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Abstract

"51) edges all of which contain a fixed

vertex, and K, is the unique triple system with four vertices and three edges. We prove that
the Ramsey number 7(K , S,,) has order of magnitude n?/logn.

This confirms a conjecture of Conlon, Fox, He, Suk, Verstraéte and the first author. It also
generalizes the well-known bound of Kim for the graph Ramsey number r(3,7n), as the link

The n-star S, is the n-vertex triple system with (

of any vertex in a K -free triple system is a triangle-free graph. Our method builds on the
approach of Guo and Warnke who adapted Kim’s lower bound for r(3,n) to the pseudorandom
setting.

1 Introduction

A k-uniform hypergraph H (henceforth k-graph) is a pair (V(H), E(H)) where E(H) is a collection
of k-element subsets of V(H). We often associate H with its edge set E(H ), when V(H) is obvious
from context. Write K* for the complete k-graph on n vertices. Given k-graphs G' and H, the
Ramsey number 7(G, H) is the minimum N such that every red/blue coloring of E(K%) has a
monochromatic red copy of G or a monochromatic blue copy of H; when H = K¥, we simply write
r(G,n). When G is fixed and n — oo, we often refer to this class of parameters as off-diagonal
Ramsey numbers.

The off-diagonal graph Ramsey numbers r(s,n) = r(Ks, K,) have been intensively studied for
many decades. Erdés conjectured that for fixed s > 3, we have r(s,n) = n®17°(1) and this was
reiterated recently by the first author and Verstraéte [12]. Only the first two cases, s = 3,4 have
been proved. The order of magnitude of r(3,n) is n?/logn, where the upper bound was obtained
by Ajtai-Koml6s-Szemerédi [1] and the lower bound was proved by Kim [7] and later by Bohman
[3] using a different method. More recently, Mattheus and Verstraéte proved that r(4,n) = n3—°(1)
with the order of magnitude still undetermined. In this paper we consider an analogous parameter

to 7(3,n) in the hypergraph setting.
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It is well-known that for each s > 4, the hypergraph Ramsey number r(K3, K2) > 2" for some
positive constant c. On the other hand, there is a well-known large class C of 3-graphs G for which
it is known that r(G,n) is polynomial in n. Recently, it was conjectured [4] that r(G,n) is at most
polynomial in n if and only if G € C. On the other hand, it is not clear whether G ¢ C implies that
r(G,n) is exponential in n. In fact, the following result from [5] showed an intermediate growth
rate for the following related problem. The link graph of a vertex v in a 3-graph H is the graph
whose vertex set is V(H) \ {v} and edge set is {yz : vyz € E(H)}. Write S,, for the n-vertex star:
this is the 3-graph with vertex set [n] := {1,...,n} and edge set {e € ([g}) : 1 € e}. Alternatively,
Sy is the 3-graph for which there is a vertex whose link graph is isomorphic to K,,_;. The 3-graph
Sy is a natural way to generalize K, to hypergraphs. It is proved in [5] that there are positive
constants ¢, ¢’ such that

gelog®n (KB gy < g/ logn, (1)

This shows that r (K i’, Sy) is already superpolynomial in n. Therefore, one needs to consider sparser
3-graphs G to detect polynomial growth rates for (G, S,,). The smallest such nontrivial 3-graph G
is K, , the unique 3-graph with four vertices and three edges (if G is the 3-graph on four vertices
and two edges, then it is trivial to see that r(G, S,) = ©(n)).

The link graph L of a vertex in an N-vertex K, -free 3-graph H is a triangle-free graph on N — 1
vertices, and hence by the result r(3,n) = O(n?/logn) of [1], the independence number of L is at
least Q(v/Nlog N). Consequently, the complement of every K -free 3-graph on N vertices contains
an n-vertex star with n = Q(y/Nlog N). This shows

_ n?
r(Ky,S,) =0 (logn) .

In the other direction, it was proved in [5] using the local lemma that (K, S,) = Q(n?/log?n).
This led the authors of [5] to conjecture that

n2
r(K;,S,) =0 . 2
(#5750 =0 (1) ®
A similar state of affairs existed for the graph case r(3,n) prior to Kim’s improved lower bound.
Note, however, that (2) is substantially stronger than Kim’s result 7(3,n) = Q(n?/logn) as it posits
the existence of a triple system such that every link graph is an optimal (in order of magnitude)
r(3,n) graph. Also, as indicated in (1), hypergraph problems sometimes display novel phenomena
compared to what we typically witness for graphs, so it was by no means a forgone conclusion that
(2) should hold similar to the graph result 7(3,n) = ©(n?/logn). In this paper, we prove (2).

Theorem 1. There is an absolute constant c such that for all sufficiently large N, there is a K, -
free 3-graph on N wvertices whose complement contains no copy of S,, where n = cy/Nlog N. In
other words, (K, ,Sp) = Q(n?/logn).

Our theorem follows from the following stronger result, which guarantees not only that for every
vertex x and every n-set A omitting x, there is an edge of the form xyz, where yz € (’3), but in fact
that there are many such edges. It is more convenient to consider the bipartite setting as follows.
Given a 3-graph H, disjoint sets A,B C V(H), and = € V(H) \ (AU B), let ey (A, B) be the



number of edges in H of the form zab where a € A and b € B. The following theorem is our main
result.

Theorem 2 (Main result). There exists By, Dy such that for all § € (0,1],8 € (0,8), C > 55&3
and N > Ny(9,5,C), there exists a K, free 3-graph H on N wvertices such that for every two
disjoint n-verter subsets A, B with n := C+/N log N and for every vertex x ¢ AU B,

e (A, B) = (146)pn?

where p 1= \/61;7]%,]\[.

There are two general approaches to obtain graphs or hypergraphs that have good Ramsey prop-
erties of the type sought in Theorems 1 and 2: the nibble method pioneered by Ajtai-Koml-
Szemerédi [1, 2] and R6dl [13], and the differential equations method developed by Wormald [16]
for combinatorial settings. We prove Theorem 2 using the nibble method. This was the approach
used by Kim [7] in his proof of 7(3,n) = Q(n?/logn). More recently, Guo and Warnke [6] estab-
lished a stronger result than 7(3,n) = Q(n?/logn) in two ways. First, they not only found one
triangle-free graph on N vertices with independence number O(y/N log N), but in fact decomposed
most of the edges of K into such graphs. Second, they were able to obtain such a decomposition
as long as their initial graph was sufficiently pseudorandom. Along the way, they introduced several
simplifications of Kim’s argument.

Our proof of Theorem 2 follows the broad outline of Kim’s approach together with the additional
technical ingredients provided by Guo and Warnke. However, creating K, -free 3-graphs without
large stars in their complement, rather than just triangle-free graphs with small independent sets,
is more challenging. For example, certain random variables that we must track that appear in our
semirandom algorithm do not even make sense to define in the graph case. New ideas are required
to implement the additional technical steps needed to control their deviation probability from their
mean (see, for example, the event M+, or the Proof of Lemma 12 in Section 7.7).

We end by remarking that we were not able to prove Theorem 2 using the random greedy K -free
process, and this remains open.

2 Nibble Algorithm

Throughout the paper we use the notation zy and xyz for {z,y} and {z,y, 2z}, respectively.

We will form a K -free 3-graph on an N-element set V' by iteratively selecting a set of edges and
removing a subset of those edges to destroy all copies of K, . At each step in the process, we will
maintain a triple (E;, H;, O;) where

e E; is a set of picked or chosen edges which may contain copies of K ,

e H; C E; where H; is K, -free. We will iterate the process I times and our final 3-graph will
be Hj.



e O; C (‘3/) \ E; is a set of open edges. No edge in O; forms a K, together with any two edges
from E;.

We will start by initializing Ey = Hy = () and Oy = (‘g) Assume that at step ¢ we have sets
E;, H;,O; such that H; C E;, E; N O; = 0, H; is K free, and for any e € O; there do not exist
f,g € E; such that efg forms a K, . Set

1 and o 1
0= —F— n = = .
log2 N P VN \/Nlog2 N

Form a set of edges I';1.1 C O; by including each edge e € O; in I'; 11 independently with probability

3)

p. Let Eip1 = E; Ul 1. Because I'i11 € O;, the set E; 1 contains no K, with exactly one edge
in Fi—l—l-

There may be three edges in I'; 1 which form a K, or two edges in I';11 and one edge in E; which
together form a K, . We gather these bad edges and remove a cleverly chosen subset of them so
that there is no K of these two types after we have removed the edges. Then we add to H; the
edges that remain and form H;;q. This process will ensure that H;,; is K; free. We do this as
follows. First, let

BZ-2+1 ={ef Cl'iy1:3g € Hij,efgisa K }

Bz‘3+1 ={efgCTliy1:efgisa K, }

2 3
Bit1 = Bi,1 UBj,.

Next, let D;;+1 be a maximal collection of pairwise disjoint subsets of B; ;. More precisely D;1q C
B;4+1 with the property that for any ef € BZ-QJr17 at least one of e, f lies in some set in D;, 1, and for
any €' f'g’ € B, |, at least one of ¢, f/, ¢’ lies in some set in D;11. Let

Hiy1 = H; U (Tiy1 \ Usen,,, Uees {e}).
In other words, we have added to H; all sets that do not appear in an element of D;, 1.

Let us now prove that H;y; is K -free. We may assume (by induction) that H; is K -free. There
is no K, in H;y; with exactly two edges in H; by the definition of O;. There is no K in H;1q
with exactly one edge g in H; since the other two edges e, f must satisfy ef € BZ-QJrl so either e or
f must lie in some pair from D; 1 which means it is not in H;;q. Lastly, there is no K, in H; 14
with all three edges e, f,g in H;+1 \ H; since e, f, g must satisfy efg € BE_H so one of them must
lie in some triple from D;;; which means it is not in H;4.

We now explain how the set O; is updated to O;41. The updated set O;41 must have the property
that each edge in O;41 does not form a copy of K; with already chosen edges, so that it will be
possible to choose it in step i+ 1; this copy of K, can have both its remaining edges chosen in step
i, or have one edge chosen in step ¢ and one edge chosen in some previous step. Formally, for each
e € Oy, let

Si(e)={f€0;:3g€ EjefgisaK;}.

Next, define
Cl-lJrl = {6 €0;:Si(e)NTip # @}

4



CZ,={ec0;:3f,g€eTit1,efgisa K, }.

Our rough plan is to update O; by removing all triples from I';;; U Cz'1+1 U Cz'2+1' However, for
technical reasons, it is convenient to remove some more edges from O; as follows. Let Y;11 C O; be
the (random) subset obtained by including each e € O; in Y11 independently with probability

Peii=1—(1— p)maX{G\/ﬁqi(ﬂ#\/&)—lgi(e)\70}. (4)

We form O;41 by removing from O; the edges which were picked in I';;1, the edges in Cilﬂ and

C-2+1, and the edges in Yj1:

)

Oir1 = 0;\ (Tis1 UCHL, UCE UYip1). (5)

We will continue iterating this process until we have formed the set H; where I := [N”]. Now
let H := Hy. Our goal is to prove that whp (with high probability) H satisfies the conditions in
Theorem 2.

3 Expected Trajectories via Differential Equations

We use the following heuristics to predict the behavior of the size of our sets O; and F;. Assume
that for all e € (‘3/), we have

i
VN’

where m; = O(y/log N) and these events are approximately independent for all e. Now notice that

Ple € O;) = ¢ and Ple € E;) =

Pe € Eiy1) — P(e € E;) = P(e € Tiy1le € 0;) - Ple € 0;) ~ pg; = ;qﬁ (6)

Then multiplying (6) by v/N gives 11 — m; ~ 0g;. Also since Eq = (§, we have my ~ 0.

Next, we approximate O; \ O;j41 = 'y U C’}H U Ci2+1 UYi = C}H U Y;41. Notice

VN VN

Thus by the estimate for O; \ O;41 and from (4) and (7), we get that for all e € O;

E(|Si(e)]) ~ 3(N — 3)g; (1 - <1 L )2> ~ 3Ng; <2”> ~ 6V Ng;. (7)

P(e € Oipale € 0) ~ (1= pe) (1 — p) 15O & (1 — p)OVNGmHVo) & 1 — 6g;mi00

This heuristic suggests that P(e € O;1+1]le € O;) depends only on the step i of our iteration, and
this is the reason we introduced the stabilization probability p. ;. Therefore,

Qiv1 — @ R P(e S Oi+1) — IP’(e € OZ) = P(e € Oi+1|6 € Oi)IP’(e € Oz) — IP’(e € OZ) ~ *6(]2-2771'0.

Next suppose m; =~ ¥(io) where ¥ is a smooth function. Then

U((i + Do) — V(i 1 — T
\I/,(’L'O')% ((Z+ )U) (ZU)%T(-H T o

g g




and for x = io,

V'((i+1)o) = V'(io)  gi+1— i
g g

U (z) ~ U (i0) = ~ —6g;m; ~ —6(V(2))*¥ ().

Solving this differential equation yields
V' (z) = e 3V @), (8)
Moreover, writing f = U~! so that (f¥)(z) = z for > 0, and taking derivatives we obtain
1= (/) (@) = [(U@)V' (@) = [ ().

Writing ¢ = ¥(z), we get f/(t) = 3. Further, since mp &~ 0 and ¢o ~ 1, we set ¥(0) = 0 and
U’(0) = 1. Consequently,

= f(U(x)) — F(U(0)) = / £ty dt = /0 & dt. (9)

w(0)

Now we will formally define ¥(x) as the solution to the differential equation (8) with ¥(0) = 0.
Then (9) also holds and we define

g = V'(io) (10)
1—1

mzo—i—Zaqj. (11)
§=0

4 Technical Estimates

In this section will collect some bounds on ¢; and 7; which we will use throughout the proof of the
main theorem. The proofs of these bounds will be given in the Appendix. Recall that

1

— — [NB
_10g2N7 /36(07B0)7 I_(N -‘

Lemma 3. Let ¥(z),q;, and m; be defined as in (9), (10), and (11).

\/bgT (m)g\/@+\}§f0r:€26 (12)

0<q¢<q=1fori>0 (13)
i1 — m = 0q; and m; — Y (io) € [o,20] for alli >0 (14)
Vom <1 for0<i<1I (15)



quglforogigfandke{lﬂ} (16)

(g — qiv1) — 60¢2m;| < 1602¢? for all i >0 (17)
4 = %N‘ﬁﬂ’(l) forall0<i<I (18)

Desi < qi for all e € O; (19)

0 < ¢ — gi+1 < 120 min{gi, gi+1, ¢imi } (20)

In particular, if we let Gy = WIO’ then by (18) and 8 < Sy, there exists ¢ > 0 such that the following

holds for all 0 <7 < I and j < 10:

¢VN > N-i%+i > Ne. (21)

5 Events

Let X; = (E;, H;, 04,1,Y;) and X = {X;}o<i<r. We let F; denote the o-algebra generated by
{X,}o<j<i and (F;)o<i<r be the natural filtration with {X;}o<i<s. Recall that we use the notation
abe for {a,b,c}.

Next we give definitions which apply to an edge zuv with a distinguished vertex x.
Ri(z,uv) := {w € [N]\ {u,v,z} : zuw, zvw € O;}

Si(x,uv) = {w € [N]\ {u,v,w} : |[{zvw, zvw} N O;| = |[{zvw, zow} N E;| = 1}
Ti(z,uwv) :=={w € [N] \ {u,v,z} : zuw,zow € E(i)}

Ui(z,u,v,w) :={z € [N]\ {z,u,v,w} : zuv, zuw, zuz € O; and zvz,uwz € E;}
Si(z,uv) = {zuw € O; : w € Si(x,uv)}
The following figures depict the above definitions. Note for S;(x,uv) that there are two types of
edges, one where we include zuw € O; and zvw € FE; and the other where we have xuw € E; and
zow € O;.

Note that S;(z, uv) denotes a set of vertices which have one open edge and one closed edge with the
pairs zu and zv, and Sj(z,uv) describes the corresponding set of open edges. Thus |S;(z, uv)| =
|S;(x, uv)).
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Figure 1: T;(x,uv), Si(z,uwv), and R;(x,uv)
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Figure 2: U;(x, u, v, w)

Given a set F' of edges, and vertices u, v, let Np(uv) = {w : uvw € F'} be the set of vertices that
form an edge of F' with u and v. Also given a vertex x, two vertex subsets A, B C [N]\ {z} and a
set F' of edges, let F'(A,B,z) :={zuv € F : u € A and v € B}. Define the events

N; = {|No, (vz)| < ¢;N and |Nr,(vz)| < 2¢;i—10V'N for all z,v € [N]} (22)
P; = {|Ri(x, uv)| < ¢2N, |Si(z,uv)| < 2¢;mV' N, |Tj(x, uv)| < i(log N)? for all 2, u,v € [N]} (23)
Pt = {Ui(z,u,v,w) < i(log N)? for all z,u,v,w € [N]} (24)
By (12), ¥2(x) ~ (1/3)logz as x — oo. Hence
g =V (Io) = e300 = 9((Io)™") = O(N P log?n).

Define constants

N—28 05
s:=nolql =0 <n> and Tii=1-— 277:]. (25)



In particular note that since w; > m; then 7, > 1 — g.

Define the following events:

Nt = {\Npi(vx) N A| < plA|(1+ NT+8) for all A C [N],v € [N],z € [N]} (26)
o = {]Oi(A,B,a?)] < qi|A||B| for all disjoint A, B € <[>Ni>,a: €[N\ AU B} (27)

Q; = {Tiqi|A|B <|0i(A, B,z)| < ¢;|A||B| for all disjoint A, B € <[]Z]>,x e [N]J\AU B} .
(28)

We will be interested in the intersections of these events and hence we define

Gi=NinPiNPTNQF NQ;NN;*

Recall that H = Hy and p = /S(log N)/3N. Define the event

T := {en.(A, B) = (1 £ 6)pn? for all disjoint n-sets A, B C V(H),z € V(H)\ (AUB)} (29)

We note that heuristically the number of edges we pick for e (A, B) at each stage is pg;|A||B| =
2
pg;n* and

ZI: ‘:ZI: o T ﬁlogN:
— pQ’L — \/N \/N 3N p
where we used the definition of 7; from (11) for the third relation and the fact that m; ~ ¥(io) ~

\/(1/3) log(v/3io) from Lemma 3 and I = [N?] for the fourth relation. Thus, ignoring the error
parameters, we expect that if @, holds for all ¢ < I, then 7 holds as well.

The events G; and G<; are good events for the algorithm at step ¢ and for all events up to and
including step 7 respectively. Our main result is that the events 7 NG<; hold with high probability,
which then means the final K, -free hypergraph H; at the end of the process will have all of the
desired properties to prove Theorem 2.

Lemma 4. For 0,,C as in the statement of Theorem 2, we have that P(T NG<y) > 1 — N—w@),
In order to prove Lemma 4, we will prove that the probability we are not in the event G;1
conditioned on being in the event G; is exponentially small, and the probability of being in the

event =7 N G<r is also exponentially small, such that when we multiply over the number of steps
I = N¥ we still get a small probability. More formally, we will prove the following Lemma.

Lemma 5. Under the setup for Theorem 2, for all i € [I —1],

P(=G<i+1]G<i) < N—w®) and P(=T NG<y) < N—w@)



6 Concentration bounds

Throughout the paper we will use the following two standard bounds. The following theorem is a
well known version of the standard Chernoff bound.

Theorem 6 ([11, 14]). Let (Xq)acs be a finite set of independent (0,1) random variables and let
X =3 nesXa. Then if X = E(X)

2
P(X > XA+1t) <exp (—2)\)

£2
PX<A-t)< -
(X< )—eXp< 2(>\+t)>
The next theorem of Mcdiarmid [10, 11], and Warnke [14] bounds a function of 0, 1 random variables
when the differences between two inputs of the function are bounded when the inputs only differ

in one place.

Theorem 7 ([10, 11, 14]). Let (£4)acys be a finite set of independent 0,1 variables. Let f : {0,1}/ —
R be a decreasing function such that there exists (cq)acy s0 for all z, 2" € {0,1} with 2 = z/ﬁ for
all B # o we have |f(z) — f(2')] < ca. Set A= c;2P(Ea = 1) and X := f((€a)acs). For all
t>0,

£2
P(X >E(X)+1t) <exp (—2)\> . (30)
Further, if C':= max,cjco and if we drop the decreasing assumption on f, then
2
P(X <E(X)-1t) < _— 31
(X <B00 -1 <o (~ 556 ) (31)

The following Theorem which follows from Theorem 9 of Warnke [15], bounds the number of events
which occur from a family where each has overlap with a limited number of events in the family.

Theorem 8 (see [15]). Let {&;}ico be a family of independent variables with values in {0,1}. Let
(Ya)acr be a finite family of variables Yy := L¢,—1vica with Y- cp E(Ya) < p. Define the function
f2l 5 R by f(J) =maxgesla€ J:anB#0| forall J C L. Let Z¢ == max )y, ;Yo with the
mazximum taken over J C L with f(J) < C. Then for all C,t > 0,

2
PZoc>pu+t) <exp| ————=
ezt s p( 2C(u+t)>
Since our algorithm forms our final graph H; by removing a maximal set D;; of bad sets of edges,
we will use the following Theorem of Krivelevich [8] to bound the number of edges removed.

Theorem 9 ([8]). Let Q be a finite set and let (§;)icq be a set of indicator random variables with
P& =1) =p; for alli e Q. Let (Q(a))aecs be a family of subsets of Q where J is a finite set. Let
Xa = HiEa 51 and let X = ZaeJXOz' Let

Xo :=max{m : o, ...,am € J with Xo =1 and Q(a;) N Q(a;) = 0,i # j}.

Then
E(X)*

k!

P(Xo > k) <

10



7 Proof of Lemma 5

We will prove the statement about P(=G<;+1|G<;) by proving each of the statements
P

(= ) <
P(=Pit1|9<i)
]P)(_‘ +1‘g<1)
( )
(= ) <

z+1|g<2

IA A
22222

]P) _' +1|g<’l
P

IN

Z+1|g<z
P(—Q;41|G<i) < N~

Before proceeding to the proofs, we prove two lemmas that will be used throughout the paper. In
the lemmas below, we assume that G<; holds.

Lemma 10. For all e € O;, we have that P(e ¢ C +1 UYit1) — % € [—703/2% —503/2qi].

Proof. Let e = zuv and first notice that since we are in the event G<; then P; holds and |S;(x, uv)| <
2q;m;v N. Therefore,

1Si(e)] < |Si(z, uv)| + |Si(u, 2v)| + |Si(v, 2u)| < 6¢;m VN,
s0 6vV/Ng;(m; + v/a) — |Si(e)] > 0 and pe; =1 — (1 — p)8VNai(mi+vo)-ISi(©)]  Now we get
Ble ¢ Ol UYis1) = (1= p) N1 = pey) = (1 = p) Y Nolritv?),
Then using (3) and 1 —ab < (1 — a)® <1 — ab+ a?b? when a € [0,1] and b > 2 we get
1—60qi(mi ++/0) <Ple & Clyy UYig) < 1—60qi(mi + Vo) +360°¢] (mi + v/0)*.  (32)
Now since |(gi+1 — ¢;) + 60¢?m;| < 1602¢? by Lemma 3 (17), we can rearrange to get

qi+1
qi

— (1 —60¢;m;)| < 160%g;.

Then (17) together with (32) gives
gitl _ g4 320, — 1602¢q; < Ple ¢ C, +1 UYiy) < Fi+1 — 60%2g; + 1602q; + 360%q 2(m; + o).

qi i

Applying Lemma 3 (16) and o = log™2 N, this completes the proof. |
The next lemma is notable and particularly useful as it applies to every subset J of triples.
Lemma 11. Given G<;, then for any J C ([g}) we have that ..o, 1Si(e) N J| < 6gimiv/N|J|.
Proof. Note that for all e € O;, if [ € 5}(6) then there is a K, which contains e and f which

are both in O; and some edge g € E;, which means this same K, satisfies the requirements for
e € Si(f). Thus

ZIS’i(e)ﬂJI Zzlfes <Zzﬂees Z’S HI<171(2¢:)mi VN,

ecO; feJe€0; feJ e€O; fedJ

where the last inequality comes from the event P;. |
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7.1 Bound on -\

Throughout this section all expectations and probability are conditioned on F; and on the event
G<i, and to improve readability, we will omit that in our notation in this subsection. For each
concentration bound, we fix v and z till the very end when we take a union bound over all pairs

v, X.

Clearly E(|Np
by Theorem 6

(vx)]) = p|No, (vz)| < pg;N =: p since we are in the event G<;, so N; holds. Now

i+1

2
- ov/Ng;
(N, (vm)] = 20) € exp( ) < exp(- TV

)- (33)
Then by Lemma 3 (18) and (33) we obtain P(|Nr,,, (vz)| > 2u) < e % < N~“() where the ¢ > 0
comes from (21). Since the number of pairs v, z is (g ), a union bound completes the proof.

Next we consider |No,(vz)|. First we will give an upper bound on E(|No, (vz)|). Recall from (5)
that

Hence Oi+1 - Oi\(Cil_H U Y;-H)a SO

E(Now,(ve)) € S Plavu g Clyy UYigr) = X, (34)
u€No, (v)

Recall that X = - cn, (o) Pl2vu ¢ Cl.; UYiq1). Since we are in G<;, |No, (vz)| < ¢;N by N,
and therefore by Lemma 10

B(X) < |No,(00)] - Blavu # Clyy U¥isn) (%51 032 ) = Nawsa = %22, (3)
7
Next, we will prove concentration around the expected value by using Theorem 7. The index set
J from Theorem 7 will be made of two parts, J = Jr U Jy where both Jr and Jy are copies of O;.
Then &, from Theorem 7 will be defined as follows:

loer, if a € Jr,
éaz{ Sl BEET (36)

]]‘aeYi+1 lf [ A JY

Then f in Theorem 7 will be defined so that X from Theorem 7 is the same as X from (34), and
notice that f is decreasing since the presence of edges in I';41 or Y;41 only adds edges to C’i1 1UY5 0.
We need to give bounds on A, which is the absolute value of the change in the size of (C’il_H U
Yit1)N(No, (vz) x {v,x}) when we change whether or not an edge e is in I';11. Assume for now that
Ac < c. Similarly, let T, be the absolute value of the change in |(C},; UYit1) N (No, (vz) x {v, z})]

when we change whether or not an edge e is in ¥;41 and assume that T, < c..

Observe that changing whether or not e is in I';4; only affects which edges are in C}! "1, and similarly
changing whether an edge is in Y;1; will only affect which edges are in Yj;;. Consequently, when
considering ¢, we only need to consider the effect on C}H, and when considering ¢, we only need
to consider the effect on Y.

12



First, to give a bound on A, notice that A, by definition is the number of changes to
Clq N (No,(vr) x {v,2}) = {zvw € O; : Si(zvw) NTipq # 0}

Since we only changed whether or not e was in I';41, e can only affect elements of C}, | N(No, (vz) x
{v,z}) when e € S;(vxw). Further, if e € S;(vzw) then vew € S;(e). Indeed, e € S;(vrw) implies
e € O; and that there exists ¢/ € E; with {vzw}ee’ forming a K, . Then e € O; and € € E; so
e{vzw}e’ is a K, which is the definition for vzw € S;(e). So the number of w such that vzw is in
CLy N (No,(vz) x {v,z}) is at most 1Si(e) N ({vz} x No,(vz))|. Thus for e = uyugus,

A < 18i(e) N (No, (vz) x {v,2})| < |Si(e)| < 6gimi VN (37)

due to the bound max{S;(uy, upus), S;(u2, urus), Si(us, uruz)} < 2¢;mv/N as we are assuming the
event P;. Further, > o, 1Si(e)N(No, (vz) x {v, x})| < 6¢;imiv/N|No, (vz)| by Lemma 11. Moreover,
by (37) and Lemma 11,

D AZ<6gmVN Y A < 6gmvVN Y [Si(e) N (No, (vx) x {v,z})| < 36¢;7N(:N)  (38)

ecO; ecO; ecO;

where the bound on |Np, (vx) x {v,x}| in the last inequality comes from the event N.

Next, we want to bound Y., but notice that since all edges are in Yj;; independently, changing
whether or not e is in Y;y; can only affect whether the edge e itself (and no other edge) is in
(CL, UYit1) N (No,(ve) x {v,z}). Therefore T, < 1 and if T = 1, then e € Np,(vz) x {v,z}.
Thus by N,
Z T2 < |No,(vz) x {v,z}| = |No,(vz)| < ¢N. (39)
ecO;
Now we can bound the value of A from Theorem 7 using the fact that p.; < ¢; from Lemma 3 (19)

and the bounds (38) and (39) by

A=Y pAZ+ > pe Y < p(36¢)mIN?) + ¢} N < 370¢] N*/?
e€cO; ecO;

where the final inequality followed from Lemma 3 (16). Finally, we apply Theorem 7 with A and
(35) to obtain

P(|N, | > g1 N) < _M — (L) 2 2 /N < N~
Oit1(vz)| Z dit+1 > €Xp 740q12N3/2 = €Xp 74 0 q; =

where the final inequality holds from Lemma 3 (18). Now taking a union bound over the (gf )

choices for v and x completes the proof.

7.2 Bound on —P
Throughout this section we will again omit the conditioning on F; and the event G<; in our notation.

We will start with the proof for T;(x,uv). Clearly

|T%+1 (SL‘, uv)| - |T:L(x7 UU)| = Z ]l{:cuw,wiEFi+1} + Z ]l{acuwef‘i_H or zvweli41} (40)
wER;(z,uv) weS; (x,uv)
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Notice that in the second term of (40) for every w in S;(x,uv) one of zuw or zvw is already in E;
so only one can potentially be in I';;;. Now since for edges in O; the event of being in I';4; are
independent Bernoulli random variables with probability p, we can bound the expected change in
T;(z,uv) using the bounds on |R;(z,uv)| and |S;(x,uv)| from (23) as follows.

E(|Ti1(z, uv)| — |Ti(z, w)]) < (0*)g7 N + (p)2qmiV'N = 0%¢} + 2qimio < 0% + 20 < 1
where in the last two inequalities we used \/om; <1 and ¢; <1 and ¢ < 1 from Lemma 3 (13) and
(15).

Now using the bound on T;(z,uv) from (23),
(T (g wv)| = | AT (2 w0)| + [Ty, wv)| < ATy (2, wv)| + ilog? N
Thus Theorem 6 gives
P(|Tir1 (2, uv)| > (i + 1) log” N) < P(|AT(w, wv)| = log” N)
< exp <_ (log” N _ ;72%.2 - 2Qi7ri0)2>
2(0 q; + 2(]2'772'0)
< exp (— log!” N)
< N—«®)

where the third inequality comes from (16). Thus taking a union bound over all 3(]; ) choices for
the vertex x and the vertices uv completes the proof.

Next, we will prove the bound on |R;(z, uv)|. Since Oj11 € O;\(C} ;U Y1) we get

’RZ‘_H(.%,UU)‘ < Z l{muw,wiQ(C}+1U}’i+1)} =X (41)
wER; (z,uv)

Observe that
IF’(J:uw oW ¢ +1 U }/Z-‘rl) (1 o ﬁxuw z)(l - ﬁwi,i)(l o p)\Si(x,uw)\+|S¢(m,vw)|—|Si(x,uw)ﬂsi(:v,vw)|
— Plauw & Clyy UYig1)Plavw & Clyy U Yig)(1 — p)~ISiteaminsitean)

where the first inequality comes from excluding some edges in Si(u,afw), S,-(w,ua;), S’i(v, ux), and
Si(w, va) which could also cloase edges.

Now if e € |S;(x,uw) N Sj(z,vw)| then since u # v, e must be of the form zwz for some z €
[N]\ {z,u,v,w}, and zwz € O; and zuz,zvz € E;. This implies z € T;(z,uv), so since P; holds
the number of z satisfying these conditions is bounded above by ilog? N by (23). Thus

|Si (2, uw) N Sy, vw)| < ilog® N. (42)
Combining (41), (42), (23), and Lemma 10, we bound the expected value of X by
E(X) ( N)(Ql+1 50_3/2q2)2(1 _p)—iloggN
a4

i
< (ql-QHN — 5qi+1qi203/2N + 25q?a3]\7) (1 + pl log9 N)

< @2 N —5¢3(1 —120)0* 2N + 25¢} 03N + ¢ NpIlog® N + 25¢}a® NpI log® N
< @} N —4.9¢303*N + 25¢} 03N + VN (¢?oIlog® N + 25¢} 0" I log” N)

< g2 N —4g}o%2N
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where the third inequality uses ¢;11 > ¢;(1 — 120) from Lemma 3 (20) and ¢;+1 < ¢;, and the last
inequality uses qg’a3/ 2> q¢lo? and q303/ 2N > V/Ng¢?oIlog’ N by Lemma 3 (18).

To prove concentration, we will apply Theorem 7. We define the index set J = Jr U Jy and define
€y as in (36). Then f will be defined so that X = f((a)acs). We again let A, be the absolute
value change of X when we change whether an edge e is in I';;1, and let T, be the absolute
value change of X when we change whether an edge e is in Y;;;. Then notice that if changing
whether e € I';;; changes whether xuw or zvw is in C+1, for some w € R;(z,uv), there exists
¢ € E; so ee'{zuw} or ee’{zvw} is a K; and then either {zuw} or {zvw} is in S;(e). Thus
A <|Si(e) N ({zu, zv} X Ri(x,uv)) | and Y. is only 1 when e = zuw or e = zvw for w € Ry(x, uv)
and 0 otherwise since changes edges being in Y;;; doesn’t impact other edges. Then we can bound
A in Theorem 7 by

A= ZpAg-i- Zﬁe,ff

ecO; ecO;
< p(6qimiV'N Z 15;(e) N ({zu, zv} x Ri(x, uwv))| + ¢:(2¢°N)
e€O;

T(6qu/ﬁ) (2¢2N) + 23N

< 1000gf N*/?

where the second inequality uses Lemma 11 together with the fact that {zu,zv} X R;(z,uv) <
2|R;i(x,uv)| and the last inequality uses Lemma 3 (16). Now Theorem 7 gives

P(|Rit1(z,wv)| > g7 N) < P(X > E(X) + 4¢}0**N)

- 16¢%03 N2
ex s ———
= P\ T 20003 N02

= exp <—;5q?z72\/]v)> < N~

where the last inequality follows from Lemma 3. Taking a union bound over the 3(];[ ) choices for
x and uv completes the proof for all of the R;(x,uv) variables.

Lastly we will prove the bounds for the variables S;;1(z,uv). Notice there are two types of edges
which can be included in Si;1(x,uv). The first type are edges which were in Sj(z,uv) and did
not leave S’i(x,uv) during step i + 1. The second type are edges xuw where w € R;(x,uv) and
xvw € Ty or edges xvw where w € R;(x,uwv) and zuw € T';y;.

We will prove bounds on the number of edges in Sz(x, uv) of each of these types separately and
then combine the bounds to prove that the required upper bound for S;(z,uv) holds whp. To this
end, define random variables

1 -
S; (z,uwv) == g Leger  uvip,
e€S;(x,uv)
2 -
Si (.TL‘, UU) T ﬂmquFHl or zvwel'; 11
wER; (x,uv)
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Si1 (2, u0)| < Sk (., uv) + 52, (2, uv) (43)

where inequality in (43) comes from the fact that edges can leave S’i(x,uv) if they are in the
sets T';11 and Ci2+1' Because we are in the event P;, (23) implies |S;(z,uv)| < 2¢imivV N and
|Ri(x,uv)| < ¢?N. Together with Lemma 10 we obtain

E(S), 1 (2, uv) + 52 (2, uv)) < |Si(a )] (q; _ 503/2%) T 2| Ri(, o)

i
< 2¢; 1V N — 10¢2m;0%?V/N + 20V N¢?

< 2¢i1miVN — 1062 m0%/*V'N + 20V Nqi(gi1 + 120¢;)
= 2¢i 1V N (mi + 0¢;) — 10270/ >V N + 24022V N

< 2¢i1mi VN — 9¢2mio® 2V N

where the third inequality follows from (20) and the last inequality follows from the fact that
Tip1 = 7 + 0giy1 by (11) and 6% < m0%/? by Lemma 3 (12) and (14). Now if we can prove that
whp the values of S} (2, uv) and S?,(z,uv) are both not more than ¢?m;0?v'N larger than their
respective expected values, we will have proven the bound on |S;(z, uv)|.

Now to prove concentration for S}(z,uv), we will bound A in Theorem 7. Let A, be the absolute
value of the change in S} (z, uv) when we change whether e is in I'; 1 and let T, be the absolute value
change in S} (z,uv) when we change whether e is in Y;41. Similar to the proofs of concentration
for |No,(vz)| and |R;(x,uv)|, e only affects whether an edge f is in S;y;(x,uv) or not if e and f
are in a K together with one other edge in E;, which would then mean f € S;i(e). Thus if we let
€ = W1Wa2Ws3

Ao <|Si(e) N Si(x, uv)| < [Si(e)] < |Si(wr, wows)| + |Ss(wa, wiws)| + |Si(ws, wiws)| < 6¢;mV'N.

However, we can obtain a much better bound on |Sj(e) N S;(z, uv)| than |S;(e)| when e # zuv. If
wywows Nauv = § then |S;(e) NS;(x, uv)| = 0 since any triple which is in a K with e must contain
two of the vertices wq, w9, w3 but then this triple cannot contain both x and one of v or u. If
|wiwews Nzuv| = 1, then |S;(e) NS;(x, uv)| < 4 since if a triple contains both two of wy, ws, w3 and
two of x, u, v, it must contain the unique overlapping vertex and then one of the remaining vertices
from each of wjwows and xuwv. Finally, if [wiwows Nzuv| = 2 then if f € S’i(e) N S'Z(:U, wv) it either
includes one of the shared vertices between wywows and xuv and both of the verties in wywows and
zuv which are not shared, or it contains both of the shared vertices and a third vertex. Thus there
are only two choices for f which contain only one of the shared vertices. When f contains both of
the shared vertices, let the last vertex of f be z. Notice that f must contain x by the definition of
§i(x, uwv) and similarly f must contain exactly one of u,v.

Case 1. Suppose that f = zuz. Without loss of generality let w; = z and we = u and f = wiwsz.
Recall that e = wiwows. Now since f € 5}-(6) there must be an edge in E; out of edges comprised
of the vertices x,u,ws, z and xuz, xuws € O;. Thus we have the following two subcases.

Subcase la. zwsz € E;. Since zvz, zwsz € E; we have z € T;(z, vws).
Subcase 1b. uwsz € E;. Since zuz, xuv,zuws € O; and zvz,uwsz € E; then z € Us(x, u,v,ws)

(See Figure 3 below).
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Case 2. Suppose that f = zvz. As in Case 1, we obtain z € T;(z,uws) or z € Us(x, v, u, ws).

Edges in O; ---------- Edges in E;

Case la e Case 1b

Figure 3:

This means the number of f € Si(e) N Si(z,uwv) is less than 4i(log N)°. Putting this together
we get that if e # zuv then A, < max{4i(log N)?,4} < Io~®. Hence applying Lemma 11 with
J = Si(z, uv),

P Z A2 < p((6gimiV'N)? 4+ To~2(6¢;mVN)|Si(z, uv)|) < 1310~V Ngin?

ecO;

Further, T, <1 50 pe; ZeEOi T2 < g ZeEOi T2 < 4i| Sauv ()] < 2q227ri\/N. Then we can bound A
in Theorem 7 by
A<p Z A2+ Z T2 < 15[0_4\/Nqi2772
ecO; ecO;

Theorem 7 gives

—qin?o'N ~@Go* VN )

P(S} (x, uv) > E(S}H(x, uv) + ¢?mio*V/N) < ex =ex <N
(5o ) 2 B(S2 )+ afmio®V/N) < oxpl g 0 ) = () <

(44)
where the last inequality comes from (18).
Next, to prove concentration for Si2 (x,uv), notice that for all w € R;(x,uv) the inclusion of the

edges xuw or zvw in ;4 are independent identically distributed Bernoulli random variables. Also,
E(S?(z,w)) < 2pg?N = 20¢?v/N and om; < 1 by Lemma 3 (15). We use Theorem 6 to obtain

P(S2(z, uv) < E(S?(z,uwv))+0%¢?miVN) < exp (_(U2q’27rim)2> = exp <_U an 2\/>> —w()

2(20¢7V'N)

(45)
where the last inequality holds by Lemma 3. Now taking a union bound over all choices for x and
uv and combining (44) and (45) completes the proof that P(=P;11|G<;) < n~«W).
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7.3 Bound on —P*

We will omit the conditioning on F; and the event G<; in the notation in this section. For z to
be in U;t1(z,u,v,w) but not in U;(z,u,v,w), at least one of the edges xvz, uzw must have been
added to I';41 in this round (see Figure 2). In other words there are three cases for how zvz and
wwz are in F;q

1. zvz € I';41 and vwz € E;

2. xvz € E; and uwz € i1

3. vz € I';11 and vwz € ['i41.
Further, for z to be in U;4; all three of zuv, zuw, and zuz must be in O;11. In particular, in the
first and third cases where xvz € T'j41, 2z € R;(z,uv), and in the second and third cases where

uwz € Tij11, 2 € Ri(u, zw). Further, in the first case where wwz € F;, z € S;(u, zw) and similarly
in the second case where zvz € E; z € S;(x, uv).

Then defining

— .77t
Ul = Z ]l;cuzeriﬂ < ]lx’UZEFiJrl =: Ul
2€R; (x,uv)NS; (u,zw) z€8S; (u,zw)
— E .77t
U2 = ]luwzel"i+1 g :[]"U/LUZEF»L'_'.l = U2
2€8; (z,uv)NR; (u,zw) 2€8;(z,uw)
— —. 77t
Us := Z ﬂzvz,uwzeri+1 < Z ]lxvz,uwzel‘iﬂ =: Uv3
ZERi(xvuv)mRi(uvxw) zER; $,’Uﬂ.})

we obtain

Uit (2, u,v,w) \ Ui(z, u,v,w)| < Uy +Us + Us < U + U + U =1 X,

Using (24) yields
|Ui+1([L‘,U,U,U})| < ’L(lOgN)9+X (46)

We first upper bound the expected value of X using (23) and (46) as

E(X) < 4pgimiV'N + p*¢?N. (47)

Since X is a sum of independent (0, 1) random variables, by Theorem 6 and (46) and (47)
B(|Uss1 (2 0, w)| > (3 4 1) log? N) < B(X > log® N)
_ (log’ N — 4pgimiV'N — p*¢7 N)?
<exp|—
2(4pgimiV'N + p*¢?N)

< (log9 N —doqm; — o%q?)?
exp | —
=P 8oqim; + 02q?

< exp(—1log'" N)
< N—w@)
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7.4 Proof of Nt

The random variable |Nr, , (vxz) N A| is a sum of |Np,(vx) N A| Bernoulli random variables each
with probability p. Thus,

E(INr,, (ve) N A]) = p|No, (vz) N A| < p|4|
Applying Theorem 6 gives

1
A|NitP)2
P(|Nr,., (v) 1 A > p|A|(1+ NTH7)) < exp (JM"‘))

2pl|A
1

= €xp <—2P’A‘Né+2ﬂ)
1

= exp (—2O'|A|N2B> .

By a union bound over all choices of v,z and A, we obtain
1
P30, 45 [Ny oy AL 2 PLAI(L+ NE) < N5 A (= 3o

= exp <(2 + |A]) logn — ;0N2’8|A|>

< N«

7.5 Proof of 9T

Recalling that s = no*q? = Cy/Nlog No*q?, we begin with the case where |A| = |B| > s. Since
Oiy1 € O\(C}, UYiq)

0i11(A, B, z)| < |0i(A, B,z)\(Cl, UYip1)| = %: )]lfgzq.lﬂunﬂ =X (48)
f€0,;(A,B,x

We will first bound E(X) and then we will use Theorem 7 to prove concentration. Using Q; and
Lemma 10

E(X) = [04(A, B,z)|P(f ¢ Clyy UYip1)
< qirAHB\(q;—fl — 503/2q;)

(2

< gi+1] A||B| — 5¢;0%*| A|| BI.

To bound the probability that X > E(X) + 5¢?03/2| A||B|, we will use Lemma 7. For every e € O;,
let A, be the absolute change in X when we change whether e is in ;1. Similarly let T, be the
absolute change in X when we change whether e is in Yj4.

First, to bound A., let e = wjwows and in this section assume a € A and b € B. If [{wy, wa, w3} N
(AUBU{z})| <1, then any K, which contains e does not contain an edge of the form zab, so
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A, = 0. Next, if ¢ & {w1, we, w3} and |[{w1, wa, w3} N (AU B)| > 2, then if an edge of the form zab
is in a K together with e, the vertices of this K, must be {w;, ws,ws,x} so A, < 3.

Finally, without loss of generality let w; = x and assume |[{wg,w3} N (AU B)| > 1. If zab
is an edge which is in C} ir1 only when e € I, and without loss of generality wy = b then
either the edge rwsa or wowsa must be in E;. The number of these edges can be bounded by
22‘:1(|NF]~ (zws) N A| + | N, (waws) N Al). Because N;" holds, this is no more than 20p|A|Ni+5I.
Thus

Ao < 40p|AINTHET (49)

where the extra factor of 2 comes from the possibility that both ws and ws are in AU B. Further,
since changing whether e € I'; ;1 only changes if zab is open if zab € S;(e), A, < |Si(e)NO;(A, B, z)|.
Then using (49) together with Lemma 11, we obtain

p > & < 40P AINTHI(6g;m VN (g:] A]?)) < 24002N27 1 g2y AP,
ecO;

Further Te < 1.c0,(a,B,2) SO

1
4 E 62 < ¢ |A[2 <q \A|3 < ZN’% logfé N) < 04]\7257%(1@27%]%1\3
Cotq3
ecO;

where the second inequality comes from |A| > s. The last inequality holds, with room to spare,
due to the power of N which is —1/2 + 25 + o(1) on the left and —1/4 + 25 on the right. Hence

A<p Y Etq Y & <25002N 1P| AP (50)
e€cO; ecO;
Applying Theorem 7 gives

P(|0i41(A, B,z)| > gi11]A]?) X) + qio*?|AP)

3’A‘4
UZNQ'B 1gim| Al®

A|Ni28
( SOOqzar i)

eXp <—5OO|A|N_65>

where the third inequality uses (16) and the fourth inequality uses (18). By the union bound over

| /\

| /\

all choices of x, A we obtain

1
P(3z, A, B, |A| = |B| : |0i(A, B, )| > giy1]A||B|) < N2+ exp <_5001A\Ni—6ﬂ>

< 2|A|+1)log N — —
< exp ( (214 + 1)1og N - 5

|A[N465>

S N—w(l)
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which proves the result when |A| = |B].
Now assume |A| > |B| > s. Then
2 wcaja=p 04, B, x)|

(15-1)

Now applying the fact that Q; holds for |A| = | B| with probability at least 1 — N —«(1) we obtain

[AN , 1 R12
0404, B, ) < 12D%I5

I T i|Al|B.
(51

with probability at least 1 — N—«(1).

7.6 Proof of O

Recall we are to show that if A,B € ([JT\Z]) are disjoint and x ¢ A U B, then 7 1¢;11n? <
|0i(A, B,z)| < gi+1]A||B|. We begin with the following Lemma.

Lemma 12. Let Q4 g, be the event that the following hold where x € [N] and A, B € ([]X}):

qi+1
qi

X1 = |0i(A, B,x)\(C}, UYit1)| € [[Oi(A, B,z)| (qq“ — 803/2%) ,|0i(A, B, z)|

Xy i= [0i(4, B,2) N C2,| < |0i(4, B, 2)|(60%;) + 100063/ N
X3 :=|0;(A, B,z) NTi11| < |0i(A, B, )| (20°g)).

Then P(=Qa Bo NNit1 NPiy1) < N=«(™) for all choices of A, B, x.

Before proving Lemma 12, we will use Lemma 12 to prove P(=Q;11 N Niy1 N Pir1) < N-w(),
Assume for all x, A, B, the event Q4 g, holds. Let us show that Q;;1 holds.

Let A,B € ([N]) and x € [N]\ (AUB). Recall that an edge in O;(A, B, x) remains in O;41(A, B, )

n

if it is not in C} 4 U Yi41 UCZ; UT41. Therefore
X1 — XQ — X3 S |O,~+1(A,B,:c)| S X1.

For the upper bound, notice that since G<; holds, |0;(A, B, x)| < ¢;|A||B| by (28), so

0i41(4, B,2)| < X1 <104, B,)| T2 < gisaAI|BI

)
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For the lower bound, recall that |A| = |[B| =n = Cy/Nlog N and o = 1/log? N and 7; < 1. Then

X1 — Xo — X3 > |04(A, B, 2)| (q“ — 80%/%g; — 802q2-> —1000¢>VNn
.

)

> (rigin )<q’“ 160 3/2qz>—100crqff n

qi
1000¢?
> 2 .. —1 3/2 2_ -
>n <TZQZ+1 607/ 7q; CVlog N
1000°/4¢?
= n’? (Tz%ﬂ — 160%/%¢} 700 &

2000°/4g; < ¢ >
> g n2 7 — i i
= Git+1 ( ( C Giet

where in the second inequality we used (28) and in the equality we used o'/4 = lolg —. Now
. omi log(+v/3 1
recalling that 7, = 1 — % and therefore 7; — 741 = S22 Og(g 32) -5 < U(z) <

\/ log(\[x) + \[, |7 — U (io)| < 20, and I = [N?®] from Lemma 3 (12) and (14) gives

e dog
=T 27y
S Ti— i
2 < La(VBUoD) 1 (L 4 2a)>
ST 074
2.1\/0.510g3+,3:1))0gN+10ga
< V30
=7 (2:2)/Blog N
o V3604
"(22VB

Now using ¢;/(¢i+1) < 120 + 1 < 2 from Lemma 3 (20) and choosing constant C' so that 400/C' <

Vs
(22)vB
We have shown that —=Q; 1 N Njp1 N Piy1 C Uz 4794 Bz NNip1 N Piy1. Finally, applying
Lemma 12 and union bounding over all choices of x, A, B gives

gives X1 — Xo — X3 > qi+1n2n+1 as desired.

P(=Q;+1 NNit1 NPiy1) <P(Fz, A,B: =Qa s NNix1 N Pis1)
< N1+2n—w(n)

< N—w(n)

Now all that is needed to prove Q;41 holds with high probability is to prove Lemma 12.
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7.7 Proof of Lemma 12
771 X4

First we prove the bound on X;7. The upper bound follows from the proof for the event Q;r since
X is exactly the X from (48) and n > s. For the lower bound, we apply Lemma 10 to show

qi
E(X)= Y Pled ChaapsUYin) 2 10i(4, Bl (%5 — 0% %)
ecO;A,B,x v

Now using the same value for A from (50) and C' = 40p|A|N 181 which follows from (49) in the
proof of @, we can apply the second half of Theorem 7 to show

P <X1 < |0i(A, B, z)| <q“ — 803/2%-)) < P(X; <E(X)) — 0%2¢;|0i(A, B, z)|) < exp (—D)

qi
where ) )
b (0¥4:104(A, B )
2((25002N 20~ 5 g2mi| AP) + (40p| A|N5+0T)(03/2¢;|0;( A, B, z)[))
Note that
D> J3Ti2q§1n4
T 50002 N2~ 1g2mn3 + 4005/2N 1128342
1
> pNi—108

where the last inequality uses (16) and (18) from Lemma 3. Since e~ = N=“(") we are done.

7.7.2 X,

We now prove the bound on Xy. While one might expect that this would be relatively easy to
show as it seems unlikely that two edges are picked in step 7 which then form a K, with an edge
of O;(A,b,x), this is the most difficult part of the proof.

We will break up X into four components and handle each one separately. First we introduce
some definitions and notation. The following auxiliary variables depend on the step of the process
i, a distinguished vertex x, and two vertex subsets A, B C [N]\ {z} with |A| = |B|.

za,8(i) == o'} | Al
W(A,B,z,i) :={w € [N] : |[Nr,, (zw) N (AU B)| > z4,5(i)}

CA'?H,AB;C = {zuv: Jw € W(A, B, x,i) : zuw,zvw € T'j41}

23



Whenever the context for A, B, , and i are clear, we will write z for z4 p(i) and W for W(A, B, z, ).
We write a (resp. b) for a generic vertex in A (resp. B).

Xy = |{zab € Oy(A, B,z

( N Cfﬂ :Jw € W(A, B, z) and |[{zwa, zwb,wab} NT;i11| > 2}|
X{‘B = |{zab € O;(A, B,z

(

(

( )

NCZ4, : 3w € W(A, B,z) and zwa, zwb € T4}
X3 := |{xab € O;(A, B,z ( )
X5 .= |{zab € O;(A, B, x ( )

NCZ, : 3w e W(A, B,z) and zwa, wab € Tj41}|
N CZ-QH : Jw € W(A, B, z) and zwb, wab € T';1}.

~— — ~— ~—

Since for abz € O;(A, B,x) N CEH there must be some w with [{zwa, xwb,wab} NTiy1| > 2, we
deduce that X < Xy + X448 + X5 + X5,

With the aim of applying Theorem 8, we can upper bound X, with

5 >+
Xo = Z Lz, . < Z Z Lj{azw,brw,wab}Tysy|>2 = X2 -
ecO;(A,B,x) T zabeO;(A,B,z) weV\W (A,B,z,i)

Now let

Lap = {{zwa,zwb} C O; : xab € O;,w € {z,a,b},a € A,b € B}
Ly = {{zwa,wab} C O; : zab € O;,w ¢ {z,a,b},a € A,b € B}
Lp = {{zwb,wab} C O; : zab € O;,w & {z,a,b},a € A,b € B}

L:=LsapULAULBg.

Now with Theorem 8 in mind, for each e € O; := O, let & be the indicator random variable for
ee€lip1. Fora € L, let Yy = l¢,—1veca = lacr,,,- In order to bound }° ., E(Y,), note that if
{zrwa, xwb} € Lap then w € R;(x, ab). This shows that

‘LAB’ < |0i(4, B, .T)HRZ(CC, ab)l,
since zab € O;(A, B,x) and w € R;(x, ab) means that xwa and xwb are open.

Similarly, if {zwa,wab} € L4, then w € R;(a,zb) and if {zwb, wab} € Lp then w € R;(b,xa).
Thus
L] < |0i(A, B, )[(|Ri(x, ab)| + |Ri(a, xb)| + [Ri(b, za)])-

Since |R;(u1,ugus)| < ¢?N by (23) due to P;, and ¢; < 1, we can give the upper bound
Z E(Y,) < p?|0i(A, B, z)| (3 max{|R;(x,ab)|}) < 30%¢;|0:(A, B, z)| =: p.
a€cl

Now we define K C L as follows:

Kap = {{zwa,zwb} € Lap : w ¢ W(A, B,x,i) and zwa, zwb € T';41}
K4 = {{zwa,wab} € Ly : w ¢ W(A, B,z,i) and zwa, wab € I'j11}
Kp := {{zwb,wab} € Lp : w & W(A, B, z,i) and zwb, wab € T';11}

K =K,pUKjpsUKgpg.
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Note that X, = Y ack Ya- Next, recalling from Theorem 8 that f(.J) := maxgey |a € J : aNB # 0],
we claim that f(K) < 8z. Then since in Theorem 8, Zs, is defined as the maximum over J C L
with f(J) < 8z of 3, s Ya, if f(K) < 8z then X, < Zg,. Finally, we apply Theorem 8 to conclude
using t = p that

aeJ

P(X; > 6020;|0i(A, B, 2)]) < P(Zs. > 21) < exp(—p2/(3220)) = exp(—p1/(322)).
We now provide the details of these assertions.

We now show that f(K) < 8z. Let § € K and let e € 5. First, if z € e notice that there are at
most 3 elements o € K such that e € a. Further, if x € e, then the number of elements o € K
such that e € « is bounded by |Nr,,, (zw) N (AU B)|, and since for all 8 € K, w ¢ W(A, B, xz,1),
we obtain |Np, | (zw) N (AU B)| < 2. Thus for all 8 € K

o€ K:anB#0/<> JacK:eca|<) 3+ Y  [Np,,(z)N(AUB)| <8z
ecp ecp vee\W(A,B,x,i)

Now using Theorem 8 since X, < > ek Ya < Zs, set p = 30%¢;|O;(A, B, z)|, and C = 8z. Using
the fact that |O;(A, B, )| > 7;¢in® by (28) since we are in G<;, we obtain

P(Xy > 60°¢i|0i(A, B, x)|) < P(Zs. > 2u)

2
7
< exp <_ 32,u,z>

31iq?o%n? _
Sexp(‘gzaﬁq% <N,
3

Next we prove the bound for X452, By definition

x3P< Y |0i(Nr
weW (A,B,x,i)

(wz) N A, Nr,_, (wz) N B, x)|.

i+1 it+1

If
min{‘NFzA—l(ww) N A’, ’NF

then we use the fact that Q;r holds and obtain

(we) N B[} > 2= cl@|A| > noqd = s,

Oi(NFi-H (’U).%) NnA, Nri+1(wx) N B7x) < qi‘NFi-H (’LUJI) N AHNFiJrl(wx) N B‘

Otherwise one of these terms is less than z. Writing
M := max{|Nr, , (wz) N A|,|Nr, , (wz) N Bl},
this gives
|O;(Nr, ., (wx N A), Nr,,, (wz) N B, z)| < zM.
Putting both bounds together we obtain
|O;(Nr,,, (wx N A), Ny, (wz) N B, z)| < ¢| N, (wx) N A||Nr,,, (wz) N B 4 zM
< (qi]NpiH(wxﬂ + z) \NEiUpZ.H(w:C) N(AUB)|.

i (

(51)

We will now use the following Lemma from [6] which bounds the sum of the sizes of a collection of
sets whose intersection is bounded. We will provide a proof as well for completeness.
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Lemma 13. Let (U;)icr be a family of subsets U; C U, and suppose |U;| > z > /4|Uly and
U; N U;| <y fori#j. Then |I| <29 and 3, Ui < 2|U].

Proof. Suppose for contradiction |I| > @ and let J C I with |J| = L@J + 1. Note that y < 4T[2]|

and%ﬁ%foraﬂié[. Then for any 7 € J

21U Ui
S vyl < (] -1y < 20 < 2 LU
= z 2 2
JjeJj#i
Then
|Uz| z 2|U’ z
Ul = | Uies Uil ZZ \Us| — Z .\UiﬂUj| zz 5 > |J|§: Liz | +1 §>\U|
ied JjeJjF#i ieJ
which is a contradiction. Hence |I| < @ Now for any i € I
2\U Ui
S vl < (1] -1y < 29 < 2 U
. z 2 2
JELj#i
as before and
Uil
|U|Z!Uz‘eIUz’|ZZ yUZ-|—'Z'|UmUj| ZZ 5 (52)
el JEI,j#i el

We will let W(A, B,z,i) =1, AUB =U, Uy, = Ng,ur,,, (wz) N (AU B) in Lemma 13. As P;y1
holds, for all wy,ws € W,
‘(NEiUFH—l (’wllL‘) N (A U B)) N (NEiUPi+1(w2x) N (A U B))| < |NE7;+1 (wl:z:) N NEi+1 (wa)‘
< Tipa(w, wiwz)
< I(logN)°.

Let y := I(logN)° and note that z = o*¢?n > /4(2n)(I(log N)%). Also since for all w €
W(A, B, z,i) we have [Ny, (zw) N (AU B)| > z, then |Uy,| > 2. Thus Lemma 13 gives

Z |Ng,ur,., (wz) N (AU B)| < 4n.
weW (A,B,x,i)

Since Nj41 holds, for all w € W(A, B, x,i), we have |Nr,,, (wz)| < 2¢ioV/N. Also, z = olgin <
2q2~20\/]v, SO
¢|Nr,,, (wz)| + 2 < 3¢20V'N.

Putting (51) and Lemma 13 together, we obtain

XAB < Z (Qi|NFi+1(wx)| +Z) |NE1UFi+1(wx) N (AUB)‘ < (3Qz‘20\/ﬁ)(4n)'
weW (A,B,x,i)
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The last bound we need to prove to bound X is a bound on X and X . We will show the bound

on X4 and the argument for X7 is symmetric. Since N'* holds, |Nr,,, (aw) N B| < IOp\B](N%J“B)

for all @ and w. Thus we can bound X3' by

X§4 < Z Z |NF1+1(aw) ﬂB‘

weW (A,B,x,i) a€Nr, (zw)NA

g(mpnNH) S Ne, (wa)n Al
weW (A,B,z,i)

<1000\/log NNt 3" |Ng,,(wz) N (AUB)|.
weW (A,B,x,i)

Now we apply Lemma 13 with I = W(A,B,z,i), U = AUB, and U,, = Ng,_,(wz) N (AU B).
Again, |Uy| > z since w € W(A, B, z,i) and I';y1 C Eiyg, and Uy, N Uy,| < |Tigi(z, wiws)] <
I(log N)? =: y. Also, z > \/4ny, so Lemma 13 yields

> |Np,,(wx)n(AUB)| < 4n.
weW (A,B,x,i)
Altogether,
X$ < 10Co+/log NN 5 (4n).

Therefore, whp,

Xo < Xo+ X8 4 X5t 4 X5
< 602¢;|0:(A, B, 7)| + 3¢20V N (4n) + 2(10Co+/log N)N 115 (4n)
< 60%¢;|0i(A, B, z)| + 1003V Nn.

7.7.3 X3

Finally, we prove the bound on Xj3. Since X3 is a sum of iid Bernoulli random variables each with
probability p,

E(X3) = p|O:(A, B,z)| = \/U—N|OZ-(A, B,z)| < 02¢;|0:(A, B,z)| =: t,

where the last inequality comes from Lemma 3 (18). Applying Theorem 6 together with the bound
|Oi(A, B,z)| > 1i¢;|A||B| since G<; holds gives

2 2.2,
P(Xa > 04, B.o)](20%)) < P(X 2 B(X) +1) S oxp (- ) < owp (~TETAEL).

By Lemma 3 (18), |A| = |B| = Cy/Nlog N and 7; > 1 — g, we have P(X3 > |0;(A, B,z)[20%q;) <
N—w(m),
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8 Bound on -7

To complete the proof of Lemma 5, recall that B;1; is a collection of bad subsets of I';41 and H;11
is comprised of the edges selected in I'; 11 which remain after removing the edges from D;11, which
is a maximal subset of B;;;. Rather than conditioning on G<; as we did in previous sections, here
we fix some x € [N] and disjoint sets A and B with |A| = |B| = n and we consider the number
of edges of the form xab added over the entire process where a € A and b € B. We break this
quantity up into those added into E; and those which remain in H; by defining

I-1
X(A,B,z) =Y _|0i(A, B,x) N i}
=0
-1
Y(Av B,I’) = Z |Ol(Aa B,CL‘) N (USEDiJrl Uees 6) |
=0

We now define p* and p~ in order to bound X (4, B,x) and Y (4, B, ) as

-1
pooi= pZTiQin2~
i=0

Since H only includes edges picked in E; which were not in D; for some ¢

X(A,B,z) —Y(A,B,z) <ens(A B) < X(A,B,z). (53)

Thus if we prove

2y~
9

Y(A, B,z) <

then (53), (54), and (55) and 0 < § < 1 will show

50\ A AP
9 2
<1 -5 9> pZTiQm <ena(A B) < (1 + 2) pz%qm . (56)

Observe that (11) implies

-1 n2 [7]—1 2
2
pz Gn = —F= 04, /—(WI - U)~
=0 N =0



By (12) and (14)

e \/log(\/g)g‘ﬁlogN_\}g—ka,\/lOg(\/g);BlOgN—F\}g—FQa . (57)

Since p = /2 loj%fN we obtain

I-1

) 9 5\ n? 9
ens(A,B) < (1 + 2> piEO gin® < (1 + 2) \/N(ﬂ'[ o) < (1+9d)pn

Similarly since 77 =1 — % and p~ > 77u" then (56) gives ey (A, B) > (1 -6+ 55)u Then by a
similar argument to the upper bound e (A, B) > (1 — §)pn?. Hence, showing (54) and (55) hold
for all z, A, B with probability 1 — N~“() will complete the proof of Lemma 5.

To bound X (A, B, z), we define

+
Xiy = 1g; Z leer; s
e€O;(A,B,x)

and

ZXZ-H

Next define Z 1 = Bin (ql ,p) to be independent random variables. As P(—G;) = N —«(1) and

we are in the event G; we have |0;(A, B, z)| < gn®. Consequently, P(X;, > t) < P(Z}, > 1)

for all ¢ and for all ¢. Then let Z1 = ZI Lz ;+1 and notice that this is equal in distribution to
Bin (Z{;& me,p>. Also, for all ¢

P(X(A,B,r) >tand G<;) <P(XT >t) <P(ZT >t).
Similarly, defining Z;, | := Bin (Time,p) and Z~ := Bin (221;01 Tiqmg,p) gives

P(X(A,B,z) <t and G<;) < P(Z~ < t).

Let u™ = E(Z1) = pzifz_& gn?and p~ =E(Z7) = pX:Z —o Tigin®. Now we can apply Theorem 6
to ZT and Z~ to get

( (A, B,z) > (1+ g)/ﬁ and g§> <P <Z+ > (14 g)lﬁ) < e (_52g+)

5o B 5 825
P <X(A,B,x) <(1- 5)# and Qg[) <P (Z <(1- 5)# > < exp (M) .

By (11)



Using the bound on 7; from (57) gives ut > %\/log Nn(y/Blog N — 1), and similarly since 7; =

1-— g;r; >1- g and 0 < <1, then u= > T%VlogNn(\/ﬂlogN —1). Thus
2
P (X(A,B,x) Z[(1- g);f, 1+ g)/ﬁ] and Q<I> < 2exp (—ﬁnlogN) .

By the union bound

P <3x,A,B : X (A, B,x) ¢ Kl — g) wo, (1 + g) ;ﬁ] and g<1)

B 2
< 2N?Hlexp (—Cgélﬁsnlog N)

2
< 2exp ((2n+1)10gN— C;;[ nlogN)

< N~

144v/3
62y/B °

Now turning to Y (A, B, x) and recalling that B;; is the set of subsets of I';; which create a K

where the last inequality follows if we let C' >

together with H; and D;y; is a maximal subset of B;;1, we introduce

-1
}A/(Aa B?’CU) = Z |O'L(A’ B’ $) ﬂ (USEBZ'+1 UGES e) ’
=0
Let
}/H_l(A,B,QT) == |OZ(A7B7:’C) N (USEDi+1 UGES 6) ’7

Yit1(A, B,x) == |0i(A, B,z) N (Usen,,, Uees €) |-

Let y := 52T“7. Writing

1
i=1

P(Y(A7 B,:L“) >y and gSI) < Z P(mz’[:_[)l)/i-i-l (A’ B, l‘) 2 Yit+1 and g§i+1)
eré
-1 (58)

= > J[P(Visr = gia] NIy Yi4a(A, B, z) > yj41 and Gejia).
yevl i=0

Here we will use the concentration inequality Theorem 9 to bound Y;11(A, B,x). To this end we
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define

Y;il (A7 B, x) = Z Z ﬂee’e”EDiJrl + Z ﬂee’EDiJrl s

e€0i(A,B,x) \{e/,e"€O0;:ee’e” is a K} {e'€0;,e""€E;:ee’e’ is a K }

O+ A

Y;‘Jrl(A? B7 $) = § § Hee’e”EBi+1 + E ]lee’EBi+1 ’
e€0;(A,B,x) {e/,e""€0;:ee’e” is a K } {e’€0;,e"cFE;:ee’e! is a K }

and note that Y;11(A, B,z) < YT, (4, B,x) and Y;11(A, B,z) < Y1, (4, B, z).

Recall that Bz‘2+1 is the set of pairs of edges {e,€¢’'} added to I';y1 where there is a third edge
e € Hi C E;soe, e, e’ comprise a K, , and BE’H is the set of triples of edges added to I';;1 which
make a K, . Further, recalling that B, = B,?H U BZ3+1, }Afiil(A, B, z) includes edges from sets in
B?, | and edges from sets B}, ;. If zab is the edge in Yi11(A, B,z) then the number of w € [N]
which can be the fourth vertex of the K in the case where one edge from the K is in F; is
|S;(x, ab)| + |Si(a, bz)| + |Si(b,az)| < 6¢;m;v/'N assuming G<;. Similarly the number of w that can
be the fourth vertex from a K, where none of the edges were in E; is |R;(z,ab)| + |R;(a, zb)| +
|R;(b,ax)| < 3qi2N assuming G<;. Hence assuming G<;

E(V;11(4, B,2)) < |0i(4, B,x)| (P (2ab € (Usepe,, Uees ©)) + P (2ab € (Usepp,, Uees @) )
< mep2 (6qi7ri\/ﬁ> + mep3 (3qz2 ) .
By Lemma 3 we have max{q?, ¢;m;} < 1. Recalling p = ¢/v/ N we obtain
E(Y1,(A, B, ) < 100pgin® =: piy1.

Our plan now is to apply Theorem 9. To this end, let @ = O;, §& = leer,;,

J? = {(e,€) e € O;(A,B,x),e € 05,3 € E; st. ec’e’ is a K}

T3 ={(e,e,€¢") e € Oi(A,B,x),¢ € Os,¢" € O;,ee'e” is a K}

J = J2Uu g5

For all o € J? let Q(a) = {e, €'} and for a € J? let Q) = {e, €, €"}. Now Xo = Y1 (A, B, z)

and X = }A/lil(A, B, ) so by Theorem 9

o Yit+1
+ <E(Yiil(A?B7m)>> fit1€ Yi+1
P (Yiq1(A, Byz) > yiy1) <PV (A, B,z) > yiy1) < <

Yit1! Yit1
where the last inequality comes from Stirling’s formula.

Then for all y; 1 such that y;1 > 10”% and assuming G<; we get
Yit1
P(}/Z'+1(A7Ba$) 2 yi+1) <o 2. (59)
Turning to y;11 < 10“%, trivially P(Yi41 > 9i+1) < 1. Then using p~ = pi:_Ol 7;q;n? and
Lit1 = 100pg;n® and 7; > %, we obtain
I-1
10 10
> Vi1 < —= Y g1 < —=200p" <y, (60)
10p;4q \/E =0 \/E

0<Z<Iyz+1<T

31



Recalling the notation Yyl ={y=(1,...,y1) € N : Y y; =y}, and applying (58), (59), and (60),

P(Y(A B,z) >y and G<;) < IT PO >yl 0024 Yiea > gy and G<jpn)

I 10011
vy >— 2

< (2y)"" (log N)~

where the last inequality follows from (log N)¥ > y! since y = ©(p~) and p~ > g—\\/g(log N)n>1I.

By the union bound
P(3z,A,B:Y(A,B,z) >y and G<)

_§2,—

< N?"(log N) "3 —

< N2 (log N)—‘ff\/‘/f(logN)n
52C+/B

723

< exp ((2n +1)log N — (log N log log N)n)

< N @)
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9 Appendix

9.1 Proof of Lemma 3

1. To prove (12) first we will prove the following fact for x > e

Viegz—1
/ edt<x<

Vioga+1 |
/ e dt (61)

0 0

For the upper bound, notice that the rectangle in R? defined by

R:={(t,y)[/logz <t < \flogz +1,0<y <z}

clearly has an area of x and falls under the curve y = et”. Then since for !’ > 0 the area of

R is no more than fov logzt1 42 dt, proving the upper bound.

For the lower bound, for all integers 0 < ¢ < y/logx — 1 define the regions
Ri={(ty):i—1<t<i0<y<e’}

Now let

)
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and notice that the area of S is at least f Viegz=1 2 14 Also, the area of

Viegz—1
Mea() = S < (iogs - nelvFEY V0D
eViogz

where the last inequality holds since 2 > e. This completes the lower bound and proves (61).

Recall that o = folp(x) 3% dt by the definition of ¥(z). Since for ¢ > 0 we have 3 > 0, and
for a,b >0 we have a < b iff [} Sdt < fb 3t dt. Note that

log(v3z) 4 1

—= log(v/3z)+1
/ ’ v S dt = t / e’ du
0 \/g 0

/log( i log(v/3z) +-L
/ 3 f 31:2 dt

Using (61), we obtain

S

2
SCdt <z <
0 0

(62)

The bounds on ¥(z) follow from (62).

2. For (13) note W(z) is strictly increasing for > 0 and W/(x) is strictly decreasing for z > 0
since ¥/(x) = exp(—3¥%(z)). Together with ¥/(0) = 1 this gives that ¢; < 1 for all i, and
notice that since ¢; = exp(—3¥2(ic)) then we also get that ¢; > 0.

3. For (14) the first part follows trivially from the definition of ;.

For the second part of this statement, note that since ¥(z) is strictly increasing and ¥'(x) is
strictly decreasing for x > 0. Therefore, for all j < 1,

oV (jo) > U((j + 1)o) — U(jo) > oW ((j + 1)o)

Then notice that ¥(io) = 237%(\11((‘7 + 1)o) — ¥(jo)) since ¥(0) = 0, and also recall that
=0+ Z;;%] oqj =0+ Z] 4oV (jo). Thus we get

m; — W(io) o+ Z oW (jo) | — ¥(io)
i—1 i—1
>0+ [ S WG +1)0) — W) | - | WG +1)o) ~ (o) | =0
j=0 Jj=0
Similarly
i1
i — W(io) = | o+ 0¥ (0) — oV (io) + ZJ\I//((j + o) | —¥(io) <20

=0

where the last inequality follows since o0’(0) = o and ¥'(io) > 0.
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4. Turning to (15), by the definition of 7; we have that m; < 7y for all 0 < ¢ < I. Then

log(v/3(T [Blog N +1
™ < Og(\g( U>)+1§ Plog N +1 Ogg L clogN =012,

5. Next for (16) we start by noting that for all z > 0, e 372 < % and e 3%z < % Indeed,
notice that for x > 1 322 > 21nx+ln%, for % <z<l1, -32%2< ln% and Inz < 0, and for
O<z < %, Inx < ln% and —32? < 0. Then applying this inequality with x = ¥(ic) together

with (14) gives

qm? < e—3¥2(i0) (U(ic) + 20)* = e—3¥2(i0) (¥2(io) + 4¥(io)o + 40°) < 1.

6. To prove (17) we will use the fact that for some s € [io, (i + 1)o],

1o e " \I’/H(S) 2
V(i 4 1)0) = W(io) + ¥"(i0)(0) + (o)
From the definition of ¥(x), it can easily be seen that ¥”(ic) = —6(¥'(i0))?¥(io) and

V" (io) = —6(V'(i0))3(1 + 2¥2(ig)). Recalling ¢; = ¥'(ic) and ¥(io) € [m; — 20, T; + 20], we
obtain

Gir1 — i € [~60¢2 (m; +20) — 302q3 (14 2(m; + 20)?), —60¢2 (m; — 20) — 3023 (1 +2(m; — 20)?)]

Now since 60¢?(20)+302¢} (1+2(m+20)?) < 16022, we obtain |(g;+1—¢;) +60¢>m;| < 1602¢?.

7. To prove (18) note that since for x > e we have that M - % <U(z) < log(g/ga:) + %
and ¥'(x) = exp(—3¥2%(2)), ¥'(z) = fel;%(l). Then using the fact that I = [N”] and since

N—B+o(1)
ev3

U’(x) is strictly decreasing we have ¢; > ¢y for all 0 <7 < I, and ¢; >
8. The inequality (19) follows from

Pei < 1— (1 —p)VNGTHVO) < 60g,(m; + /o) < gs.

9. Finally for (20), note that since ¥ is increasing and ¥’ is decreasing
¢ — i1l <o max [U7(s)|
s€lio,(i+1)0]

< max 60 (¥ (s))2 U(s
T s€lio,(i+1)0] ( ( )) ( )

< 60(¥(i0))*W((i 4+ 1)0)
< 60¢; (M1 — 0)
< 60giT;.

Then using g;, ¢;m; < 1 bounds the bounds ¢; —g;+1 < 60¢; and ¢; — gi+1 < 60¢;7;, and for the

s < e < 2,50 ¢; < 2giy1. Then ¢; — gip1 < 120Gi41.

last bound, notice these imply that
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