Many pentagons in triple systems
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Abstract

We prove that every n-vertex linear triple system with m edges has at least mS /n”
copies of a pentagon, provided m > 100 n3/2. This provides the first nontrivial bound
for a question posed by Jiang and Yepremyan.

More generally, for each ¢ > 2, we prove that there is a constant ¢ such that if an
n-vertex graph is e-far from being triangle-free, with ¢ > n=/3¢, then it has at least

ce¥n2+1 copies of Copyq. This improves the previous best bound of ¢e42p2+1

due
to Gishboliner, Shapira and Wigderson.
Our result also yields some geometric theorems, including the following. For n large,

11/6 triangles similar to a given triangle

every n-point set in the plane with at least 60 n
T, contains two triangles sharing a special point, called the harmonic point. In the
other direction, we give a construction showing that the exponent 11/6 =~ 1.83 cannot
be reduced to anything smaller than =~ 1.726 and improve this further to ~ 1.773 for

a 3-partite version of the problem.

1 Introduction

We consider the supersaturation problem for odd cycles in linear 3-graphs (triple systems)
and show some applications of this question. A (loose or linear) cycle C} is the 3-graph
containing k distinct vertices vy, ..., v and k distinct edges eq, . . ., e; such that e; is obtained
by enlarging {v;, v;41} by a new vertex w; such that wy, ..., wy are all distinct and distinct
from all the v;s. In other words (taking indices modulo k),

V(Cr) ={v1,...,vp, w1, ..., wi} and E(Cy) = {vviqw; :i=1... k}.
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A triple system is linear if every pair of vertices lies in at most one edge. A natural extremal
problem is to determine the Turdn number ex(n,C}), defined as the maximum number of
edges in an n-vertex linear triple system that contains no copy of Cj as a (not necessarily
induced) subgraph. We are especially interested in the case when k = 2¢ + 1 is odd. The
case of Cj is special as determining exy (n, Cs) is, apart from constant multiplicative factors,
equivalent to the well-known (6, 3)-problem of Brown, Erdés, and Sés [3]. Here, famous
results of Behrend [2] and Ruzsa-Szemerédi [18] show that exy(n, Cs) = n?>~°() with the o(1)
term being a function of intense study over the years.

We are mainly concerned with the case of Cj;, henceforth called the pentagon. The first
author, Kostochka, and Verstraéte proved that ex(n,Cs) = Q(n*?) while writing the pa-
per [14] in 2013. Theorem 1.2 in Collier-Cartaino, Graber, Jiang [5] refers to this result.
This was later published in [7] by Ergemlidze, Gy6ri, Methuku. More generally, the upper
bound exy,(n, Cyy1) = O(n'T1/%) was proved in [5]; matching lower bounds are known for
¢ € {3,4,6} by connecting this problem to the corresponding graph constructions for Cy, Cs,
and Cyq [7].

Many extremal problems exhibit the property that when the underlying (typically large)
discrete object is dense enough to contain a given forbidden subobject, it contains many
of them. In our context, this means that n-vertex triple systems with m edges contain

3/2

many pentagons when m is much larger than n°/“. Indeed, our main result quantifies this

dependence.

Theorem 1.1. Let n > 10 and let H be an n-vertex linear triple system with m > 100n>/2

edges. Then the number of copies of Cs in H is at least m®/n”.

Sidorenko’s conjecture states that the homomorphism density of a graph G in a graph W
is at least the edge density of W raised to the power e, where e is the number of edges
in G. This is known to be false for some hypergraphs, but deciding if it is true for the
pentagon when the underlying triple system is linear seems interesting. Namely, can the
quantity mS/n” in Theorem 1.1 be improved to m®/n®, which, if true, would be sharp in
order of magnitude as shown by random triple systems? This problem was posed by Jiang
and Yepremyan [11]. We believed that no such improvement is possible, and in fact, after our
preprint was made public, this was shown to be true by Methuku (personal communication),
who gave a construction where the number of Cs is O((m®/n’)'~). Further, we conjecture
that the truth is ©(m%/n"), but this remains open. The following result provides some
motivation for our conjecture. Throughout this paper, we use standard asymptotic notation.

Proposition 1.2. Suppose that for all n there exists a linear triple system H on n vertices
and m = O(n%?) edges, with mazimum degree O(n'/?), at most O(n3/?) copies of Cs, and
at most O(n?) copies of Cy for k = 4,5. Then, the bound m®/n” in Theorem 1.1 is tight in
order of magnitude.

We provide a construction of a linear H as in Proposition 1.2 with no copies of C3 and
Cs, but the number of copies of Cy is Q(n°/?). We remark that a linear 3-graph H as in
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Proposition 1.2 with no copies of Cj for each 3 < k < 5 does not exist, as it was shown by
Conlon, Fox, Sudakov, and Zhao [4] that any such H has o(n*?) edges.

A natural generalization of Theorem 1.1 has an application to a problem concerning quan-
titative aspects of removal lemmas in graphs, which are, in turn, connected to questions
about property testing. Say that an n-vertex graph G is e-far from being triangle-free if the
minimum number of edges required to be removed from G to make G triangle-free is at least
en?. Gishboliner, Shapira and Wigderson [10] proved that there is a constant ¢ such that if
¢ > 0 and n is sufficiently large in terms of ¢, and G is e-far from being triangle-free, then
G has at least ce**+2n2+1 copies of Cyry. We improve this as follows. We write a > b to
denote that there is a sufficiently large constant C' > 0 such that a > C'b.

Theorem 1.3. Fix ¢ > 2. There is a constant ¢ such that if an n-vertex graph G is e-far

3241 copies of Copyr.

from being triangle-free, with e > n~'/3 then G has at least ce
The lower bound requirement on € in Theorem 1.3 can be weakened, but we make no attempt
to optimize its value; the optimal value would theoretically be ¢ = n='+%/¢ as it is plausible
that there are linear 3-graphs with Q(n'*'/#) edges and no copies of Cy 1, and the shadow of
any such 3-graph yields a graph that is e-far from being triangle-free, where ¢ = ©(n~1+/%).
We note that the exponent 3¢ of € cannot be improved to anything smaller than 2¢ 4+ 1 as
shown by random graphs.

This paper summarizes unpublished works by the authors previously presented in seminars
and conferences like in [19, 20]. The following related results were published independently
by others: a proof of a slight weakening of Theorem 1.1, and Theorem 1.3 for ¢ = 2 was
published recently in [9], and, as mentioned earlier, a construction similar to the one in
Section 2.1, was published in [7].

1.1 An application in geometry

Theorem 1.1 provides a somewhat unexpected application to a problem in discrete geometry
that we now describe.

Elekes and Erdés proved in [6] that for any triangle T, there are n-element planar point
sets S with (n?) triangles similar to T. It was proved shortly after that if the number of
equilateral triangles in S is at least (1/6 + €)n?, then S contains large parts of a triangular
lattice. On the other hand, no lattice is guaranteed if S contains at most ¢n? similar copies
for ¢ < 1/6. Weaker, local structural properties of point sets with a quadratic number of
similar triangles were proved in [1]. We will prove that point sets with sub-quadratic (but
still many) triangles, similar to a given T', are guaranteed to contain certain interesting local
substructures.

We use complex numbers to represent points of the plane. A point P with coordinates
(a,b) is represented by the complex number zp = a + ib. A cyclic quadrilateral ABC'D
is a quadrilateral that can be inscribed in a circle. A harmonic quadrilateral is a cyclic



quadrilateral in which the product of one pair of opposite sides is equal to the product of
the other pair of opposite sides [12, 8]. This property can also be described using complex
numbers and the harmonic cross-ratio:

(24, 2B; 20, 2D) = —1, (1)
where the cross-ratio is defined as:

(24 — 2c)(2B — 2p)
(24 — 2p)(2B — 2¢)

(ZAa ZB; 2C, ZD) =

The cross-ratio is important in analyzing point sets with a quadratic number of triangles
and quadrangles in the plane. Laczkovich and Ruzsa proved that for a quadrilateral, @,
there exist arbitrarily large point sets with a quadratic number of quadrangles similar to
@ if and only if the cross-ratio of @ is algebraic [15]. We will refer to this result as the
Laczkovich-Ruzsa Theorem.

A simple calculation shows that given three points z4, zp, and z¢ in the complex plane, the
fourth point zp such that the quadrilateral is harmonic can be expressed as

22428 — ZAZC — ZBZC
Zp = .

Za+ 2 — 22¢ 2)
A point D is a harmonic point of triangle ABC if ABCD forms a harmonic quadrangle.
By continuity, a triangle has three (distinct) harmonic points on its circumcircle, one in
each of the three sectors of the circle between vertices of the triangle (See Figure 1 for some
examples). Moreover, D is the harmonic point of ABC' on the opposite side of AB as C'iff
zp satisfies (1) or (2).

F L

C

Figure 1: A, C, E are the harmonic points of the equilateral triangle BDF'.
H, J, L are the harmonic points of the isosceles right triangle GI K.

By applying Theorem 1.1, we prove the following structural result about points sets with
many similar copies of a given triangle 7. Given a triangle ABC, call A, B, C, its vertices.
Say that a point set contains a triangle if it contains the three vertices of the triangle.
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Theorem 1.4. Let T be a triangle and S be a set of n > 10° points in the plane such that
S contains at least m = 60n'Y/° triangles similar to T. Then there are two triangles Ty, Ts
in S (similar to T ), and a point P (not necessarily in S) such that P is the same' harmonic
point of both Ty and Ty. Moreover, the exponent 11/6 ~ 1.833 cannot be reduced to anything

less than ~ 1.773....

Our proof actually gives Q(m®/n'!) pairwise vertex disjoint triangles that all share a common
harmonic point. This observation leads to a stronger structural result as the number of
triangles m increases. According to the Laczkovich-Ruzsa theorem, for any quadrangle with
algebraic cross-ratio, there are point sets with quadratically many copies of quadrangles
similar to it. Such sets also have many triangles similar to a triple of the four points of the
quadrangle. We show a reverse statement that any set with quadratically many triangles
similar to a given triangle T is part of a point set with many quadrangles.

Theorem 1.5. For every ¢ > 0 and € > 0, there is a D > 0 such that the following holds
for large enough n. Let T be a triangle and S be a set of n points in the plane such that S
contains at least cn? triangles similar to T. Then, there is a quadrangle Q and a set U of at
most Dn points such that U contains at least (c —)n? quadrangles similar to Q and S C U.

The exponent 11/6 in Theorem 1.4 also appears in a seemingly unrelated problem inves-
tigated by Katz and Tao [13]. This is no accident, as their question (at least for real or
complex numbers) can also be translated to the geometric problem above using the identity

1—2 141 1—2 1+
(a,b, 5 a+ 5 b,z( 5 05 b>)

for complex numbers a # b. The four points represented by the complex numbers on the
left side form a square in the plane. We omit the discussion of the arithmetic question of

Katz and Tao here but note that improvements in Theorem 1.4 would imply improvements
in their bound.

2 Proof of Theorem 1.1

Given a hypergraph H, write e(H) and d(H) for the number of edges and average degree of
H, respectively.

Proof. For each vertex u € V(H), define the graph G, as follows: V(G,) = V(G) \ {u} and
E(G.) = {yz : Jw, z such that vwz,zyz € E(H)}.

Note that the linearity of H implies that the vertices u,w,x,y, 2 above are all distinct.
Another way to define F(G,) is that it is the set of pairs yz € OH such that there exist

Ltwo harmonic points of similar triangles are the same when there is a similarity transformation that
moves one triangle into the other and also moves the harmonic points into the same point



distinct edges e, f € E(H) with [en f| =1, {y,z} C f\e, and u € e\ f. Put differently,
yz € E(G,) iff there is a linear two-edge path with edges e, f in H starting at v and ending
at yz (see Figure 1).

Write d := d(H) = 3m/n > 300y/n for the average degree in H. Observe that

Y oe@)=4 Y (dg)> > 4n(;l) > 10572, (3)
veV (H) weV (H)
To see the equality, note that erv(H) (d(;)) is the number of pairs of edges e, f in H
with [e N f| = 1. Writing e = abz and f = a'b'z we see that ab € E(Gy) N E(Gy)
and a't’ € E(G,) N E(Gy). Hence the pair {e, f} contributes 4 to > .y e(Gy) and this
yields the equality in (3). The first inequality in (3) follows from the convexity of binomial
coefficients, and the last inequality follows from d > 300/n.

Say that a path wryz in G, with edges wz, zy, yz is a good path if there are distinct vertices
a,b,c,a’,d in V(H), such that

{a,b,c,d, '} N{u,w,z,y,z} =1 (4)
and the following six edges all lie in E(H):
uaa', awz, xyb, ubl’, yzc, ucc'. (5)

We note that if we exclude ubb’, the remaining five edges above form a Cs. Indeed, this Cj
is an expansion of uazyc (see Figure 2).

Figure 2: A good path wzyz in G, and expansion of uaxyc

Write p, for the number of good paths in G,. Since each good path gives rise to a C5 and
each (5 is counted at most five times, we conclude that the number of Css in H is at least
>, Pv/5. Next, we will obtain a lower bound on ) e(G,), which will in turn give a lower

bound on , p,.



If e(G,) is small, then p, = 0 is possible, and this is not helpful for us, so we say that v is
useful if e(G,) > 1000n and v is useless if e(G,) < 1000n. Note that (3) shows

D e(Gy) £1000n° <1070 > e(Gy) (6)

vuseless veV (H)

so most of the contribution to 3,y (s €(Gy) comes from useful v and our plan is to lower
bound ), p, where the sum is over all useful v. To this end, let us fix a useful v and consider
G, and p,. First, it is necessary to pass to a subgraph of G, with a large minimum degree,
so let G be the subgraph of G, that remains after iteratively deleting vertices of degree at
most 100. As e(G,) > 1000n, we have

e(Gl) > e(G,) — 100n > 0.9¢(G,). (7)

Call a 3-edge path in G/, a bad path if it is not a good path and let b be the number of bad
paths in G). Our main claim is the following.

Claim.
V< D 12(dey(x) + day (y) — 2).
ryeB(Gy)

Proof of Claim. We count bad paths of the form wzyz in G as follows: first, we choose
the middle edge zy and then vertices w and z such that wx and yz are both in E(G,). The
definition of G, gives us (not necessarily distinct) vertices a, b, ¢,a’, V', ¢ and (not necessarily
distinct) edges as in (5) (see Figure 2 for an example where the vertices and edges are
distinct). So we must upper bound the number of w, z such that a,b,c,a’,c are not all
distinct or that (4) fails. First, we upper bound the number of {w, z} such that b € {¢,'}.
Given any edge wx € E(G,), the number of z such that b € {c, '} is at most two due to
linearity of H. Indeed, if we have three such distinct vertices, z, 2/, z” then for two of them,
say z and z/, vertex b coincides with ¢ or b coincides with . If b and ¢ coincide, then the
pair yb = yc lies in two distinct edges ybz and ybz’, and if b and ¢ coincide, then the pair
vb = vc lies in two distinct edges; in either case, this contradicts the linearity of H. Hence,
the number of such bad paths is at most 2(dg, () — 1). Arguing similarly for z, we deduce
that the number of bad paths such that b € {a,c,d’, '} is at most 2(dg, (z) + dg, (y) — 2).

Next we consider bad paths such that {a,a'} N {c,d} # 0 and b & {a,c,d’,c'}. For each
choice of w, the number of choices of z such that the corresponding vertex ¢ lies in {a,a’}
is at most two by the linearity of H. Hence the number of bad paths with ¢ € {a,a’} is at
most 2(dg,(z) — 1). We argue similarly if ¢ is replaced by ¢ and if the roles of z and w are
interchanged. We conclude that the number of bad paths with a, ¢, a’, ¢ not all distinct is at
most 4(dg, (z) + dg, (y) —2). As we have assumed b & {a, c,d’, '}, the number of bad paths
with a, b, ¢, d’, ¢ not all distinct is at most 6(dg, (z) + dg, (y) — 2).

We now consider bad paths containing zy for which a,b,c,d’,¢ are all distinct that fail
(4). Given a choice of w, and hence of distinct a,a’,b, the number of z € {w,a,d’, b} is
at most four, since if there are five such distinct z, then two of them coincide with one of
{w,a,ad’,b}, which is impossible. Hence the number of bad paths such that a, b, c,d’, ¢ are
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all distinct and z € {w,a,d’,b} is at most 4(dg,(x) — 1). Similarly, the number of z such
that w € {¢, '} is at most 2(dg, () — 1). Reversing the roles of w and = we obtain that the
number of bad paths containing xy for which a, b, c,d’, ¢ are all distinct that fail (4) is at
most 6(dg, (z) + dg, (y) — 2). Altogether, the number of bad paths containing xy is at most
12(dgy (x) 4 der (y) — 2) and the proof of the claim is complete. O

Let s be the number of 3-edge paths in G}. Then

$, > Y (day(r) —2)(dey (y) - 2)

ry€E(GY)

as we count paths by picking a neighbor w of x that is not y and then a neighbor z of y that
is not w or x. Assume by symmetry that dg, (x) > dg (y). As the minimum degree in G, is
at least 100,

Consequently, the Claim implies that
92 Y (doy(0) - 2o -2) > Y 48 (day(x) + dy (y) — 2) = 41,
zyeB(G!) zy€E(GY)

Write p! for the number of good paths in G/. Then s, = p! +b., so
pv = P, = 8, = b, = (0.75)s),. (8)

The number of 3-edge paths in an n’ vertex graph with ¢ edges and average degree d’ =
2¢'/n' > 100 is at least

(')’

. 9

10n/2 9)

Indeed, to see this, first iteratively delete vertices of degree at most d’/4 until no such vertices

remain. The remaining graph has at least ¢/ — n'd’'/4 = €//2 edges. Now pick an edge and
then a neighbour of each of its endpoints to get at least (¢//2)(d'/4 — 2)? > (¢/)3/(10n"?)
paths.

Recall from (7) that G is a graph with n’ < n vertices and at least (0.9)e(G,) > 900n edges,
where the last inequality holds because v is useful. Hence by (8) and (9),
6( el )3

v

(0.9)3e(G,)? - e(G,)?
10n2 20n2?

po > (0.75)s, > (0.75) > (0.75)

From (6), (3) and d = 3m/n, we obtain

2

S e(G) = (099) S e(G) > (0.99)nd? > I

n
vuseful veV(H)
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Hence, by convexity,
6

1 Zvuseue(Gv) ’ 5
vazzmzz 20n2 20n( n >>n_n;

veV(H vuseful vuseful

The number of C5 in H is at least (1/5) Y, p., so the proof is complete. O

2.1 Constructions of pentagon-free triple systems

As mentioned earlier, the bound m > n3/? in Theorem 1.1 is sharp. Indeed, Kostochka, the
first author and Verstraéte constructed a linear n-vertex 3-graph with Q(n3/ %) edges and no
Cs. We present this construction below as it has not been published before.

Construction: Let T3(n) be the complete 3-partite graph with parts X,Y, Z each of size
n. Form the 3-partite linear triple system H of T3(n) as follows:

V(H) = (X xY)U(Y x Z)U(X x Z)

E(H)={{zy,yz,xz} : (z,y,2) € X XY x Z}.

Observe that N := |V (H)| = 3n? and |E(H)| = n® = (N/3)3/2. Clearly, H is linear as any
two vertices of H that lie in an edge e of H uniquely determine the third vertex of e. For
example, ry and yz uniquely determine xz.

Next, we prove that H contains no C;. Here, it is convenient to view E(H) as a set of vectors
in R? of the form (z,y,2) (rather than sets of the form {zy,yz,zz}) and use geometric
arguments. Now suppose that there is a C5 with edges ej,es, ..., e5 in cyclic order. This
means that e; N e;;; are all distinct of size one, and there are no other intersections among
the e;s. The list ey, ..., e; gives rise to a closed walk W of length five in the 3-dimensional
grid Z3. If some two vertices v, w of W differ in all three coordinates, then the distance
between them on W is at least three, so it is impossible to go from v and w and then back
in five steps. Hence, we may assume that W is planar and no two consecutive edges of W
are in the same axis (as this corresponds to three edges e;, €;11, e;12 that all share the same
vertex). However, any such closed walk in a planar grid must have an even length. We
conclude that H contains no Cs. O

We conjecture below that Theorem 1.1 is tight.

Conjecture 2.1. For n*? < m < n?, there exists an n-vertex linear 3-graph in which the
number of copies of Cs is O(m®/n").

As mentioned in the introduction, Proposition 1.2 provides some evidence for Conjecture 2.1.

Proof of Proposition 1.2. Recall that we are given a linear H on n vertices and m =
O(n*?) edges, with maximum degree O(n'/?), the number of C3 in H is O(n*?), and for
4 < k <5, the number of Cj, in H is O(n?). We let H(t) be the 3-graph obtained from H by
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replacing each vertex of H by a t-set of vertices and by replacing each edge of H by a linear
3-partite 3-graph with ¢ vertices in each part and t* edges. Then H(t) has N = nt vertices
and M = mt? edges. Moreover, it is a short exercise to see that the degree two vertices of
each C5 in H(t) come from the following three structures in H:

1. degree two vertices of C3’s in H together with an additional edge intersecting the Cj
2. degree two vertices of Cy’s in H for k=4 or k=5

3. paths of length at most two in H.

The number of Css that arise from Cj plus edges is by hypothesis O(n®/?n!/2t%) = O(n?t°),
the number of Css that arise from Cy for k = 4,5 is O(n?t®) and the number of Css arising
from single edges and two edge paths is O(mt’) + O(n%*t°) = O(n*t®). So the total number
of Cs in H(t) is at most O(n*t%) = O(MS/NT). O

We point out that our construction T5(n) has the required properties in the hypothesis of
Proposition 1.2 except that the number of Cy is O(n*?). Indeed, T3(n) is linear with no
copies of C3 and Cs.

3 Generalization to longer cycles

In this section, we generalize Theorem 1.1 to longer cycles and show a connection to removal
lemmas. The shadow graph G of a triple system H is defined as follows:

V(G)=V(H) and E(G) =0H = {yz : 3z with zyz € E(H)}.

A linear path is a 3-graph obtained from a linear cycle by deleting exactly one edge. Given
a linear path P in a 3-graph, say that a vertex is an endpoint of P if it lies in the first or last
edge of P and it has degree one on P. In the theorem below, we use asymptotic notation
and assume, wherever needed, that n is sufficiently large. In particular, a > b means that
a > Cb for some sufficiently large constant C' > 0.

Theorem 3.1. Let k > 2 be an integer and let H be an n-vertex linear triple system with
m > n*"'3% edges. Then the shadow graph G of H contains at least m3F /n*~1 copies of

CQk-‘rl .

Proof. For each vertex u € V(H), define the multigraph G, as follows. Let V(G,) =
V(H) \ {u}. Next, let P be a k-edge linear path ej,..., e in H with endpoint u € e; and
e = zyz where y, z are endpoints of P. Then the edge e,(P) = yz is an edge of G,,. We
emphasize that GG, is a multigraph; indeed, the pair yz can arise many times in E(G,,) due
to many paths P from u, and we distinguish the edges comprising the pair depending on the
path (see Figure 3).
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Figure 3: The multigraph G,

Write e, = |E(G,,)| and d for the average degree of H, so that d > n'~'/3*, The number
of k-edge linear paths in H is at least Q(nd*); to see this, let H' C H be the 3-graph that
remains after iteratively removing vertices of degree at most d/2 from H, and then build
paths by starting with any edge e; of H and then greedily choosing edges e, . .., ex, where
we have at least d/2 — 2i > d /4 choices for each e;.

The quantity ), e, is the number of pairs (u, e,(P)) where u is a vertex and P is a k-edge
path with endpoint u. The number of k-edge paths P is Q(nd*) and each such P gives rise
to four pairs (u,e,(P)). A given pair (u,e,(P)) cannot arise from a k-edge path different
from P. As d > n'~1/3k,

> ew=9(nd") >0’ (10)
ueV (H)
As before, say that u is useless if e, < 100n and useful otherwise. Then ) . e, <

100712 < EuEV(H) €y, SO Zuuseful Cu = Q(ndk)

A 3-edge path in the multigraph G, is a set of four (not necessarily distinct) vertices
v1, Ve, v3, 4 and three distinct edges ey, es, €3 such that e; = v;v4q for i = 1,2, 3 (the pair
might appear with multiplicity greater than one, but the edges are distinct). For every use-
ful v the number of 3-edge paths p, in G, is at least Q(e3/n?). Indeed, since v is useful,
e, > 100n and G, has average degree d, > 300, so we restrict to a subgraph of minimum
degree at least d,/4 and then build a 3-edge path greedily. There are at least e, /4 choices
for the middle edge and at least d,/4 — 2 > d,/5 > (3e,/5n) choices for each of the other
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two edges. Consequently, by (10),
ZU ei (Ev 6”)3 (ndk)3 dSk mSk
2 = (n— el ) 7 ) =) = e ) ()

An l-pseudocycle is a homomorphic image of an ¢-cycle in G. Suppose that wryz is a 3-edge
path in G, with edges e,(P') = wz,e,(P?) = zy,e,(P3?) = yz. Let P' = ¢!, ... el denote
the k-path in H from v to the edge e,(P') € G, for i = 1,2,3. For 1 < j < k —1, let
vj- = e§ N eéﬂ. Each 3-edge path P in G, with vertices w, x,y, z as above gives rise to the
following (2k + 1)-pseudocycle C, in G (see Figure 4).

(%

Figure 4: A 7-pseudocycle C,

The vertices of C,, in cyclic order, are
1,1 1 3 3 3
VU7, VUgy ooy U1y Ty Yy Vg Vs« - - 5 VY

We emphasize that C, is a (2k + 1)-pseudocycle as vertices can be repeated.

Given v and e = zy, the number of k-edge paths P? in H starting at v and ending at
e = e,(P?) is at most n*~2. This is because there is at most one choice for the vertex v?_,
as H is linear, there are at most k — 2 other vertices of degree two on P2, and once these
are chosen, the path P? is determined again due to linearity of H. Hence each (2k + 1)-
pseudocycle C, obtained from wzyz is counted at most n*~2 times. Consequently, by (11),
the number of (2k + 1)-pseudocycles in G is at least

ZUEV(H) Pv 0 ( m? > ‘

nk—2 nik—1
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The number of these (2k + 1)-pseudocycles with fewer than 2k + 1 vertices is at most n?* <
m3 /n**=1 as m > n?71/3¢ Hence the number of copies of Cyryy in G is at least m3* /n* 1

by adjusting the constant in the hypothesis m > n?~1/3%. O

We remark that with more care, Theorem 3.1 can be extended to find Berge cycles in H
instead of just cycles in the shadow graph G (the additional requirement is that the edges
of the cycle are distinct). We wrote the technically simpler argument that finds only cycles
in the shadow graph as it suffices for the application below, which restates Theorem 1.3.

Corollary 3.2. Fiz k > 2. There is a constant ¢ such that if an n-vertex graph G is e-far

from being triangle-free, with & > n~'/3% then G has at least c e n?+1

copies of Copq.

Proof. Let H be a maximal collection of edge-disjoint triangles in G. View H as a 3-
graph whose edges are the triangles. Because the triangles in G' are edge-disjoint, H is
linear. Moreover, if H has m (hyper)edges, then by maximality, we can delete 3m edges
in G so that the resulting graph is triangle-free. As G is e-far from being triangle-free,
m > en?/3 > n?>71/3_ Since G contains the shadow graph of H, by Theorem 3.1, the
number of Coiyy in G is at least Q(m3% /nt*=1) = Q(3Fn2 1), O

4 Proof of Theorem 1.4

In this section, we use Theorem 1.1 to prove Theorem 1.4. Say that a triangle lies in a
set if its three vertices are in the set. Suppose n > 10° and S is a set of n points and
there are m > 60n''/6 triangles in S similar to a given triangle T = (A, B, C). Partition
S randomly into three sets, V4, Vg, Vo, where we place each point of S into one of the sets
with equal probability 1/3. The expected number of triangles A’B’C” in S similar to T with
A€ Vu, B € Vg, C" € Vi such that there is a similarity transformation A'B'C’ — ABC
with A - A’ B — B',C — (" is m/27. Therefore, there is a particular choice of V4, Vg, Vi
such that the number of triangles A’B'C” as above is at least m/27. We will also need the

family of similar triangles to have the same orientation. There are at least
m' > m/54 > n'/% > 10003/
such triangles.

Let H be the 3-partite 3-graph where V(H) = S and E(H) is the set of triangles in .S similar

3/2

to T. Then H is linear with n vertices and m’ > 100n°/* edges, so by Theorem 1.1, the

number of linear C5’s (henceforth pentagons) in H is at least

m/ﬁ nll A

The cycle of a pentagon is the (unique) graph cycle in the shadow graph of the pentagon.
Every pentagon P in H has one degree-two vertex of its cycle C' in one of the three vertex

13



classes and two degree-two vertices in each of the remaining two vertex classes. For a given
pentagon P, suppose that V4 and Vg have two degree-two vertices and V> has one degree-two
vertex (See Figure 5).

Cs A = A5 4

By = Bs By = By

A4 02

Figure 5: Triangles forming a pentagon

Denote the five triangles of the pentagon by Ti,...,T5, in cyclic order, and the vertices of
T; by Aj, Bj,C;. Then, the vertices of the cycle C of the pentagon P in cyclic order are

Ai(= As), Bi(= By), Ay(= A3), C5(= Cy), B4(= Bs). (13)

Note that the five degree-one points of P, in cyclic order, are
Ola 027 B37 A47 05'

The first four of these, C4, Cs, Bs, Ay, are vertices of T, ... Ty, respectively, and Cj is a vertex
of T5. To prove the theorem, we will prove the following lemma.

Lemma 4.1. The four points Cy,Cy, B3, Ay in P determine a harmonic point of the fifth
triangle Ts.

This will complete our proof of Theorem 1.4 since we may associate to each pentagon P its
four points as in the claim. By pigeonhole, using (12), there are two pentagons P, P’ that
are associated to the same four points C, Cy, B3, A4. The fifth triangles 75 of P and T} of
P’ then have the same harmonic points. Moreover, T; and 77 have distinct points in V4 and
in Vg, as any one of these points determines the pentagon if we are also given Cy, Cy, Bs, Ay
as the degree one points. Further, the two quadrangles given by the two triangles T and T%
and their common harmonic point are similar, so if they share two vertices (with the same
labels), they are the same. Therefore, T5 and T} are, in fact, vertex disjoint.

Proof of Lemma 4.1. For the sake of simplicity, the complex number zp is denoted by
the point P in the following calculations. The triangles T3, ...,T5 are similar, so the vertex

14



C; can be expressed as the following linear combination of A;, B; where z = 2(7T) depends

only on T"

_ Aj + B, n 2(A; — Bj)
2 2 ’

To see that (14) holds, note that

where 2z = re® (14)

Cj

2C; — (A; + B))

z =

Multiplying each of A;, B;, C; by re™ clearly leaves z unchanged, which means that dilating
and rotating A;B;C; by a factor r and an angle « preserves z. Adding w = s + ti to each
of A;, B;,C; also leaves z unchanged. Since every triangle similar to A;B;C; with the same
orientation is obtained by dilating, rotating and shifting, z indeed depends only on 7.

Using parameter z, we can express a harmonic point of A5B5C’5 as

As+Bs As;—B
_ s 5 4 5

D
° 2 2

We will use this expression for the calculations, but first, let us confirm that the expression
of the harmonic point above agrees with the definition. Given

_A+B :A-B)  A+B A-B

¢ 2+2’ 2 2z

let us show that the cross-ratio is —1. The differences are

NN H]

2 2 z
A—D:(_anyx B_C:u+df—A)

We now show that the points Ay, B3, C1, Cs determine a harmonic point of the fifth triangle
T5 by proving

_ At By A By

D
> 2 2

+C —Ch.

Using C3 = Cy, we obtain

15



2 2
1 1 1 1
141 11 1 11
=a(5)-o(57) -4 (57) o (%)

As + B As — B Ay + B A, — B
3 4+ 3 4 _ 4 3+ 4 3
2 2z 2 2z

By considering the difference C; — (5, the other equation is
Al + B1 1 Z(Al — B1> _ <A2 + BQ 4 Z(AQ — Bg))

S 9 2 9

A Ay AL Ay Ay Az Ay A

2 2 2z 2z 2 2 2z 2z

Putting the two calculations together, we obtained the required equality

A4+Bg A4—Bg . A3+B4 Ag—B4 A5 Ag A5 A3
5 T2 TG -G= 5 T T g to T
_A5+B4+A5—B4
a 2 22
As +Bs A —B
_ A5+ 5 4 5 _ D -
2 2z

4.1 Two geometric constructions

First, we give a simple arrangement of n'-726--

isosceles right triangles on n points without
a pair sharing their harmonic point (points H, J, L in Figure 1). Our construction is based
on Ruzsa’s trick “much-more-differences-than-sums” [17] (see [13] for another application of
this method). We also provide a modified construction with n'7™ triangles without two
sharing a selected harmonic point (points L or J in Figure 1). It proves the second part of

Theorem 1.4.

Both exponents can be improved using more advanced construction with similar techniques
like in [16], but the improvements are minor so we keep the simpler ones.

The bases of the triangles are spanned between two point sets, A and B, along the axes. The
following sums of complex numbers define the elements of the sets (s # 1 is a constant we
will specify later; in fact, for concreteness, we will take s = 2 though we leave the variable s
in the proof for clarity of presentation):

k=1

3m
A= {Zakliik cag € {1, s}, {ka, =1} = Qm} ;
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3Im
= {Z bil3" b, € {i,is}, |[{k : b = i}| = m} )
k=1

Note that elements of A and B are determined uniquely by the coefficients ay, b,. With this
definition, |A| = |B| = (*™).

In our construction, two points, o = Zzl ap13* € A and B = Zzg bp13* € B form the
base of a triangle if
(ax,b) # (s,4) for all k € [3m].

Each a € A forms a base with ( ) distinct 8 € B. Indeed, there are 2m coordinates where
ar = 1 and m coordinates where a;, = s. In these latter m coordinates b, = si, so in the
former 2m coordinates, by = ¢ for exactly m of them.

The third point of the triangle, denoted ~, is uniquely determined by « and [ as

3m

a+p  pf-a« ap(l — i) +bp(1+17) ., A

= = 13 13%.
> ' ]; 2 ng

The angle at v is the right angle of triangle a5v, and ~ is below the base 8. The set of
these v’s is denoted by C'. The possible values of the g;’s are 0 and —11), as indicated

in the tableau below. Moreover, exactly 2m values are 0.

S nil 0

With these definitions we have |A| = |B| = |C| = (*"). We noted earlier that any a € A is
the vertex of ( ) triangles, so the total number of triangles is

3m\ [(2m

m m )
It remains to prove that the harmonic points of those selected triangles are distinct. Given
triangle T" = «af3~y, write J, for the harmonic point of T" that lies on the opposite side of
segment By as a, write dg for the harmonic point of T' that lies on the opposite side of

segment avy as (3, and write 0, for the harmonic point of 7" that lies on the opposite side of
segment af3 as .

The cross-ratio conditions for these points are the following:

(@,6;7,5«/):—1 (’77057676[3):_1 (ﬁa%‘%éa):—l
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Let us first analyze the case § = d,,. In this case, (a, ;7,d) = —1 yields

a+p -2y
a+p B«
2 + 2i
_a+ﬁ_2ﬂ—a
2 2
_3Zmak(1+i)+bk(1—i)13k
k=1 2

3m
=> d13%.
k=1

Note that we could immediately have obtained the third display 6 = (a+5)/2 —i(f —«)/2
by observing that «, 3,7,0 form the corners of a square with diagonal o so we obtain ¢
from the midpoint of the segment a8 by moving in the direction opposite to that of 4. The
possible values of the di’s are 1+1, (14 s)(1+1)/2, s+1is, as indicated in the tableau below.

Qg \ bk 1 1S
.| (1+s)(1+4)
1 I+i| ——5—
s nil s+ is

For any
3m .
1 1
§e {;dkl?f“:dk € {1+z’,w,s+is}},

there is a triangle a3y with harmonic point . As s # 1, from the digits of a harmonic point,
we can uniquely recover the a, # base points of the triangles so no two triangles share their
harmonic points. All of these harmonic points d, are in the positive quadrant, and the others
are outside this quadrant, so they do not overlap. To see that, note that the circumcircle of
triangle a3y goes through the origin and the points d,, d, lie in the arc of this circle between
p~ and between ary. Both these arcs are outside the first quadrant (see Figure 6).

There are two more harmonic points to consider for each triangle.

Recall v = (a + 3)/2 4+ i(f — ) /2, and (7, a; 5,05) = —1. Consequently,

5. = 20— By —Pa
a+vy—203
20 —af - +i(3af — 207 — 7)
(= B)(3—1)
(2 —20)a+ (1 +1)
3—1
4 — 24 142

:5a+55.
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imaginary axis

real axis

(0,0) } “\azmﬁ)
0g

Figure 6: Example of triangle a5y and its harmonic points

For the sake of simplicity, we will count the number of different 6’ = 553 values. As before,
we check the results digit-wise of ¢’ = (4 —2i)a+ (142i)p for the possible «, 5 combinations.
The results are summarized in the tableau below.

Qe \ bk 1 1S
1 |2-i]|(2—s)(2—1)
s nil s(2 —1)

As before, by the digits of §' we can recover the base of the triangle uniquely.

The harmonic point J, is obtained by reflecting dg about the line segment w+y, where w =
(a+ )/2 is the midpoint of the base, and v = (a+ )/2 + (8 — «)/2 is the third point of
the triangle (see Figure 6). An easy calculation now yields

C1—2% 442

o+ 5.

Oa
5 5

We set 6" = 50, = (1 — 2i)ae + (4 + 2¢) for the remaining harmonic point. The possible
digit-wise entries of §” are

ay \ by i is
1 | —1+2i|(1—2s)(1—2i)
s nil s(2i —1)
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We want to choose s such that the sets of points of the two harmonic points are disjoint. It
can be achieved for example by setting s = 2, when the digits of " are 2 —4,0,4 — 27 and of
0" are —1 4 2i, —3 + 63,41 — 2.

In the construction there are n = 3(?;2”) points and (?;Z"”) (2;:) triangles with disjoint harmonic

points. Define x as
5 3m\\* _ [(3m)\ (2m
m \m m )

Taking logarithms and letting m — oo leads to

log, (%™) _ 2m + o(m)
r=1+ log, (*") to(l) =1+ 3H(1/3)m + o(m)

where H(p) = —plog, p — (1 — p) log,(1 — p) is the binary entropy function. For large m, we
o 1+ 2 14 : 1.726
T~ —_ = — ~1.726.
3H(1/3) 3log,3 —2

Now, we modify the previous construction to one where the number of isosceles right triangles

1.773...

is more, it is n , and their dg harmonic points are all distinct. In the upper bound, in

Theorem 1.4, we proved that many similar triangles guarantee that they share any selected
harmonic points.

The bases of the triangles are spanned between the two point sets, A and B, along the axes.
The following sums of complex numbers define the elements of the sets. :

2m

= {Z apl3” cap € {1,2}, {k :ap = 1} = m} ,
k=1
2m

— {Z bp13% by, € {,2i}, [{k : by = i}| = m} :
k=1

With this definition, |A| = |B| = (2:;)

Some pairs from A and B will form the bases of the isosceles right triangles. We need a
parameter, v, to select the pairs, which comes from a simple optimization problem. We set
v = 0.773. In this construction, two points, o = 2m " al3F € A and 8 = Zk L bi13" € B
form the base of a triangle if the number of (ay, bk) (1,24) pairs equals to the number of
(ax,br) = (2,1) pairs which is (1 — v)m.

Each a € A forms a base with ((l_wlf)m)2 distinct § € B.

As before, the third point of the triangle is determined by « and 3 as

2m
a+f  pf-a« ap(l — i) + be(1+14) ., 5
= — 13 13%.
2 Ty ]; 2 ng
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The possible values of the gi's are 0 and +(1 —4)/2, as indicated in the tableau below.

ap\bx | i | 2i
1 0 |5t
2 |F] 0

We have

1= (o) (=) = (57) = =101

We noted earlier that any o € A is the vertex of ((11';)”1)2 triangles, so the total number of

() m) =)

Now we have to check that the harmonic point, g = %a + %6, is unique to the triangle.

triangles is

As before, we check the results digit-wise of 0’ = 563 = (4 — 2i)a + (1 + 2¢) 5 for the possible
a, f combinations. The results are summarized in the tableau below.

1 2—1 0
2 [32-14)]202-1)

As before, by the digits of 0’ we can uniquely recover the triangle’s base. Let us check the
other harmonic point, d,.

We set ¢" = 50, = (1 — 2i)a + (4 + 2¢)5 for the remaining harmonic point. The possible
digit-wise entries of " are

ap \ b | i 2i
1 [ =142 |3(=1+2i)
2 0 2(2i — 1)

There is one pair of triangles where d, = dg, in which case both points are in the origin.
Let us remove one of these triangles. The remaining triangles have distinct harmonic points
with the possible exception of their . points.

5 Proof of Theorem 1.5

Recall that we are to prove the following: For every ¢ > 0 and € > 0, the following holds
for large enough n. Let T be a triangle and S be a set of n points in the plane such that
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S contains cn? triangles similar to 7. Then, there is a quadrangle @ and a set of at most
(2¢/€%)n points, denoted by U, such that U contains at least (¢ — )n? quadrangles similar
to @ and S C U.

We are going to use the counting methods from the proof of Theorem 1.4. The proof follows
a simple algorithm. Select one of the harmonic points of 7. These four points will give
(). For any triangle similar to 7', we will only consider the harmonic point, which gives
a quadrangle similar to ). The set of the selected harmonic points is denoted by H. Set
§ = &5,

1. Let us begin with U = S.
2. Select a point h € H which is not in U and the harmonic point of at least dn triangles.
3. If there is no such point, then stop.

4. Set U = U U h and repeat from step 2.

The proof of Theorem 1.4 shows that there exist m®/n!! triangles sharing the same harmonic
point, hence for any ¢ > 0, as n is sufficiently large and the number of triangles on n points

similar to T is m = c¢n? > 60n!l/6

, there are at least m®/n'' = c%n triangles sharing a given
harmonic point. In every step we selected at least dn triangles and no triangle was selected
multiple times. Hence the number of iterations in the algorithm is at most cn?/(dn) and
Ul < |S| + en?/(0n) = (¢/d + 1)n < (2¢/e%)n. Also, this selection of § guarantees that
all but at most en? triangles have their harmonic points in U. For if there are more than
en? > 60n'Y/ triangles with harmonic point not in U, then by Theorem 1.4, there are at
least (en)%/n'! = e%n = dn triangles that share a common harmonic point and the algorithm

would not have terminated.
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