to show that Y| = |¢*(0)| = O, (1). For nonnegative integers Ny, ..., N,,z,

define F(Ny, ..., Ny, 2) to be the maximum of |¢*(Z)|, over all Z C V with
|Z|:Z, No(Z)SNo, Nl(Z)SNl, ey NT(Z)SNT,

and over all r-uniform hypergraphs G on any vertex set V. (A priori, it is possible that no such maximum
exists, in which case we set F'(Ny,...,N,,z) = 00.) Since Y| = |¢*(0)| < F(1,0,...,0), our goal is to
show that F'(1,0,...,0) < oco. Since the input parameters to the function F' are only r and m (via
the definition of ¢*(Z)), in this case it is clear that F'(1,0,...,0) depends only on r and m. In fact,
writing N> for the nonnegative integers, we will show that for any (No,..., Ny, z) € Nr;g2, we have
F(No,...,Np, 2) < c0. a

To see this, note that the above claim implies a recurrence for F(Ny, ..., N, z): for all (Ny, ..., N, z),
either F(Ny,...,N,,z) =z or

F(No,...,Np2) < max F(No,...,Ng_1,Ng—1,(z+rm)¥L ... (z+rm)",z+rm) (8.1)

de{0,...,r}:Ng>0

(here we use the convention that the maximum of the empty set is —oo; in other words, F(0,...,0,z) = z
which is also easy to see directly). Now, the desired result follows by induction (most easily described
in a “transfinite” way): since the lexicographic order on Nr;gz is a well-order, if F(Ng,...,N;,2z) = 00
for some (N, ..., N,,z) then there must exist a lexicographically minimal (Ng, ..., N}, z*) for which
F(N§,...,N z*) = co. But this is impossible: we would have F(N{,..., N}, z*) # 2*, so (8.1) would
contradict lexicographic minimality.

Finally, the “moreover” part is clear by construction. O

9. A VARIANCE BOUND FOR POLYNOMIALS ON THE SLICE

We need one more technical ingredient for the proof of Theorem 1.1, namely a bound on the variance
of a polynomial on the slice.

Proposition 9.1. For any n > k, let A\ € Rlxy,...,2z,] be an n-variable multilinear polynomial with
degree at most d whose coefficients all have absolute value at most q. Let & ~ Slice(n, k). Then

Var[A(d)] Sdaq n2d-1,

Proof. Since 1 + - -+ + x,, is constant on & € Slice(n, k), it follows that Var[A(5)] = Var[Q(&)], where
Q(F) = A\&) + q(z1 + -+ + x,)?% Since the coefficients of A have absolute value at most ¢, it follows
that the coefficients of @ are non-negative and have absolute value at most O4(q). The key point is the
following: let W, T C [n] be disjoint sets with |W| =4 and |T'| = j. Then, writing a = b if @ and b have
the same sign, we have
) G G

(%) G )

() ()6 ()
00

()7 FHh-s)k—j—s)
") - (%) —H (- )k—s) =

for k < n. Note also that for any W, T C [n], we have Cov[¢",5T] < E[g"W&T] < 1.

Recall that the coefficients Q(S) are non-negative of size at most Oq4(g). Moreover, @(S) = 0 if
|S| > d. Putting everything together we have

Cov[g"W,5T]) =

IN

where the last inequality follows since

Var[Q ZQ T)Covlg". 671 < Y QUV)Q(T) Cov[s", 57
W,TC[n]
WNT#)D
Sa Y, Y, @ Santn® U
(W|<d |T|<d
TNW£)
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10. COMPLETING THE PROOF OF THE HYPERGRAPH EDGE-STATISTICS CONJECTURE

Now, we combine all the ingredients collected so far to prove Theorem 1.1. Recall that the notation
a K Bi,...,B, (respectively, @ > fi,...,0,) means “a is sufficiently small in terms of f,...,3,"
(respectively, “« is sufficiently large in terms of 81,...,5,").

Proof of Theorem 1.1. Recall that we are to prove that if k > r,e and ¢ ¢ {0, (f)}, then ind,(k,¢) <
1/e + €. Since ind,(k,¢) = ind, (k, (f) — 0), it suffices to assume that ¢ < f(f)/ﬂ Further, it suffices
to prove the statement only for (say) ¢ < k=172 (]:), since in the complementary regime k~'/2 (f) <{<
[(¥)/2], a stronger statement follows from Theorem 1.2.

So, consider integers k, ¢ satisfying 0 < ¢ < k—1/2 (’:) and fix any € > 0. The dependence of k on
r,e will be moderated by additional parameters R, m,q,d, which will play a role later in the argument.
Specifically, we first need R > €, then m > R, then ¢ > m,r and then § < ¢. Finally, k > m,q,7, R, J,¢.
To summarise, the relative sizes of various parameters should be thought of as

E>1/6>qg>m>R>1/e.

Let n = Rk, let G be an r-uniform hypergraph on the vertex set [n], and let U be a random subset of
k vertices of G. As N,(n,k,£)/(}) is nonincreasing in n, it suffices to prove that

k
Ple(GIU]) = <1/e+e.
Let Y be the set obtained by applying Lemma 8.2 to G (with our value of m).

Case I: Y # (). Consider the random variable E[e(G[U]) ’ YNU]. This can be interpreted as a multilinear
polynomial evaluated at & ~ Slice(n, k) (where o; = L;ey), that only depends on |Y| = O,, (1) of its
variables. Indeed, we have

Ele(GU)|YnUl= Y P[WeEG[U])|YNU] > PW\Y CUllwnycuny
WEeE(G) WEeE(G)

> PW\YcuehY
WEeE(G)

where E(G) denotes the set of edges of G (cf. the expression for e(G[U]) at the start of Section 3). Note
that this polynomial has nonnegative coefficients. Also, since we are assuming Y # (), every edge of G
intersects Y, so the constant coefficient of this polynomial is zero. So, by Theorems 6.1 and 7.1 (with
s=|Y|and v =¢/2 and t = 371V1¢), since R, k > ¢, it follows that except with probability 1/e + ¢/2,

Ele(GIU) | Y NU]—¢| >3 Yl >, . 0 (10.1)

Condition on any outcome of ¥ N U such that (10.1) holds. The remaining randomness is comprised
of the random set U \ Y (which is a uniformly random subset of [n] \ Y of size k — |Y NU|).

Recall from Definition 8.1 that Gy (X) = {e\X : e € G — (Y\X), e\X # 0}. If Gy(Y NU) = 0,
then we are done: given our conditioning, e(G[U]) would then take some value with probability 1, and
this value cannot be equal to ¢ since we are working with an outcome of Y NU for which (10.1) holds.
Therefore, we can assume that Gy (Y N U) is non-empty. In this case, given our conditioning, we can
write e(G[U]) = A(&), where & ~ Slice(n — |Y|,k — |Y NUJ) and A is a multilinear polynomial of some
degree d € [r — 1]. Note that the coefficients of A all lie in the set {0,1,...,¢} (here we are using that
qg>m,r,soq> (Ii’\)) Also, by the definition of Y, we have v(HZ()\)) = v(Gy (Y NU)) > m. Our
objective is to show that P[A(¢) = {] < e/2.

Recall that § < r,q and m > R > ¢ and k > r,q,m. By Lemma 5.1, at least one of the following
holds:

(1) X has at least dn? nonzero degree-d coefficients, or
(2) we have

1
7) = < [
%}gﬂ]’[k(a) ] Saq i3 S /2.

In case (2) we are done. In case (1), we have E[\(F)] 2 0k¢ =5 k? while Var[\(7)] Saq 72?7 Saqr k2471
by Proposition 9.1. So, by Chebyshev’s inequality, except with probability at most £/2 we have
MN@) —EN)]| Saa.rse b /ENG))-
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Recalling from (10.1) that E[A(5)] is excluded from a range of the form (1 £, ,,(1))¢, the desired result
follows for k> m, q,r, R, 0, €.

Case II: Y = (). If G is empty, then we are done, since £ # 0 by assumption. Otherwise, we can write
e(G[U]) = Aq (@), where Ag has degree r and & ~ Slice(n, k). In this case we will be able to prove the
stronger bound

Ple(G[U]) = (] = PM\(5) = (] < £/2 < 1/e + <.

As in Case I above, we have I/(Hér)()\)) > m, and similarly arguing via Lemma 5.1, we only need to

consider the case that G has at least dn" nonzero degree-r coefficients. By the same argument as above,
except with probability at most €/2 we have

A6 (6) — EDNG()]| Saqrse b 2E[G(S)).

The desired conclusion now follows for k > q,r, R, 0, ¢, since E[Ag(&)] Zr,s k", whereas by assumption
< k7V2(E) < k12 O
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