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Abstract

We consider a generalization of Turdn’s theorem for edge-colored graphs. Suppose that R
(red) and B (blue) are graphs on the same vertex set of size n. We conjecture that if R and B
each have more than (1 — 1/k)n?/2 edges, and K is a (k + 1)-clique whose edges are arbitrarily
colored with red and blue, then RU B contains a colored copy of K, for all k + 1 ¢ {4,6,8}. If
k+1 € {4,6,8}, then the same conclusion holds except for one specific edge-coloring of Kjy1.

We prove this conjecture for all 2-edge-colorings of K1 that contain a monochromatic Kj.
We also prove the conjecture for k + 1 € {3,4,5}.

1 Introduction

Let F' be a fixed graph. Classical extremal graph theory asks for the maximum number of edges
in an n vertex graph that contains no copy of F' as a (not necessarily induced) subgraph. This
number is denoted ex(n, F'). The fundamental result is due to Turdn, who determined ex(n, F')
precisely when F' is a complete graph. The subject has developed primarily via generalizations
and extensions of Turdn’s theorem. These generalizations include proving Turan’s theorem for
random graphs [9, 11]; replacing density conditions with spectral properties [3]; strengthening the
conclusion to an appropriate property about neighborhoods [1, 5]; extending Turén’s theorem from
graphs to hypergraphs [10], edge-colored graphs [7, 8|, weighted graphs or multigraphs [2, 6].

One of these generalizations is due to Fiiredi and Kiindgen [6], who considered the asymptotic
maximum number of edges that a multigraph can have without containing v vertices spanning e
edges, for all values of v and e. We consider a refinement of this problem where the maximum

multiplicity is 2 and e = (3).
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Suppose that we have a red graph R and a blue graph B both on the same vertex set of size n. We
can view the union G = R U B as a multigraph with maximum multiplicity 2. Pairs of vertices of
G come in four types: empty, red, blue, or double. Denote the number of edges in a graph H by
|H|. The general question one can consider is:

Problem. Let F be a fized (simple) graph all of whose edges have been colored either red or blue.
What is the minimum m, such that if both |R| and |B| are at least m+ 1, then G = RU B contains
a colored copy of F'?

In the case that F' is monochromatic, we clearly have m = ex(n, F'). The phenomenon we study
here is that for certain F', the threshold m is the same no matter how the edges of F' are colored.

Definition 1 A simple graph F is visible for n if the following holds. Suppose that a red graph
R and a blue graph B on the same verter set of size n satisfy min{|R)|,|B|} > ex(n,F'). Then no
matter how the edges of F' are colored red and blue, the union RU B contains such a colored copy
of F.

The first author [4] recently showed that a matching of e edges is visible. Note that there are only
e 4+ 1 possible ways to color such a matching. In general however, the number of nonisomorphic
2-edge-colorings of F' can be exponentially large in the order of F', so one might think that dense
graphs F are less likely to be visible. In this paper, we consider the case when F' is a clique. Our
results and conjectures suggest that, apart from sporadic exceptions, this intuition is incorrect, and
that cliques are indeed visible. Recall that Turdn’s theorem states that ex(n, Kiy1) = |T(n, k)|,
where T'(n, k) is the complete k-partite graph on n vertices with almost equal part sizes. When &
divides n, we have |T'(n, k)| = (1 — 1/k)n?/2.

Our first result, which we believe is of independent interest, determines the correct threshold for m
that guarantees several 2-edge-colored copies of Kj11, namely those where there is a vertex whose
neighborhood contains a red or blue k-clique The key to the proof is that we prove a stronger
statement that facilitates induction.

Theorem 2 Let n,k > 0. Let R (red) and B (blue) be graphs on the same vertex set of size n,
with min{|R|, |B|} > (1 — 1/k)n?/2. Then RU B contains all 2-edge-colored (k + 1)-cliques that
have a monochromatic k-clique.

Note that Turdn’s theorem immediately follows from Theorem 2 (when k|n) by letting R = B,
since K U {v} is a (k + 1)-clique. None of the known proofs of Turdn’s theorem seem to extend to
Theorem 2. In fact, our proof of Theorem 2 provides a new proof of Turdn’s theorem. It is curious
that in order to prove Theorem 2, which probably has only one extremal example, we actually
prove a stronger result (Theorem 5 in Section 2) which has exponentially many extremal examples.

There is one obvious example of large graphs R and B whose union does not contain certain 2-
edge-colored (k + 1)-cliques, namely let R = B = T'(n, k). In fact, here R U B contains no Ky



at all. When k + 1 is even however, there is a more subtle example that avoids only a particular
colored Kj1. Let k+ 1 = 2[. Partition a vertex set V of size n into VUV U...UV,. Let R
consist of all edges within V; and all edges between two different parts V),, V;. Let B consist of all
edges within V; for each ¢ = 2,...,[, and all edges between two different parts V},,V,. Thus the
edges of the complete [-partite graph with parts Vi,..., V), are double, and all other pairs of V
are either red or blue. Let n; = |V;|. Now suppose that a € (0,1) is fixed, n is large, ny ~ an
and n; ~ (1 —a)/(l = 1))n for each i = 2,...,1. The choice of o that maximizes min{|R|,|B|} is
a=1/2forl=2and a = (vI—1—1)/(l —2) for [ > 2. For this choice, we have

33) if1 =2

|R| ~ |B| ~ { (1 _ l—%/ﬁ) (n) 1> 9. (*)

-2)7 ) \2

Now consider a Koy comprising two vertex disjoint copies of Kj, each of whose edges are all red,
with the 12 edges between these two copies all blue. Each red copy of K; that appears within the
construction above must use a vertex of V1, since the induced subgraph R[V —V;] is (I — 1)-partite.
But all edges within V; are red, so such a colored K9; cannot appear within the construction.

Clearly, a symmetrical construction can be obtained by interchanging the red and blue edges. We
call such a 2-edge-colored Ko; a 2[-biclique.

If we let R =B =T(n,k) =T(n,2l — 1), then |R| = |B| ~ (1 —1/(21 — 1))(;). Asymptotically for
fixed k, (%) is larger than this when | = 2,3, 4, equal when [ = 5, and smaller when [ > 5. This
leads us to our main conjecture which, if true, is sharp.

Conjecture 3 Let k > 2 be fized and n > k. Suppose that R (red) and B (blue) are n-vertex
graphs on the same vertex set, K is a (k + 1)-clique whose edges are colored red and blue in some
fashion, and RU B contains no copy of K. Then

(1-1/k) ”72 if k+1¢{4,6,8} or K is not a (k+ 1)-biclique.
?sz_Q" if K is a 4-biclique.

(2v2=2+0(1))(5) if K is a 6-biclique.

(V3/24 0(1))(3) if K is an 8-biclique.

min{|R[, [B[} <

Thus in particular, Ky is visible for n when kln and k+ 1 & {4, 6, 8}.

We verify Conjecture 3 for the first few cases. It is relatively straightforward to do this for £+ 1 €
{3,4}. Our main result on Conjecture 3 is

Theorem 4 Conjecture 8 holds for k+ 1 =5.

We prove Theorem 2 in Section 2, the cases k + 1 € {3,4} of Conjecture 3 in Section 3, and the
case k 4+ 1 =15 in Section 4. In Section 5 we give some open problems and further generalizations.



The degree of a vertex v in a graph G is denoted by degg(v). Given a vertex subset S in a graph
G, and a vertex v ¢ S, define degg (v, .S) to be the number of edges from v to S. G[S] denotes the
subgraph of G induced by the set of vertices S.

2 Red clique in a mixed neighborhood

In this section we prove Theorem 2. In attempting to prove it by induction, we were led to the
following result, which is quite a bit stronger, and also needed to make the induction work.

Theorem 5 Let n,k > 0 and i € [k]. Let R (red) and B (blue) be graphs on the same vertex set
of size n. Suppose that |B| + (k — 1)|R| > (k — 1)n?/2. Then there is a red cliqgue K of order k,
and a vertex v disjoint from K that is joined to i vertices of K by blue edges, and to the remaining
k — i vertices of K by red edges.

Proof: We proceed by induction on n. Let G = RU B, and define the weight w(G) of G to be
B + (k= D)|R|.

The result holds vacuously for n < k, since in this case, w(G) < k(3) < (k — 1)n?/2. So suppose
that n > k, and the result holds for smaller n.

Define F} to be a red clique with ¢ vertices together with any blue graph (on the same ¢ vertices)
with maximum degree k — 1. So F} has (5) red edges and at most (k — 1)¢/2 blue edges, i.e. there

are at most (k — 1)t/2 double edges in F; and the rest are red.

Suppose for contradiction, that G does not contain a copy of the required configuration. We will
then show that G is an induced F,,. Since w(G) = w(F,) = (k—1)n/2+ (k—1)(5) = (k — 1)n?/2,
this gives a contradiction. We will show how to find an F;y; once we have an Fj. Clearly we have
Fy. Now suppose we have an F; with vertex set X. By induction, w(G — X) < (k — 1)(n —t)?/2.
Since w(F}) < (k — 1)t/2 + (k — 1)(3), we conclude that

Z degg(v, X) + (k — 1)degp(v, X) = w(G) — w(G — X) — w(F;) > (k — 1)t(n —t).
veV-X

Hence, there is a vertex v € V — X with degg(v, X) + (k — 1)degg(v, X) > (k — 1)t. Suppose that
v has t — j red edges to F; for some j > 0. Then v has at least (k — 1)j + 1 blue edges to Fj.

Case 1: j > 0. The number of double edges from v to F; is at least
t—)+((k-1j+1)—t=(k—2)j+1>k—1

The number of blue edges from v to F; is at least k. Consequently, we may choose k edges from
v to I}, of which k — 1 are double and the last is blue or double. The other endpoints of these k
edges contain a red Ky, so we have the desired colored configuration.



Case 2: j = 0. In this case v has t (i.e. all) red edges to F;. Now the induced subgraph R[X U {v}]
is a complete (red) graph. If any vertex in X U {v} has blue degree at least k in G[X U {v}], then
G contains the required colored configuration. Otherwise, G[XU{v}] is a copy of Fi1, as desired. [J

Theorem 5 is sharp, in fact there are many examples where |B| + (k — 1)|R| = (k — 1)n?/2 and
there is no red k-clique within a blue neighborhood.

e Let R = K,, and B be any (k — 1)-regular graph; this gives exponentially many (in n) extremal
examples.

e When k divides n, set R = B = T'(n, k). This also yields Turdn’s theorem when & divides n.

We note that Theorem 5 proves Conjecture 3 for a non-monochromatic 2-edge-colored Ky that
contains a monochromatic Ky, and Turdn’s theorem proves it when K}, is monochromatic.

3 Triangles and Tetrahedra

In this section we prove Conjecture 3 for k + 1 € {3,4}. The case k + 1 = 3 follows immediately
from Theorem 2 (there are also more direct ways of proving this).

Proof of Conjecture 3 for k+ 1 € {3,4}.

e k+1 = 3: Suppose that we are given R and B, each with more than n?/4 edges. Then by Turdn’s
theorem for triangles (i.e., Mantel’s theorem), we are guaranteed both a blue triangle and a red
triangle. By symmetry, it therefore suffices to find a triangle with one blue and two red edges. This
follows directly from Theorem 2.

e k+1 =4 and K is not a 4-biclique: Suppose that we are given graphs R and B, each with more
than n?/3 edges. If K is monochromatic, then the result follows from Turdn’s theorem, considering
only the red or blue edges in G. If K contains a monochromatic triangle, then Theorem 5 implies
that G contains K.

The only 2-edge-colorings of K, that do not contain a monochromatic triangle are a 4-biclique and
a 2-edge-coloring in which the red and blue edges both induce a path of length three.

We claim that if |R| + |B| > (2/3)n?, then G = R U B contains a 2-edge-colored K, in which the
red and blue edges both induce paths of length three. We prove this by induction.

The statement is vacuously true for n < 4, so suppose n > 4 and the statement is true for all graphs
with fewer vertices.

Since |R N B| > 0, there is an edge zy in RN B. We may assume |G — {z,y}| < (2/3)(n — 2)?,
otherwise we can apply induction. Consequently, the number of edges joining {z,y} to G — {z,y}
is more than (8n — 14)/3 > 2(n — 2). Therefore there is a vertex z in G — {x,y} such that



dega(z, {z,y}) > 3 and |G[{x,y, z}]| > 5. Again, by induction, |G — {z,y,z}| < (2/3)(n — 3)%,
which implies there are more than 4n — 12 edges joining {x,y, z} to G — {x,y, z}. This implies that
there is a vertex w in G — {z,y, 2z} such that degg(w,{z,y,2}) > 5. Then |G[{z,y,z,w}]| > 10
and there is at least one edge between every pair of vertices in {z,y,z,w}. It is easy to see, by
a short case analysis, that G[{xz,y, z, w}] contains a 2-edge-colored K, in which the red and blue
edges both induce a path of length three.

e k+1 =4 and K is a 4-biclique: Suppose that we are given R and B, each with more than
(3n? — 2n)/8 edges and n > 4. Consider the multigraph G = RU B with |G| > (3n? — 2n)/4. Tt
suffices to show that G contains 4 vertices that induce a subgraph with at least 11 edges. This
configuration obviously contains all non-monochromatic Ky’s, in particular the 4-biclique, and this
will complete the proof.

We will prove this by induction on n. When n = 4, both R and B are complete graphs, and when
n = 5, both miss at most one edge, so we can clearly pick a 4-vertex subgraph with at least 11
edges of G. When n = 6, both have at least 13 edges, and a short case analysis shows that again
we can pick the required 4-vertex subgraph. We may therefore assume that n > 7 and the result
holds for n — 3.

Clearly [RNB| > |G|— (3) > n?/4, so by Turén’s theorem, we conclude that G contains a set T of 3
vertices such that |G[T]| = 6. By induction, we may assume that |G —T| < (3(n—3)?—2(n—3))/4.
Consequently, the number of edges of G between T and G — T' is more than (18n — 33)/4. This is
greater than 4(n — 3), so there is a vertex v ¢ T such that degg(v,T) > 5. Then G[T U {v}] is the
required 4-vertex subgraph. l

4 All five point configurations

In this section, we prove Theorem 4.

We first note that for a monochromatic Ky the result follows directly from Turan’s theorem. Fur-
ther, if the 2-edge-coloring of K5 is not monochromatic but contains a monochromatic Ky, the
result follows from the general Theorem 5. We only need to consider 2-edge-colorings of K5 that
do not contain a monochromatic K4. We call such a 2-edge-colored K5 a good Ks.

In order to prove the theorem, we prove a slightly stronger statement.

Theorem 6 Let R and B be graphs on a set V of vertices of size n. If |R| + |B| > (3/4)n?, then
the multigraph G = RU B contains every good Ks.

For convenience, we will consider the graph G = R U B to be a simple graph whose edges are
colored either red, blue or double (the double edges are precisely the edges in R N B). Define



w(G) = |R| 4 | B| to be the weight of the graph G. If X and Y are disjoint subsets of vertices,
define

w(X,Y) =) degg(v,Y)
veX

to be the number of edges in G that join a vertex in X to a vertex in Y.

We say that a colored graph G contains a colored graph H, if there is an isomorphism from H to
a subgraph H' of G, such that every double edge of H corresponds to a double edge of H’, while
every red(blue) edge of H corresponds to a red(blue) or double edge of H'.

We prove the theorem by contradiction. Suppose there exists a colored graph G on a set V of
n vertices with w(G) > (3/4)n? that does not contain some good K5. Choose G such that n is
minimum. Since w(G) < n(n —1), n > 5. We will show that G must contain certain subgraphs
that together imply that G contains all good K35, a contradiction.

Lemma 7 For every nonempty proper subset of vertices X C V,

w(X,V — X) > (3/4)(2n|X| - |X[*) — w(G[X]).
In particular, for every vertex v, dega(v) > (3/4)(2n — 1).
Proof: For every nonempty proper subset of vertices X, we have w(G[X]) < (3/4)|X|?, otherwise

G[X] is a counterexample with fewer vertices than G. Since w(X,V — X) = w(G) — w(G[X]) —
w(G[V — X]), the Lemma follows. O

Lemma 8 G contains a triangle with all edges colored double.

Proof: Since |R|+ |B| > (3/4)n?, |RN B| > n?/4. The Lemma follows by Turdn’s theorem.  [J

Lemma 9 G does not contain a 4-clique with all edges colored double.

Proof: Suppose for contradiction, that X is a set of 4 vertices such that G[X] is a clique with all
edges colored double. By Lemma 7,

WX,V — X) > (3/4)(8n — 16) — 12 = 6(n — 4).

Therefore there is a vertex v € V — X such that degg (v, X) > 7. This implies that G[X U{v}] is a
5-clique with at least 9 double edges. Such a 5-clique contains all good K5, contradicting the fact
that G is a counterexample. O



Lemma 10 G contains a 4-clique with 5 edges colored double and one edge that may be red or
blue.

Proof: By Lemma 8, there is a set X of 3 vertices in G such that G[X] is a clique with all edges
colored double. By Lemma 7,

w(X,V — X) > (3/4)(6n—9) — 6 = (18n — 51)/4 > 4(n — 3).

Therefore there exists a vertex v € V' — X such that degg(v, X) > 5. Hence G[X U{v}] is a 4-clique
with at least 5 double edges. By Lemma 9, there are exactly 5 double edges and the remaining
edge may be red or blue. U

By Lemma 10, we may assume, without loss of generality, that G contains a 4-clique with 5 double
and 1 red edge. The argument is symmetrical if it contains a 4-clique with 5 double and 1 blue
edge.

Lemma 11 G does not contain a 5-clique with 8 double, 1 red and 1 blue edge.

Proof: It is easy to see that any good K5 contains a red and blue edge that are adjacent, and a red
and blue edge that are disjoint. Consequently, such a 5-clique contains any good K3, contradicting
the fact that G is a counterexample. O

Lemma 12 G contains a 5-clique with 8 double edges and 2 disjoint red edges.

Proof: By Lemma 10 and our assumption, G contains a 4-clique H with 5 double and 1 red edge.
Let X be the vertex set of H. By Lemma 7,

w(X,V —X) > (3/4)(8n — 16) — 11 > 6(n — 4).
Hence, there is a vertex v € V' — X such that degg (v, X) > 7. Thus G[X U {v}] is a 5-clique with
at least 8 double edges.

If it contains more than 8 double edges, then it contains all good K35, a contradiction. Similarly, if
the two edges that are not colored double are adjacent, then deleting their common endpoint gives
a 4-clique with all edges double, contradicting Lemma 9. Since at least one of the edges is red,
Lemma 11 implies that both the edges must be red. U

As a consequence of Lemma 12, G contains all good K5 that contain two disjoint red edges. The
only good K5 that does not contain two disjoint red edges is a 2-edge-coloring of K5 in which the
red edges induce a triangle. We call such a 2-edge-colored K5 a special Ks.

It remains to show that G contains a special K5.



Lemma 13 G contains a 6-clique with 11 double edges, 3 pairwise disjoint red edges, and one edge
that may be red, blue or double.

Proof: By Lemma 12, G contains a 5-clique H with 8 double and 2 disjoint red edges. Let
X = {v1,v2,v3,v4,v5} be the vertex set of H and vjva, v3vs be the red edges in H. Note that since
w(H) =18 < 75/4,n > 5 and X is a proper subset of V.

Suppose that there exists a vertex v € V — X such that degg(v, X) > 9. If the edge vvs is
a double edge, then either G[{v,vi,vs3,vs5}] or G[{v,v2,vs,v5}] is a 4-clique with all edges double,
contradicting Lemma 9. If the edge vvs is blue, then G[{v, v1,v2,v3,v5}] is a 5-clique with 8 double,
1 red and 1 blue edge, contradicting Lemma 11. Therefore the edge vvs must be red and G[X U{v}]
is a 6-clique with 12 double and 3 disjoint red edges.

Suppose that for every vertex v € V — X, degg(v, X) < 8. We claim that there exists a vertex
v € V — X such that degg(v, X) = 8 and v is adjacent to vs in G.

Let A={veV —X :degg(v,X) =8} and let |A| = a. By Lemma 7,
w(X,V — X) > (3/4)(10n — 25) — 18 = (30n — 147) /4.

However, w(X,V — X) <8a+7(n—5—a) = Tn+a—35. This implies a > (2n—7)/4. If no vertex
in A is adjacent to vs, then degg(vs) < 2(n—1—a). By Lemma 7, degg(vs) > (3/4)(2n—1), which
implies a < (2n — 5)/8, a contradiction.

Let v € V — X be a vertex such that degg (v, X) = 8 and v is adjacent to vs.

First, suppose that the edge vvs is double. If vv;, i € {1,2} and vv;, j € {3,4} are double edges,
then G[{v,v;,v;,vs}] is a 4-clique with all edges double. We may therefore assume, without loss
of generality, that the edges vvs and vvy are not double, which implies the edges vv; and vvg are
double. If any one of the edges vvs, vvy is blue, say vvs, then G[{v,v1, v, v3, v5}] is a 5-clique with
8 double, 1 red and 1 blue edge, contradicting Lemma 11. If both the edges vvs and vvy are red,
then G[{v,v1,vs,v4,v5}] is a 5-clique that contains a special K5. Together with Lemma 12, this
implies G' contains all good K.

Next, suppose that the edge vvs is blue. Without loss of generality, we may assume the edge
vvy is not double. Then G[{v,v1,v2,vs,v5}] is a 5-clique with 8 double, 1 red and 1 blue edge,
contradicting Lemma 11.

Finally, if the edge vvs is red, then G[X U {v}] is a 6-clique with 11 double edges, 3 disjoint red
edges and one edge that may be red or blue. This proves the Lemma. U

Lemma 14 G contains a 7-clique with 15 double edges and 6 red edges, such that the subgraph
induced by the red edges has two components, a path of length one and a cycle of length 5.



Proof: By Lemma 13, G contains a 6-clique H with 11 double edges, 3 disjoint red edges and one
edge that may be red, blue or double. Let X = {v1,v2,v3,v4,v5,v6} be the vertex set of H. Let
V1V2, U3V4, U5V be the 3 disjoint red edges in H and let v4vg be the edge that may be red, blue or
double. Note that since w(H) < 27, X is a proper subset of V.

By Lemma 7,
w(X,V —X) > (3/4)(12n — 36) — 27 = 9n — 54.

This implies that there is a vertex v € V' — X such that degg(v, X) > 10.

If there are 5 double edges joining v to H, then either G[{v,vi,v3,v6}] or G[{v,va,v4,v5}] is a
4-clique with all edges double, contradicting Lemma 9. Therefore v is joined to H by 4 double
edges and two edges that may be red or blue. Let A = {u € X : wv is a double edge}. The
subgraph H[A] must contain two disjoint red edges, otherwise G contains either a 4-clique with all
edges double or a 5-clique with 8 double, one red and one blue edge. This contradicts Lemma 9 or
Lemma 11.

Suppose A = {v1, vy, v3,v4}. If any of the edges vvs, vvg is blue, say vvg, then G[{v, v1, va, v3,v6}]
is a b-clique with 8 double, one red and one blue edge, a contradiction. If both vvs and vvg are red,
then G[{v,v1,vs, vs,v6}] is a 5-clique that contains a special K5. A symmetrical argument holds if
A = {v1,v9,v5,v6} or A = {v3,v4,v5,06}.

The only other possibility is that A = {v1,v2,v4,v6}, in which case, the edge vqvg must be red. If
any one of the edges vus, vvs is blue, say vvs, then G[{v, v1, va, v3,v6}] is a 5-clique with 8 double,
one red and one blue edge. Therefore, both vvs and vus must be red and G[X U {v}] is a 7-clique
with 15 double edges and 6 red edges, such that the subgraph induced by the red edges has two
components, a path of length one and a cycle of length 5. This completes the proof of the Lemma. [

Lemma 15 G contains a special K.

Proof: By Lemma 14, G contains a 7-clique H with 15 double edges and 6 red edges such that
the subgraph induced by the red edges has two components, a path of length one and a cycle of
length 5. Let X = {v1,v2,...,v7} be the vertex set of H. Since w(H) = 36 < (3/4)|X|?, X is a
proper subset of V. Let vivo be the path of length one and vs, v4, vs, vg, v7 the cycle of length 5
containing the red edges.

Suppose that there exists a vertex v € V — X and at least 5 double edges joining v to H. If any
one of the edges vvy, vuy is double, say vvy, then at least three of the edges vv;, i € {3,4,5,6,7}
are double, and we can find two vertices v;, vy, € {v3,v4,v5,v6,v7} such that G[{v,v1,v;,v}] is a
4-clique with all edges double.

We may assume that all the edges vv;, i € {3,4,5,6,7} are double. If any of the edges vvy, vvg is
blue, say vvy, then G[{v,v1,v3,v4,v6}] is a 5-clique with 8 double, one red and one blue edge. If
both vv; and vve are red, then G[{v,v1,v2,vs,v5}] contains a special K.
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We may therefore assume that for every vertex v € V — X that is joined to H by 5 double edges,
degg (v, {vy,v2}) < 1. We claim that there exists a vertex v € V' — X such that degg(v, X) = 11
and v is joined to H by four double edges and three edges that may be red or blue.

Let A={ueV —X :degg(u, X) =11} and let |A| = a. By Lemma 7,
w(X,V —X) > (3/4)(14n — 49) — 36 = (42n — 291) /4.

However, w(X,V — X) < 1la+ 10(n — 7 — a), which implies that a > (2n — 11)/4. If every vertex
in A is joined to H by 5 double edges, then degg(v, {vi,v2}) < 1 for all v € A. This implies that
dega(v1)+degg(v2) < a+4(n — 2 —a) + 2. By Lemma 7, degg(vi)+dega(v2) > (3/2)(2n — 1).
Consequently, a < (2n —9)/6, which is a contradiction.

Hence there is a vertex v € A C V — X that is joined to H by four double edges and three edges
that may be red or blue. Let Y = {u € X : wv is a double edge}. The subgraph H[Y] must contain
two disjoint red edges otherwise H[Y U {v}]| contains a 4-clique with all edges double.

Suppose {v1,v2} C Y. We may assume, without loss of generality, that vs and v4 are the other
vertices in Y. If any one of the edges vvs, vug is blue, say vvs, then G[{v, v1, va, v3,v5}] is a 5-clique
with 8 double, one red and one blue edge, a contradiction. If both vvs and vvg are red, then
G[{v, v1,v3,v5,v6}] contains a special Kj.

The only other possibility is that Y contains four vertices from the red five cycle in H. With-
out loss of generality, Y = {vs,vq,v5,v6}. If any of the edges vvy, vvy is blue, say vvy, then
G[{v,v1,v3,v4,v6}] is a 5-clique with 8 double, one red and one blue edge. If both the edges vv;
and vvy are red, then G[{v, v1, ve, v3,v5}| contains a special Ks.

This completes the proof of the Lemma. U

Theorem 6 now follows, since Lemmas 12 and 15 imply that G contains all good K35, contradicting
the fact that G is a counterexample.

5 Open problems

We conclude by mentioning some further possible extensions. The main question to be settled is,
of course, Conjecture 3. There is a natural generalization of Theorem 2, that we believe would be
necessary for proving Conjecture 3 in general.

Conjecture 16 Fiz numbers r,b > 0. Let R (red) and B (blue) be graphs on the same set of
vertices of size n. If b|B| + (r — 1)|R| > (b+r — 2)n?/2, then the multigraph G = RU B contains
a red cligue K of order r and a blue clique L of order b disjoint from it, such that every vertex in
K is joined to all vertices in L by blue edges.
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Theorem 5 proves Conjecture 16 for the case b = 1.

It is of course possible to consider similar questions with more than two colors. The simplest case
here is a triangle with edges of distinct colors.

Problem. Let R (red), B (blue) and G (green) be graphs on the same vertex set of size n. If
min{|R|, |B|,|G|} > n?/4, does RU B UG contain a multicolored triangle?

In general, we believe it may be possible to generalize many classical extremal graph theory results,
including minimum degree conditions, in this way. For example, it would be very interesting if
there was some analogue of the Erdés-Simonovits-Stone theorem in this context.
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