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SUMMARY

This thesis presents rigorous analytical and numerical results necessary for the nu-

merical analysis of a class of High–Order Perturbation of Surfaces/Asymptotic Waveform

Evaluation (HOPS/AWE) methods in a laterally periodic two–layer structure. Numer-

ical simulations of scattering returns from periodic diffraction gratings are crucial to a

large number of applications in physics and engineering, and the work presented here

examines methods for numerically modeling scattering returns from such structures.

The strategies presented in this thesis represent the results of our efforts towards the

dual goals of 1) Proving a theorem on the existence and uniqueness of solutions to a

system of partial differential equations which model the interaction of linear waves in

periodic layered media and 2) Developing a numerical algorithm to record scattered

energy through a novel interfacial method that is perturbative in nature.

The first of our goals is established through classical methods based on the theory

of Sobolev spaces and regular perturbation theory. The proof involves several rigor-

ous analyses, and we formulate the scattering problem in terms of Dirichlet–Neumann

Operators which are computed using the Transformed Field Expansion (TFE) method-

ology. A novelty of our approach is the joint analyticity of solutions with respect to

both geometry and frequency perturbations. The theory itself is then validated through

our second goal which is the development of a joint HOPS/AWE algorithm. For this,

we develop a special class of interfacial numerical algorithms that are well–suited to

periodic diffraction problems. Our algorithm calculates the Reflectivity Map, R, which

measures the response (reflected energy) of a periodically corrugated grating structure

as a function of its illumination frequency. Moreover, we present a series of challenging

and physically relevant numerical experiments to validate the scattering results expected

by our algorithm.

Forthcoming research will focus on extending the proof of analyticity to additional

parameters relevant to the geometry of the structure, increasing the complexity of the

structure through generalizing our results to any finite number of layered interfaces, im-

plementing parallel programming techniques to handle multilayered surfaces, and reduc-

ing the computational cost of our HOPS/AWE algorithm. The analysis of multilayered

periodic structures with numerous perturbation parameters will be an area of substantial

interest for practitioners in the electromagnetic and engineering communities.

xiv



CHAPTER 1

INTRODUCTION

The theory of waves and wave propagation in periodic media has influenced many

fields in the physical sciences, dating back to the influential work of Lord Rayleigh. The

advancement of information and communication technologies was made possible by the

use of various manifestations of waves, most notably electromagnetic waves to transmit

information around the world and electrons to process information in computers. The

role of wave phenomena will continue to grow in the future, especially in emerging fields

of science and technology such as cryptography, medical imaging, and quantum comput-

ing. Because of the increased availability of parallel processing and high-performance

computing, computer simulation has become an essential component of wave simulation,

supplementing both theory and experiment. As a result, this thesis aims to extend a

class of fast and robust numerical methods (known as HOPS) to simulate certain wave

phenomena in a regime that is characterized by a periodic structure.

The remainder of this introductory chapter will give a brief history of the field of

wave scattering and discuss early achievements of scientists and practitioners. The

mathematical notation used in later sections will be introduced alongside the geome-

try of a two–layer periodic structure. We will also introduce the Rayleigh expansions,

electromagnetic waves, TE polarization, TM polarization, and discuss the motivation

behind our High–Order Perturbation of Surfaces (HOPS) schemes.

1.1 History

The scattering of acoustic and electromagnetic waves by rough interfaces has been the

subject of considerable study for more than a century (1). Lord Rayleigh first in-

vestigated this problem in 1881 (2) and provided the foundation on which almost all

subsequent work is based. It is possible to gain a good understanding of the mechanics

of this field of scientific study and its application in light scattering by reading the works

of van de Hülst (1957) (3), Twersky (1964) (4), Kerker (1969) (5), Petit (1980) (6), and

Wilcox (1984) (7). For the interested reader, we recommend the Habilitationsschrift of

T. Arens (2009) (8) as a definitive reference for periodic layered media problems and for

the the state-of-the-art analysis of solutions to the Helmholtz and Maxwell equations in

two and three dimensions.

Scattering is a process that alters the direction of light and is commonly associated

with light’s interaction with small particles (9). Light scatters and travels in many

directions other than the propagating direction as a result of this. Light is scattered by

reflection and refraction in relatively large particles, such as pigments with dimensions

greater than 2.0 µm. Diffraction occurs when light is scattered by relatively small

1
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particles with dimensions less than about 0.3 µm. When the sun is high in the sky

during the day, the sky appears blue because blue light is scattered more effectively by

very small particles in the atmosphere than light of longer wavelengths. When the sun

is low on the horizon at sunrise and sunset, we see more of the non-scattered light, and

the sky appears red.

The majority of the objects we see are visible due to light scattering from their

surfaces. This is, after all, our fundamental physical observation method (5). Light

scattering is determined by the wavelength or frequency of the light being scattered.

Because visible light has a wavelength on the order of a micron, objects much smaller

than this cannot be seen, even with a microscope. Lord Rayleigh was among the first to

explain light scattering by very small particles. Rayleigh’s observations show that the

intensity of light scattered varies (9):

• Directly based on the intensity of incident light.

• Directly based on the average volume of scattering particles.

Lord Rayleigh also discovered that light can scatter without the use of scattering par-

ticles. This is due to the fact that changes in refractive index at different parts of a

material can be sufficient to cause scattering. If a material is homogeneous, then the

composition of all infinitesimal volume elements is the same and optical properties which

define the material response to the incident radiation, such as transmissivity, reflectiv-

ity, and absorptivity are also the same. The aforementioned properties vary in different

directions in a heterogeneous material, resulting in light scattering. On a macroscopic

scale, optical properties vary over distances less than the wavelength of the incident

light, resulting in the scattering of energy away from the direction of propagation.

The result of Rayleigh’s observations that scattering depends on the wavelength

and, thus, the color of the light is now known as the Rayleigh scattering law (10; 11).

To answer the question: “Why is the sky blue in the afternoon and red at sunset or

sunrise?” one may observe that blue light has a wavelength of around 400 nanometers,

while red light has a wavelength of about 700 nanometers. The scattering law states

that the percentage of light that will be scattered is inversely proportional to the fourth

power of the wavelength. Therefore, blue light, which is at the short wavelength end of

the visible spectrum, will be scattered much more strongly than red light, which is at

the long wavelength end of the visible spectrum. The white light from the sun scatters

and splits into different components due to particles in our environment that are roughly

the same size as the wavelength of visible light. Because of their small size, oxygen and

nitrogen (the major components of our atmosphere) scatter violet and blue light. This

results in the blue color of the afternoon sky, since, in directions other than towards the

Sun, the observer sees predominantly scattered light. In contrast, the distance that light

must travel from the Sun to an observer is highest at sunrise and dusk. This signifies
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that a substantial proportion of blue and violet light has been scattered, resulting in

light that is predominantly of a longer wavelength and appears red to an observer.

(a) Blue Sky (Afternoon) (b) Red Sky (Dawn and Dusk)

Figure 1: Rayleigh scattering is responsible for the sky’s blue tint during the day and

the Sun’s reddening at sunset and sunrise.

Research in the twentieth century focused on the subject of scattering from particles.

In this, numerous authors contributed to the general theory of scattering by acoustic and

electromagnetic waves. L. Foldy was among the first to present a complete framework

(12) for the multiple scattering of a random distribution of particles. He considered

the multiple scattering of scalar waves by a random distribution of isotropic scatter-

ers through averaging a medium of uncorrelated, isotropic, point scatterers. M. Lax

then expanded Foldy’s work by including anisotropic scattering and pairwise correlation

between particles (13). V. Twersky later extended this work through investigating the

scattering of waves by multiple spheres and cylinders in a fluid, which would later lead to

research in the scattering of multiple dense objects (14; 15), grating scattering (16), and

the propagation of plane–compressible waves in fiber-reinforced composites (17; 18; 19).

In 1952, Twersky published a sequence of manuscripts (20; 21; 22) describing a solu-

tion to the problem of multiple scattering of radiation by an arbitrary configuration of

parallel cylinders. He developed a formal model in terms of cylindrical wave functions for

the scattering of an acoustic or electromagnetic wave by an array of parallel cylindrical

structures which takes into account all contributions to the excitation of one cylinder by

radiation scattered by the others. He then extended his solution to the case where all

axes of the cylinders lie in the same plane (23). In addition, Twersky introduced meth-

ods based on Green’s function (24) to describe the relationship between the scattered

amplitude of an infinite grating in terms of the scattered amplitude of a single isolated

cylinder. In 1961, Twersky found a method of representing the scattering coefficients

in terms of elementary functions based on Schlömilch series (25). Since then, numerous

studies have been conducted to confirm Twersky’s findings and to expand his analysis
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on cylindrical gratings (including the research on wave propagation by G. Brown in the

1980s (26; 27)).

Many other authors have contributed to the study of multiple scattering effects. J.

Keller investigated wave propagation in continuous media through use of stochastic lin-

ear differential equations (28) and by including terms up to the third order in a perturba-

tion expansion (29). U. Frisch then extended this work by developing a theory of multiple

scattering of waves by a continuous random medium through perturbation expansions

and approximation methods (30). Frisch applied the Feyman diagram method to iden-

tify the scattering interaction between the random surface and the random medium and

demonstrated how to obtain the exact solution of a scalar wave equation by the means

of functional space integration. P. Waterman and R. Truell created a rule (15) to relate

the scattered wave and exciting field by defining a linear scattering operator T in a

homogeneous isotropic medium governed by the Helmholtz equation. The application

of Waterman’s rule to scattering characteristics of particles is now known as T–matrix

formalism in the engineering literature. V. Varadan, V. Bringi, and Y. Ma (31; 32) then

considered vector electromagnetic waves in three–dimensions and investigated various

shapes and configurations of particles. In terms of quantum mechanical scattering, L.

Tsang, J. Kong, and T. Habashy applied the method of coherent potential (33; 34) to

the study of multiple scattering of electromagnetic waves by a random distribution of

discrete scatterers. They found that the approach of quasicrystalline approximation was

particularly effective in treating electromagnetic scattering by discrete scatterers and can

accurately calculate the effective propagation constants of the coherent wave. Further

research is being performed by numerous authors in both the applied mathematics and

engineering communities.

1.2 Motivation

The scattering of linear electromagnetic waves by a layered structure is a central model

in many problems of scientific and engineering interest. Examples arise in areas such as

geophysics (35; 36), imaging (37), materials science (38), nanoplasmonics (39; 40; 41),

and oceanography (42). In the case of nanoplasmonics, there are many topics of interest

such as extraordinary optical transmission (43), surface enhanced spectroscopy (44),

and surface plasmon resonance biosensing (45; 46) and (47; 48; 49; 50). In all of the

physical problems it is necessary to approximate scattering returns in a fast, robust, and

highly accurate fashion. This thesis will expand upon a novel HOPS algorithm (51; 52;

53) designed for the numerical simulation of the layered periodic media (diffraction or

scattering) problem.

A variety of classical algorithms have been used for simulation of this problem.

However, recent studies have demonstrated (54; 51; 55; 53) that volumetric approaches

(such as finite difference and finite/spectral element methods) are greatly disadvantaged
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when dealing with layered media problems because of the large number of unknowns.

Another natural candidate is an interfacial method based upon integral equations (IEs)

(56). There are, however, also difficulties associated with these, as discussed in (54; 51;

55; 53). In the past few years, a number of these have been addressed through various

techniques such as (i) the use of sophisticated quadrature rules to deliver high order

spectral accuracy, (ii) the design of preconditioned iterative solvers with appropriate

acceleration (57), and (iii) new tactics to avoid periodizing the Green function (58; 59;

60). Despite these alternatives (see, e.g., (61)), there are two properties that make these

strategies noncompetitive in our parametrized setting. These are:

[1] For configurations parameterized by a real value ε (in our scheme the height/s-

lope of the interface), an IE solver will return the scattering returns for only one

particular value of ε. If this is changed, the solver must be run again.

[2] IE solvers require inverting a dense, nonsymmetric positive definite system of linear

equations for every simulation.

In contrast, the HOPS approach (51; 55; 53) can effectively address these concerns. More

specifically, in (55; 53) an alternative known as the Field Expansion (FE) method is pro-

posed which is based on the low-order calculations of Rayleigh (62) and Rice (63). An

expansion to high order was first introduced by Bruno and Reitich (64; 65; 66) and then

was later enhanced and stabilized by Nicholls, Reitich, and Malcolm (67; 68; 69; 70).

This latter method is known as the TFE method. The TFE method maintains all of the

classical advantages of IE formulations (such as surface formulation and exact enforce-

ment of far–field and quasi–periodic boundary conditions) while effectively addressing

the two shortcomings listed above:

[1] The method is built upon expanding in the boundary parameter ε. Once the

Taylor coefficients are known for the scattering quantities, the TFE method can

recover all of the returns by summing the Taylor coefficients. It is unnecessary to

begin a new summation for every value of ε.

[2] The scheme is based on a perturbation of the interface which, at every perturbation

order, requires the inversion of a single, sparse operator corresponding to the flat-

interface solution.

For a single incident wavelength, the TFE method is among the most efficient avail-

able in our layered media setting. A generalization of the HOPS approach developed

by Bruno and Reitich is known as an Asymptotic Waveform Evaluation (AWE). The

AWE methods (71; 72; 73; 74; 75) are built upon an additional expansion in wavelength

(frequency) about a base value and will be a major source of analysis in the second half

of our thesis. Our aim is to develop a novel interfacial method using a combined HOP-

S/AWE algorithm that provides a stable numerical scheme and a rigorous convergence
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result. We will carefully show that our new algorithm is highly accurate, rapid, robust,

and is jointly analytic with respect to two smallness assumptions: (i) an interfacial

deformation and (ii) a frequency deformation.

1.3 Preliminaries and Notation

We consider a y–invariant, doubly layered structure with a periodic interface separating

two materials; see Figure 2.

Figure 2: A two-layer structure with a periodic interface, z = g(x), separating two

material layers, S(u) and S(w), illuminated by plane–wave incidence.

The d–periodic interface shape is specified by the graph of the function z = g(x),

g(x+ d) = g(x). A dielectric (with refractive index nu) occupies the domain above the

interface

S(u) := {z > g(x)},

while a material of refractive index nw is in the lower layer

S(w) := {z < g(x)}.

The subscripts are chosen to conform to the notation of (76; 77). The structure is

illuminated from above by monochromatic plane–wave incident radiation of frequency ω

and wavenumber ku = nuω/c0 = ω/cu (c0 is the speed of light) aligned with the grooves

Einc(x, z, t) = Ae−iωt+iαx−iγz, Hinc(x, z, t) = Be−iωt+iαx−iγz.

We consider the reduced incident fields
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Einc(x, z) = eiωtEinc(x, z, t), Hinc(x, z) = eiωtHinc(x, z, t),

α := ku sin(θ), γu := ku cos(θ),

where the time dependence exp(−iωt) has been factored out. As shown in (6), the

reduced electric and magnetic fields {E,H} are α–quasiperiodic like the incident radia-

tion. To close the problem we specify that the scattered radiation is “outgoing,” upward

propagating in S(u) and downward propagating in S(w).

It is well known (see, e.g., §1.5−§1.7 and Petit (6)) that in this two–dimensional set-

ting, the time–harmonic Maxwell equations decouple into two scalar Helmholtz problems

which govern the Transverse Electric and Transverse Magnetic polarizations. We define

the invariant (y) direction of the scattered (electric or magnetic) fields by ũ = ũ(x, z)

and w̃ = w̃(x, z) in S(u) and S(w), respectively. The incident radiation in the upper field

is defined as ũi(x, z) (which we will also denote by ũinc(x, z)). In Chapters 2 and 3 we

will factor out the phase exp(iαx) from the fields ũ and w̃

u(x, z) = e−iαxũ(x, z), w(x, z) = e−iαxw̃(x, z),

which, we note, are d–periodic. This will simplify notation and, as discussed in Chapters

2 and 3, also remove the phase from the relevant quantities in our governing equations.

1.4 Electromagnetic Waves, Polarization, and Parameters

A wave can be described as a disturbance that travels through a medium from one

location to another location (78). Waves can transfer energy from one point in space

to another point in space. Therefore, there are two mechanisms which specify wave

properties: The disturbance which defines the wave, and the propagation of the wave.

With these, we may classify waves by the following two categories:

[1] Longitudinal Waves: When the disturbances in a wave are parallel to the wave’s

propagation direction, the wave is said to be a longitudinal wave. Sound waves,

for example, are longitudinal waves because the pressure change occurs parallel to

the wave’s propagation direction.

[2] Transverse Waves: When the disturbances in a wave are perpendicular (at right

angles) to the wave’s propagation direction, the wave is called a transverse wave.

Light is an example of a transverse wave, in which energy vibrates in a direction

perpendicular to the wave’s direction of motion.

Electromagnetic waves are transverse waves where both the electric and magnetic fields

are perpendicular to each other and the direction of wave propagation.
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Figure 3: A light wave is an electromagnetic wave with an electric and a magnetic

component. In our scenario, the electric field E (in blue) oscillates in the vertical

direction. The magnetic field H (in red) is at a right angle to the electric field and

oscillates in the horizontal direction. Both are perpendicular to the direction of wave

propagation (z).

Electromagnetic energy is transmitted in waves and an electromagnetic field can

propagate along various modes (79; 80; 81). The three most common modes are Trans-

verse Electric and Magnetic (TEM), Transverse Electric (TE), and Transverse Magnetic

(TM) where

• TEM Mode: In the Transverse Electric and Magnetic mode, both the electric

field and the magnetic field (which, in free space, are always perpendicular to one

another) are transverse (at right angles) to the direction of wave propagation (see

Figure 3).

• TE Mode: In the Transverse Electric mode, the electric field is transverse to the

direction of propagation while the magnetic field is parallel to the direction of

propagation.

• TM Mode: In the Transverse Magnetic mode, the magnetic field is transverse to

the direction of propagation while the electric field is parallel to the direction of

propagation.

For various reasons the TM mode is of extraordinary importance (e.g., by the classical

study of Surface Plasmon Resonance (SPR) in Raether (39)) and thus we concentrate

our attention on the TM case in Chapters 5 and 6.
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Throughout this thesis, we are interested in solving electromagnetic problems in-

volving linear, homogeneous, nonmagnetic media. Our strategy, which will be discussed

in detail in §1.5, is to work in the frequency domain by simplifying Maxwell’s equations

in matter through considering solutions where both the electric and magnetic fields

are composed of time–harmonic solutions. These are solutions that have a e−iωt time–

dependence for a single angular frequency ω. For frequency domain problems, two key

material parameters are the permittivity ϵ and permeability µ. In vacuum, these two

quantities are represented by ϵ0 and µ0. In addition, we are interested in representing

c, the speed of light in vacuum, in terms of c0. The index of refraction characterizes the

speed of propagation of light in a medium by n = c0/c ≥ 1 and allows us to specify the

relations

c =
c0
n
, (Speed in Dielectric Material)

c0 =
1

√
ϵ0µ0

, (Speed of Light in Vacuum)

n =

√
ϵµ

ϵ0µ0
, (Refractive Index)

k0 =
ω

c0
, (Wavenumber in Vacuum)

k = nk0, (Wavenumber and Refractive Index)

λ =
2πc0
ω

. (Wavelength)

In many cases, it is enough to specify the quantities ω and n so that the remaining

dielectric parameters can be found through the permittivity and permeability of the

corresponding medium. We will measure the wavelength in microns (where 1 µm =

10−6 m), as is common in many applications in engineering and photonics. An alter-

native would be to use nanometers where 1 nm = 10−9 m or 1 µm = 103 nm. In vac-

uum, we have ϵ0 = 8.854187817× 10−12 F/m (farards per meter), µ0 = 1.256637061×
10−6 H/m (henry per meter), and the speed of light becomes c0 = 299, 792, 458 m/s

(82). Additionally, we will assume that every material layer is piecewise homogeneous

and isotropic, so that ϵ and µ are uniform throughout all directions of the medium.

1.5 Maxwell Equations

Following (81; 83; 84; 6; 85), we consider a region S and take as a starting point Maxwell’s

equations of macroscopic electromagnetism in the following form:

∇×E = −∂B
∂t
, (Faraday’s Law of Induction) (1.1a)

∇×H = J+
∂D

∂t
, (Ampère’s Law) (1.1b)

∇ ·D = ρ, (Gauss’s Law) (1.1c)

∇ ·B = 0, (Gauss’s Law for Magnetism) (1.1d)
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where J is the current density and ρ is the charge density. These equations link the four

(time dependent) macroscopic fields

• E = E(x, y, z, t): The Electric field.

• H = H(x, y, z, t): The Magnetic field.

• D = D(x, y, z, t): The Electric Displacement field.

• B = B(x, y, z, t): The Magnetic Induction field.

The four fields are further linked via the polarization P and magnetization M by

D = ϵ0E+P,

H =
1

µ0
B−M,

where ϵ0 and µ0 are the electric permittivity and magnetic permeability of vacuum. The

connections between the fields depend on material properties that are defined by the

quantities

• Polarization P: The electric dipole moment per unit volume.

• Magnetization M: The magnetic dipole moment per unit volume.

Limiting ourselves to linear, isotropic, homogenuous, nonmagnetic media, we define the

constitutive relations

D = ϵ0ϵrE, (1.2a)

B = µ0µrH, (1.2b)

where ϵr is a dielectric constant representing the relative permittivity and µr = 1 is

relative permeability of the nonmagnetic medium. The linear relationship between D

and E is often implicitly defined using the dielectric susceptibility χ, which describes

the linear relationship between P and E via

P = ϵ0χE.

From here, one finds

D = ϵ0E+P = ϵ0(1 + χ)E,

which from (1.2a) yields ϵr = 1 + χ. Substituting (1.2) into (1.1) produces
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∇×E = −µ0
∂H

∂t
, (1.3a)

∇×H = J+ ϵ0ϵr
∂E

∂t
, (1.3b)

∇ ·E = ρ/(ϵ0ϵr), (1.3c)

∇ ·H = 0. (1.3d)

In consideration of our particular scenario, we assume there are no free charges (requiring

ρ ≡ 0). We model the current density with the linear relationship

J = σE,

which is known as Ohm’s law. The scalar σ represents the conductivity of an isotropic

material. To work in the frequency domain and obtain time-harmonic solutions of the

form

E(x, y, z, t) = E(x, y, z)e−iωt, H(x, y, z, t) = H(x, y, z)e−iωt, (1.4)

we insert (1.4) into (1.3) to obtain

∇×E = iωµ0H, (1.5a)

∇×H = −iωϵ0ϵE, (1.5b)

∇ ·E = 0, (1.5c)

∇ ·H = 0, (1.5d)

where

ϵ := ϵ′ + iϵ′′, ϵ′ = ϵr, ϵ′′ = σ/(ωϵ0),

is the complex permittivity. A dielectric (or insulator) is the name given to a material

for which

σ/(ωϵ0) ≪ ϵ′ =⇒ Im(ϵ) ≈ 0,

and a perfect insulator is a material where σ = 0 which implies Im(ϵ) = 0. An example

is vacuum where ϵ = 1. A metal (or conductor) is the name given to a material which

satisfies

ϵ′′ = σ/(ωϵ0) ≈ ϵr.

Examples of good conductors are copper and silver. We call a material a perfect con-

ductor if σ → ∞. To arrive at the governing equations for scattered grating, we also

demand that solutions are quasiperiodic
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E(x+ d1, y + d2, z) = eiαd1+iβd2E(x, y, z), (1.6a)

H(x+ d1, y + d2, z) = eiαd1+iβd2H(x, y, z), (1.6b)

and outgoing. Then at the material interface (83) we have continuity of both the tangen-

tial components of the electric field and the normal components of the magnetic field.

Finally, we recognize that jumps in the normal electric field and tangential magnetic

field are specified by

N×E = 0, N×H = js, N · (ϵE) = ρs, N ·H = 0, (1.7)

whereN is normal to the interface, js represents the surface current density, and ρs is the

surface charge density. In the case that all of the permittivities and permeabilities are

finite, the surface current density is zero. This allows us to enforce tangential continuity

of the fields E and H as

N×E = 0, N×H = 0. (1.8)

In the setting of grating structures, we choose an interface shaped by z = g(x, y) and

define the normal of the interface as N := (−∂xg,−∂yg, 1)T . Therefore in a doubly

layered medium our governing equations become

∇×E(u) = iωµ0H
(u), z > g(x, y), (1.9a)

∇×H(u) = −iωϵ0ϵ(u)E(u), z > g(x, y), (1.9b)

∇×E(w) = iωµ0H
(w), z < g(x, y), (1.9c)

∇×H(w) = −iωϵ0ϵ(w)E(w), z < g(x, y), (1.9d)

N×
[
E(u) −E(w)

]
= −N×Einc, z = g(x, y), (1.9e)

N×
[
H(u) −H(w)

]
= −N×Hinc, z = g(x, y). (1.9f)

Here, {E(u),H(u)} and {E(w),H(w)} represent outgoing, quasiperiodic, divergence free

electric and magnetic fields defined in the upper
(
S(u) = {z > g}

)
and lower

(
S(w) =

{z < g}
)
media. The constants ϵ(u) and ϵ(w) represent the permittivities which fill the

two material layers.

To simplify future developments, we make two assumptions which allow us to focus

on scalar solutions in two dimensions. Our first assumption is that the grating structure

is invariant in the y–direction so that the interface shape becomes

z = g(x).

This implies that −∂yg = 0 and the interface normal becomes
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N =


−∂xg
0

1

 . (1.10)

The second assumption is that the incident radiation is aligned with the invariant grooves

of the grating structure. In this case, in TE polarization the electric field takes the form

Einc = Einc(x, z) = Aeiαx−iγz, A =


0

A

0

 , (1.11)

while in TM polarization the magnetic field can be written as

Hinc = Hinc(x, z) = Beiαx−iγz, B =


0

B

0

 . (1.12)

1.6 Tranverse Electric (TE) Polarization

Suppose that the electric field is transverse to the direction of propagation while the

magnetic field is parallel to the direction of propagation. Then the electric field has only

a transverse component and we seek solutions satisfying

E = E(x, z) =


0

ṽ(x, z)

0

 , H = H(x, z) =


Hx(x, z)

0

Hz(x, z)

 . (1.13)

In order to satisfy the time–harmonic Maxwell equations we calculate

∇×E =


−∂z ṽ
0

∂xṽ

 ,

which implies

H =
1

iωµ0
∇×E =


−∂z ṽ/(iωµ0)

0

∂xṽ/(iωµ0)

 .

Similarly,

∇×H =


0

∂zH
x − ∂xH

z

0

 ,
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so that we can reduce (1.9b) and (1.9d) from

−iωϵ0ϵE = ∇×H,

to one equation in the y–component

div

[
− 1

iωµ0
∇ṽ
]
= −iωϵ0ϵṽ.

As the divergence of the gradient is the Laplacian and µ0 is constant, we obtain

0 = ∆ṽ + ω2µ0ϵ0ϵṽ = ∆ṽ +
ω2

c20
ϵṽ = ∆ṽ + k20ϵṽ = ∆ṽ + k2ṽ. (1.14)

The boundary conditions become

0 = N×E =


−ṽ
0

−(∂xg)ṽ

 , (1.15)

and

0 = N×H =


0

(∂xg)H
z +Hx

0

 =
1

iωµ0


0

(∂xg)∂xṽ − ∂z ṽ

0

 . (1.16)

The first boundary condition (1.15) shows that ṽ is continuous across interfaces while the

second boundary condition (1.16) warrants that ∂N ṽ is also continuous across interfaces.

This follows from the fact that µ0 is a constant equal to the permeability of vacuum in

all media and is therefore constant across boundaries. As a consequence, in a doubly

layered medium the TE governing equations are

∆ũ+ (ku)2ũ = 0, z > g(x), (1.17a)

∆w̃ + (kw)2w̃ = 0, z < g(x), (1.17b)

ũ− w̃ = −ũinc, z = g(x), (1.17c)

∂N ũ− τ2∂N w̃ = −∂N ũinc, z = g(x), (1.17d)

where

τ2 =
εu

εw
=

(ku)2

(kw)2
=

(nu)2

(nw)2
,

and ũ and w̃ are defined as outgoing, quasiperiodic solutions (in the y–component) of

the electric field in the upper and lower layers. To clarify what is meant by solutions

that are bounded, outgoing, and quasiperiodic, we will introduce an Outgoing Wave

Condition (OWC) in §1.8.
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1.7 Tranverse Magnetic (TM) Polarization

If we instead assume that the magnetic field is transverse to the direction of propagation

while the electric field is parallel to the direction of propagation, then the magnetic field

is composed entirely of a transverse component and we seek solutions satisfying

H = H(x, z) =


0

ṽ(x, z)

0

 , E = E(x, z) =


Ex(x, z)

0

Ez(x, z)

 . (1.18)

We may once again satisfy the time–harmonic Maxwell equations by calculating

∇×H =


−∂z ṽ
0

∂xṽ

 ,

which implies

E =
−1

iωϵ0ϵ
∇×H =

1

ϵ


∂z ṽ/(iωϵ0)

0

−∂xṽ/(iωϵ0)

 .

Similarly to TE polarization, we find

∇×E =


0

∂zE
x − ∂xE

z

0

 ,

and we can reduce (1.9a) and (1.9c)

iωµ0H = ∇×E,

to one equation in the y–component

div

[
1

iωϵ0ϵ
∇ṽ
]
= iωµ0ṽ.

As ϵ changes value between layers, we find

0 = div

[
1

ϵ
∇ṽ
]
+ ω2µ0ϵ0ṽ = div

[
1

ϵ
∇ṽ
]
+
ω2

c2
ṽ = div

[
1

ϵ
∇ṽ
]
+ k20 ṽ. (1.19)

If the layers are homogeneous then we may reduce (1.19) in each layer to

0 = ∆ṽ + k2ṽ. (1.20)



16 1.8 Rayleigh Expansions

The boundary conditions become

0 = N×H =


−ṽ
0

−(∂xg)ṽ

 , (1.21)

and

0 = N×E =


0

(∂xg)E
z + Ex

0

 =
−1

iωϵ0


0[

(∂xg)∂xṽ − ∂z ṽ
]
/ϵ

0

 . (1.22)

Similarly to TE polarization, the first boundary condition (1.21) shows that ṽ is contin-

uous across interfaces. However, the second boundary condition (1.22) mandates that

(1/ϵ)∂N ṽ is continuous across interfaces. This follows from the fact that ϵ0 is constant

everywhere and ϵ is allowed to jump across layer interfaces. Therefore in a doubly

layered medium the TM governing equations are

∆ũ+ (ku)2ũ = 0, z > g(x), (1.23a)

∆w̃ + (kw)2w̃ = 0, z < g(x), (1.23b)

ũ− w̃ = −ũinc, z = g(x), (1.23c)

∂N ũ− τ2∂N w̃ = −∂N ũinc, z = g(x), (1.23d)

where, as in TE polarization, ũ and w̃ are defined as outgoing, quasiperiodic solutions

(in the y–component) of the magnetic field in the upper and lower layers.

1.8 Rayleigh Expansions

In order to make precise the far–field boundary conditions we desire, we study solutions

of the following boundary value problem

∆ũ+ (ku)2ũ = 0, in S(u), (1.24a)

ũ(x, g(x)) = ζ̃u(x), at z = g(x), (1.24b)

ũ(x+ d, z) = eiαdũ(x, z), (1.24c)

OWC[ũ] = 0, z → ∞, (1.24d)

which are outgoing, bounded, and quasiperiodic. The fourth condition (1.24d) mandates

that solutions are both outgoing and bounded and is known as the Outgoing Wave

Condition. To make these boundary conditions more precise, we first observe that for

z > a > |g|∞ the solution to (1.24) in S(u) is given by

ũ(x, z) =
∞∑

p=−∞
ape

iαpx+iγup z +
∞∑

p=−∞
bpe

iαpx−iγwp z. (1.25)
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In this setting (and in many other places in this thesis), we let p ∈ Z, q ∈ {u,w}, and
define

αp := α+

(
2π

d

)
p, γqp :=


√

(kq)2 − α2
p, p ∈ Uq,

i
√
α2
p − (kq)2, p ̸∈ Uq,

(1.26)

and

Uq := {p ∈ Z | α2
p < (kq)2}. (1.27)

To enforce the requirement that our solution (1.25) is outgoing and bounded, we require

bp ≡ 0. If bp ̸≡ 0 then solutions will be inward propagating for p ∈ Uu, and unbounded

for p ̸∈ Uu. To clarify what is meant by the Outgoing Wave Condition, we observe that

for p ∈ Uu, solutions are outgoing and the modes are “propagating.” In contrast, if

p ̸∈ Uu, then solutions decay exponentially and the modes are known as “evanescent.”

Therefore the solutions of (1.24a) which satisfy the Outgoing Wave Condition, (1.24d),

are

ũ(x, z) =
∞∑

p=−∞
ape

iαpx+iγup z. (1.28)

A similar argument for z < −b < − |g|∞ will show that solutions in the lower field which

satisfy the Outgoing Wave Condition are given by

w̃(x, z) =

∞∑
p=−∞

bpe
iαpx−iγwp z. (1.29)

This leads to a domain decomposition of S(u) where we introduce an “Artificial Bound-

ary” at {z = a} and define the truncated domain

Sg,a := {g(x) < z < a}.

We similarly define an “Artificial Boundary” in the lower field, S(w), at {z = −b} and

define the truncated domain

Sg,−b := {−b < z < g(x)}.

We can now state a new boundary value problem that is equivalent to (1.24) as
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∆ũ+ (ku)2ũ = 0, in Sg,a, (1.30a)

ũ(x, g(x)) = ζ̃u(x), at z = g(x), (1.30b)

ũ(x+ d, z) = eiαdũ(x, z), (1.30c)

∆ṽ + (ku)2ṽ = 0, z > a, (1.30d)

ũ = ṽ, at z = a, (1.30e)

∂zũ = ∂z ṽ, at z = a, (1.30f)

ṽ(x+ d, z) = eiαdṽ(x, z), (1.30g)

OWC[ṽ] = 0, z → ∞, (1.30h)

By the same analysis leading to (1.28), solutions to (1.30d) are of the form

ṽ(x, z) =
∞∑

p=−∞
cpe

iαpx+iγup z. (1.31)

From (1.30e) it is clear that if we define ψ(x) := ũ(x, a) and use ṽ(x, a) = ũ(x, a) then

ṽ(x, z) =

∞∑
p=−∞

(
cpe

iγup a
)
eiαpx+iγup (z−a) =

∞∑
p=−∞

ψ̂pe
iαpx+iγup (z−a),

where ψ̂p are the Fourier coefficients of ψ. To enforce (1.30f) we compute

∂z ṽ(x, a) =

∞∑
p=−∞

(
iγup
)
ψ̂pe

iαpx,

and define the Dirichlet–Neuman Operator (DNO)

T̃ u : ṽ(x, a) → (∂z ṽ) (x, a), (1.32)

Equation (1.30f) now implies, at z = a,

0 = ∂zũ− ∂z ṽ = ∂zũ− T̃ u[ṽ] = ∂zũ− T̃ u[ũ],

where

T̃ u[ψ(x)] :=

∞∑
p=−∞

(
iγup
)
ψ̂pe

iαpx.

A similar calculation can be performed in the lower field. At z = −b and ψ(x) := ṽ(x,−b)
we find

ṽ(x, z) =
∞∑

p=−∞

(
dpe

iγwp b
)
eiαpx−iγwp (z+b) =

∞∑
p=−∞

ψ̂pe
iαpx−iγwp (z+b),
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where ψ̂p are the Fourier coefficients of ψ. For z = −b and an equivalent representation

of (1.30) in the lower field, we deduce

∂z ṽ(x,−b) =
∞∑

p=−∞

(
−iγwp

)
ψ̂pe

iαpx. (1.33)

Hence, we may state the boundary value problem in (1.24) and (1.30) equivalently as

∆ũ+ (ku)2ũ = 0, in Sg,a, (1.34a)

ũ(x, g(x)) = ζ̃u(x), at z = g(x), (1.34b)

ũ(x+ d, z) = eiαdũ(x, z), (1.34c)

∂zũ− T̃ u[ũ] = 0, at z = a. (1.34d)

The final condition (1.34d) is known as a Transparent Boundary Condition at the Ar-

tificial Boundary {z = a}. A similar analysis in the lower field shows that downward

propagating solutions which satisfy the Outgoing Wave Condition satisfy

∂zw̃ − T̃w[w̃] = 0, at z = −b,

where

T̃w[ψ(x)] :=

∞∑
p=−∞

(
−iγwp

)
ψ̂pe

iαpx,

and the corresponding boundary value problem becomes

∆w̃ + (kw)2w̃ = 0, in Sg,−b, (1.35a)

w̃(x, g(x)) = ζ̃w(x), at z = g(x), (1.35b)

w̃(x+ d, z) = eiαdw̃(x, z), (1.35c)

∂zw̃ − T̃w[w̃] = 0, at z = −b. (1.35d)

1.9 Thesis Outline

This thesis is divided into four parts, specifically: (1) Background and Introduction, (2)

Joint Analyticity of the Upper and Lower Fields, (3) Numerical Results and Scattering,

and (4) Concluding Remarks and Future Research. The “Joint Analyticity of the Upper

and Lower Fields” part is contained in Chapters 2–4. In Chapters 2 and 3, we discuss

our general strategy for establishing analyticity results which are based on a special

change of variables and the elliptic theory of Sobolev spaces. The concluding section

of these chapters details the mechanics of our HOPS algorithm and provides example

profiles where our algorithm is highly accurate and robust. Chapter 4 combines these

results to establish our main theorem (Theorem 4.6.1) which proves the existence and
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uniqueness of solutions to a system of partial differential equations with respect to both

interfacial and frequency deformations.

The “Numerical Results and Scattering” part is composed of Chapters 5 and 6. In

Chapter 5, we describe the Method of Manufactured Solutions as a tool to demonstrate

the accuracy of our HOPS algorithm. Then, in Chapter 6, we define the Reflectivity Map

as a way of computing the reflected energy stored by a periodic structure. We simulate a

large variety of scattering problems using a range of wavelengths and dielectric constants

in both the TE and TM propagation modes. The “Concluding Remarks” part is given

in Chapter 7 where we discuss several different possibilities for future research. Among

these, the most interesting is Section 7.4 where we analyze the necessary steps to extend

our analyticality theorem from two parameters to any finite integer M > 0.



CHAPTER 2

ANALYTICITY OF THE UPPER FIELD

2.1 Introduction

We now present all of the information necessary for establishing the analyticity of the

upper field and the upper layer DNO. Our strategy is to first remove the phase from

our governing equations in §2.2, introduce a domain–flattening change of variables in

§2.4, and then seek solutions as a joint Taylor series in two small perturbation variables:

an interfacial deformation (§2.4) and a frequency deformation (§2.5). These lead to

the TFE recursions (§2.6) from which we can use Sobolev space theory to establish

analyticity results. The analyticity of the upper field with respect to a single interfacial

deformation is established in §2.8 while the joint analyticity in two small perturbations

is established in §2.9. The third case for a single frequency deformation follows directly

as a special case of Theorem 2.9.2 and the analyticity of the upper layer DNO is proven

in Theorem 2.10.2. The concluding section of this chapter demonstrates a Fourier–

Chebyshev approach for simulating the TFE recursions giving a HOPS/AWE algorithm

whose advantageous numerical properties we explore.

2.2 Governing Equations Without Phase

In the upper field, we defined the geometry Sg,a := {g(x) < z < a} where z is bounded

between a constant imposed by the Artificial Boundary {z = a} and the lower surface

g(x). The boundary value problem (1.34) defined in §1.8 gives an equivalent represen-

tation of the governing equations of linear wave propagation in a single homogeneous

material layer

∆ũ+ (ku)2ũ = 0, g(x) < z < a, (2.1a)

ũ(x, g(x)) = ζ̃u(x), at z = g(x), (2.1b)

ũ(x+ d, z) = eiαdũ(x, z), (2.1c)

∂zũ− T̃ u[ũ] = 0, at z = a, (2.1d)

In our subsequent developments it will be convenient to consider periodic unknowns

rather than quasiperiodic ones. This can be readily achieved by the simple phase ex-

traction

u(x, z) := e−iαxũ(x, z), (2.2)

21
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where by (2.1c)

u(x+ d, z) = e−iα(x+d)ũ(x+ d, z) = e−iα(x+d)eiαdũ(x, z)

= e−iαxũ(x, z)

= u(x, z),

so the α-quasiperiodicity of ũ(x, z) implies that u(x, z) is d–periodic. We also compute

∂xũ(x, z) = (iα)eiαxu(x, z) + eiαx∂xu(x, z),

∂2xũ(x, z) = (iα)2eiαxu(x, z) + 2(iα)eiαx∂xu(x, z) + eiαx∂2xu(x, z),

∂zũ(x, z) = eiαx∂zu(x, z),

∂2z ũ(x, z) = eiαx∂2zu(x, z).

These in turn imply

0 = ∆ũ+ (ku)2ũ = −α2eiαxu+ 2(iα)eiαx∂xu+ eiαx∂2xu+ eiαx∂2zu+ (ku)2eiαxu

= eiαx
(
∆u+ 2iα∂xu+

(
(ku)2 − α2

)
u
)
,

and, setting (γu)2 = (ku)2 − α2, (2.1a) becomes

∆u+ 2iα∂xu+ γ2u = 0, g(x) < z < a. (2.3)

Similarly, the boundary condition (2.1b) becomes

u(x, g(x)) = e−iαxũ(x, g(x)) = e−iαxζ̃u(x) =: ζu(x), at z = g(x).

As we will show in §2.3, the Transparent Boundary Condition for (2.1d) becomes

∂z [u(x, a)]− T u[u(x, a)] = 0, at z = a. (2.4)

Our governing equations are now

∆u+ 2iα∂xu+ (γu)2u = 0, g(x) < z < a, (2.5a)

u(x, g(x)) = ζu(x), at z = g(x), (2.5b)

u(x+ d, z) = u(x, z), (2.5c)

∂z [u(x, a)]− T u[u(x, a)] = 0, at z = a. (2.5d)
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2.3 Fourier Multipliers and the Dirichlet–Neumann Operator

In this section we examine the concept of a Fourier Multiplier and its relation to the

DNO T̃ u defined in §1.8 by (1.32). Our goal is to give an explicit representation of the

DNO T̃ u and Transparent Boundary Condition, (2.1d), when we remove the phase.

We define a Fourier Multiplier, m(D), as the operator with the property that

m(D) [ψ(x)] :=
∞∑

p=−∞
m(p)ψ̂pe

iαpx.

A classical derivative can be expressed as

∂xψ =

∞∑
p=−∞

(iαp)ψ̂pe
iαpx = (iαD)ψ,

and similarly for the operator T̃ u

T̃ u [ψ] =

∞∑
p=−∞

(iγup )ψ̂pe
iαpx = (iγD)ψ.

Due to the linear growth of αp and γup , it is easy to show that each maps the Sobolev

Space Hs+1 to Hs. We recall our earlier definition of the DNO in §1.8 as

T̃ u : ũ(x, a) → (∂zũ) (x, a), (2.6)

where, above z = a,

ũ(x, z) =
∞∑

p=−∞

(
ape

iγup a
)
eiαpx+iγup (z−a) =

∞∑
p=−∞

ψ̂pe
iαpx+iγup (z−a), (2.7)

and

ũ(x, a) =
∞∑

p=−∞
ψ̂pe

iαpx = ψ(x), ∂zũ(x, a) =

∞∑
p=−∞

(iγup )ψ̂pe
iαpx. (2.8)

We now define

αp = α+

(
2π

d

)
p := α+ p̃, p̃ :=

(
2π

d

)
p, (2.9)

so that

ψ(x) =

∞∑
p=−∞

ψ̂pe
i(α+p̃)x = eiαx

∞∑
p=−∞

ψ̂pe
ip̃x = eiαxζu(x),
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where

ζu(x) :=

∞∑
p=−∞

ψ̂pe
ip̃x.

Writing

ζu(x+ d) = e−iα(x+d)ψ(x+ d) =

∞∑
p=−∞

ψ̂pe
ip̃(x+d) =

∞∑
p=−∞

ψ̂pe
ip̃x

shows that ζu(x+ d) = ζu(x) and therefore ζu is d–periodic. As in §2.2, we perform the

phase extraction

u(x, z) := e−iαxũ(x, z),

where, above z = a, equation (2.7) delivers

u(x, z) = e−iαxũ(x, z) =

∞∑
p=−∞

ψ̂pe
ip̃x+iγup (z−a).

and, by equation (2.8),

u(x, a) =

∞∑
p=−∞

ψ̂pe
ip̃x, ∂zu(x, a) =

∞∑
p=−∞

(iγup )ψ̂pe
ip̃x. (2.10)

We then define the upper layer DNO without phase as

T u : u(x, a) → (∂zu) (x, a), (2.11)

so that by equation (2.10)

T u [u(x, a)] = T u

[ ∞∑
p=−∞

ψ̂pe
ip̃x

]
=

∞∑
p=−∞

(iγup )ψ̂pe
ip̃x. (2.12)

With this, we see that equations (2.10) and (2.12) satisfy the Transparent Boundary

Condition

∂zu(x, a)− T u[u(x, a)] = 0. (2.13)

2.4 Boundary Perturbation

We now apply the change of variables from Appendix C to (2.5) and start by focusing

on

∆u+ 2iα∂xu+ (γu)2u = 0. (2.14)

The transformation rules produce the following transformation in the upper field

x′ = x, z′ = a

(
z − g(x)

a− g(x)

)
.
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This transformation maps the perturbed geometry Sg,a to the separable geometry S0,a.

We will later show that the transformation enables not only a rigorous proof of analyt-

icity and convergence, but also provides a stable and highly accurate numerical scheme.

We then invert the change of variables to find

x = x′, z =

(
a− g(x′)

a

)
z′ + g(x′),

which we use to define the transformed field as

u(x′, z′) := u′
(
x′,

(
a− g(x′)

a

)
z′ + g(x′)

)
.

In Appendix C we discuss the effects of this change of variables on the Helmholtz

equation, its derivatives, and the associated boundary conditions. In the upper layer we

have a domain SL,U , (C.1), where

ℓ = 0, ℓ(x) = g(x), u = a, u(x) ≡ 0, h = u− ℓ = a.

Therefore

C(x) = 1 +
0− g(x)

a
= 1− g(x)

a
, D(x) =

ag(x)− 02

a
= g(x),

and

E = (∂xg)

(
a− z′

a

)
, ZU =

a− z′

a
.

(We omit ZL since u ≡ 0). In Appendix C we show that the change of variables changes

the derivatives to

C∂x = C∂x′ − E∂z′ , C∂z = ∂z′ ,

and the upper layer Helmholtz equation becomes

0 = div′[A∇′u′] +B · ∇′u′ + 2C2iα∂x′u
′ + C2(γu

′
)2u′,

where, for S = C2,

A =

(
S −EC

−EC 1 + E2

)
, B = (∂x′C)

(
−C
E

)
.

For simplicity we drop the primed variables to realize

0 = div[A∇u] +B · ∇u+ 2Siα∂xu+ S(γu)2u,
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and take a boundary perturbation approach by setting

g(x) = εf(x), ε ∈ R, ε≪ 1, (2.15)

where, by following Appendix C, discover

A = A(ε) = A0 +A1ε+A2ε
2,

B = B(ε) = B1ε+B2ε
2,

S = S(ε) = S0 + S1ε+ S2ε
2.

Since a = h and ℓ(x) = εf(x), we find

A0 =

(
1 0

0 1

)
, (2.16a)

A1 =

(
Axx1 Axz1

Azx1 Azz1

)
=

1

a

(
−2f −(a− z)(∂xf)

−(a− z)(∂xf) 0

)
, (2.16b)

A2 =

(
Axx2 Axz2

Azx2 Azz2

)
=

1

a2

(
f2 (a− z)f(∂xf)

(a− z)f(∂xf) (a− z)2(∂xf)
2

)
, (2.16c)

and

B1 =

(
Bx

1

Bz
1

)
=

1

a

(
∂xf

0

)
, (2.16d)

B2 =

(
Bx

2

Bz
2

)
=

1

a2

(
−f(∂xf)

−(a− z)(∂xf)
2

)
, (2.16e)

and

S0 = 1, S1 = −2

a
f, S2 =

1

a2
f2. (2.16f)

So (2.14) becomes

∆u+ 2iα∂xu+ γ2u = F (x, z; f, u, α, γ), 0 < z < a, (2.17)

where

F (x, z; f, u, α, γ) = −div[A1∇u]− div[A2∇u]−B1∇u−B2∇u

− 2S1iα∂xu− S1γ
2u− 2S2iα∂xu− S2γ

2u.
(2.18)

By (2.5d) the Transparent Boundary Condition for our governing equations without

phase is

∂z [u(x, a)]− T u[u(x, a)] = 0, at z = a. (2.19)
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For this boundary condition we begin with the top boundary and recall that such bound-

aries are flat for simplicity, i.e., u ≡ 0. Therefore, we can multiply (2.19) by C = C(x)

to realize

C∂z [u(x, a)]− CT u[u(x, a)] = 0.

So by the transformation rules in Appendix C for ∂z and ∂x (which induces the rule

T u → T u
′
and u→ u′) with u ≡ 0 we find

∂z′
[
u′(x′, a)

]
− (1− ℓ(x′)/h)T u

′
[u′(x′, a)] = 0.

We rearrange to form

∂z′
[
u′(x′, a)

]
− T u

′
[u′(x′, a)] = P (x′; g, u′),

where

P (x′; g, u′) = −1

a
g(x′)T u

′ [
u′(x′, a)

]
.

We then drop the primed variables and write the boundary condition as

∂z [u(x, a)]− T u[u(x, a)] = P (x; g, u).

These changes transform the governing equations without phase in (2.5) to

∆u+ 2iα∂xu+ (γu)2u = F (x, z; f, u, α, γu) , 0 < z < a, (2.20a)

u(x, 0) = ζu(x), at z = 0, (2.20b)

u(x+ d, z) = u(x, z), (2.20c)

∂z [u(x, a)]− T u[u(x, a)] = P (x; g, u), at z = a. (2.20d)

2.5 Frequency Perturbation

We now perform an Asymptotic Waveform Evaluation by writing the illumination fre-

quency as

ω = (1 + δ)ω = ω + δω, δ ∈ R, δ ≪ 1. (2.21)

With this we see that

ku = ω/cu = (1 + δ)ω/cu =: (1 + δ)ku = ku + δku, (2.22a)

α = ku sin(θ) = (1 + δ)ku sin(θ) =: (1 + δ)α = α+ δα, (2.22b)

γu = ku cos(θ) = (1 + δ)ku cos(θ) =: (1 + δ)γu = γu + δγu. (2.22c)
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We can relate the constants in the underscore variables by the relationship

α2 + (γu)2 = (ku)2. (2.23)

Then, since (γu)2 = (δ + 1)2
(
(ku)2 − α2

)
= (δ + 1)2(γu)2, (2.18) becomes

F
(
x, z; f, u, α, γu

)
= −div[A1∇u]− div[A2∇u]−B1∇u−B2∇u

− 2S1iα∂xu− 2S1iαδ∂xu− S1δ
2(γu)2u− 2S1δ(γ

u)2u− S1(γ
u)2u

− 2S2iα∂xu− 2S2iαδ∂xu− S2δ
2(γu)2u− 2S2δ(γ

u)2u− S2(γ
u)2u.

Also, the left-hand side of (2.20a) becomes

∆u+ 2iα∂xu+ 2iαδ∂xu+ δ2(γu)2u+ 2δ(γu)2u+ (γu)2u,

and the boundary condition for (2.20a) becomes

∆u+ 2iα∂xu+ (γu)2u = F̃
(
x, z; f, u, α, γu

)
, 0 < z < a. (2.24)

We move all terms with δ to the right–hand side to form

F̃
(
x, z; f, u, α, γu

)
= −div[A1∇u]− div[A2∇u]−B1∇u−B2∇u

− 2iαδ∂xu− δ2(γu)2u− 2δ(γu)2u

− 2S1iα∂xu− 2S1iαδ∂xu− S1δ
2(γu)2u− 2S1δ(γ

u)2u− S1(γ
u)2u

− 2S2iα∂xu− 2S2iαδ∂xu− S2δ
2(γu)2u− 2S2δ(γ

u)2u− S2(γ
u)2u.

The boundary condition (2.20d) becomes

∂z [u(x, a)]− T u0 [u(x, a)] = P̃ (x; f, u),

where T u0 = iγu
D

corresponds to the case where δ = 0 and

P̃ (x; f, u) = −1

a
(εf(x))T u [u(x, a)] + (T u − T u0 ) [u(x, a)] .

Our governing equations are now

∆u+ 2iα∂xu+ (γu)2u = F̃
(
x, z; g, u, α, γu

)
, 0 < z < a, (2.25a)

u(x, 0) = ζu(x), at z = 0, (2.25b)

u(x+ d, z) = u(x, z), (2.25c)

∂z [u(x, a)]− T u0 [u(x, a)] = P̃ (x; f, u), at z = a. (2.25d)
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2.6 Transformed Field Expansions

In the previous two sections we made two smallness assumptions:

[1] Boundary Perturbation: g(x) = εf(x), ε ∈ R, ε≪ 1,

[2] Frequency Perturbation: ω = (1 + δ)ω = ω + δω, δ ∈ R, δ ≪ 1.

We now apply both of these assumptions and seek solutions of the form

u = u(x, z; ε, δ) =
∞∑
n=0

∞∑
m=0

un,m(x, z)ε
nδm. (2.26)

We will later show that these solutions are strongly convergent in Theorems 2.8.4 and

2.9.2. Inserting these into (2.25) produces the Transformed Field Expansions (TFE)

recursions

∆un,m + 2iα∂xun,m + (γu)2un,m = F̃n,m
(
x, z; f, u, α, γu

)
, 0 < z < a, (2.27a)

un,m(x, 0) = ζun,m(x), at z = 0, (2.27b)

un,m(x+ d, z) = un,m(x, z), (2.27c)

∂z [un,m(x, a)]− T u0 [un,m(x, a)] = P̃n,m(x; f, u), at z = a, (2.27d)

where

F̃n,m
(
x, z; f, u, α, γu

)
= −div[A1∇un−1,m]− div[A2∇un−2,m]−B1∇un−1,m

−B2∇un−2,m − 2iα∂xun,m−1 − (γu)2un,m−2

− 2(γu)2un,m−1 − 2S1iα∂xun−1,m − 2S1iα∂xun−1,m−1 (2.28)

− S1(γ
u)2un−1,m−2 − 2S1(γ

u)2un−1,m−1 − S1(γ
u)2un−1,m

− 2S2iα∂xun−2,m − 2S2iα∂xun−2,m−1 − S2(γ
u)2un−2,m−2

− 2S2(γ
u)2un−2,m−1 − S2(γ

u)2un−2,m,

and

P̃n,m(x; f, u) = −f
a

m∑
r=0

T um−r[un−1,r(x, a)] +

m−1∑
r=0

T um−r[un,r(x, a)]. (2.29)

This is a method for computing the transformed corrections to the scattered field, un,m,

with respect to both interfacial and frequency deformations. A major advantage of

the TFE recursions is that (2.27) never takes derivatives of un,m higher than second

order. This allows us to take advantage of the classical theory of elliptic boundary value

problems where we will carefully show that our solutions, u, are jointly analytic in the

appropriate Sobolev space.



30 2.7 Sobolev Spaces and Elliptic Theory

2.7 Sobolev Spaces and Elliptic Theory

We summarize the characterization of the Sobolev spaces Hs =W s,2 applied in laterally

d–periodic functions relevant to scattering problems of interest to us. We know that any

d–periodic L2 function

µ(x+ d) = µ(x),

can be expressed as

µ(x) =
∞∑

p=−∞
µ̂pe

ip̃x,

where

p̃ :=

(
2π

d

)
p, µ̂p =

1

d

∫ d

0
µ(x)e−ip̃x dx.

We then define our x–periodic norms. For any L2 function µ = µ(x), we recall the

classical Sobolev norm for any real s ≥ 0:

∥µ∥2Hs
x
:=

∞∑
p=−∞

⟨p̃⟩2s|µ̂p|2, ⟨p̃⟩2 := 1 + |p̃|2.

For the L2 function u = u(x, z) we require the classical Sobolev norm for any integer

s ≥ 0 and a > 0

∥u∥2Hs
x,z

:=
s∑
ℓ=0

∞∑
p=−∞

⟨p̃⟩2(s−ℓ)
∫ a

0
|ûp(z)|2 dz =

s∑
ℓ=0

∞∑
p=−∞

⟨p̃⟩2(s−ℓ) ∥ûp∥2L2([0,a]) .

With these norms, we define the following function spaces. First, for real s ≥ 0,

Hs
(
[0, d]

)
:=
{
µ(x) ∈ L2

(
[0, d]

) ∣∣ ∥µ∥Hs
x
<∞

}
.

Also, for any integer s ≥ 0,

Hs
(
[0, d]× [0, a]

)
:=
{
u(x) ∈ L2

(
[0, d]× [0, a]

) ∣∣ ∥u∥Hs
x,z

<∞
}
.

With these we can now establish the following three properties based on classical elliptic

theory. The first property is the “Algebra Property” of Sobolev spaces which allows us

to estimate products of functions in our function classes. The second property is a

theorem which gives a rigorous statement of the “Elliptic Estimate.” The final property

provides a method of bounding translated elements in our function spaces.

Lemma 2.7.1. Given an integer s ≥ 0 and any σ > 0, there exists a constant M =

M(s) such that if f ∈ Cs([0, d]), u ∈ Hs([0, d]× [0, a]) then

∥fu∥Hs ≤ M|f |Cs∥u∥Hs , (2.30)
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and if f̃ ∈ Cs+1/2+σ([0, d]), ũ ∈ Hs+1/2([0, d]) then there exists a constant M̃ = M̃(s)

such that

∥f̃ ũ∥Hs+1/2 ≤ M̃|f̃ |Cs+1/2+σ∥ũ∥Hs+1/2 . (2.31)

Theorem 2.7.2. Given an integer s ≥ 0, if F ∈ Hs([0, d])× [0, a]), ζu ∈ Hs+3/2([0, d]),

P ∈ Hs+1/2([0, d]), then there exists a unique solution u ∈ Hs+2([0, d])× [0, a]) of

∆u(x, z) + 2iα∂xu(x, z) + (γu)2u(x, z) = F (x, z), 0 < z < a, (2.32a)

u(x, 0) = ζu(x, 0), at z = 0, (2.32b)

u(x+ d, z) = u(x, z), (2.32c)

∂zu(x, a)− T u0 [u(x, a)] = P (x), at z = a, (2.32d)

satisfying

∥u∥Hs+2 ≤ Ce{∥F∥Hs + ∥ζu∥Hs+3/2 + ∥P∥Hs+1/2}, (2.33)

for some constant Ce = Ce(s) > 0.

Lemma 2.7.3. Given an integer s ≥ 0, if F ∈ Hs([0, d]) × [0, a]), then (a − z)F ∈
Hs([0, d])× [0, a]) and there exists a positive constant Za = Za(s) such that

∥(a− z)F∥Hs ≤ Za∥F∥Hs .

The proof of these three properties is established in Appendix B.

2.8 Analyticity of the Boundary Perturbation

Before proceeding to the analyticity of the upper field, u, we present an analyticity

estimate for the Dirichlet data

ζu(x; ε) =
∞∑
n=0

ζun,0(x)ε
n.

The following three Lemmas will be invaluable in our subsequent analysis.

Lemma 2.8.1. Given any integer s ≥ 0, if u ∈ Hs([0, d]) then

∥∂xu∥Hs ≤ ∥u∥Hs+1 .

Proof. [Lemma 2.8.1] By the definition of our Sobolev norms,

∥∂xu∥2Hs =

∞∑
p=−∞

⟨p̃⟩2s|∂̂xup|2 =
∞∑

p=−∞
⟨p̃⟩2s|(ip̃)ûp|2 ≤

∞∑
p=−∞

⟨p̃⟩2s+2|ûp|2 = ∥u∥2Hs+1 .
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Lemma 2.8.2. Let T q0 , q ∈ {u,w}, be the DNO defined by (iγq
D
) and s ≥ 0 a positive

integer. Then for ψ ∈ Hs+1([0, d]), we have

∥T q0ψ∥Hs ≤ C([0,d])∥ψ∥Hs+1 ,

for some C([0,d]) > 0.

Proof. [Lemma 2.8.2] Let T q0 = (iγq
D
) where ψ ∈ Hs+1([0, d]). By (B.15), (2.9), and the

definition of our Sobolev norms,

∥T q0ψ∥
2
Hs =

∞∑
p=−∞

∣∣∣(iγq
p
)ψ̂p

∣∣∣2 ⟨p̃⟩2s
=
∑
p∈Uq

∣∣∣√(kq)2 − α2
pψ̂p

∣∣∣2 ⟨p̃⟩2s + ∑
p ̸∈Uq

∣∣∣√α2
p − (kq)2ψ̂p

∣∣∣2 ⟨p̃⟩2s
≤
∑
p∈Uq

C|ψ̂p|2⟨p̃⟩2s +
∑
p ̸∈Uq

∣∣∣|αp|√1− (kq)2/α2
pψ̂p

∣∣∣2 ⟨p̃⟩2s, C = max
p∈Uq

[
(kq)2 − α2

p

]
≤
∑
p∈Uq

C|ψ̂p|2⟨p̃⟩2s +
∑
p ̸∈Uq

C̃|αp|2|ψ̂p|2⟨p̃⟩2s, C̃ = max
p ̸∈Uq

[
1− (kq)2/α2

p

]
≤

∞∑
p=−∞

max
{
C, 2α2C̃

}
|ψ̂p|2⟨p̃⟩2s +

∑
p ̸∈Uq

2p̃2C̃|ψ̂p|2⟨p̃⟩2s

≤
∞∑

p=−∞

≈
C⟨p̃⟩2|ψ̂p|2⟨p̃⟩2s,

≈
C = max

{
C, 2α2C̃, 2C̃

}
=

∞∑
p=−∞

≈
C|ψ̂p|2⟨p̃⟩2(s+1)

=
≈
C∥ψ∥2Hs+1 .

Lemma 2.8.3. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) then

∥ζun,0∥Hs+3/2 ≤ KζB
n
ζ (2.34)

for constants Kζ , Bζ > 0.

Proof. [Lemma 2.8.3] We work by induction and begin with n = 0 where we choose

Kζ := ∥ζu0,0∥Hs+3/2 .

We now assume the estimate (2.34) for all n < n and note that

ζun,0 = (−iγu)
(
f

n

)
ζun−1,0.
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From this and n ≥ 1 we find the bound

∥ζun,0∥Hs+3/2 ≤ |γu| M |f |Cs+3/2+σ∥ζun−1,0∥Hs+3/2

≤ |γu| M |f |Cs+2KζB
n−1
ζ ,

and we are done provided

Bζ > |γu| M |f |Cs+2 .

We can now state our desired result for the analyticity of the transformed field

u = u(x, z; ε) with respect to the single perturbation parameter ε.

Theorem 2.8.4. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and ζun,0 ∈ Hs+3/2([0, d])

such that

∥ζun,0∥Hs+3/2 ≤ KζB
n
ζ , (2.35)

for constants Kζ , Bζ > 0, then un,0 ∈ Hs+2([0, d]× [0, a]) and

∥un,0∥Hs+2 ≤ KBn, (2.36)

for constants K,B > 0.

To establish this result we work by induction. They key estimate is encapsulated in the

following Lemma.

Lemma 2.8.5. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and

∥un,0∥Hs+2 ≤ KBn, ∀n < n, (2.37)

for constants K,B > 0, then there exists a constant C > 0 such that

max
{
∥F̃n,0∥Hs , ∥P̃n,0∥Hs+1/2

}
≤ KC

{
|f |Cs+2Bn−1 + |f |2Cs+2B

n−2
}
. (2.38)

Proof. [Lemma 2.8.5] We begin with F̃n,0 and recall from (2.28) that

F̃n,0
(
x, z; f, u, α, γu

)
= −div[A1∇un−1,0]− div[A2∇un−2,0]−B1∇un−1,0

−B2∇un−2,0 − 2S1iα∂xun−1,0 − S1(γ
u)2un−1,0 (2.39)

− 2S2iα∂xun−2,0 − S2(γ
u)2un−2,0.

Then from (2.16) we have
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∥F̃n,0∥2Hs ≤ ∥Axx1 ∂xun−1,0∥2Hs+1 + ∥Axz1 ∂zun−1,0∥2Hs+1 + ∥Azx1 ∂xun−1,0∥2Hs+1

+ ∥Azz1 ∂zun−1,0∥2Hs+1 + ∥Axx2 ∂xun−2,0∥2Hs+1 + ∥Axz2 ∂zun−2,0∥2Hs+1

+ ∥Azx2 ∂xun−2,0∥2Hs+1 + ∥Azz2 ∂zun−2,0∥2Hs+1 + ∥Bx
1∂xun−1,0∥2Hs

+ ∥Bz
1∂zun−1,0∥2Hs + ∥Bx

2∂xun−2,0∥2Hs + ∥Bz
2∂zun−2,0∥2Hs

+ ∥2S1iα∂xun−1,0∥2Hs + ∥S1(γu)2un−1,0∥2Hs + ∥2S2iα∂xun−2,0∥2Hs

+ ∥S2(γu)2un−2,0∥2Hs .

We now estimate each of these and apply Lemmas 2.7.1, 2.7.3, and 2.8.1. We begin with

∥Axx1 ∂xun−1,0∥Hs+1 = ∥ − (2/a)f∂xun−1,0∥Hs+1

≤ (2/a)M|f |Cs+1∥un−1,0∥Hs+2

≤ (2/a)M|f |Cs+1KBn−1,

and in a similar fashion

∥Axz1 ∂zun−1,0∥Hs+1 = ∥ − ((a− z)/a)(∂xf)∂zun−1,0∥Hs+1

≤ (Za/a)M|∂xf |Cs+1∥un−1,0∥Hs+2

≤ (Za/a)M|f |Cs+2KBn−1.

Also,

∥Azx1 ∂xun−1,0∥Hs+1 = ∥ − ((a− z)/a)(∂xf)∂xun−1,0∥Hs+1

≤ (Za/a)M|∂xf |Cs+1∥un−1,0∥Hs+2

≤ (Za/a)M|f |Cs+2KBn−1,

and we recall that Azz1 ≡ 0. Moving to the second order

∥Axx2 ∂xun−2,0∥Hs+1 = ∥(1/a2)f2∂xun−2,0∥Hs+1

≤ (1/a2)M2|f |2Cs+1∥un−2,0∥Hs+2

≤ (1/a2)M2|f |2Cs+1KB
n−2.

Also,

∥Axz2 ∂zun−2,0∥Hs+1 = ∥((a− z)/a2)f(∂xf)∂xun−2,0∥Hs+1

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1∥un−2,0∥Hs+2

≤ (Za/a
2)M2|f |2Cs+2KB

n−2,
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and

∥Azx2 ∂xun−2,0∥Hs+1 = ∥((a− z)/a2)f(∂xf)∂zun−2,0∥Hs+1

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1∥un−2,0∥Hs+2

≤ (Za/a
2)M2|f |2Cs+2KB

n−2,

and

∥Azz2 ∂zun−2,0∥Hs+1 = ∥((a− z)2/a2)(∂xf)
2∂zun−2,0∥Hs+1

≤ (Z2
a/a

2)M2|∂xf |2Cs+1∥un−2,0∥Hs+2

≤ (Z2
a/a

2)M2|f |2Cs+2KB
n−2.

Next for the B1 terms

∥Bx
1∂xun−1,0∥Hs = ∥(1/a)(∂xf)∂xun−1,0∥Hs

≤ (1/a)M|∂xf |Cs∥un−1,0∥Hs+1

≤ (1/a)M|f |Cs+1KBn−1,

and Bz
1 ≡ 0. Moving to the second order

∥Bx
2∂xun−2,0∥Hs = ∥(−1/a2)f(∂xf)∂xun−2,0∥Hs

≤ (1/a2)M2|f |Cs |∂xf |Cs∥un−2,0∥Hs+1

≤ (1/a2)M2|f |2Cs+1KB
n−2,

and

∥Bz
2∂zun−2,0∥Hs = ∥(−1/a2)(a− z)(∂xf)

2∂zun−2,0∥Hs

≤ (Za/a
2)M2|∂xf |2Cs∥un−2,0∥Hs+1

≤ (Za/a
2)M2|f |2Cs+1KB

n−2.

To address the S0, S1, S2 terms we have

∥2S1iα∂xun−1,0∥Hs = ∥(−4/a)iαf∂xun−1,0∥Hs

≤ (4/a)αM|f |Cs∥un−1,0∥Hs+1

≤ (4/a)αM|f |CsKBn−1,
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and

∥S1(γu)2un−1,0∥Hs = ∥(−2/a)(γu)2fun−1,0∥Hs

≤ (2/a)(γu)2M|f |Cs∥un−1,0∥Hs

≤ (2/a)(γu)2M|f |CsKBn−1,

and

∥2S2iα∂xun−2,0∥Hs = ∥(2/a2)iαf2∂xun−2,0∥Hs

≤ (2/a2)αM2|f |2Cs∥un−2,0∥Hs+1

≤ (2/a2)αM2|f |2CsKBn−2,

and

∥S2(γu)2un−2,0∥Hs = ∥(1/a2)(γu)2f2un−2,0∥Hs

≤ (1/a2)(γu)2M2|f |2Cs∥un−2,0∥Hs

≤ (1/a2)(γu)2M2|f |2CsKBn−2.

We satisfy the estimate for ∥F̃n,0∥Hs provided that we choose

C > max

{(
3 + 2Za + 4α+ 2(γu)2

a

)
M,

(
2 + 3Za + Z2

a + 2α+ (γu)2

a2

)
M2

}
.

The estimate for P̃n,0 follows from Lemma 2.8.2

∥P̃n,0∥Hs+1/2 = ∥ − (1/a)fT u0 [un−1,0] ∥Hs+1/2

≤ (1/a)M|f |Cs+1/2+σ∥T u0 [un−1,0] ∥Hs+1/2

≤ (1/a)M|f |Cs+1/2+σCTu
0
∥un−1,0∥Hs+3/2

≤ (1/a)M|f |Cs+1/2+σCTu
0
KBn−1,

and provided that

C > (1/a)MCTu
0
,

we are done.

With this information, we can now prove Theorem 2.8.4.
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Proof. [Theorem 2.8.4] We proceed by induction in n. At order n = m = 0 (2.27)

becomes

∆u0,0 + 2iα∂xu0,0 + (γu)2u0,0 = 0, 0 < z < a, (2.40a)

u0,0(x, g) = ζu0,0(x), at z = 0, (2.40b)

u0,0(x+ d, z) = u0,0(x, z), (2.40c)

∂z [u0,0(x, a)]− T u0 [u0,0(x, a)] = 0, at z = a, (2.40d)

and Theorem 2.7.2 guarantees a unique solution such that

∥u0,0∥Hs+2 ≤ Ce∥ζu0,0∥Hs+3/2 .

So we choose K ≥ Ce∥ζu0,0∥Hs+3/2 . We now assume the estimate (2.36) for all n < n and

study un,0. From Theorem 2.7.2 we have a unique solution satisfying

∥un,0∥Hs+2 ≤ Ce{∥F̃n,0∥Hs + ∥ζun,0∥Hs+3/2 + ∥P̃n,0∥Hs+1/2},

and appealing to Lemmas 2.8.3 (with the hypothesis (2.35)) and 2.8.5 we find

∥un,0∥Hs+2 ≤ Ce

{
KζB

n
ζ + 2KC

[
|f |Cs+2Bn−1 + |f |2Cs+2B

n−2
]}

.

We are done provided we choose K ≥ 3CeKζ and

B > max
{
Bζ , 6CeC|f |Cs+2 ,

√
6CeC|f |Cs+2

}
.

2.9 Joint Analyticity of the Upper Field

We now turn to the joint analyticity estimate for the Dirichlet data

ζu(x; ε, δ) =

∞∑
n=0

∞∑
m=0

ζun,m(x)ε
nδm.

The following lemma expands on Lemma 2.8.3.

Lemma 2.9.1. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) then

∥ζun,m∥Hs+3/2 ≤ KζB
n
ζD

m
ζ , ∀n ≥ 0, m ≥ 0, (2.41)

for constants Kζ , Bζ , Dζ > 0.

Proof. [Lemma 2.9.1] We begin with an induction on m where for m = 0 we need to

show that
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∥ζun,0∥Hs+3/2 ≤ KζB
n
ζ , ∀n ≥ 0, m = 0.

This result has previously been established in Lemma 2.8.3. Next, we assume the esti-

mate (2.41) for all n,m < m and note that

ζun,m = (−iγu)
(
f

m

)
ζun−1,m−1,

where we have used (
n

m

)
=

n

m

(
n− 1

m− 1

)
.

From this and m ≥ 1, Dζ > 1 we find the bound

∥ζun,m∥Hs+3/2 ≤ |γu| M |f |Cs+3/2+σ∥ζn−1,m−1∥Hs+3/2

≤ |γu| M |f |Cs+2KζB
n−1
ζ Dm−1

ζ

≤ |γu| M |f |Cs+2KζB
n−1
ζ Dm

ζ ,

and we are done provided

Bζ > |γu| M |f |Cs+2 .

We can now establish our desired result for the joint analyticity of the transformed

field u = u(x, z; ε, δ) with respect to the perturbation parameters ε and δ.

Theorem 2.9.2. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and ζun,m ∈ Hs+3/2([0, d])

such that

∥ζun,m∥Hs+3/2 ≤ KζB
n
ζD

m
ζ , (2.42)

for constants Kζ , Bζ , Dζ > 0, then un,m ∈ Hs+2([0, d]× [0, a]) and

∥un,m∥Hs+2 ≤ KBnDm, (2.43)

for constants K,B,D > 0.

To establish this result we work by induction. The key estimate is encapsulated in the

following Lemma.

Lemma 2.9.3. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and

∥un,m∥Hs+2 ≤ KBnDm, ∀ n ≥ 0, m < m, (2.44)
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for constants K,B,D > 0 then there exists a constant C > 0 such that

max{∥F̃n,m∥Hs ,∥P̃n,m∥Hs+1/2} ≤ KC

{
BnDm−1 +BnDm−2 + |f |Cs+2Bn−1Dm +

|f |Cs+2Bn−1Dm−1 + |f |Cs+2Bn−1Dm−2 + |f |2Cs+2B
n−2Dm +

|f |2Cs+2B
n−2Dm−1 + |f |2Cs+2B

n−2Dm−2

}
.

Proof. [Lemma 2.9.3] We begin with F̃n,m and recall from (2.28) that

F̃n,m
(
x, z; f, u, α, γu

)
= −div[A1∇un−1,m]− div[A2∇un−2,m]−B1∇un−1,m

−B2∇un−2,m − 2iα∂xun,m−1 − (γu)2un,m−2

− 2(γu)2un,m−1 − 2S1iα∂xun−1,m − 2S1iα∂xun−1,m−1 (2.45)

− S1(γ
u)2un−1,m−2 − 2S1(γ

u)2un−1,m−1 − S1(γ
u)2un−1,m

− 2S2iα∂xun−2,m − 2S2iα∂xun−2,m−1 − S2(γ
u)2un−2,m−2

− 2S2(γ
u)2un−2,m−1 − S2(γ

u)2un−2,m.

Then from (2.16) we have

∥F̃n,m∥2Hs ≤ ∥Axx1 ∂xun−1,m∥2Hs+1 + ∥Axz1 ∂zun−1,m∥2Hs+1 + ∥Azx1 ∂xun−1,m∥2Hs+1

+ ∥Azz1 ∂zun−1,m∥2Hs+1 + ∥Axx2 ∂xun−2,m∥2Hs+1 + ∥Axz2 ∂zun−2,m∥2Hs+1

+ ∥Azx2 ∂xun−2,m∥2Hs+1 + ∥Azz2 ∂zun−2,m∥2Hs+1 + ∥Bx
1∂xun−1,m∥2Hs

+ ∥Bz
1∂zun−1,m∥2Hs + ∥Bx

2∂xun−2,m∥2Hs + ∥Bz
2∂zun−2,m∥2Hs

+ ∥2iα∂xun,m−1∥2Hs + ∥(γu)2un,m−2∥2Hs + ∥2(γu)2un,m−1∥2Hs

+ ∥2S1iα∂xun−1,m∥2Hs + ∥2S1iα∂xun−1,m−1∥2Hs + ∥S1(γu)2un−1,m−2∥2Hs

+ ∥2S1(γu)2un−1,m−1∥2Hs + ∥S1(γu)2un−1,m∥2Hs + ∥2S2iα∂xun−2,m∥2Hs

+ ∥2S2iα∂xun−2,m−1∥2Hs + ∥S2(γu)2un−2,m−2∥2Hs + ∥2S2(γu)2un−2,m−1∥2Hs

+ ∥S2(γu)2un−2,m∥2Hs .

We now estimate each of these and apply Lemmas 2.7.1, 2.7.3, and 2.8.1, beginning with

∥Axx1 ∂xun−1,m∥Hs+1 = ∥ − (2/a)f∂xun−1,m∥Hs+1

≤ (2/a)M|f |Cs+1∥un−1,m∥Hs+2

≤ (2/a)M|f |Cs+1KBn−1Dm,
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and in a similar fashion

∥Axz1 ∂zun−1,m∥Hs+1 = ∥ − ((a− z)/a)(∂xf)∂zun−1,m∥Hs+1

≤ (Za/a)M|∂xf |Cs+1∥un−1,m∥Hs+2

≤ (Za/a)M|f |Cs+2KBn−1Dm.

Also,

∥Azx1 ∂xun−1,m∥Hs+1 = ∥ − ((a− z)/a)(∂xf)∂xun−1,m∥Hs+1

≤ (Za/a)M|∂xf |Cs+1∥un−1,m∥Hs+2

≤ (Za/a)M|f |Cs+2KBn−1Dm,

and we recall that Azz1 ≡ 0. Moving to the second order

∥Axx2 ∂xun−2,m∥Hs+1 = ∥(1/a2)f2∂xun−2,m∥Hs+1

≤ (1/a2)M2|f |2Cs+1∥un−2,m∥Hs+2

≤ (1/a2)M2|f |2Cs+1KB
n−2Dm.

Also,

∥Axz2 ∂zun−2,m∥Hs+1 = ∥((a− z)/a2)f(∂xf)∂xun−2,m∥Hs+1

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1∥un−2,m∥Hs+2

≤ (Za/a
2)M2|f |2Cs+2KB

n−2Dm,

and

∥Azx2 ∂xun−2,m∥Hs+1 = ∥((a− z)/a2)f(∂xf)∂zun−2,m∥Hs+1

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1∥un−2,m∥Hs+2

≤ (Za/a
2)M2|f |2Cs+2KB

n−2Dm,

and

∥Azz2 ∂zun−2,m∥Hs+1 = ∥((a− z)2/a2)(∂xf)
2∂zun−2,m∥Hs+1

≤ (Z2
a/a

2)M2|∂xf |2Cs+1∥un−2,m∥Hs+2

≤ (Z2
a/a

2)M2|f |2Cs+2KB
n−2Dm.



Chapter 2 Analyticity of the Upper Field 41

Next for the B1 terms

∥Bx
1∂xun−1,m∥Hs = ∥(1/a)(∂xf)∂xun−1,m∥Hs

≤ (1/a)M|∂xf |Cs∥un−1,m∥Hs+1

≤ (1/a)M|f |Cs+1KBn−1Dm,

and Bz
1 ≡ 0. Moving to the second order

∥Bx
2∂xun−2,m∥Hs = ∥(−1/a2)f(∂xf)∂xun−2,m∥Hs

≤ (1/a2)M2|f |Cs |∂xf |Cs∥un−2,m∥Hs+1

≤ (1/a2)M2|f |2Cs+1KB
n−2Dm,

and

∥Bz
2∂zun−2,m∥Hs = ∥(−1/a2)(a− z)(∂xf)

2∂zun−2,m∥Hs

≤ (Za/a
2)M2|∂xf |2Cs∥un−2,m∥Hs+1

≤ (Za/a
2)M2|f |2Cs+1KB

n−2Dm.

To address the S0, S1, S2 terms we have

∥2iα∂xun,m−1∥Hs ≤ 2α∥un,m−1∥Hs+1

≤ 2αKBnDm−1,

and

∥(γu)2un,m−2∥Hs ≤ (γu)2∥un,m−2∥Hs

≤ (γu)2KBnDm−2,

and

∥2(γu)2un,m−1∥Hs ≤ 2(γu)2∥un,m−1∥Hs

≤ 2(γu)2KBnDm−1,

and

∥2S1iα∂xun−1,m∥Hs = ∥(−4/a)iαf∂xun−1,m∥Hs

≤ (4/a)αM|f |Cs∥un−1,m∥Hs+1

≤ (4/a)αM|f |CsKBn−1Dm,
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and

∥2S1iα∂xun−1,m−1∥Hs = ∥(−4/a)iαf∂xun−1,m−1∥Hs

≤ (4/a)αM|f |Cs∥un−1,m−1∥Hs+1

≤ (4/a)αM|f |CsKBn−1Dm−1,

and

∥S1(γu)2un−1,m−2∥Hs = ∥(−2/a)(γu)2fun−1,m−2∥Hs

≤ (2/a)(γu)2M|f |Cs∥un−1,m−2∥Hs

≤ (2/a)(γu)2M|f |CsKBn−1Dm−2,

and

∥2S1(γu)2un−1,m−1∥Hs = ∥(−4/a)(γu)2fun−1,m−1∥Hs

≤ (4/a)(γu)2M|f |Cs∥un−1,m−1∥Hs

≤ (4/a)(γu)2M|f |CsKBn−1Dm−1,

and

∥S1(γu)2un−1,m∥Hs = ∥(−2/a)(γu)2fun−1,m∥Hs

≤ (2/a)(γu)2M|f |Cs∥un−1,m∥Hs

≤ (2/a)(γu)2M|f |CsKBn−1Dm,

and

∥2S2iα∂xun−2,m∥Hs = ∥(2/a2)iαf2∂xun−2,m∥Hs

≤ (2/a2)αM2|f |2Cs∥un−2,m∥Hs+1

≤ (2/a2)αM2|f |2CsKBn−2Dm,

and

∥2S2iα∂xun−2,m−1∥Hs = ∥(2/a2)iαf2∂xun−2,m−1∥Hs

≤ (2/a2)αM2|f |2Cs∥un−2,m−1∥Hs+1

≤ (2/a2)αM2|f |2CsKBn−2Dm−1,
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and

∥S2(γu)2un−2,m−2∥Hs = ∥(1/a2)(γu)2f2un−2,m−2∥Hs

≤ (1/a2)(γu)2M2|f |2Cs∥un−2,m−2∥Hs

≤ (1/a2)(γu)2M2|f |2CsKBn−2Dm−2,

and

∥2S2(γu)2un−2,m−1∥Hs = ∥(2/a2)(γu)2f2un−2,m−1∥Hs

≤ (2/a2)(γu)2M2|f |2Cs∥un−2,m−1∥Hs

≤ (2/a2)(γu)2M2|f |2CsKBn−2Dm−1,

and

∥S2(γu)2un−2,m∥Hs = ∥(1/a2)(γu)2f2un−2,m∥Hs

≤ (1/a2)(γu)2M2|f |2Cs∥un−2,m∥Hs

≤ (1/a2)(γu)2M2|f |2CsKBn−2Dm.

We satisfy the estimate for ∥F̃n,m∥Hs provided that we choose

C > max

{(
2α+ 3(γu)2

)
,

(
3 + 2Za + 8α+ 8(γu)2

a

)
M,(

2 + 3Za + Z2
a + 4α+ 4(γu)2

a2

)
M2

}
.

The estimate for P̃n,m follows from Lemma 2.8.2

∥∥∥P̃n,m∥∥∥
Hs+1/2

=

∥∥∥∥∥−1

a
f(x)

m∑
r=0

T um−r [un−1,r] +

m−1∑
r=0

T um−r [un,r]

∥∥∥∥∥
Hs+1/2

≤ (1/a)M|f |Cs+1/2+η

m∑
r=0

∥∥T um−r [un−1,r]
∥∥
Hs+1/2 +

m−1∑
r=0

∥∥T um−r [un,r]
∥∥
Hs+1/2

≤ (1/a)M|f |Cs+1/2+ηCTu

m∑
r=0

∥un−1,r∥Hs+3/2 + CTu

m−1∑
r=0

∥un,r∥Hs+3/2

≤ (1/a)M|f |Cs+1/2+ηCTuKBn−1

(
Dm+1 − 1

D − 1

)
+ CTuKBn

(
Dm − 1

D − 1

)
,

and provided that D > 2 and

C > max
{
(1/a)MCTu , CTu

}
we are done.



44 2.10 Analyticity of the Upper Layer DNO

With this information, we can now prove Theorem 2.9.2.

Proof. [Theorem 2.9.2] We proceed by induction in m. At order m = 0 (2.27) becomes

∆un,0 + 2iα∂xun,0 + (γu)2un,0 = F̃n,0
(
x, z; f, u, α, γu

)
, 0 < z < a, (2.46a)

un,0(x, g) = ζun,0(x), at z = 0, (2.46b)

un,0(x+ d, z) = un,0(x, z), (2.46c)

∂z [un,0(x, a)]− T u0 [un,0(x, a)] = P̃n,0(x), at z = a, (2.46d)

and Theorem 2.8.4 guarantees a unique solution such that

∥un,0∥Hs+2 ≤ KBn, ∀n ≥ 0.

We now assume the estimate (2.43) for all n,m < m and study un,m. From Theorem

2.7.2 we have a unique solution satisfying

∥un,m∥Hs+2 ≤ Ce{∥F̃n,m∥Hs + ∥ζun,m∥Hs+3/2 + ∥P̃n,m∥Hs+1/2},

and appealing to Lemmas 2.9.1 (with the hypothesis (2.42)) and 2.9.3 we find

∥un,m∥Hs+2 ≤ Ce

{
KζB

n
ζD

m
ζ + 2KC

(
BnDm−1 +BnDm−2 + |f |Cs+2Bn−1Dm +

|f |Cs+2Bn−1Dm−1 + |f |Cs+2Bn−1Dm−2 + |f |2Cs+2B
n−2Dm +

|f |2Cs+2B
n−2Dm−1 + |f |2Cs+2B

n−2Dm−2

)}
.

We are done provided we choose K ≥ 9CeKζ and

B > max
{
Bζ , 18CeC|f |Cs+2 ,

√
18CeC|f |Cs+2

}
,

D > max
{
1, Dζ , 18CeC,

√
18CeC

}
.

2.10 Analyticity of the Upper Layer DNO

Now that we have established the analyticity of the transformed field, u = u(x, z; ε, δ),

we move on to establishing the analyticity of the DNO, G(g) = G(εf). The Dirichlet

trace is defined by

ζu(x) := u(x, g(x)),
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and its exterior Neumann counterpart is defined as

νu(x) := [−N · ∇u](x, g(x)) = [−∂zu+ (∂xg)∂xu](x, g(x)), (2.47)

where N = (−∂xg, 1)T . With this we define the DNO

G(g) := ζu → νu, (2.48)

which maps the Dirichlet data, ζu, to the Neumann trace, νu,

G(g)[ζu] = [−∂zu+ (∂xg)∂xu](x, g(x)). (2.49)

We now analyze how the operator G(g) behaves under the change of variables in Ap-

pendix C. To do this, we multiply (2.49) by C(x) to realize

CG = −C∂zu+ (∂xg)C∂xu.

The differentiation rules for the change of variables, (C.5),

C∂x = C∂x′ − E∂z′ , C∂z = ∂z′ ,

produces

CG = −∂z′u′ + (∂x′g){C∂x′u′ − E∂z′u
′}.

These are evaluated at the lower boundary, z′ = 0, where we observe that

C(x′) = 1− g

a
, E(x′, 0) = ∂x′g,

to find

(
1− g

a

)
G = −∂z′u′ + (∂x′g)

{(
1− g

a

)
∂x′u

′ − (∂x′g)∂z′u
′
}
.

We solve for G and drop the primes to find

G(g)[ζu] = −∂zu(x, 0) +H(x; g, u), (2.50)

with

H(x; g, u) := (∂xg)∂xu(x, 0) +
1

a
gG(g)[ζu]

− 1

a
g(∂xg)∂xu(x, 0)− (∂xg)

2∂zu(x, 0).
(2.51)
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Upon setting g(x) = εf(x) and seeking an expansion of the form

G = G(εf, δ) =

∞∑
n=0

∞∑
m=0

Gn,m(f)ε
nδm,

the equations (2.50) and (2.51) deliver

Gn,m(f)[ζ
u] = −∂zun,m(x, 0) +Hn,m(x; f, u), (2.52)

by which

Hn,m(x; f, u) := (∂xf)∂xun−1,m(x, 0) +
1

a
fGn−1,m(f)[ζ

u]

− 1

a
f(∂xf)∂xun−2,m(x, 0)− (∂xf)

2∂zun−2,m(x, 0).
(2.53)

To prove the analyticity of the DNO we will need the following recursive estimate for

Hn,m.

Lemma 2.10.1. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and

∥un,m∥Hs+2 ≤ KBnDm, ∥Gn,m∥Hs+1/2 ≤ K̃B̃nD̃m, ∀ n < n, m ≥ 0, (2.54)

for constants K,B,D, K̃, B̃, D̃ > 0 where K̃ ≥ K, B̃ ≥ B, D̃ ≥ D, then there exists a

constant C̃ > 0 such that

∥Hn,m∥Hs+1/2 ≤ K̃C̃
{
|f |Cs+2B̃n−1D̃m + |f |2Cs+2B̃

n−2D̃m
}
. (2.55)

Proof. [Lemma 2.10.1] From (2.53) and Lemma 2.7.1 we estimate

∥Hn,m∥Hs+1/2 ≤ M|∂xf |Cs+1/2+σ∥∂xun−1,m(x, 0)∥Hs+1/2

+
1

a
M|f |Cs+1/2+σ∥Gn−1,m(f)[ζ

u]∥Hs+1/2

+
1

a
M2|f |Cs+1/2+σ |∂xf |Cs+1/2+σ∥∂xun−2,m(x, 0)∥Hs+1/2

+M2|∂xf |2Cs+1/2+σ∥∂zun−2,m(x, 0)∥Hs+1/2 .

This gives

∥Hn,m∥Hs+1/2 ≤ K̃
{
M|f |Cs+2B̃n−1D̃m +

1

a
M|f |Cs+2B̃n−1D̃m

+
1

a
M2|f |2Cs+2B̃

n−2D̃m +M2|f |2Cs+2B̃
n−2D̃m

}
,
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and we are done provided

C̃ ≥
(
1 +

1

a

)
max{M,M2}.

We now have everything we need to prove the analyticity of the upper layer DNO.

Theorem 2.10.2. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and ζun,m ∈ Hs+3/2([0, d])

such that

∥ζun,m∥Hs+3/2 ≤ KζB
n
ζD

m
ζ ,

for constants Kζ , Bζ , Dζ > 0, then Gn,m ∈ Hs+1/2([0, d]) and

∥Gn,m∥Hs+1/2 ≤ K̃B̃nD̃m, (2.56)

for constants K̃, B̃, D̃ > 0.

Proof. [Theorem 2.10.2] As before, we work by induction in n. At n = 0 we have from

(2.52) that

G0,m = −∂zu0,m(x, 0),

and from Theorem 2.9.2 we have

∥G0,m∥Hs+1/2 = ∥∂zu0,m(x, 0)∥Hs+1/2 ≤ ∥u0,m∥Hs+2 ≤ KDm.

So we choose K̃ ≥ K and D̃ ≥ D. We now assume B̃ ≥ B and the estimate (2.56) for

all n < n and estimate (2.52)

∥Gn,m(f)[ζu]∥Hs+1/2 ≤ ∥∂zun,m(x, 0)∥Hs+1/2 + ∥Hn,m(x)∥Hs+1/2 .

Using the inductive hypothesis, Lemma 2.10.1, and Theorem 2.9.2 we have

∥Gn,m(f)[ζu]∥Hs+1/2 ≤ KBnDm + K̃C̃
{
|f |Cs+2B̃n−1D̃m + |f |2Cs+2B̃

n−2D̃m
}
.

We are done provided K̃ ≥ 2K and

B̃ ≥ max
{
B, 4C̃|f |Cs+2 , 2

√
C̃|f |Cs+2

}
.

2.11 Numerical Method

We explain in detail in Chapter 5 how our numerical scheme is validated using the

Method of Manufactured Solutions. In this section, we present the process of simulating
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a manufactured solution in order to evaluate the accuracy of our numerical scheme in

the upper field. We start by considering the basis function

vup (x, z) := eip̃x+iγ
u
p z, p̃ =

2πp

d
,

where the phase exp(iαx) is removed. In order to test our algorithm we will utilize the

exact Dirichlet/Neumann pairs defined below by {ζur , νur }. Our strategy will be to select

a particular wavenumber, say p = r, and a profile g(x) = εf(x) where ε > 0 is small

and our manufactured solutions are

ζur (x) : = Are
ir̃x+iγur g(x), (2.57a)

νur (x) : = [−∂zur + (∂xg)∂xur](x, g(x))

= [−(iγur ) + ε(∂xf)(ir̃)]Are
ir̃x+iγur εf(x).

(2.57b)

To perform our tests, we will first send ζur to our algorithm and then compare our

approximation to νur . Our algorithm is a Fourier spectral method (86; 87; 88) where we

sample ζur at equally spaced gridpoints on [0, d], and use the TFE recursions to generate

νur at the same, equally spaced gridpoints. To make the specification precise we solve, at

every desired perturbation order n and m, the elliptic boundary value problem, (2.27),

∆un,m + 2iα∂xun,m + (γu)2un,m = F̃n,m
(
x, z; f, u, α, γu

)
, 0 < z < a, (2.58a)

un,m(x, 0) = ζun,m(x), at z = 0, (2.58b)

un,m(x+ d, z) = un,m(x, z), (2.58c)

∂z [un,m(x, a)]− T u0 [un,m(x, a)] = P̃n,m(x), at z = a, (2.58d)

followed by the simulation of the n–th and m–th correction of the DNO, (2.52),

Gn,m(f)[ζ
u] = −∂zun,m(x, 0) +Hn,m(x; f, u).

We begin by choosing the maximum perturbation orders, N and M , and then approxi-

mate

u(x, z; ε, δ) ≈ uN,M (x, z; ε, δ) :=

N∑
n=0

M∑
m=0

un,m(x, z)ε
nδm, (2.59)

G(x; ε, δ) ≈ GN,M (x; ε, δ) :=

N∑
n=0

M∑
m=0

Gn,m(x)ε
nδm, (2.60)

where, by the periodicity of solutions, we write

un,m(x, z) =

∞∑
p=−∞

ûn,m,p(z)e
ip̃x, Gn,m(x) =

∞∑
p=−∞

Ĝn,m,pe
ip̃x. (2.61)
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Each of these un,m(x, z) are then simulated by a Fourier–Chebyshev approach which

posits the form

un,m(x, z) ≈ uNx,Nz
n,m (x, z) :=

Nx/2−1∑
p=−Nx/2

Nz∑
ℓ=0

ûn,m,p,ℓe
ip̃xTℓ

(
2z − a

a

)
,

where Tℓ is the ℓ–th Cheybshev polynomial. The unknowns, ûn,m,p,ℓ are recovered from

(2.58) by the collocation approach (86; 87; 89; 90; 91). More specifically, our HOP-

S/AWE algorithm requires Nx ×Nz unknowns at every perturbation order (n,m). As

our problem is x–periodic, the Fourier spectral method in the lateral direction requires

Nx equally–spaced gridpoints. However, our problem is not z–periodic, so the Cheby-

shev spectral method in the vertical direction requires Nz + 1 collocation points where

zℓ =
2z̃ℓ − a

a
, z̃ℓ = cos (ℓπ/Nz) , ℓ = 0, . . . , Nz.

We then simulate the upper layer DNO from (2.52), where the coefficients Gn,m from

(2.61) are approximated by

Gn,m(x) ≈ GNx
n,m(x) :=

Nx/2−1∑
p=−Nx/2

Ĝn,m,pe
ip̃x, (2.62)

and the Ĝn,m,p are recovered from the ûn,m,p,ℓ. Inserting the expansions (2.61) into

(2.58) gives

∂2z ûn,m,p(z) +
(
(γu
p
)2 − p̃2 − 2αp̃

)
ûn,m,p(z) =

ˆ̃Fn,m,p(z), 0 < z < a, (2.63a)

ûn,m,p(0) = ζ̂un,m,p, at z = 0, (2.63b)

∂z [ûn,m,p(a)]− T̂ u0 [ûn,m,p(a)] =
ˆ̃Pn,m,p, at z = a. (2.63c)

We can solve this two–point boundary value problem by the Chebyshev collocation

method and we now turn to a numerical implementation of our HOPS/AWE algorithm

in Matlab. To begin, we approximate the upper layer Dirichlet and Neumann data

through the expansions

ζNx,Nz ,N,M
TFE =

N∑
n=0

M∑
m=0

ζNx,Nz
n,m (x)εnδm, νNx,Nz ,N,M

TFE =

N∑
n=0

M∑
m=0

νNx,Nz
n,m (x)εnδm,

from which we can compute the relative errors

Error ζur = ErrorTFE(Nx, Nz, N,M) :=

∣∣∣ζur − ζNx,Nz,N,MTFE

∣∣∣
L∞

|ζur |L∞
,
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Error νur = ErrorTFE(Nx, Nz, N,M) :=

∣∣∣νur − νNx,Nz,N,MTFE

∣∣∣
L∞

|νur |L∞
.

2.12 Padé Approximation

We conclude our discussion of numerics by considering how the Taylor series in (ε, δ)

are summed. For example, regarding the DNO, G, the approximation of Ĝp(ε, δ) by

ĜN,Mp (ε, δ) :=
N∑
n=0

M∑
m=0

Ĝn,m,pε
nδm,

cf. (2.62). The technique of Padé approximation (92) has been used with HOPS methods

to great advantage in the past (65; 93) and we advocate its use here. Classically, this

approach seeks to estimate the truncated Taylor series of a single variable

QN (ρ) :=
N∑
n=0

Qnρ
n ≈ Q(ρ),

by the rational function

[L/M ](ρ) :=
aL(ρ)

bM (ρ)
=

∑L
ℓ=0 aℓρ

ℓ

1 +
∑M

m=1 bmρ
m
, L+M = N,

and

[L/M ](ρ) = QN (ρ) +O
(
ρL+M+1

)
,

where well–known formulas for the coefficients {aℓ, bm} can be found in (92). Padé ap-

proximation enjoys greatly enhanced convergence properties and we refer the interested

reader to §2.2 of Baker & Graves–Morris (92) and the insightful calculations of §8.3 of

Bender & Orszag (94) for a thorough discussion of the capabilities and limitations of

Padé approximants.

In the current context of functions analytic with respect to two perturbation variables

we utilize the polar coordinates

ε = ρ cos(θ), δ = ρ sin(θ),

and write the function

Ĝp(ε, δ) =

∞∑
n=0

∞∑
m=0

Ĝn,m,pε
nδm

=
∞∑
n=0

∞∑
m=0

(
Ĝn,m,p cos

n(θ) sinm(θ)
)
ρn+m.
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Letting ℓ = n+m and s = m we can write this as

Ĝp(ε, δ) =

∞∑
ℓ=0

{
ℓ∑

s=0

Ĝℓ−s,s,p cos
ℓ−s(θ) sins(θ)

}
ρℓ =:

∞∑
ℓ=0

G̃ℓ,p(θ)ρ
ℓ.

We then select particular values of θ = θj between 0 and 2π and apply classical Padé

approximation on the resulting {G̃ℓ,p(θj)} as a function of ρ alone.

2.13 Numerical Results

For our first simulation we considered an analytic profile with the following parameters

f(x) = ecos(x), α = 0, ε = 10−6, δ = 10−8, d = 2π, r = 2,

Ar = −3, γu = 1.21, Nx = 32, Nz = 32, N =M = 4.

In Table I we report the results of our tests using both Padé and Taylor summation.

N M Error ζwr (Taylor) Error ζwr (Padé) Error νwr (Taylor) Error νwr (Padé)

0 2 2.05326e-06 2.05326e-06 7.82969e-07 7.82969e-07

0 4 2.05326e-06 2.05326e-06 7.82969e-07 7.82969e-07

1 2 2.05326e-06 2.05326e-06 7.82969e-07 7.82969e-07

1 4 2.05326e-06 2.05326e-06 7.82969e-07 7.82969e-07

2 2 2.98167e-12 3.84881e-15 9.68942e-13 2.11309e-13

2 4 2.98167e-12 3.84881e-15 9.68942e-13 2.11309e-13

3 2 2.98167e-12 3.84881e-15 9.68942e-13 2.11309e-13

3 4 2.98167e-12 3.84881e-15 9.68942e-13 2.11309e-13

4 2 2.98167e-12 3.84881e-15 9.68942e-13 2.11309e-13

4 4 3.84181e-15 3.85621e-15 2.11309e-13 2.11301e-13

TABLE I: Relative Error, Error ζur and Error νur , versus perturbation orders N and

M , for the TFE approximations to the Dirichlet data, ζur (2.57a), and the Neumann

data, νur (2.57b), where we used both Taylor Series and Padé approximants. Parameter

choices are specified above and both ε and δ are small.

As we can see by expanding through orders 0 ≤ N,M ≤ 4, our HOPS/AWE al-

gorithm quickly obtains spectral accuracy provided we have small values of ε and δ.

Expanding on this, we generate two figures with the existing parameters in our analytic

profile. In Figure 4, we keep ε = 10−6 and δ = 10−8 fixed while we plot the Relative

Error for ζur and νur as we expand through 0 ≤ N,M ≤ 4 Padé orders. In Figure 5, we

keep N =M = 4 fixed and plot the Relative Error for ζur and νur as we expand through

0 ≤ ε ≤ 10−6 and 0 ≤ δ ≤ 10−8 with Padé summation.
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(a) Error ζur (Padé) (b) Error νu
r (Padé)

Figure 4: Plot of Relative Error for ζur and νur with fixed ε = 10−6 and δ = 10−8. Our

HOPS/AWE algorithm used Padé summation and expanded through 0 ≤ N,M ≤ 4

Padé orders. Physical parameters are reported in the analytic profile above.

(a) Error ζur (Padé) (b) Error νu
r (Padé)

Figure 5: Plot of Relative Error for ζur and νur with N =M = 4 fixed. Our HOPS/AWE

algorithm used Padé summation to expand through 0 ≤ ε ≤ 10−6 and 0 ≤ δ ≤ 10−8.

Physical parameters are reported in the analytic profile above.

In light of this, we ask the natural question - what is the maximum size of the grating

deformation, ε, and frequency perturbation, δ, necessary to achieve spectral accuracy?

To investigate we considered a significantly larger perturbation in both ε and δ and

simulated the same profile with the following parameters

f(x) = ecos(x), α = 0, ε = 0.02, δ = 0.001, d = 2π, r = 2,

Ar = −3, γu = 1.21, Nx = 32, Nz = 32, N =M = 4.

In Table II we report the results of our tests using both Padé and Taylor summation.
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N M Error ζwr (Taylor) Error ζwr (Padé) Error νwr (Taylor) Error νwr (Padé)

0 2 0.0393875 0.0393875 0.0151348 0.0151348

0 4 0.0393875 0.0393875 0.0151348 0.0151348

1 2 0.0393875 0.0393875 0.0151348 0.0151348

1 4 0.0393875 0.0393875 0.0151348 0.0151348

2 2 0.00110548 2.06154e-05 0.000398635 1.88162e-05

2 4 0.00110548 2.06154e-05 0.000398635 1.88162e-05

3 2 0.00110548 2.06154e-05 0.000398635 1.88162e-05

3 4 0.00110548 2.06154e-05 0.000398635 1.88162e-05

4 2 0.00110548 2.06154e-05 0.000398635 1.88162e-05

4 4 3.23201e-05 8.02125e-06 1.26113e-05 5.0552e-06

TABLE II: Relative Error, Error ζur and Error νur , versus perturbation orders N and

M , for the TFE approximations to the Dirichlet data, ζur (2.57a), and the Neumann

data, νur (2.57b), where we used both Taylor Series and Padé approximants. Parameter

choices are specified above and both ε and δ are large.

At first, these results are slightly alarming. Continuing in the same manner as the

analytic profile, we provide two more figures for the same test parameters. In Figure 6,

we keep ε = 0.02 and δ = 0.001 fixed while we plot the Relative Error for ζur and νur

as we expand through 0 ≤ N,M ≤ 4 Padé orders. In Figure 7, we keep N = M = 4

fixed and plot the Relative Error for ζur and νur as we expand through 0 ≤ ε ≤ 0.02 and

0 ≤ δ ≤ 0.001.

(a) Error ζur (Padé) (b) Error νu
r (Padé)

Figure 6: Plot of Relative Error for ζur and νur with fixed ε = 0.02 and δ = 0.001. Our

HOPS/AWE algorithm used Padé summation and expanded through 0 ≤ N,M ≤ 4

Padé orders. Physical parameters are reported above where both ε and δ are large.
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(a) Error ζur (Padé) (b) Error νu
r (Padé)

Figure 7: Plot of Relative Error for ζur and νur with N =M = 4 fixed. Our HOPS/AWE

algorithm used Padé summation to expand through 0 ≤ ε ≤ 0.02 and 0 ≤ δ ≤ 0.001.

Physical parameters are reported above where both ε and δ are large.

We then simulated the same profile with

f(x) = ecos(x), α = 0, ε = 0.02, δ = 10−6, d = 2π, r = 2,

Ar = −3, γu = 1.21, Nx = 32, Nz = 32, N =M = 8,

where we now expand through 0 ≤ N,M ≤ 8 Padé orders and have a smaller frequency

perturbation. In Figure 8, we keep ε = 0.02 and δ = 10−6 fixed while we plot the

Relative Error for ζur and νur as we expand through 0 ≤ N,M ≤ 8 Padé orders. In

Figure 9, we keep N = M = 8 fixed and plot the Relative Error for ζur and νur as we

expand through 0 ≤ ε ≤ 0.02 and 0 ≤ δ ≤ 10−6.

(a) Error ζur (Padé) (b) Error νu
r (Padé)

Figure 8: Plot of Relative Error for ζur and νur with fixed ε = 0.02 and δ = 10−6. Our

HOPS/AWE algorithm used Padé summation to expand through 0 ≤ N,M ≤ 8 Padé

orders. Physical parameters are reported above where ε is large and δ is small.
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(a) Error ζur (Padé) (b) Error νu
r (Padé)

Figure 9: Plot of Relative Error for ζur and νur with N =M = 8 fixed. Our HOPS/AWE

algorithm used Padé summation to expand through 0 ≤ ε ≤ 0.02 and 0 ≤ δ ≤ 10−6.

Physical parameters are reported above where ε is large and δ is small.

Further testing shows that our HOPS/AWE algorithm is better suited towards larger

perturbations of ε, which deforms the surface z = g(x), in comparison to large deforma-

tions of δ, the frequency. Several factors may be contributing to this effect, including

the method by which the DNO, G, recovers surface data from the transformed field. As

a result, a more detailed analysis will be performed in Chapter 7. In Appendix A, we

provide several code samples which highlight some of our Matlab work. The first sub-

routine discusses the strategy used to calculate the transformed field, u = u(x, y; ε, δ),

while the second subroutine explains how we calculate interfacial data by the upper

layer DNO, and the third subroutine clarifies how we invert the operator A0,0. We are

now ready to analyze the lower field.



CHAPTER 3

ANALYTICITY OF THE LOWER FIELD

3.1 Introduction

In the same spirit as the upper field, we present all of the necessary information to es-

tablish the analyticity of the lower field and the lower layer DNO. Our strategy is to first

remove the phase from our governing equations in §3.2, introduce a domain–flattening

change of variables in §3.3, and then seek solutions as a joint Taylor series in two small

perturbation variables: an interfacial deformation (§3.3) and a frequency deformation

(§3.4). These lead to the TFE recursions (§3.5) from which we can use Sobolev space

theory to establish analyticity results. The analyticity of the lower field with respect to a

single interfacial deformation is established in §3.7 while the joint analyticity in two small

perturbations is established in §3.8. The case for a single frequency deformation follows

directly as a special case of Theorem 3.8.1 and the analyticity of the lower layer DNO

is proven in Theorem 3.9.2. The chapter’s conclusion employs a Fourier–Chebyshev

approach to highlight interesting numerical features of our HOPS/AWE algorithm.

3.2 Governing Equations Without Phase

In the lower field, we defined the geometry S−b,g := {−b < z < g(x)} where z is bounded

between a constant imposed by the Artificial Boundary {z = −b} and the upper surface

g(x). By the boundary value problem (1.35) defined in §1.8, we arrive at the governing

equations of linear wave propagation in a single homogeneous material layer

∆w̃ + (kw)2w̃ = 0, −b < z < g(x), (3.1a)

w̃(x, g(x)) = ζ̃w(x), at z = g(x), (3.1b)

w̃(x+ d, z) = eiαdw̃(x, z), (3.1c)

∂zw̃ − T̃w[w̃] = 0, at z = b. (3.1d)

Following the analysis performed in §2.2 we define phase extraction

w(x, z) := e−iαxw̃(x, z),

and consider periodic unknowns. Following the same procedure as the upper field, our

governing equations become

56
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∆w + 2iα∂xw + (γw)2w = 0, −b < z < g(x), (3.2a)

w(x, g(x)) = ζw(x), at z = g(x), (3.2b)

w(x+ d, z) = w(x, z), (3.2c)

∂z [w(x,−b)]− Tw[w(x,−b)] = 0, at z = −b. (3.2d)

3.3 Boundary Perturbation

As in the upper field, we apply the change of variables from Appendix C to (3.2) and

start by focusing on

∆w + 2iα∂xw + (γw)2w = 0. (3.3)

The transformation rules produce the following transformation in the lower field

x′ = x, z′ = b

(
z − g(x)

b+ g(x)

)
.

This transformation maps the perturbed geometry S−b,g to the separable one S−b,0. The

change of variables can be inverted

x = x′, z =

(
b+ g(x′)

b

)
z′ + g(x′),

which we use to define the transformed lower field

w(x′, z′) := w′
(
x′,

(
b+ g(x′)

b

)
z′ + g(x′)

)
.

In Appendix C we discuss the effects of this change of variables on the Helmholtz

equation, its derivatives, and the associated boundary conditions. In the lower layer we

have a domain SL,U , (C.1), where

ℓ = −b, ℓ(x) ≡ 0, u = 0, u(x) = g(x), h = u− ℓ = b.

Therefore

C(x) = 1 +
g(x)− 0

b
= 1 +

g(x)

b
, D(x) =

02 + bg(x)

b
= g(x),

and

E = (∂xg)

(
z′ + b

b

)
, ZL =

z′ + b

b
.

(We omit ZU since ℓ ≡ 0). In Appendix C we show that the change of variables changes

the derivatives to

C∂x = C∂x′ − E∂z′ , C∂z = ∂z′ ,
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and the lower layer Helmholtz equation becomes

0 = div′[A∇′w′] +B · ∇′w′ + 2C2iα∂x′w
′ + C2(γw

′
)2w′, (3.4)

where, for S = C2,

A =

(
S −EC

−EC 1 + E2

)
, B = (∂x′C)

(
−C
E

)
.

We drop the primed variables so that (3.4) becomes

0 = div[A∇w] +B · ∇w + 2Siα∂xw + S(γw)2w,

We then take a boundary perturbation approach by setting

g(x) = εf(x), ε ∈ R, ε≪ 1, (3.5)

where, by following Appendix C, discover

A = A(ε) = A0 +A1ε+A2ε
2,

B = B(ε) = B1ε+B2ε
2,

S = S(ε) = S0 + S1ε+ S2ε
2.

Since b = h and u(x) = εf(x), we find

A0 =

(
1 0

0 1

)
, (3.6a)

A1 =

(
Axx1 Axz1

Azx1 Azz1

)
=

1

b

(
2f −(b+ z)(∂xf)

−(b+ z)(∂xf) 0

)
, (3.6b)

A2 =

(
Axx2 Axz2

Azx2 Azz2

)
=

1

b2

(
f2 −(b+ z)f(∂xf)

−(b+ z)f(∂xf) (b+ z)2(∂xf)
2

)
. (3.6c)

Also

B1 =

(
Bx

1

Bz
1

)
=

1

b

(
−(∂xf)

0

)
, (3.6d)

B2 =

(
Bx

2

Bz
2

)
=

1

b2

(
−f(∂xf)

(b+ z)(∂xf)
2

)
, (3.6e)

and

S0 = 1, S1 =
2

b
f, S2 =

1

b2
f2. (3.6f)
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As a result, (3.3) becomes

∆w + 2iα∂xw + γ2u = Y (x, z; g, w, α, γ), −b < z < 0, (3.7)

where

Y (x, z; g, w, α, γ) = −div[A1∇w]− div[A2∇w]−B1∇w −B2∇w

− 2S1iα∂xw − S1γ
2w − 2S2iα∂xw − S2γ

2w.
(3.8)

By (3.2d) the Transparent Boundary Condition is

∂z [w(x,−b)]− Tw[w(x,−b)] = 0, at z = −b. (3.9)

For this boundary condition we begin with the lower boundary and recall that such

boundaries are flat in the lower field, i.e., ℓ ≡ 0. Therefore, we can multiply (3.9) by

C = C(x) to realize

C∂z [w(x,−b)]− CTw[w(x,−b)] = 0.

So by the transformation rules for ∂z and ∂x (which induces the rule Tw → Tw
′
and

w → w′) with ℓ ≡ 0 we find

∂z′
[
w′(x′,−b)

]
− (1 + g(x′)/h)Tw

′
[w′(x′,−b)] = 0.

We rearrange to form

∂z′
[
w′(x′,−b)

]
− Tw

′
[w′(x′,−b)] = Q(x′; g, w′),

where

Q(x′; g, w′) =
1

b
g(x′)Tw

′ [
w′(x′,−b)

]
.

We then drop the primed variables and write the boundary condition as

∂z [w(x,−b)]− Tw[w(x,−b)] = Q(x; g, w).

These changes transform the governing equations without phase in (3.2) to

∆w + 2iα∂xw + (γw)2w = Y (x, z; g, w, α, γw) , −b < z < 0, (3.10a)

w(x, 0) = ζw(x), at z = 0, (3.10b)

w(x+ d, z) = w(x, z), (3.10c)

∂z [w(x,−b)]− Tw[w(x,−b)] = Q(x; g, w), at z = −b. (3.10d)
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3.4 Frequency Perturbation

We now write the illumination frequency as

ω = (1 + δ)ω = ω + δω, δ ∈ R, δ ≪ 1, (3.11)

where

kw = ω/cw = (1 + δ)ω/cw =: (1 + δ)kw = kw + δkw, (3.12a)

α = ku sin(θ) = (1 + δ)ku sin(θ) =: (1 + δ)α = α+ δα, (3.12b)

γw = kw cos(θ) = (1 + δ)kw cos(θ) =: (1 + δ)γw = γw + δγw. (3.12c)

These form the following relationship between the underscore variables

α2 + (γw)2 = (kw)2. (3.13)

As the transformation rules between the upper and lower fields do not change (C.5), we

may follow the analysis done in §2.5. It is not hard to show that (3.10a) becomes

∆w + 2iα∂xw + (γw)2w = Ỹ
(
x, z; g, w, α, γw

)
, −b < z < 0, (3.14)

where

Ỹ
(
x, z; g, w, α, γw

)
= −div[A1∇w]− div[A2∇w]−B1∇w −B2∇w

− 2iαδ∂xw − δ2(γw)2w − 2δ(γw)2w

− 2S1iα∂xw − 2S1iαδ∂xw − S1δ
2(γw)2w − 2S1δ(γ

w)2w − S1(γ
w)2w

− 2S2iα∂xw − 2S2iαδ∂xw − S2δ
2(γw)2w − 2S2δ(γ

w)2w − S2(γ
w)2w.

The boundary condition (3.10d) becomes

∂z [w(x,−b)]− Tw0 [w(x,−b)] = Q̃(x; g, w),

where Tw0 = iγw
D

corresponds to the case where δ = 0 and

Q̃(x; g, w) =
1

b
(εf(x))Tw [w(x,−b)] + (Tw − Tw0 ) [w(x,−b)] .

Proceeding in the same manner as in §2.5, our governing equations without phase and

two small perturbations become
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∆w + 2iα∂xw + (γw)2w = Ỹ
(
x, z; g, w, α, γw

)
, −b < z < 0, (3.15a)

w(x, 0) = ζw(x), at z = 0, (3.15b)

w(x+ d, z) = w(x, z), (3.15c)

∂z [w(x,−b)]− Tw0 [w(x,−b)] = Q̃(x; g, w), at z = −b. (3.15d)

3.5 Transformed Field Expansions

As in the upper field, we have made two smallness assumptions:

[1] Boundary Perturbation: g(x) = εf(x), ε ∈ R, ε≪ 1,

[2] Frequency Perturbation: ω = (1 + δ)ω = ω + δω, δ ∈ R, δ ≪ 1.

We now apply both of these assumptions and seek solutions of the form

w = w(x, z; ε, δ) =
∞∑
n=0

∞∑
m=0

wn,m(x, z)ε
nδm, (3.16)

which we will show are strongly convergent in Theorems 3.7.1 and 3.8.1. Inserting these

into (3.15) produces the TFE recursions

∆wn,m + 2iα∂xwn,m + (γw)2wn,m = Ỹn,m
(
x, z; f, w, α, γw

)
, −b < z < 0, (3.17a)

wn,m(x, 0) = ζwn,m(x), at z = 0, (3.17b)

wn,m(x+ d, z) = wn,m(x, z), (3.17c)

∂z [wn,m(x,−b)]− Tw0 [wn,m(x,−b)] = Q̃n,m(x), at z = −b, (3.17d)

where

Ỹn,m
(
x, z; f, w, α, γw

)
= −div[A1∇wn−1,m]− div[A2∇wn−2,m]−B1∇wn−1,m

−B2∇wn−2,m − 2iα∂xwn,m−1 − (γw)2wn,m−2

− 2(γw)2wn,m−1 − 2S1iα∂xwn−1,m − 2S1iα∂xwn−1,m−1 (3.18)

− S1(γ
w)2wn−1,m−2 − 2S1(γ

w)2wn−1,m−1 − S1(γ
w)2wn−1,m

− 2S2iα∂xwn−2,m − 2S2iα∂xwn−2,m−1 − S2(γ
w)2wn−2,m−2

− 2S2(γ
w)2wn−2,m−1 − S2(γ

w)2wn−2,m,

and

Q̃n,m(x) =
f

b

m∑
r=0

Twm−r[wn−1,r(x,−b)] +
m−1∑
r=0

Twm−r[wn,r(x,−b)]. (3.19)
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This is a method for computing the transformed corrections to the scattered field, wn,m,

with respect to both interfacial and frequency deformations. As stated in §2.6, a major

advantage of the TFE recursions is that (3.17) never takes derivatives of wn,m higher

than second order. To make use of this advantage, we will once again turn to classical

elliptic theory.

3.6 Elliptic Theory

To prove the joint analyticity of the lower field, w, we require minor modifications to

the Elliptic Estimate and Algebra Property of Sobolev spaces presented in §2.7.

Lemma 3.6.1. Given an integer s ≥ 0 and any σ > 0, there exists a constant M =

M(s) such that if f ∈ Cs([0, d]), w ∈ Hs([0, d]× [−b, 0]) then

∥fw∥Hs ≤ M|f |Cs∥w∥Hs , (3.20)

and if f̃ ∈ Cs+1/2+σ([0, d]), w̃ ∈ Hs+1/2([0, d]) then there exists a constant M̃ = M̃(s)

such that

∥f̃ w̃∥Hs+1/2 ≤ M̃|f̃ |Cs+1/2+σ∥w̃∥Hs+1/2 . (3.21)

Theorem 3.6.2. Given an integer s ≥ 0, if Y ∈ Hs([0, d])×[−b, 0]), ζw ∈ Hs+3/2([0, d]),

Q ∈ Hs+1/2([0, d]), then there exists a unique solution of w ∈ Hs+2([0, d]× [−b, 0]) of

∆w(x, z) + 2iα∂xw(x, z) + (γw)2w(x, z) = Y (x, z), −b < z < 0, (3.22a)

w(x, 0) = ζw(x, 0), at z = 0, (3.22b)

w(x+ d, z) = w(x, z), (3.22c)

∂zw(x,−b)− Tw0 [w(x,−b)] = Q(x), at z = −b, (3.22d)

satisfying

∥w∥Hs+2 ≤ Ce{∥Y ∥Hs + ∥ζw∥Hs+3/2 + ∥Q∥Hs+1/2}, (3.23)

for some constant Ce = Ce(s) > 0.

Lemma 3.6.3. Given an integer s ≥ 0, if Y ∈ Hs([0, d]) × [−b, 0]), then (b + z)Y ∈
Hs([0, d])× [−b, 0]) and there exists a positive constant Zb = Zb(s) such that

∥(b+ z)Y ∥Hs ≤ Zb∥Y ∥Hs .

With these, we now have everything we need to prove our desired result on the analyticity

of the lower transformed field w = w(x, z; ε) with respect to the single perturbation

parameter ε.
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3.7 Analyticity of the Boundary Perturbation

Theorem 3.7.1. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and ζwn,0 ∈ Hs+3/2([0, d])

such that

∥ζwn,0∥Hs+3/2 ≤ KζB
n
ζ , (3.24)

for constants Kζ , Bζ > 0, then wn,0 ∈ Hs+2([0, d]× [−b, 0]) and

∥wn,0∥Hs+2 ≤ KBn, (3.25)

for constants K,B > 0.

To establish this result we work by induction. The key estimate is encapsulated in the

following Lemma.

Lemma 3.7.2. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and

∥wn,0∥Hs+2 ≤ KBn, ∀n < n, (3.26)

for constants K,B > 0, then there exists a constant C > 0 such that

max
{
∥Ỹn,0∥Hs , ∥Q̃n,0∥Hs+1/2

}
≤ KC

{
|f |Cs+2Bn−1 + |f |2Cs+2B

n−2
}
. (3.27)

Proof. [Lemma 3.7.2] We begin with Ỹn,0 and recall from (3.18) that

Ỹn,0
(
x, z; f, w, α, γw

)
= −div[A1∇wn−1,0]− div[A2∇wn−2,0]−B1∇wn−1,0

−B2∇wn−2,0 − 2S1iα∂xwn−1,0 − S1(γ
w)2wn−1,0

− 2S2iα∂xwn−2,0 − S2(γ
w)2wn−2,0.

(3.28)

Then from (3.6) we have

∥Ỹn,0∥2Hs ≤ ∥Axx1 ∂xwn−1,0∥2Hs+1 + ∥Axz1 ∂zwn−1,0∥2Hs+1 + ∥Azx1 ∂xwn−1,0∥2Hs+1

+ ∥Azz1 ∂zwn−1,0∥2Hs+1 + ∥Axx2 ∂xwn−2,0∥2Hs+1 + ∥Axz2 ∂zwn−2,0∥2Hs+1

+ ∥Azx2 ∂xwn−2,0∥2Hs+1 + ∥Azz2 ∂zwn−2,0∥2Hs+1 + ∥Bx
1∂xwn−1,0∥2Hs

+ ∥Bz
1∂zwn−1,0∥2Hs + ∥Bx

2∂xwn−2,0∥2Hs + ∥Bz
2∂zwn−2,0∥2Hs

+ ∥2S1iα∂xwn−1,0∥2Hs + ∥S1(γw)2wn−1,0∥2Hs + ∥2S2iα∂xwn−2,0∥2Hs

+ ∥S2(γw)2wn−2,0∥2Hs .
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We now estimate each of these and apply Lemmas 2.8.1 (with u = w), 3.6.1, and 3.6.3.

We begin with

∥Axx1 ∂xwn−1,0∥Hs+1 = ∥(2/b)f∂xwn−1,0∥Hs+1

≤ (2/b)M|f |Cs+1∥wn−1,0∥Hs+2

≤ (2/b)M|f |Cs+1KBn−1,

and in a similar fashion

∥Axz1 ∂zwn−1,0∥Hs+1 = ∥ − ((b+ z)/b)(∂xf)∂zwn−1,0∥Hs+1

≤ (Zb/b)M|∂xf |Cs+1∥wn−1,0∥Hs+2

≤ (Zb/b)M|f |Cs+2KBn−1.

Also,

∥Azx1 ∂xwn−1,0∥Hs+1 = ∥ − ((b+ z)/b)(∂xf)∂xwn−1,0∥Hs+1

≤ (Zb/b)M|∂xf |Cs+1∥wn−1,0∥Hs+2

≤ (Zb/b)M|f |Cs+2KBn−1,

and we recall that Azz1 ≡ 0. Moving to the second order

∥Axx2 ∂xwn−2,0∥Hs+1 = ∥(1/b2)f2∂xwn−2,0∥Hs+1

≤ (1/b2)M2|f |2Cs+1∥wn−2,0∥Hs+2

≤ (1/b2)M2|f |2Cs+1KB
n−2.

Also,

∥Axz2 ∂zwn−2,0∥Hs+1 = ∥(−(b+ z)/b2)f(∂xf)∂xwn−2,0∥Hs+1

≤ (Zb/b
2)M2|f |Cs+1 |∂xf |Cs+1∥wn−2,0∥Hs+2

≤ (Zb/b
2)M2|f |2Cs+2KB

n−2,

and

∥Azx2 ∂xwn−2,0∥Hs+1 = ∥(−(b+ z)/b2)f(∂xf)∂zwn−2,0∥Hs+1

≤ (Zb/b
2)M2|f |Cs+1 |∂xf |Cs+1∥wn−2,0∥Hs+2

≤ (Zb/b
2)M2|f |2Cs+2KB

n−2,
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and

∥Azz2 ∂zwn−2,0∥Hs+1 = ∥((b+ z)2/b2)(∂xf)
2∂zwn−2,0∥Hs+1

≤ (Z2
b /b

2)M2|∂xf |2Cs+1∥wn−2,0∥Hs+2

≤ (Z2
b /b

2)M2|f |2Cs+2KB
n−2.

Next for the B1 terms

∥Bx
1∂xwn−1,0∥Hs = ∥(−1/b)(∂xf)∂xwn−1,0∥Hs

≤ (1/b)M|∂xf |Cs∥wn−1,0∥Hs+1

≤ (1/b)M|f |Cs+1KBn−1,

and Bz
1 ≡ 0. Moving to the second order

∥Bx
2∂xwn−2,0∥Hs = ∥(−1/b2)f(∂xf)∂xwn−2,0∥Hs

≤ (1/b2)M2|f |Cs |∂xf |Cs∥wn−2,0∥Hs+1

≤ (1/b2)M2|f |2Cs+1KB
n−2,

and

∥Bz
2∂zwn−2,0∥Hs = ∥(1/b2)(b+ z)(∂xf)

2∂zwn−2,0∥Hs

≤ (Zb/b
2)M2|∂xf |2Cs∥wn−2,0∥Hs+1

≤ (Zb/b
2)M2|f |2Cs+1KB

n−2.

To address the S0, S1, S2 terms we have

∥2S1iα∂xwn−1,0∥Hs = ∥(4/b)iαf∂xwn−1,0∥Hs

≤ (4/b)αM|f |Cs∥wn−1,0∥Hs+1

≤ (4/b)αM|f |CsKBn−1,

and

∥S1(γw)2wn−1,0∥Hs = ∥(2/b)(γw)2fwn−1,0∥Hs

≤ (2/b)(γw)2M|f |Cs∥wn−1,0∥Hs

≤ (2/b)(γw)2M|f |CsKBn−1,
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and

∥2S2iα∂xwn−2,0∥Hs = ∥(2/b2)iαf2∂xwn−2,0∥Hs

≤ (2/b2)αM2|f |2Cs∥wn−2,0∥Hs+1

≤ (2/b2)αM2|f |2CsKBn−2,

and

∥S2(γw)2wn−2,0∥Hs = ∥(1/b2)(γw)2f2wn−2,0∥Hs

≤ (1/b2)(γw)2M2|f |2Cs∥wn−2,0∥Hs

≤ (1/b2)(γw)2M2|f |2CsKBn−2.

We satisfy the estimate for ∥Ỹn,0∥Hs provided that we choose

C > max

{(
3 + 2Zb + 4α+ 2(γw)2

b

)
M,

(
2 + 3Zb + Z2

b + 2α+ (γw)2

b2

)
M2

}
.

The estimate for Q̃n,0 follows from Lemma 2.8.2

∥Q̃n,0∥Hs+1/2 = ∥(1/b)fTw0 [wn−1,0] ∥Hs+1/2

≤ (1/b)M|f |Cs+1/2+σ∥Tw0 [wn−1,0] ∥Hs+1/2

≤ (1/b)M|f |Cs+1/2+σCTw
0
∥wn−1,0∥Hs+3/2

≤ (1/b)M|f |Cs+1/2+σCTw
0
KBn−1,

and provided that

C > (1/b)MCTw
0
,

we are done.

With this information, we can now prove Theorem 3.7.1.

Proof. [Theorem 3.7.1] We proceed by induction in n. At order n = m = 0 (3.17)

becomes

∆w0,0 + 2iα∂xw0,0 + (γw)2w0,0 = 0, −b < z < 0, (3.29a)

w0,0(x, g) = ζw0,0(x), at z = 0, (3.29b)

w0,0(x+ d, z) = w0,0(x, z), (3.29c)

∂z [w0,0(x,−b)]− Tw0 [w0,0(x,−b)] = 0, at z = −b, (3.29d)
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and Theorem 3.6.2 guarantees a unique solution such that

∥w0,0∥Hs+2 ≤ Ce∥ζw0,0∥Hs+3/2 .

So we choose K ≥ Ce∥ζw0,0∥Hs+3/2 . We now assume the estimate (3.25) for all n < n and

study wn,0. From Theorem 3.6.2 we have a unique solution satisfying

∥wn,0∥Hs+2 ≤ Ce{∥Ỹn,0∥Hs + ∥ζwn,0∥Hs+3/2 + ∥Q̃n,0∥Hs+1/2},

and appealing to Lemmas 2.8.3 (with ζu = ζw and the hypothesis (3.24)) and 3.7.2 we

find

∥wn,0∥Hs+2 ≤ Ce

{
KζB

n
ζ + 2KC

[
|f |Cs+2Bn−1 + |f |2Cs+2B

n−2
]}

.

We are done provided we choose K ≥ 3CeKζ and

B > max
{
Bζ , 6CeC|f |Cs+2 ,

√
6CeC|f |Cs+2

}
.

We can now establish the joint analyticity of the transformed field w = w(x, z; ε, δ) with

respect to the perturbation parameters ε and δ.

3.8 Joint Analyticity of the Lower Field

Theorem 3.8.1. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and ζwn,m ∈ Hs+3/2([0, d])

such that

∥ζwn,m∥Hs+3/2 ≤ KζB
n
ζD

m
ζ , (3.30)

for constants Kζ , Bζ , Dζ > 0, then wn,m ∈ Hs+2([0, d]× [−b, 0]) and

∥wn,m∥Hs+2 ≤ KBnDm, (3.31)

for constants K,B,D > 0.

To establish this result we work by induction. The key estimate is encapsulated in the

following Lemma.

Lemma 3.8.2. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and

∥wn,m∥Hs+2 ≤ KBnDm, ∀ n ≥ 0, m < m, (3.32)
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for constants K,B,D > 0 then there exists a constant C > 0 such that

max
{
∥Ỹn,m∥Hs ,∥Q̃n,m∥Hs+1/2

}
≤ KC

{
BnDm−1 +BnDm−2 + |f |Cs+2Bn−1Dm +

|f |Cs+2Bn−1Dm−1 + |f |Cs+2Bn−1Dm−2 + |f |2Cs+2B
n−2Dm +

|f |2Cs+2B
n−2Dm−1 + |f |2Cs+2B

n−2Dm−2

}
.

Proof. [Lemma 3.8.2] We begin with Ỹn,m and recall from (3.18) that

Ỹn,m
(
x, z; g, w, α, γw

)
= −div[A1∇wn−1,m]− div[A2∇wn−2,m]−B1∇wn−1,m

−B2∇wn−2,m − 2iα∂xwn,m−1 − (γw)2wn,m−2

− 2(γw)2wn,m−1 − 2S1iα∂xwn−1,m − 2S1iα∂xwn−1,m−1 (3.33)

− S1(γ
w)2wn−1,m−2 − 2S1(γ

w)2wn−1,m−1 − S1(γ
w)2wn−1,m

− 2S2iα∂xwn−2,m − 2S2iα∂xwn−2,m−1 − S2(γ
w)2wn−2,m−2

− 2S2(γ
w)2wn−2,m−1 − S2(γ

w)2wn−2,m.

Then from (3.6) we have

∥Ỹn,m∥2Hs ≤ ∥Axx1 ∂xwn−1,m∥2Hs+1 + ∥Axz1 ∂zwn−1,m∥2Hs+1 + ∥Azx1 ∂xwn−1,m∥2Hs+1

+ ∥Azz1 ∂zwn−1,m∥2Hs+1 + ∥Axx2 ∂xwn−2,m∥2Hs+1 + ∥Axz2 ∂zwn−2,m∥2Hs+1

+ ∥Azx2 ∂xwn−2,m∥2Hs+1 + ∥Azz2 ∂zwn−2,m∥2Hs+1 + ∥Bx
1∂xwn−1,m∥2Hs

+ ∥Bz
1∂zwn−1,m∥2Hs + ∥Bx

2∂xwn−2,m∥2Hs + ∥Bz
2∂zwn−2,m∥2Hs

+ ∥2iα∂xwn,m−1∥2Hs + ∥(γw)2wn,m−2∥2Hs + ∥2(γw)2wn,m−1∥2Hs

+ ∥2S1iα∂xwn−1,m∥2Hs + ∥2S1iα∂xwn−1,m−1∥2Hs + ∥S1(γw)2wn−1,m−2∥2Hs

+ ∥2S1(γw)2wn−1,m−1∥2Hs + ∥S1(γw)2wn−1,m∥2Hs + ∥2S2iα∂xwn−2,m∥2Hs

+ ∥2S2iα∂xwn−2,m−1∥2Hs + ∥S2(γw)2wn−2,m−2∥2Hs + ∥2S2(γw)2wn−2,m−1∥2Hs

+ ∥S2(γw)2wn−2,m∥2Hs .

We now estimate each of these and apply Lemmas 2.8.1 (with u = w), 3.6.1, and 3.6.3,

beginning with

∥Axx1 ∂xwn−1,m∥Hs+1 = ∥(2/b)f∂xwn−1,m∥Hs+1

≤ (2/b)M|f |Cs+1∥wn−1,m∥Hs+2

≤ (2/b)M|f |Cs+1KBn−1Dm,
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and in a similar fashion

∥Axz1 ∂zwn−1,m∥Hs+1 = ∥ − ((b+ z)/b)(∂xf)∂zwn−1,m∥Hs+1

≤ (Zb/b)M|∂xf |Cs+1∥wn−1,m∥Hs+2

≤ (Zb/b)M|f |Cs+2KBn−1Dm.

Also,

∥Azx1 ∂xwn−1,m∥Hs+1 = ∥ − ((b+ z)/b)(∂xf)∂xwn−1,m∥Hs+1

≤ (Zb/b)M|∂xf |Cs+1∥wn−1,m∥Hs+2

≤ (Zb/b)M|f |Cs+2KBn−1Dm,

and we recall that Azz1 ≡ 0. Moving to the second order

∥Axx2 ∂xwn−2,m∥Hs+1 = ∥(1/b2)f2∂xwn−2,m∥Hs+1

≤ (1/b2)M2|f |2Cs+1∥wn−2,m∥Hs+2

≤ (1/b2)M2|f |2Cs+1KB
n−2Dm.

Also,

∥Axz2 ∂zwn−2,m∥Hs+1 = ∥(−(b+ z)/b2)f(∂xf)∂xwn−2,m∥Hs+1

≤ (Zb/b
2)M2|f |Cs+1 |∂xf |Cs+1∥wn−2,m∥Hs+2

≤ (Zb/b
2)M2|f |2Cs+2KB

n−2Dm,

and

∥Azx2 ∂xwn−2,m∥Hs+1 = ∥(−(b+ z)/b2)f(∂xf)∂zwn−2,m∥Hs+1

≤ (Zb/b
2)M2|f |Cs+1 |∂xf |Cs+1∥wn−2,m∥Hs+2

≤ (Zb/b
2)M2|f |2Cs+2KB

n−2Dm,

and

∥Azz2 ∂zwn−2,m∥Hs+1 = ∥((b+ z)2/b2)(∂xf)
2∂zwn−2,m∥Hs+1

≤ (Z2
b /b

2)M2|∂xf |2Cs+1∥wn−2,m∥Hs+2

≤ (Z2
b /b

2)M2|f |2Cs+2KB
n−2Dm.
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Next for the B1 terms

∥Bx
1∂xwn−1,m∥Hs = ∥(−1/b)(∂xf)∂xwn−1,m∥Hs

≤ (1/b)M|∂xf |Cs∥wn−1,m∥Hs+1

≤ (1/b)M|f |Cs+1KBn−1Dm,

and Bz
1 ≡ 0. Moving to the second order

∥Bx
2∂xwn−2,m∥Hs = ∥(−1/b2)f(∂xf)∂xwn−2,m∥Hs

≤ (1/b2)M2|f |Cs |∂xf |Cs∥wn−2,m∥Hs+1

≤ (1/b2)M2|f |2Cs+1KB
n−2Dm,

and

∥Bz
2∂zwn−2,m∥Hs = ∥(1/b2)(b+ z)(∂xf)

2∂zwn−2,m∥Hs

≤ (Zb/b
2)M2|∂xf |2Cs∥wn−2,m∥Hs+1

≤ (Zb/b
2)M2|f |2Cs+1KB

n−2Dm.

To address the S0, S1, S2 terms we have

∥2iα∂xwn,m−1∥Hs ≤ 2α∥wn,m−1∥Hs+1

≤ 2αKBnDm−1,

and

∥(γw)2wn,m−2∥Hs ≤ (γw)2∥wn,m−2∥Hs

≤ (γw)2KBnDm−2,

and

∥2(γw)2wn,m−1∥Hs ≤ 2(γw)2∥wn,m−1∥Hs

≤ 2(γw)2KBnDm−1,

and

∥2S1iα∂xwn−1,m∥Hs = ∥(4/b)iαf∂xwn−1,m∥Hs

≤ (4/b)αM|f |Cs∥wn−1,m∥Hs+1

≤ (4/b)αM|f |CsKBn−1Dm,
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and

∥2S1iα∂xwn−1,m−1∥Hs = ∥(4/b)iαf∂xwn−1,m−1∥Hs

≤ (4/b)αM|f |Cs∥wn−1,m−1∥Hs+1

≤ (4/b)αM|f |CsKBn−1Dm−1,

and

∥S1(γw)2wn−1,m−2∥Hs = ∥(2/b)(γw)2fwn−1,m−2∥Hs

≤ (2/b)(γw)2M|f |Cs∥wn−1,m−2∥Hs

≤ (2/b)(γw)2M|f |CsKBn−1Dm−2,

and

∥2S1(γw)2wn−1,m−1∥Hs = ∥(4/b)(γw)2fwn−1,m−1∥Hs

≤ (4/b)(γw)2M|f |Cs∥wn−1,m−1∥Hs

≤ (4/b)(γw)2M|f |CsKBn−1Dm−1,

and

∥S1(γw)2wn−1,m∥Hs = ∥(2/b)(γw)2fwn−1,m∥Hs

≤ (2/b)(γw)2M|f |Cs∥wn−1,m∥Hs

≤ (2/b)(γw)2M|f |CsKBn−1Dm,

and

∥2S2iα∂xwn−2,m∥Hs = ∥(2/b2)iαf2∂xwn−2,m∥Hs

≤ (2/b2)αM2|f |2Cs∥wn−2,m∥Hs+1

≤ (2/b2)αM2|f |2CsKBn−2Dm,

and

∥2S2iα∂xwn−2,m−1∥Hs = ∥(2/b2)iαf2∂xwn−2,m−1∥Hs

≤ (2/b2)αM2|f |2Cs∥wn−2,m−1∥Hs+1

≤ (2/b2)αM2|f |2CsKBn−2Dm−1,
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and

∥S2(γw)2wn−2,m−2∥Hs = ∥(1/b2)(γw)2f2wn−2,m−2∥Hs

≤ (1/b2)(γw)2M2|f |2Cs∥wn−2,m−2∥Hs

≤ (1/b2)(γw)2M2|f |2CsKBn−2Dm−2,

and

∥2S2(γw)2wn−2,m−1∥Hs = ∥(2/b2)(γw)2f2wn−2,m−1∥Hs

≤ (2/b2)(γw)2M2|f |2Cs∥wn−2,m−1∥Hs

≤ (2/b2)(γw)2M2|f |2CsKBn−2Dm−1,

and

∥S2(γw)2wn−2,m∥Hs = ∥(1/b2)(γw)2f2wn−2,m∥Hs

≤ (1/b2)(γw)2M2|f |2Cs∥wn−2,m∥Hs

≤ (1/b2)(γw)2M2|f |2CsKBn−2Dm.

We satisfy the estimate for ∥Ỹn,m∥Hs provided that we choose

C > max

{(
2α+ 3(γw)2

)
,

(
3 + 2Zb + 8α+ 8(γw)2

b

)
M,(

2 + 3Zb + Z2
b + 4α+ 4(γw)2

b2

)
M2

}
.

The estimate for Q̃n,m follows from Lemma 2.8.2

∥∥∥Q̃n,m∥∥∥
Hs+1/2

=

∥∥∥∥∥1b f(x)
m∑
r=0

Twm−r [wn−1,r] +

m−1∑
r=0

Twm−r [wn,r]

∥∥∥∥∥
Hs+1/2

≤ (1/b)M|f |Cs+1/2+η

m∑
r=0

∥∥Twm−r [wn−1,r]
∥∥
Hs+1/2 +

m−1∑
r=0

∥∥Twm−r [wn,r]
∥∥
Hs+1/2

≤ (1/b)M|f |Cs+1/2+ηCTw

m∑
r=0

∥wn−1,r∥Hs+3/2 + CTw

m−1∑
r=0

∥wn,r∥Hs+3/2

≤ (1/b)M|f |Cs+1/2+ηCTwKBn−1

(
Dm+1 − 1

D − 1

)
+ CTwKBn

(
Dm − 1

D − 1

)
,

and provided that D > 2 and

C > max
{
(1/b)MCTw , CTw

}
we are done.
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With this information, we can now prove Theorem 3.8.1.

Proof. [Theorem 3.8.1] We proceed by induction in m. At order m = 0 (3.17) becomes

∆wn,0 + 2iα∂xwn,0 + (γw)2wn,0 = Ỹn,0
(
x, z; f, w, α, γw

)
, −b < z < 0, (3.34a)

wn,0(x, g) = ζwn,0(x), at z = 0 (3.34b)

wn,0(x+ d, z) = wn,0(x, z), (3.34c)

∂z [wn,0(x,−b)]− Tw0 [wn,0(x,−b)] = Q̃n,0(x), at z = −b, (3.34d)

and Theorem 3.7.1 guarantees a unique solution such that

∥wn,0∥Hs+2 ≤ KBn, ∀n ≥ 0.

We now assume the estimate (3.31) for all n,m < m and study wn,m. From Theorem

3.6.2 we have a unique solution satisfying

∥wn,m∥Hs+2 ≤ Ce{∥Ỹn,m∥Hs + ∥ζwn,m∥Hs+3/2 + ∥Q̃n,m∥Hs+1/2},

and appealing to Lemmas 2.9.1 (with ζu = ζw and the hypothesis (3.30)) and 3.8.2 we

find

∥wn,m∥Hs+2 ≤ Ce

{
KζB

n
ζD

m
ζ + 2KC

(
BnDm−1 +BnDm−2 + |f |Cs+2Bn−1Dm +

|f |Cs+2Bn−1Dm−1 + |f |Cs+2Bn−1Dm−2 + |f |2Cs+2B
n−2Dm +

|f |2Cs+2B
n−2Dm−1 + |f |2Cs+2B

n−2Dm−2

)}
.

We are done provided we choose K ≥ 9CeKζ and

B > max
{
Bζ , 18CeC|f |Cs+2 ,

√
18CeC|f |Cs+2

}
,

D > max
{
1, Dζ , 18CeC,

√
18CeC

}
.

3.9 Analyticity of the Lower Layer DNO

Now that we have established the analyticity of the field, w = w(x, z; ε, δ), we move on

to establishing the analyticity of the DNO, J(g) = J(εf). As in the upper field, we

apply an unnormalized normal, N = (−∂xg, 1)T , to define the DNO

J(g) := ζw → νw, (3.35)
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which maps the Dirichlet data, ζw, to the exterior Neumann trace, νw,

J(g)[ζw] := [N · ∇w](x, g(x)) = [∂zw − (∂xg)∂xw](x, g(x)). (3.36)

To understand how the operator J(g) behaves under the change of variables in Appendix

C, we multiply (3.36) by C(x) to realize

CJ = C∂zw − (∂xg)C∂xw.

The differentiation rules for the change of variables, (C.5), produces

CJ = ∂z′w
′ − (∂x′g){C∂x′w′ − E∂z′w

′}.

These are evaluated at the upper boundary, z′ = 0, where we observe that

C(x′) = 1 +
g

b
, E(x′, 0) = ∂x′g,

to find

(
1 +

g

b

)
J = ∂z′w

′ − (∂x′g)
{(

1 +
g

b

)
∂x′w

′ − (∂x′g)∂z′w
′
}
.

We solve for J and drop the primes to find

J(g)[ζw] = ∂zw(x, 0)− L(x; g, w), (3.37)

with

L(x; g, w) := (∂xg)∂xw(x, 0)−
1

b
gJ(g)[ζw]

+
1

b
g(∂xg)∂xw(x, 0)− (∂xg)

2∂zw(x, 0).
(3.38)

Upon setting g(x) = εf(x) and seeking an expansion of the form

J = J(εf, δ) =

∞∑
n=0

∞∑
m=0

Jn,m(f)ε
nδm,

the equations (3.37) and (3.38) deliver

Jn,m(f)[ζ
w] = ∂zwn,m(x, 0)− Ln,m(x; f, w), (3.39)
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where

Ln,m(x; f, w) := (∂xf)∂xwn−1,m(x, 0)−
1

b
fJn−1,m(f)[ζ

w]

+
1

b
f(∂xf)∂xwn−2,m(x, 0)− (∂xf)

2∂zwn−2,m(x, 0).
(3.40)

To prove the analyticity of the DNO we will need the following recursive estimate for

Ln,m.

Lemma 3.9.1. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and

∥wn,m∥Hs+2 ≤ KBnDm, ∥Jn,m∥Hs+1/2 ≤ K̃B̃nD̃m, ∀ n < n, m ≥ 0, (3.41)

for constants K,B,D, K̃, B̃, D̃ > 0 where K̃ ≥ K, B̃ ≥ B, D̃ ≥ D, then there exists a

constant C̃ > 0 such that

∥Ln,m∥Hs+1/2 ≤ K̃C̃
{
|f |Cs+2B̃n−1D̃m + |f |2Cs+2B̃

n−2D̃m
}
. (3.42)

Proof. [Lemma 3.9.1] From (3.40) and Lemma 3.6.1 we estimate

∥Ln,m∥Hs+1/2 ≤ M|∂xf |Cs+1/2+σ∥∂xwn−1,m(x, 0)∥Hs+1/2

+
1

b
M|f |Cs+1/2+σ∥Gn−1,m(f)[ζ

w]∥Hs+1/2

+
1

b
M2|f |Cs+1/2+σ |∂xf |Cs+1/2+σ∥∂xwn−2,m(x, 0)∥Hs+1/2

+M2|∂xf |2Cs+1/2+σ∥∂zwn−2,m(x, 0)∥Hs+1/2 .

This gives

∥Ln,m∥Hs+1/2 ≤ K̃
{
M|f |Cs+2B̃n−1D̃m +

1

b
M|f |Cs+2B̃n−1D̃m

+
1

b
M2|f |2Cs+2B̃

n−2D̃m +M2|f |2Cs+2B̃
n−2D̃m

}
,

and we are done provided

C̃ ≥
(
1 +

1

b

)
max{M,M2}.

We now have everything we need to prove the analyticity of the lower layer DNO.

Theorem 3.9.2. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and ζwn,m ∈ Hs+3/2([0, d])

such that

∥ζwn,m∥Hs+3/2 ≤ KζB
n
ζD

m
ζ ,
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for constants Kζ , Bζ , Dζ > 0, then Jn,m ∈ Hs+1/2([0, d]) and

∥Jn,m∥Hs+1/2 ≤ K̃B̃nD̃m, (3.43)

for constants K̃, B̃, D̃ > 0.

Proof. [Theorem 3.9.2] We work by induction in n. At n = 0 we have from (3.39) that

J0,m = ∂zw0,m(x, 0),

and from Theorem 3.8.1 we have

∥J0,m∥Hs+1/2 = ∥∂zw0,m(x, 0)∥Hs+1/2 ≤ ∥w0,m∥Hs+2 ≤ KDm.

So we choose K̃ ≥ K and D̃ ≥ D. We now assume B̃ ≥ B and the estimate (3.43) for

all n < n and estimate (3.39)

∥Jn,m(f)[ζw]∥Hs+1/2 ≤ ∥∂zwn,m(x, 0)∥Hs+1/2 + ∥Ln,m(x)∥Hs+1/2 .

Using the inductive hypothesis, Lemma 3.9.1, and Theorem 3.8.1 we have

∥Jn,m(f)[ζw]∥Hs+1/2 ≤ KBnDm + K̃C̃
{
|f |Cs+2B̃n−1D̃m + |f |2Cs+2B̃

n−2D̃m
}
.

We are done provided K̃ ≥ 2K and

B̃ ≥ max
{
B, 4C̃|f |Cs+2 , 2

√
C̃|f |Cs+2

}
.

3.10 Numerical Method

As in the upper field, we will simulate a manufactured solution in order to verify the

accuracy of our numerical scheme. We start by considering the basis function

vwp (x, z) := eip̃x−iγ
w
p z, p̃ =

2πp

d
,

where the phase exp(iαx) is removed. We then utilize the exact Dirichlet/Neumann

pairs {ζwr , νwr } defined at the wavenumber p = r and a profile g(x) = εf(x) where ε > 0

and our manufactured solutions are
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ζwr (x) := Bre
ir̃x−iγwr g(x), (3.44a)

νwr (x) := [−∂zwr + (∂xg)∂xwr](x, g(x))

= [(iγwr ) + ε(∂xf)(ir̃)]Bre
ir̃x−iγwr εf(x).

(3.44b)

To make the specification precise we solve, at every desired perturbation order n and

m, the elliptic boundary value problem, (3.17),

∆wn,m + 2iα∂xwn,m + (γw)2wn,m = Ỹn,m
(
x, z; f, w, α, γw

)
, −b < z < 0, (3.45a)

wn,m(x, 0) = ζwn,m(x), at z = 0, (3.45b)

wn,m(x+ d, z) = wn,m(x, z), (3.45c)

∂z [wn,m(x,−b), ]− Tw0 [wn,m(x,−b)] = Q̃n,m(x), at z = −b, (3.45d)

followed by the simulation of the n–th and m–th correction of the DNO, (3.39),

Jn,m(f)[ζ
w] = ∂zwn,m(x, 0)− Ln,m(x; f, w).

We begin by choosing the maximum perturbation orders, N and M , and then approxi-

mate

w(x, z; ε, δ) ≈ wN,M (x, z; ε, δ) :=
N∑
n=0

M∑
m=0

wn,m(x, z)ε
nδm, (3.46)

J(x; ε, δ) ≈ JN,M (x; ε, δ) :=
N∑
n=0

M∑
m=0

Jn,m(x)ε
nδm, (3.47)

where, by the periodicity of solutions,

wn,m(x, z) =

∞∑
p=−∞

ŵn,m,p(z)e
ip̃x, Jn,m(x) =

∞∑
p=−∞

Ĵn,m,pe
ip̃x. (3.48)

Each of these wn,m(x, z) are then simulated by a Fourier–Chebyshev approach which

posits the form

wn,m(x, z) ≈ wNx,Nz
n,m (x, z) :=

Nx/2−1∑
p=−Nx/2

Nz∑
ℓ=0

ŵn,m,p,ℓe
ip̃xTℓ

(
2z + b

b

)
,

where Tℓ is the ℓ–th Cheybshev polynomial. The unknowns, ŵn,m,p,ℓ are recovered from

(3.45) by the collocation approach. As in §2.11, our HOPS/AWE algorithm requires

Nx × Nz unknowns at every perturbation order (n,m). We apply a Fourier spectral

method in the lateral direction where we require Nx equally–spaced gridpoints. In the

vertical direction we use a Chebyshev spectral method where we chooseNz+1 collocation
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points. We then simulate the lower layer DNO from (3.39), where the coefficients Jn,m

from (3.48) are approximated by

Jn,m(x) ≈ JNx
n,m(x) :=

Nx/2−1∑
p=−Nx/2

Ĵn,m,pe
ip̃x,

and the Ĵn,m,p are recovered from the ŵn,m,p,ℓ. Inserting the expansions (3.48) into

(3.45) gives

∂2z ŵn,m,p(z) +
(
(γw
p
)2 − p̃2 − 2αp̃

)
ŵn,m,p(z) =

ˆ̃Yn,m,p(z), −b < z < 0, (3.49a)

ŵn,m,p(0) = ζ̂wn,m,p, at z = 0, (3.49b)

∂z [ŵn,m,p(−b)]− T̂w[ŵn,m,p(−b)] = ˆ̃Qn,m,p, at z = −b, (3.49c)

Through this, we can solve our two–point boundary value problem through our Cheby-

shev collocation method and we now turn to a numerical implementation of our HOP-

S/AWE algorithm in Matlab. To begin, we approximate the lower layer Dirichlet and

Neumann data through the expansions

ζNx,Nz ,N,M
TFE =

N∑
n=0

M∑
m=0

ζNx,Nz
n,m (x)εnδm, νNx,Nz ,N,M

TFE =
N∑
n=0

M∑
m=0

νNx,Nz
n,m (x)εnδm,

from which we can compute the relative errors

Error ζwr = ErrorTFE(Nx, Nz, N,M) :=

∣∣∣ζwr − ζNx,Nz,N,MTFE

∣∣∣
L∞

|ζwr |L∞
,

Error νwr = ErrorTFE(Nx, Nz, N,M) :=

∣∣∣νwr − νNx,Nz,N,MTFE

∣∣∣
L∞

|νwr |L∞
.

3.11 Numerical Results

For our first simulation we considered a profile with moderate interfacial and frequency

perturbations and the following paramaters

f(x) = ecos(x), α = 0, ε = 10−4, δ = 10−4, d = 2π, r = 2,

Br = −4.8, γw = 1.15, Nx = 32, Nz = 32, N =M = 4.

In Table III we report the results of our tests using both Padé and Taylor summation.
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N M Error ζwr (Taylor) Error ζwr (Padé) Error νwr (Taylor) Error νwr (Padé)

0 2 0.000187563 0.000187563 8.47895e-05 8.47895e-05

0 4 0.000187563 0.000187563 8.47895e-05 8.47895e-05

1 2 0.000187563 0.000187563 8.47895e-05 8.47895e-05

1 4 0.000187563 0.000187563 8.47895e-05 8.47895e-05

2 2 5.4509e-08 5.02104e-09 2.65222e-08 4.42536e-09

2 4 5.4509e-08 5.02104e-09 2.65222e-08 4.42536e-09

3 2 5.4509e-08 5.02104e-09 2.65222e-08 4.42536e-09

3 4 5.4509e-08 5.02104e-09 2.65222e-08 4.42536e-09

4 2 5.4509e-08 5.02104e-09 2.65222e-08 4.42536e-09

4 4 5.00595e-09 4.98285e-09 4.41455e-09 4.39911e-09

TABLE III: Relative Error, Error ζwr and Error νwr , versus perturbation orders N and

M , for the TFE approximations to the Dirichlet data, ζwr (3.44a), and the Neumann

data, νwr (3.44b), where we used both Taylor Series and Padé approximants. Parameter

choices are specified above where we investigated moderate boundary and frequency

perturbations.

As expected from spectral methods, our HOPS/AWE algorithm reaches reasonable

accuracy at N = M = 4 Taylor or Padé orders. We then simulated new results by

increasing the number of Padé orders and decreasing the size of the interfacial and

frequency perturbations. In Figure 10, we considered N =M = 4, 8, 12, 16 Padé orders

and plotted the Relative Error for ζwr as we expanded up to ε = 10−2, 10−4, 10−6, 10−8

and δ = 10−2, 10−4, 10−6, 10−8 simultaneously with Padé summation. In Figure 11, we

kept N =M = 4 Padé orders fixed and plotted the Relative Error for ζwr as we expanded

up to ε = 10−2, 10−4, 10−6, 10−8 and δ = 10−2, 10−4, 10−6, 10−8 simultaneously with

Padé summation.

(a) Error ζwr (Padé), N = M = 4, ε = δ = 10−2 (b) Error ζwr (Padé), N = M = 8, ε = δ = 10−4
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(c) Error ζwr (Padé), N = M = 12, ε = δ = 10−6 (d) Error ζwr (Padé), N = M = 16, ε = δ = 10−8

Figure 10: Plot of Relative Error for ζwr . Our HOPS/AWE algorithm used Padé sum-
mation with N =M = 4, 8, 12, 16 Padé orders to expand up to ε = δ = 10−2, 10−4, 10−6,
10−8 simultaneously. Physical parameters are reported in the profile above.

(a) Error ζwr (Padé), ε = δ = 10−2 (b) Error ζwr (Padé), ε = δ = 10−4

(c) Error ζwr (Padé), ε = δ = 10−6 (d) Error ζwr (Padé), ε = δ = 10−8

Figure 11: Plot of Relative Error for ζwr with N =M = 4 Padé orders fixed. Our HOP-

S/AWE algorithm used Padé summation to expand up to ε = δ = 10−2, 10−4, 10−6, 10−8

simultaneously. Physical parameters are reported in the profile above.
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We then simulated an analytic profile with a smaller frequency perturbation and the

following parameters

f(x) =
1

4
sin(4x), α = 0, ε = 10−4, δ = 10−8, d = 2π, r = 2,

Br = −4.8, γw = 1.15, Nx = 32, Nz = 32, N =M = 4.

In Table IV we report the results of our tests using both Padé and Taylor summation.

N M Error ζwr (Taylor) Error ζwr (Padé) Error νwr (Taylor) Error νwr (Padé)

0 2 1.04998e-05 1.04998e-05 6.9068e-05 6.9068e-05

0 4 1.04998e-05 1.04998e-05 6.9068e-05 6.9068e-05

1 2 1.04998e-05 1.04998e-05 6.9068e-05 6.9068e-05

1 4 1.04998e-05 1.04998e-05 6.9068e-05 6.9068e-05

2 2 9.21284e-10 2.7964e-13 2.88241e-09 2.5317e-13

2 4 9.21284e-10 2.7964e-13 2.88241e-09 2.5317e-13

3 2 9.21284e-10 2.7964e-13 2.88241e-09 2.5317e-13

3 4 9.21284e-10 2.7964e-13 2.88241e-09 2.5317e-13

4 2 9.21284e-10 2.7964e-13 2.88241e-09 2.5317e-13

4 4 8.25908e-14 9.3863e-14 3.1523e-13 2.50276e-13

TABLE IV: Relative Error, Error ζwr and Error νwr , versus perturbation orders N and

M , for the TFE approximations to the Dirichlet data, ζwr (3.44a), and the Neumann

data, νwr (3.44b), where we used both Taylor Series and Padé approximants. Parameter

choices are specified by the analytic profile above.

In Figure 12, we kept N =M = 4 Taylor orders fixed and computed the Relative Error

for νwr as we expanded up to ε = 10−2, 10−4, 10−6, 10−8 and δ = 10−2, 10−4, 10−6, 10−8

simultaneously. Jointly decreasing both perturbation variables simultaneously increased

the accuracy of our HOPS/AWE algorithm and returned favorable convergence results

for both ε = δ = 10−6 and ε = δ = 10−8.
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(a) Error νw
r (Taylor), ε = δ = 10−2 (b) Error νw

r (Taylor), ε = δ = 10−4

(c) Error νw
r (Taylor), ε = δ = 10−6 (d) Error νw

r (Taylor), ε = δ = 10−8

Figure 12: Plot of Relative Error for νwr with N =M = 4 Taylor orders fixed. Our HOP-

S/AWE algorithm used Taylor summation to expand up to ε = 10−2, 10−4, 10−6, 10−8

and δ = 10−2, 10−4, 10−6, 10−8 simultaneously with the analytic profile above.



CHAPTER 4

EXISTENCE, UNIQUENESS, AND JOINT ANALYTICITY OF

SOLUTIONS TO THE TWO–LAYER PROBLEM

4.1 Introduction

This chapter combines the analysis performed in Chapters 2 and 3 to fully establish

the existence, uniqueness, and analyticity of solutions to our scattering problem. In

§4.2 we summarize the equations which govern the propagation of linear waves in a two-

dimensional periodic structure, and discuss how the far–field boundary conditions can be

enforced through the use of Transparent Boundary Conditions. Then in §4.3 we restate

our governing equations in terms of interfacial quantities via a Non–Overlapping Domain

Decomposition phrased in terms of the DNOs from Chapters 2 and 3. In §4.4 we present

a rather general and rigorously justifiable perturbative scheme for solving systems of

linear systems of equations in Banach spaces. The appropriate analyticity theorems for

a single perturbation parameter and two perturbations parameters are presented and

proven in §4.5, respectively. The application of these results to the governing equations

presented in §4.3 is made in §4.6 where our novel result (Theorem 4.6.1) is established.

The proof requires several rigorous analyses, and the first of these is given in §4.7
with the analyticity of the surface data. Then, §4.8 presents the invertibility of the

linearized operator representing the flat–interface solution. The bulk of the analysis has

previously been performed in Chapters 2 and 3 where we established the analyticity

of the transformed fields with a single, geometric, boundary perturbation, ε, alone in

Theorems 2.8.4 and 3.7.1. The joint analyticity of the transformed fields was proven

in Theorems 2.9.2 and 3.8.1 and the analyticity of the DNOs in Theorems 2.10.2 and

3.9.2.

4.2 Governing Equations and Propagating Conditions

The two–layer scattering problem is composed of outgoing, quasiperiodic solutions to

∆ũ+ (ku)2ũ = 0, z > g(x), (4.1a)

∆w̃ + (kw)2w̃ = 0, z < g(x), (4.1b)

ũ− w̃ = ζ̃, at z = g(x), (4.1c)

∂N ũ− τ2∂N w̃ = ψ̃, at z = g(x). (4.1d)

The Dirichlet and Neumann data are

83
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ζ̃(x) := −eiαx−iγug(x), (4.1e)

ψ̃(x) := (iγu + iα(∂xg))e
iαx−iγug(x), (4.1f)

and

τ2 =

1, TE,

(ku/kw)2 = (nu/nw)2, TM.

Following our analysis in Chapters 2 and 3, we start by removing the phase in (4.1)

through the relationship v(x, z) = e−iαxṽ(x, z), v ∈ {u,w}, and ζ(x) = e−iαxζ̃(x),

ψ(x) = e−iαxψ̃(x). This yields outgoing, d–periodic solutions of

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x), (4.2a)

∆w + 2iα∂xw + (γw)2w = 0, z < g(x), (4.2b)

u− w = ζ, at z = g(x), (4.2c)

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, at z = g(x), (4.2d)

where

ζ(x) := −e−iγug(x), (4.2e)

ψ(x) := (iγu + iα(∂xg))e
−iγug(x), (4.2f)

and the left–hand side of (4.2d) follows from

∂N ũ− τ2∂N w̃ = ∂N
(
eiαxu

)
− τ2∂N

(
eiαxw

)
= eiαx

(
∂zu+ (−∂xg)∂xu− (iα)(∂xg)u −

τ2
[
∂zw + (−∂xg)∂xw − (iα)(∂xg)w

])
= eiαx

(
∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w]

)
.

The Upward Propagating Condition (UPC) and Downward Propagating Condition (DPC)

(8) rigorously enforce the Outgoing Wave Conditions which we mentioned in §1.8. We

now demonstrate how these can be stated in terms of Transparent Boundary Conditions

which also truncate the bi–infinite problem domain to one of finite size. As discussed in

§1.8, we choose values a and b such that

a > |g|∞ , −b < − |g|∞ ,
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and define the artificial boundaries {z = a} and {z = −b}. In {z > a} the Rayleigh

expansions (6) tell us that upward propagating solutions of (4.2a) are

u(x, z) =

∞∑
p=−∞

ape
ip̃x+iγup z, (4.3)

where, for p ∈ Z and q ∈ {u,w},

p̃ :=
2πp

d
, αp := α+ p̃, γqp :=

√
(kq)2 − α2

p, Im
{
γqp
}
≥ 0. (4.4)

In a similar fashion, downward propagating solutions of (4.2b) in {z < −b} can be

expressed as

w(x, z) =

∞∑
p=−∞

dpe
ip̃x−iγwp z. (4.5)

With these we can define the Transparent Boundary Conditions in the following way:

Focusing on the UPC we rewrite (4.3) as

u(x, z) =

∞∑
p=−∞

(
ape

iγup a
)
eip̃x+iγ

u
p (z−a) =

∞∑
p=−∞

ξ̂pe
ip̃x+iγup (z−a),

and note that,

u(x, a) =
∞∑

p=−∞
ξ̂pe

ip̃x =: ξ(x),

and

∂zu(x, a) =

∞∑
p=−∞

(iγup )ξ̂pe
ip̃x =: T u[ξ(x)],

which defines the order–one Fourier multiplier T u. For the DPC we rewrite (4.5) as

w(x, z) =
∞∑

p=−∞

(
dpe

iγwp b
)
eip̃x−iγ

w
p (z+b) =

∞∑
p=−∞

ψ̂pe
ip̃x−iγwp (z+b),

and keep in mind,

w(x,−b) =
∞∑

p=−∞
ψ̂pe

ip̃x =: ψ(x),

and

∂zw(x,−b) =
∞∑

p=−∞
(−iγwp )ψ̂peip̃x =: Tw[ψ(x)],

which defines the order–one Fourier multiplier Tw. From this we state that upward–

propagating solutions of (4.2a) satisfy the Transparent Boundary Condition at z = a

∂zu(x, a)− T u[u(x, a)] = 0, z = a. (4.6)
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Similarly, downward–propagating solutions of (4.2b) satisfy the Transparent Boundary

Condition at z = −b

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b. (4.7)

We also point out that solutions which satisfy (4.6) and (4.7) equivalently satisfy the

UPC and DPC, respectively (8). With these we now state the full set of governing

equations as

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x), (4.8a)

∆w + 2iα∂xw + (γw)2w = 0, z < g(x), (4.8b)

u− w = ζ, z = g(x), (4.8c)

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x), (4.8d)

∂zu(x, a)− T u[u(x, a)] = 0, z = a, (4.8e)

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b, (4.8f)

u(x+ d, z) = u(x, z), (4.8g)

w(x+ d, z) = w(x, z). (4.8h)

4.3 A Non–Overlapping Domain Decomposition Method

We now restate our governing equations (4.8) in terms of surface quantities via a Non–

Overlapping Domain Decomposition Method (DDM) (95; 96; 97). For this we define

U(x) := u(x, g(x)), Ũ(x) := −∂Nu(x, g(x)),

W (x) := w(x, g(x)), W̃ (x) := ∂Nw(x, g(x)),

where u is a d–periodic solution of (4.8a) and (4.8e), and w is a d–periodic solution of

(4.8b) and (4.8f). In terms of these our full governing equations (4.8) are equivalent to

the pair of boundary conditions, (4.8c) & (4.8d),

U −W = ζ, −Ũ − (iα)(∂xg)U − τ2
[
W̃ − (iα)(∂xg)W

]
= ψ. (4.9)

This set of two equations for four unknowns can be closed by noting that the pairs

{U, Ũ} and {W, W̃} are connected, e.g., by the DNOs

G : U → Ũ, J :W → W̃.

Definition 4.3.1. We recall the precise definition of the upper layer DNO (98): Given

an integer s ≥ 0, if g ∈ Cs+2 the unique solution of
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∆u+ 2iα∂xu+ (γu)2u = 0, g(x) < z < a, (4.10a)

u(x, g(x)) = U(x), z = g(x), (4.10b)

∂zu(x, a)− T u[u(x, a)] = 0, z = a, (4.10c)

u(x+ d, z) = u(x, z), (4.10d)

defines the Upper Layer DNO

G(g) : U → Ũ := −(∂Nu)(x, g(x)). (4.11)

Definition 4.3.2. Similarly, we recall the definition of the lower layer DNO: Given an

integer s ≥ 0, if g ∈ Cs+2 the unique solution of

∆w + 2iα∂xw + (γw)2w = 0, − b < z < g(x), (4.12a)

w(x, g(x)) =W (x), z = g(x), (4.12b)

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b, (4.12c)

w(x+ d, z) = w(x, z), (4.12d)

defines the Lower Layer DNO

J(g) :W → W̃ := (∂Nw)(x, g(x)). (4.13)

We now write (4.9) as

AV = R, (4.14)

where

A =

(
I −I

G+ (∂xg)(iα) τ2J − τ2(∂xg)(iα)

)
, V =

(
U

W

)
, R =

(
ζ

−ψ

)
. (4.15)

For later use, the trivial flat–interface version of (4.15) is A0,0V0,0 = R0,0 where

A0,0 =

(
I −I

−G0,0 −τ2J0,0

)
, V0,0 =

(
U0,0

W0,0

)
, R0,0 =

(
ζ0,0

−ψ0,0

)
. (4.16)

4.4 Analyticity of Solutions to Linear Systems

Following our analysis in Chapters 2 and 3, we pursue a jointly perturbative approach

to solving (4.14) based on the assumptions

g(x) = εf(x), ω = ω + δω = (1 + δ)ω,
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where upon performing a join Taylor expansion the DNO G takes the form (2.52) (cf.

§2.10) and the DNO J takes the form (3.39) (cf. §3.9).

With this we establish the existence, uniqueness, and analyticity of solutions to

(4.14). To accomplish this we consider systems of linear equations of the form

A(ε, δ)V(ε, δ) = R(ε, δ), (4.17)

and show how such equations can be solved by regular perturbation theory.

4.5 Rigorous Regular Perturbation Theory

To begin, we assume

A(ε, δ) =

∞∑
n=0

∞∑
m=0

An,mε
nδm, R(ε, δ) =

∞∑
n=0

∞∑
m=0

Rn,mε
nδm,

in (4.17) and seek a solution of the form

V(ε, δ) =
∞∑
n=0

∞∑
m=0

Vn,mε
nδm. (4.18)

From (4.17) we find at order O(εn, δm)

A0,0Vn,m = Rn,m −
n−1∑
ℓ=0

An−ℓ,0Vℓ,m −
m−1∑
r=0

A0,m−rVn,r

−
n−1∑
ℓ=0

m−1∑
r=0

An−ℓ,m−rVℓ,r,

or

Vn,m = A−1
0,0

(
Rn,m −

n−1∑
ℓ=0

An−ℓ,0Vℓ,m −
m−1∑
r=0

A0,m−rVn,r

−
n−1∑
ℓ=0

m−1∑
r=0

An−ℓ,m−rVℓ,r

)
.

(4.19)

With these we can establish an existence theorem (98) for this problem depending on

two parameters.

Theorem 4.5.1. Given two Banach spaces X and Y , suppose that

[1] Rn,m ∈ Y for all n,m ≥ 0, and there exists constants BR > 0, CR,N > 0, CR,M >

0, DR > 0 such that

∥Rn,m∥Y ≤ CR,NCR,MB
n
RD

m
R ,
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[2] An,m : X → Y for all n,m ≥ 0, and there exists constants BA > 0, CA,N >

0, CA,M > 0, DA > 0 such that

∥An,m∥X→Y ≤ CA,NCA,MB
n
AD

m
A ,

[3] A−1
0,0 : Y → X for all n,m ≥ 0, and there exists a constant Ce > 0 such that∥∥∥A−1

0,0

∥∥∥
Y→X

≤ Ce.

Then the equation (4.17) has a unique solution, (4.18), and there exists constants BV >

0, CV,N > 0, CV,M > 0, and DV > 0 such that

∥Vn,m∥X ≤ CV,NCV,MB
n
VD

m
V , (4.20)

for all n,m ≥ 0 and any

CV,N ≥ 2CeCR,N , CV,M ≥ 2CeCR,M ,

BV ≥ max{BR, 2BA, 8CeCA,NBA}, DV ≥ max{DR, 2DA, 8CeCA,MDA}.

This implies that, for any 0 ≤ ρ, σ < 1, (4.18) converges for all ε such that Bε < ρ, i.e.,

ε < ρ/B and all δ such that Dδ < σ, i.e., δ < σ/D.

Proof. [Theorem 4.5.1] We work by induction, where we want to establish

∥Vn,m∥X ≤ CV,NCV,MB
n
VD

m
V , ∀n,m ≥ 0.

We start by an induction on m. The base case m = 0:

∥Vn,0∥X ≤ CV,NB
n
V , ∀n ≥ 0, (4.21)

is established through an induction on n. We start with n = 0 where (4.19) becomes

V0,0 = A−1
0,0R0,0,

and, from the properties of A−1
0,0, we have

∥V0,0∥X =
∥∥∥A−1

0,0R0,0

∥∥∥
X

≤ Ce ∥R0,0∥Y =: CV .
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Now, assuming estimate (4.20) for all n < n̄ we use (4.19) and the mapping properties

of A−1
0,0 to find

∥Vn̄,0∥X ≤ Ce

{
∥Rn̄,0∥Y +

n̄−1∑
ℓ=0

∥An̄−ℓ,0Vℓ,0∥Y

}
.

Now, using the estimates on Rn,0 and An,0 (for all n) and Vn,0 (n < n̄) we have

∥Vn̄,0∥X ≤ Ce

{
CRB

n̄
R +

n̄−1∑
ℓ=0

CAB
n̄−ℓ
A CVB

ℓ
V

}

= CeCRB
n̄
R + CeCACV

(
BA
BV

)
Bn̄
V

n̄−1∑
ℓ=0

(
BA
BV

)n̄−ℓ−1

≤ CeCRB
n̄
R + CeCACV

(
BA
BV

)
Bn̄
V

(
1

1− 1/2

)
,

if BA/BV ≤ 1/2 (implying BV ≥ 2BA). We are done if we demand that

BV ≥ BR, CeCR ≤ CV /2, 2CeCACV (BA/BV ) ≤ CV /2.

All of this can be achieved provided

CV ≥ 2CeCR, BV ≥ max{BR, 2BA, 4CeCABA},

which establishes (4.21). We now assume

∥Vn,m∥X ≤ CV,NCV,MB
n
VD

m
V , ∀n ≥ 0, ∀m < m̄,

and seek

∥Vn,m̄∥X ≤ CV,NCV,MB
n
VD

m̄
V , ∀n ≥ 0.

This can be obtained through a second induction on n. The base case n = 0:

∥V0,m̄∥X ≤ CV,MD
m̄
V , ∀m̄ ≥ 0,

is established through an induction on m̄ analogous to (4.21). Finally, we assume

∥Vn,m̄∥X ≤ CV,NCV,MB
n
VD

m̄
V , ∀n ≤ n̄, ∀m̄ ≥ 0,

and seek

∥Vn̄,m̄∥X ≤ CV,NCV,MB
n̄
VD

m̄
V .
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We now use (4.19) and the mapping properties of A−1
0,0 to find

∥Vn̄,m̄∥X ≤ Ce

{
∥Rn̄,m̄∥Y +

n̄−1∑
ℓ=0

∥An̄−ℓ,0Vℓ,m̄∥Y +
m̄−1∑
r=0

∥A0,m̄−rVn̄,r∥Y

+
n̄−1∑
ℓ=0

m̄−1∑
r=0

∥An̄−ℓ,m̄−rVℓ,r∥Y

}
.

Using the estimates on Rn,m and An,m (for all n,m) and Vn,m (n < n̄,m < m̄) we

define

C̃A := CA,NCA,M , C̃R := CR,NCR,M , C̃V := CV,NCV,M ,

to form

∥Vn̄,m̄∥X ≤ Ce

{
C̃RB

n̄
RD

m̄
R +

n̄−1∑
ℓ=0

CA,NB
n̄−ℓ
A CV,NB

ℓ
V +

m̄−1∑
r=0

CA,MD
m̄−ℓ
A CV,MD

ℓ
V

+

n̄−1∑
ℓ=0

m̄−1∑
r=0

C̃AB
n̄−ℓ
A Dm̄−ℓ

A C̃VB
ℓ
VD

r
V

}

= CeC̃RB
n̄
RD

m̄
R + CeCA,NCV,N

(
BA
BV

)
Bn̄
V

n̄−1∑
ℓ=0

(
BA
BV

)n̄−ℓ−1

+ CeCA,MCV,M

(
DA

DV

)
Dm̄
V

m̄−1∑
r=0

(
DA

DV

)m̄−r−1

+ CeC̃AC̃V

(
BA
BV

)
Bn̄
V

(
DA

DV

)
Dm̄
V

n̄−1∑
ℓ=0

(
BA
BV

)n̄−ℓ−1 m̄−1∑
r=0

(
DA

DV

)m̄−r−1

≤ CeC̃RB
n̄
VD

m̄
V + CeCA,NCV,N

(
BA
BV

)
Bn̄
V

(
1

1− 1/2

)
+ CeCA,MCV,M

(
DA

DV

)
Dm̄
V

(
1

1− 1/2

)
+ CeC̃AC̃V

(
BA
BV

)
Bn̄
V

(
DA

DV

)
Dm̄
V

(
1

1− 1/2

)2

,

if BA/BV ≤ 1/2 and DA/DV ≤ 1/2 (implying BV ≥ 2BA and DV ≥ 2DA). We are

done if we demand that

BV ≥ BR, DV ≥ DR, CeCR,N ≤ CV,N/2, CeCR,M ≤ CV,M/2,

4CeCA,NCV,N (BA/BV ) ≤ CV,N/2, 4CeCA,MCV,M (DA/DV ) ≤ CV,M/2.

This can be realized if

CV,N ≥ 2CeCR,N , BV ≥ max{BR, 2BA, 8CeCA,NBA},

CV,M ≥ 2CeCR,M , DV ≥ max{DR, 2DA, 8CeCA,MDA}.
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4.6 Joint Analyticity of Solutions of the Two–Layer Problem

We recall the surface formulation of our scattering problem,

AV = R,

cf. (4.14), where the operator A and vector R are given in (4.15). As discussed in §4.3,
V is a vector of unknowns which contains solutions U and W to the scattering problem.

As mentioned in the Introduction, our solution procedure is perturbative in nature and

we can directly invoke Theorem 4.5.1 from §4.5 to obtain our desired result. For this we

may formally expand

A(ε, δ) =
∞∑
n=0

∞∑
m=0

An,mε
nδm, R(ε, δ) =

∞∑
n=0

∞∑
m=0

Rn,mε
nδm,

which we will justify rigorously, and seek a solution to (4.14) in the form

V(ε, δ) =
∞∑
n=0

∞∑
m=0

Vn,mε
nδm, (4.22)

where ε, δ ∈ R. Recalling our definitions from §2.7, we define the vector–valued spaces

for s ≥ 0

Xs :=

{
V =

(
U

W

)∣∣∣∣∣U,W ∈ Hs+3/2([0, d])

}
,

and

Y s :=

{
R =

(
ζ

−ψ

)∣∣∣∣∣ ζ ∈ Hs+3/2([0, d]), ψ ∈ Hs+1/2([0, d])

}
.

These have the norms

∥V∥2Xs =

∥∥∥∥∥
(
U

W

)∥∥∥∥∥
2

Xs

:= ∥U∥2Hs+3/2 + ∥W∥2Hs+3/2 ,

∥R∥2Y s =

∥∥∥∥∥
(
ζ

−ψ

)∥∥∥∥∥
2

Y s

:= ∥ζ∥2Hs+3/2 + ∥ψ∥2Hs+1/2 .

We now state our main result.

Theorem 4.6.1. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) then the equation (4.14)

has a unique solution, (4.22), and there exist constants B,C,D > 0 such that

∥Vn,m∥Xs ≤ CBnDm,

for all n,m ≥ 0. This implies that for any 0 ≤ ρ, σ < 1, (4.22) converges for all ε such

that Bε < ρ, i.e., ε < ρ/B and all δ such that Dδ < σ, i.e., δ < σ/D.
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Proof. [Theorem 4.6.1] As mentioned above, our strategy is to invoke Theorem 4.5.1,

thus we must verify the relevant hypotheses. To begin, we consider the spaces

X = Xs, Y = Y s.

In §4.7 we will show that the vector Rn,m, consisting of ζn,m and ψn,m, is bounded in

Y s for any s ≥ 0 provided that f ∈ Cs+2([0, d]). This implies that the Rn,m satisfies

the estimates of Item 1 in Theorem 4.5.1.

In §2.10 (Theorem 2.10.2) and §3.9 (Theorem 3.9.2), we have previously shown that

the operators Gn,m and Jn,m in the Taylor series expansions of the DNOs satisfy ap-

propriate bounds provided that f ∈ Cs+2([0, d]). With these, it is clear that the An,m

satisfy the estimates of Item 2 in Theorem 4.5.1.

Finally, in §4.8 we show that the estimates and mapping properties of A−1
0,0 for Item

3 in Theorem 4.5.1 hold where A0,0 is defined in (4.16) as the flat–interface version of

our governing equations.

4.7 Analyticity of the Surface Data

To establish the analyticity of the Dirichlet and Neumann data obeying suitable esti-

mates, we begin by defining

E(x; ε, δ) := e−i(1+δ)γ
uεf(x),

and note that we can write (4.2e) and (4.2f) as

ζ(x) = ζ(x; ε, δ) = −E(x; ε, δ),

ψ(x) = ψ(x; ε, δ) =
{
i(1 + δ)γu + i(1 + δ)α(ε∂xf)

}
E(x; ε, δ).

We will now demonstrate that the function E is jointly analytic in ε and δ, and subject

to appropriate estimates, which clearly demonstrates the joint analytic dependence of

the data, ζ(x; ε, δ) and ψ(x; ε, δ).

Lemma 4.7.1. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) then the function E(x; ε, δ)
is jointly analytic in ε and δ. Therefore

E(x; ε, δ) =
∞∑
n=0

∞∑
m=0

En,m(x)εnδm, (4.23)

and, for constants CE , BE , DE > 0,

∥En,m∥Hs+3/2 ≤ CEB
n
ED

m
E , (4.24)

for all n,m ≥ 0.
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Proof. [Lemma 4.7.1] We begin by observing the classical fact that the composition of

jointly (real) analytic functions is also jointly (real) analytic (99) so that (4.23) holds,

and move to expressions and estimates for the En,m. By evaluating at ε = 0 we find that

E(x; 0, δ) = 1,

so that

E0,m(x) =

1, m = 0,

0, m > 0.

For ε > 0 we use the straightforward computation

∂εE =
{
−i(1 + δ)γuf

}
E ,

and the expansion (4.23) to learn that, for m = 0,

En+1,0 =

(−iγuf
n+ 1

)
En,0, (4.25)

and, for m > 0,

En+1,m =

(−iγuf
n+ 1

)
{En,m + En,m−1} . (4.26)

We work by induction in n and begin by establishing (4.24) at n = 0 for all m ≥ 0. This

is immediate as

∥E0,0∥Hs+3/2 = 1, ∥E0,m∥Hs+3/2 = 0.

We now assume (4.24) for all n < n̄ and all m ≥ 0, and seek this estimate in the case

n = n̄ and all m ≥ 0. For this we conduct another induction on m, and for m = 0 we

use (4.25) (together with Lemma 2.7.1 with s̃ = s+ 1) to discover

∥En̄,0∥Hs+3/2 ≤ M

(∣∣γu∣∣ |f |Cs+3/2+η

n̄

)
∥En̄−1,0∥Hs+3/2

≤ M

(∣∣γu∣∣ |f |Cs+2

n̄

)
CEB

n̄−1
E ≤ CEB

n̄
E ,

provided that

BE ≥ M
∣∣γu∣∣ |f |Cs+2 ≥ M

(∣∣γu∣∣ |f |Cs+2

n̄

)
.



Chapter 4 Existence, Uniqueness, and Analyticity of Solutions 95

Finally, we assume the estimate (4.24) for n = n̄ and m < m̄, and use (4.26) to learn

that

∥En̄,m̄∥Hs+3/2 ≤ M

(∣∣γu∣∣ |f |Cs+3/2+η

n̄

){
∥En̄−1,m̄∥Hs+3/2 + ∥En̄−1,m̄−1∥Hs+3/2

}
≤ M

(∣∣γu∣∣ |f |Cs+2

n̄

)
CE
{
Bn̄−1

E Dm̄
E +Bn̄−1

E Dm̄−1
E

}
≤ CEB

n̄
ED

m̄
E ,

provided that

M

(∣∣γu∣∣ |f |Cs+2

n̄

)
≤ BE

2
, M

(∣∣γu∣∣ |f |Cs+2

n̄

)
≤ BEDE

2
,

which can be accomplished, e.g., with

BE ≥ 2M
∣∣γu∣∣ |f |Cs+2 ≥ 2M

(∣∣γu∣∣ |f |Cs+2

n̄

)
, DE ≥ 1.

With Lemma 4.7.1 it is straightforward to prove the following analyticity result for

the Dirichlet and Neumann data.

Lemma 4.7.2. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) then the functions ζ(x; ε, δ)

and ψ(x; ε, δ) are jointly analytic in ε and δ. Therefore

{ζ, ψ}(x; ε, δ) =
∞∑
n=0

∞∑
m=0

{ζn,m, ψn,m}(x)εnδm (4.27)

and, for constants Cζ , Bζ , Dζ > 0, and Cψ, Bψ, Dψ > 0,

∥ζn,m∥Hs+3/2 ≤ CζB
n
ζD

m
ζ , ∥ψn,m∥Hs+1/2 ≤ CψB

n
ψD

m
ψ , (4.28)

for all n,m ≥ 0.

4.8 The Flat–Interface Problem

As we outlined in Theorem 4.6.1, the key to our developments (as with all regular

perturbation arguments) is the flat–interface version of (4.14)

A0,0V0,0 = R0,0,
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in particular the invertibility of A0,0 and the mapping properties of A−1
0,0. From (4.15),

it is not hard to see that the formulas for A and R are

A0,0 =

(
I −I

G0,0 τ2J0,0

)
, (4.29a)

An,m =

(
0 0

Gn,m τ2Jn,m

)

+ δn,1 {1 + δm,1} (∂xf)(iα)

(
0 0

1 −τ2

)
, n ̸= 0 or m ̸= 0, (4.29b)

Rn,m =

(
ζn,m

−ψn,m

)
, (4.29c)

where δn,m is the Kronecker delta function. We note that A0,0 is diagonalized by the

Fourier transform so that A0,0Vn,m = Rn,m can be expressed as

∞∑
p=−∞

Â0,0(p)V̂n,m(p)e
ip̃x =

∞∑
p=−∞

R̂n,m(p)e
ip̃x,

which implies

V̂n,m(p) =
[
Â0,0(p)

]−1
R̂n,m(p).

It is not difficult to see

Â0,0(p) =

(
1 −1

(−iγup ) τ2(−iγwp )

)
,

cf. (4.29), implying

[
Â0,0(p)

]−1
=

1

∆̂p

(
τ2(−iγwp ) 1

(iγup ) 1

)
, ∆̂p := −(iγup + τ2(iγwp )).

Remark 4.8.1. From these formulas it becomes obvious that the operator A0,0 is always

invertible and our algorithm is well–defined. Recalling that we assume a dielectric in

the upper layer (so that the incident radiation propagates) we have that γup is either real

and positive or purely imaginary (with positive imaginary part). If a dielectric fills the

lower layer then we have the same state of affairs for γwp so that, given that τ2 will be

positive and real, ∆p ̸= 0. Alternatively, if a metal fills the lower layer then γwp will be

complex with positive imaginary part. While it is less obvious, this ensures that, once

again, ∆p ̸= 0.

We now verify Item 3 in Theorem 4.5.1. By the analysis above, we know that

A0,0 =

(
I −I

G0,0 τ2J0,0

)
, (4.30)
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where

G0,0 = −iγuD, J0,0 = −iγwD, (4.31)

are order–one Fourier multipliers defined by

G0,0[U ] =
∞∑

p=−∞
(−iγup )Ûpeip̃x, J0,0[W ] =

∞∑
p=−∞

(−iγwp )Ŵpe
ip̃x. (4.32)

Lemma 4.8.1. The linear operator A0,0 maps Xs to Y s boundedly, is invertible, and

its inverse maps Y s to Xs boundedly.

Proof. [Lemma 4.8.1] We begin by defining the operator

∆ := G0,0 + τ2J0,0 = (−iγuD) + τ2(−iγwD),

which has Fourier symbol

∆̂p = (−iγup ) + τ2(−iγwp ),

and noting that there exist positive constants CG, CJ , and C∆ such that

∣∣−iγup ∣∣ ≤ CG ⟨p̃⟩ ,
∣∣−iγwp ∣∣ ≤ CJ ⟨p̃⟩ ,

∣∣∣∆̂p

∣∣∣ ≤ C∆ ⟨p̃⟩ .

Importantly, provided that nu ̸= nw, it is not difficult to establish the crucial fact that

∆̂p ̸= 0. Finally, one can also find a positive constant C∆−1 such that∣∣∣∣∣ 1

∆̂p

∣∣∣∣∣ ≤ C∆−1 ⟨p̃⟩−1 .

With this it is a simple matter to realize that ∆−1 exists and that

∆ : Hs+3/2 → Hs+1/2, ∆−1 : Hs+1/2 → Hs+3/2.

Next, we write generic elements of Xs and Y s as

V =

(
U

W

)
∈ Xs, R =

(
ζ

−ψ

)
∈ Y s.

Using the definitions of the norms of Xs and Y s, and the facts

2ab ≤ a2 + b2, ∥A+B∥2 ≤ (∥A∥ + ∥B∥)2,
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we find that

∥A0,0V∥2Y s = ∥U −W∥2Hs+3/2 +
∥∥G0,0U + τ2J0,0W

∥∥2
Hs+1/2

≤ 2 ∥U∥2Hs+3/2 + 2 ∥W∥2Hs+3/2 + C2
G ∥U∥2Hs+3/2

+ τ2CGCJ

(
∥U∥2Hs+3/2 + ∥W∥2Hs+3/2

)
+ C2

Jτ
4 ∥W∥2Hs+3/2

≤ max{2, C2
G, τ

2CGCJ , τ
4C2

J}
(
∥U∥2Hs+3/2 + ∥W∥2Hs+3/2

)
= max{2, C2

G, τ
2CGCJ , τ

4C2
J} ∥V∥2Xs ,

so that A0,0 does indeed map Xs to Y s boundedly. We define the operator

B := ∆−1

(
τ2J0,0 I

−G0,0 I

)
,

and note that

BA0,0 = A0,0B =

(
I 0

0 I

)
,

so that the inverse of A0,0 exists and A−1
0,0 = B. Furthermore, as above,

∥∥∥A−1
0,0R

∥∥∥2
Xs

=
∥∥∆−1(τ2J0,0ζ − ψ)

∥∥2
Hs+3/2 +

∥∥∆−1(−G0,0ζ − ψ)
∥∥2
Hs+3/2

≤ C2
∆−1τ

4C2
J ∥ζ∥

2
Hs+3/2 + C2

∆−1τ
2CJ

(
∥ζ∥2Hs+3/2 + ∥ψ∥2Hs+1/2

)
+ C2

∆−1C
2
G ∥ζ∥2Hs+3/2 + C2

∆−1CG

(
∥ζ∥2Hs+3/2 + ∥ψ∥2Hs+1/2

)
+ 2C2

∆−1 ∥ψ∥2Hs+1/2

≤ C2
∆−1 max{2, CG, C2

G, τ
2CJ , τ

4C2
J}
(
∥ζ∥2Hs+3/2 + ∥ψ∥2Hs+1/2

)
= C2

∆−1 max{2, CG, C2
G, τ

2CJ , τ
4C2

J} ∥R∥2Y s ,

and A−1
0,0 maps Y s to Xs boundedly.



CHAPTER 5

VALIDATION OF THE NUMERICAL SCHEME

5.1 Introduction

Verification of codes that numerically approximate solutions of partial differential equa-

tions entails establishing that the code is free of coding mistakes and capable of reaching

exact mathematical solutions given appropriate discretization (100; 101). This neces-

sitates the assessment of discretization errors using well–known benchmark solutions.

Exact analytical solutions with a sufficiently complicated solution structure are the ideal

benchmarks; they don’t have to be physically realistic because verification is a purely

mathematical endeavor. The Method of Manufactured Solutions (MMS) describes a sim-

ple and general procedure for producing such solutions and we now focus on applying

the MMS to our HOPS/AWE algorithm.

5.2 The Method of Manufactured Solutions

To validate our numerical scheme we utilized the MMS (102; 103; 104). To summa-

rize, we considered a general system of partial differential equations subject to generic

boundary conditions

Pv = 0, in Ω,

Bv = 0, at ∂Ω.

It is typically easy to implement a numerical algorithm to solve the nonhomogeneous

version of this set of equations

Pv = F , in Ω,

Bv = J , at ∂Ω.

To test an implementation we began with the “manufactured solution,” ṽ, and set

Fv := P ṽ, Jv := J ṽ.

Thus, given the pair {Fv,Jv} we had an exact solution of the nonhomogeneous problem,

namely ṽ. While this does not prove an implementation to be correct, if the function ṽ

is chosen to imitate the behavior of anticipated solutions (e.g., satisfying the boundary

conditions exactly) then this gives us confidence in our algorithm.
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5.3 Manufactured Solutions

We considered periodic, outgoing solutions of the Helmholtz equation (4.8a)

up(x, z) := Ape
ip̃xeiγ

u
p z, p ∈ Z, Ap ∈ C, (5.1)

and their counterparts for (4.8b)

wp(x, z) := Bpe
ip̃xe−iγ

w
p z, p ∈ Z, Bp ∈ C. (5.2)

We then defined, for a particular choice of p,

ξu := up(x, g(x)), νu := −∂Nup(x, g(x)), (5.3a)

ξw := wp(x, g(x)), νw := ∂Nwp(x, g(x)). (5.3b)

To validate the two–layer solver we set

ζ = ξu − ξw, ψ = −νu − τ2νw. (5.4)

In order to test our implementation of the recursions, (5.4), we required the joint ex-

pansion of ξu, ξw, νu, and νw in ε and δ. In analogy to our developments in §4.7 we

defined

Eq,p(x; ε, δ) := exp
{
±iγqp(δ)εf(x)

}
, q ∈ {u,w},

and then derived the terms Eq,pn,m in the expansion

Eq,p(x; ε, δ) =
∞∑
n=0

∞∑
m=0

Eq,pn,m(x)εnδm.

From these it was clear that

ξun,m(x) = Ape
ip̃xEu,pn,m(x), ξwn,m(x) = Bpe

ip̃xEw,pn,m(x), (5.5a)

νun,m(x) =
(
−iγup + ip̃εfx(x)

)
ξun,m(x), νwn,m(x) =

(
iγwp + ip̃εfx(x)

)
ξwn,m(x). (5.5b)

We then considered the surface data for our two–layer scattering problem (cf. §4.2)

ζ(x) = −e−iγug(x), ψ(x) = (iγu + iα(∂xg))e
−iγug(x), (5.6)

and performed a joint expansion of ζ and ψ in ε and δ

ζn,m(x) = −Eu,pn,m(x), (5.7a)

ψn,m(x) =
(
iγup + iαεfx(x)

)
Eu,pn,m(x), (5.7b)
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where we outline our procedure to find the Eq,pn,m in §5.5.

5.4 Taylor Series for γqp(δ)

A key step in the development of our algorithm is to derive the Taylor series expansion

for γqp, where

γqp = γqp(δ) =
∞∑
m=0

γqp,mδ
m. (5.8)

We started with the relationship

α2
p + (γqp)

2 = (kq)2,

which implies ( ∞∑
m=0

γqp,mδ
m

)( ∞∑
r=0

γqp,rδ
r

)
= (1 + δ2)(kq)2 − (αp + δα)2.

This gives

∞∑
m=0

δm
m∑
r=0

γqp,m−rγ
q
p,r = {(kq)2 − (αp)

2}+ 2δ {(kq)2 − α αp}+ δ2 {(kq)2 − (α)2}

= (γq
p
)2 + 2δ {(kq)2 − α αp}+ δ2(γq)2.

Therefore at order O(δ0) we required

γqp,0 = ±γq
p
, (5.9)

and at order O(δ1) we required

γqp,1 =
2((kq)2 − α αp)

2γqp,0
, γqp,0 ̸= 0. (5.10)

This implies that it is crucial that γq
p
̸= 0 for all p in order to have a valid expansion of

(5.8). The γq
p
satisying γq

p
= 0 are known as a Rayleigh singularity (or Wood’s anomaly).

So we made this assumption, γq
p
̸= 0, and continued our development to O(δ2) where

γqp,2 =
(γq)2 − (γqp,1)

2

2γqp,0
, γqp,0 ̸= 0, (5.11)

and for O(δm), m > 2, we required

γqp,2 =
−
∑m−1

r=1 γqp,m−rγ
q
p,r

2γqp,0
, γqp,0 ̸= 0. (5.12)
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Remark 5.4.1. As discussed in (75) we must be away from a Rayleigh singularity, γq
p
= 0,

for all p in order for our expansion to be valid. See the final section of (75) for a discussion

of the behavior of the function γqp(δ) in the neighborhood of a Rayleigh singularity.

5.5 Taylor Series for Eq,p(x; ε, δ)

Returning to our joint expansion

Eq,p(x; ε, δ) =
∞∑
n=0

∞∑
n=0

Eq,pn,m(x)εnδm,

we first calculated the Dirichlet data, (5.5a), when n = 0. We have

Eq,p(x; 0, δ) = exp{±0} = 1,

therefore

Eq,p0,m(x) =

1, m = 0,

0, m > 0,

and

ξu0,m =

Apeip̃x, m = 0,

0, m > 0,
, ξw0,m =

Bpeip̃x, m = 0,

0, m > 0.

We then evaluated (5.5a) when n > 0. Following the technique of Pourahmadi (105)

(and of Marchant and Roberts (106; 107)), we observed that

∂εEq,p(x; ε, δ) =
(
±iγup (δ)f(x)

)
Eq,p(x; ε, δ). (5.13)

Inserting the Taylor series expansions for Eq,p and γqp gives

∞∑
n=1

∞∑
m=0

Eq,pn,mnεn−1δm = (±if)

( ∞∑
r=0

γqp,rδ
r

)( ∞∑
n=0

∞∑
m=0

Eq,pn,mεnδm
)
.

Re–indexing the left–hand side and rearranging the order of terms on the right–hand

side forms

∞∑
n=0

∞∑
m=0

Eq,pn+1,m(n+ 1)εnδm =
∞∑
n=0

∞∑
m=0

(
(±if)

m∑
r=0

γqp,m−rEq,pn,r

)
εnδm.

Upon equating like orders we found

Eq,pn+1,m = ± if

n+ 1

m∑
r=0

γqp,m−rEq,pn,r.
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Therefore we have

ξun+1,m = Ape
ip̃x if

n+ 1

m∑
r=0

γup,m−rEu,pn,r ,

ξwn+1,m = −Bpeip̃x
if

n+ 1

m∑
r=0

γwp,m−rEw,pn,r ,

(5.14)

where the initial data is

ξu0,m =

Apeip̃x, m = 0,

0, m > 0,
, ξw0,m =

Bpeip̃x, m = 0,

0, m > 0.
(5.15)

As (5.14) and (5.15) are valid for all values of m, we see that to find the coefficient at

order (n+1,m), one only needs the values of (n, 0), . . . , (n,m). As an example, we have

ξq0,m from (5.15) which can be used to obtain ξq1,m by (5.14). We can then recover all of

the ξqn,m.

We then calculated the Neumann data, (5.5b), when n = 0. We have

νu0,m =

−iγup,0ξu0,0, m = 0,

−iγup,mξu0,m, m > 0,
, νw0,m =

iγwp,0ξw0,0, m = 0,

iγwp,mξ
w
0,m, m > 0,

therefore

νu0,m =

−iγup,0Apeip̃x, m = 0,

0, m > 0,
νw0,m =

iγwp,0Bpeip̃x, m = 0,

0, m > 0.

For (5.5b) and n > 0 we inserted the Taylor series expansions for ξq and γqp and used

(5.13) to deduce

∞∑
n=1

∞∑
m=0

νqn,mnε
n−1δm = f

( ∞∑
r=0

γqp,rδ
r

)( ∞∑
k=0

γqp,kδ
k

)( ∞∑
n=0

∞∑
m=0

ξqn,mε
nδm

)

∓ (p̃ffx)

( ∞∑
r=0

γqp,rδ
r

)( ∞∑
n=1

∞∑
m=0

ξqn−1,mε
nδm

)
.

Re–indexing the left–hand side and rearranging the order of terms on the right–hand

side forms

∞∑
n=0

∞∑
m=0

νqn+1,m(n+ 1)εnδm =

∞∑
n=0

∞∑
m=0

(
f

m∑
r=0

r∑
k=0

γqp,m−rγ
q
p,r−kξ

q
n,k

)
εnδm

∓
∞∑
n=1

∞∑
m=0

(
(p̃ffx)

m∑
r=0

γqp,m−rξ
q
n−1,r

)
εnδm.
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Upon equating like orders we found

νun+1,m =
f

n+ 1

m∑
r=0

r∑
k=0

γup,m−rγ
u
p,r−kξ

u
n,k −

p̃ffx
n+ 1

m∑
r=0

γup,m−rξ
u
n−1,r,

νwn+1,m =
f

n+ 1

m∑
r=0

r∑
k=0

γwp,m−rγ
w
p,r−kξ

w
n,k +

p̃ffx
n+ 1

m∑
r=0

γwp,m−rξ
w
n−1,r,

(5.16)

where our initial data is

νu0,m =

−iγup,0Apeip̃x, m = 0,

0, m > 0,
νw0,m =

iγwp,0Bpeip̃x, m = 0,

0, m > 0.
(5.17)

Analogously to the Dirichlet data, we see that (5.16) and (5.17) are valid for all values

of m. Therefore we can recover the coefficient at order (n + 1,m) by the values of the

coefficients at order (n, 0), . . . , (n,m).

Finally, we calculated the surface data, (5.7a), when n = 0. We have

Eu,p(x; 0, δ) = exp{−0} = 1,

therefore

Eu,p0,m(x) =

1, m = 0,

0, m > 0,

and

ζ0,m =

−1, m = 0,

0, m > 0.

We then evaluated (5.7a) when n > 0. Inserting the Taylor series expansions for Eu,p

and γup and applying (5.13) gives

∞∑
n=1

∞∑
m=0

Eu,pn,mnεn−1δm = (−if)

( ∞∑
r=0

γup,rδ
r

)( ∞∑
n=0

∞∑
m=0

Eu,pn,mεnδm
)
.

Re–indexing the left–hand side and rearranging the order of terms on the right–hand

side forms

∞∑
n=0

∞∑
m=0

Eu,pn+1,m(n+ 1)εnδm =
∞∑
n=0

∞∑
m=0

(
(−if)

m∑
r=0

γup,m−rEu,pn,r

)
εnδm.

Upon equating like orders we found

Eu,pn+1,m = − if

n+ 1

m∑
r=0

γup,m−rEu,pn,r .
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Therefore we have

ζn+1,m =
if

n+ 1

m∑
r=0

γup,m−rEu,pn,r , (5.18)

where the initial data is

ζ0,m =

−1, m = 0,

0, m > 0.
(5.19)

We then evaluated (5.7b) when n = 0. We have

ψ0,m =

iγup,0E
u,p
0,m, m = 0,

iγup,mE
u,p
0,m, m > 0,

therefore

ψ0,m =

iγup,0, m = 0,

0, m > 0.

For (5.7b) and n > 0 we expanded

α = α(δ) =
∞∑
k=0

αkδ
k,

and inserted the Taylor series expansions for α, ξq, and γqp and used (5.13) to deduce

∞∑
n=1

∞∑
m=0

ψn,mnε
n−1δm = f

( ∞∑
r=0

γup,rδ
r

)( ∞∑
k=0

γup,kδ
k

)( ∞∑
n=0

∞∑
m=0

Eun,mεnδm
)

+ ffx

( ∞∑
r=0

γup,rδ
r

)( ∞∑
k=0

αkδ
k

)( ∞∑
n=1

∞∑
m=0

Eun−1,mε
nδm

)
.

Re–indexing the left–hand side and rearranging the order of terms on the right–hand

side forms

∞∑
n=0

∞∑
m=0

ψn+1,m(n+ 1)εnδm =
∞∑
n=0

∞∑
m=0

(
(f)

m∑
r=0

r∑
k=0

γup,m−rγ
u
p,r−kEun,k

)
εnδm

+

∞∑
n=1

∞∑
m=0

(
(ffx)

m∑
r=0

r∑
k=0

γup,m−rαr−kEun−1,k

)
εnδm.

Upon equating like orders we found

ψn+1,m =
f

n+ 1

m∑
r=0

r∑
k=0

γup,m−rγ
u
p,r−kEun,k

+
ffx
n+ 1

m∑
r=0

r∑
k=0

γup,m−rαr−kEun−1,k,

(5.20)
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where the initial data is

ψ0,m =

iγup,0, m = 0,

0, m > 0.
(5.21)

As before, we can find the coefficient at order (n+1,m) by the values of the coefficients

at (n, 0), . . . , (n,m).

5.6 The Domain of Analyticity

While the precise domain of analyticity of our solutions in (ε, δ) cannot be specified,

it is clear that the expansion of γqp(δ) only converges for δ away from the Rayleigh

singularities. Therefore, our expansions are only valid on subsets of the (ε, δ)–plane

away from Rayleigh singularities. For instance, in the upper layer, Rayleigh singularities

occur when α2
p = (ku)2 which implies

ω = ± c0
nu

{
α+

2πp

d

}
, for any p ∈ Z. (5.22)

In the interest of maximizing our choice of δ we selected a “mid–point” value of ω which

is as far away as possible from consecutive Rayleigh singularities

ωq :=
c0
nu

{
α+

2π(q + 1/2)

d

}
. (5.23)

About this value the nearest singularities are

ω−
q :=

c0
nu

{
α+

2πq

d

}
= ωq −

πc0
nud

,

ω+
q :=

c0
nu

{
α+

2π(q + 1)

d

}
= ωq +

πc0
nud

,

so to maximize our range of ω we choose, for some filling fraction 0 < σ < 1,

ωq − σ
( πc0
nud

)
< ω < ωq + σ

( πc0
nud

)
.

To express this in terms of δ we recall that ω = (1 + δ)ωq which gives

−σ
(

πc0
ωqn

ud

)
< δ < σ

(
πc0
ωqn

ud

)
.

Simplifying gives

−
(

σ

(αd/π) + 2q + 1

)
< δ <

(
σ

(αd/π) + 2q + 1

)
. (5.24)
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5.7 Numerical Results

Following our analysis in §5.3, we considered a wavenumber p = r and defined the

Dirichlet and Neumann traces

ξur (x) := ur(x, g(x)), νur (x) := −∂Nur(x, g(x)), (5.25a)

ξwr (x) := wr(x, g(x)), νwr (x) := ∂Nwr(x, g(x)). (5.25b)

From these we defined the two–layer data to be provided to our algorithm

ζr := ξur − ξwr , ψr := −νur − τ2ξwr , (5.25c)

cf. (5.4). We selected the profile

g(x) = εf(x) = ε

(
cos(4x)

4

)
, (5.26)

with the following physical parameters

d = 2π, α = 0, ϵu = 1, ϵw = 1.1, r = 4, Ar = 5, Br = 3, (5.27)

in TM polarization, and the numerical parameters

Nx = 32, Nz = 32, a = 1, b = −1. (5.28)

With a rescaling of the frequency (e.g., via a change of the time variable, t′ = t/c0) we

arrange for c0 = 1 and considered the base frequency

ω1 = 3/2,

and filling fraction σ = 0.99. To illuminate the behavior of our scheme we studied four

choices of the numerical parameter

N =M = 4, 8, 12, 16,

and the physical quantities

ε = 10−2, 10−4, 10−6, 10−8,

in (5.26). For this we supplied the “exact” input data, {ζr, ψr}, from (5.25) to our HOP-

S/AWE algorithm to simulate solutions of the two–layer problem giving {ξu,approxr , ξw,approxr }.
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We compared this with the “exact” solutions {ξu,exactr , ξw,exactr } and computed the rela-

tive error

Errorrel :=

∣∣∣ξu,exactr − ξu,approxr

∣∣∣
∞∣∣∣ξu,exactr

∣∣∣
∞

.

The results of our simulations are shown in Figures 13 and 14. More specifically, Fig-

ure 13 displays both the rapid and stable decay of the relative error for fixed N and M ,

and how this rate of decay improves as (ε, δ) decrease. Figure 14 shows both how the

error shrinks as (ε, δ) become smaller, and that this rate is enhanced as both N and M

are increased.

(a) N = M = 4, ε = 10−2 (b) N = M = 4, ε = 10−4

(c) N = M = 4, ε = 10−6 (d) N = M = 4, ε = 10−8

Figure 13: Plot of relative error in the upper layer with fixed N = M = 4 and four

choices of ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical parameters were

(5.27) and numerical discretization was (5.28).
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(a) N = M = 4, ε = 10−2 (b) N = M = 8, ε = 10−4

(c) N = M = 12, ε = 10−6 (d) N = M = 16, ε = 10−8

Figure 14: Plot of relative error in the upper layer with four choices of N = M =

4, 8, 12, 16 and four choices of ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Phys-

ical parameters were (5.27) and numerical discretization was (5.28).

We then analyzed the lower lower–layer Dirichlet data with the sinusoidal profile

g(x) = εf(x) = ε

(
sin(3x)

3

)
, (5.29)

We used the following physical parameters

d = 2π, α = 0, ϵu = 1, ϵw = 1.1, r = 8, Ar = 4, Br = 5, (5.30)

in TM polarization, and the numerical parameters

Nx = 32, Nz = 32, a = 1, b = −1. (5.31)
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With these, we computed the relative error

Errorrel :=

∣∣∣ξw,exactr − ξw,approxr

∣∣∣
∞∣∣∣ξw,exactr

∣∣∣
∞

.

The results of our simulations are shown in Figures 15 and 16. More specifically, Fig-

ure 15 displays both the rapid and stable decay of the relative error for fixed N and M ,

and how this rate of decay improves as (ε, δ) decrease. Figure 16 shows both how the

error shrinks as (ε, δ) become smaller, and that this rate is enhanced as both N and M

are increased.

(a) N = M = 4, ε = 10−2 (b) N = M = 4, ε = 10−4

(c) N = M = 4, ε = 10−6 (d) N = M = 4, ε = 10−8

Figure 15: Plot of relative error in the lower layer with fixed N = M = 4 and four

choices of ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical parameters were

(5.30) and numerical discretization was (5.31).
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(a) N = M = 4, ε = 10−2 (b) N = M = 8, ε = 10−4

(c) N = M = 12, ε = 10−6 (d) N = M = 16, ε = 10−8

Figure 16: Plot of relative error in the lower layer with four choices of N = M =

4, 8, 12, 16 and four choices of ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Phys-

ical parameters were (5.30) and numerical discretization was (5.31).



CHAPTER 6

SCATTERING AND REFLECTIVITY

6.1 Introduction

We can now define one of our primary objects of study, the Reflectivity Map. The Re-

flectivity Map (R) measures the response (reflected energy) of a periodically corrugated

grating structure as a function of illumination frequency, ω, and corrugation amplitude,

h. A HOPS method takes a perturbative view towards the geometric dependence of R

on h = ε, ε≪ 1, by seeking the terms in the expansion about ε = 0,

R = R(ε) =
∞∑
n=0

Rnε
n.

With this, we realize an enormous savings in computational effort by conducting a

new computation only for each choice of ω and then summing the formula above for

any desired value of ε. Taking this philosophy to its natural conclusion, we consider

ω = (1 + δ)ω = ω + δω and perform a joint expansion of this map about (ε = 0, ω = ω)

R = R(ε, δ) =

∞∑
n=0

∞∑
m=0

Rn,mε
nδm.

One would assume that a single computation, recovering all of the Rn,m, should be

sufficient to compute the entire Reflectivity Map. However, the situation is not so

simple as these expansions are not valid for all values of (ε, δ) and we found in §5.4 that

the Rayleigh singularities (often called Wood’s anomalies) enforced finite–size domains

of convergence in δ. Nonetheless, we now undertake a more in–depth investigation and

will focus on applying our HOPS/AWE algorithm based on the TFE methodology to the

TE and TM polarizations. In §6.2 we state the mathematical meaning of the Reflectivity

Map. Then in §6.3, §6.4, and §6.5 we perform an extensive series of numerical simulations

to test the fidelity of the Reflectivity Map in both the TE and TM polarizations.

6.2 The Reflectivity Map

Recalling the solution (4.3) to the Helmholtz equation in the upper layer

u(x, z) =
∞∑

p=−∞
ape

ip̃x+iγup z,

we note the very different character of the solution for wavenumbers p in the set

Uu :=
{
p ∈ Z | α2

p < (ku)2
}
,

112
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and those that are not. From our choice of the branch of the square root, components of

u(x, z) corresponding to p ∈ Uu propagate away from the layer interface, while those not

in this set decay exponentially from z = g(x). The latter are called evanescent waves

while the former are propagating (defining the set of propagating modes Uu) and carry

energy away from the grating. With this in mind we define the efficiencies (6)

eup := (γup /γ
u) |ap|2 , p ∈ Uu,

and the Reflectivity Map

R :=
∑
p∈Uu

eup . (6.1)

Similar quantities can be defined in the lower layer (6), and with these the principle of

conservation of energy can be stated for structures composed entirely of dielectrics

∑
p∈Uu

eup + τ2
∑
p∈Uw

ewp = 1.

In this situation a useful diagnostic of convergence for a numerical scheme (which we

will utilize in our simulations) is the Energy Defect

D := 1−
∑
p∈Uu

eup − τ2
∑
p∈Uw

ewp , (6.2)

which should be zero for a purely dielectric structure.

6.3 Simulations of the Reflectivity Map: TM Mode

Using our novel HOPS/AWE approach in TM polarization (cf. §1.7) we computed

RN,M,Nx,Nz ,TM
HOPS/AWE ≈ R,

for a range of ε and δ. As in our previous work (75), we show the kind of simulations

this HOPS/AWE method can produce with modest computational effort. For this we

selected ωq, cf. (5.23), for 1 ≤ q ≤ 6 and simulated R in the following frequency/wave-

length ranges

q = 1 : ω ∈ [1.005, 1.995] =⇒ λ ∈ [3.14947, 6.25193],

q = 2 : ω ∈ [2.005, 2.995] =⇒ λ ∈ [2.09789, 3.13376],

q = 3 : ω ∈ [3.005, 3.995] =⇒ λ ∈ [1.57276, 2.09091],

q = 4 : ω ∈ [4.005, 4.995] =⇒ λ ∈ [1.25789, 1.56884],

q = 5 : ω ∈ [5.005, 5.995] =⇒ λ ∈ [1.04807, 1.25538],

q = 6 : ω ∈ [6.005, 6.995] =⇒ λ ∈ [0.89824, 1.04633],

(6.3)
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cf. (5.24). In addition, we selected

g(x) = εf(x), f(x) = cos(x), εmax = 0.2, (6.4)

with the parameters

α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = Nz = 32, N =M = 16. (6.5)

For all of our simulations in the TE and TM modes in §6.3, §6.4, and §6.5 we selected

c0 = 1, d = 2π,

where c0 is the speed of light and d is the periodicity of the grating. For all of the

simulations in §6.3 we enforced the artificial boundaries in the computational domain

a = 1, b = −1.

In Figure 17(a) we plot all six of these subsets of the Reflectivity Map on one set of

coordinate axes, and in Figure 17(b) we plot the Energy Defect, (6.2), to verify the

accuracy of our expansions.

(a) Reflectivity Map (b) Energy Defect

Figure 17: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Taylor

summation. We set N = M = 16 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.4) and physical parameters were (6.5).

We then changed to non–normal incidence (α ̸= 0) and increased the granularity

to Nε = Nδ = 1000 per invocation. In Chapter 7 we will discuss the advantageous

computational complexity our HOPS/AWE algorithm enjoys in this situation of large

Nε and Nδ. We selected

f(x) = cos(x), εmax = 0.2, (6.6)
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with the parameters

α = 10−4, σ = 0.99, nu = 1, nw = 1.1, Nx = Nz = 32, N =M = 16. (6.7)

In Figure 18(a) we plot six different subsets of the Reflectivity Map on a single coordinate

axis, and in Figure 18(b) we plot the Energy Defect to demonstrate the accuracy of our

scheme with a nonzero value of α.

(a) Reflectivity Map (b) Energy Defect

Figure 18: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Taylor

summation. We set N =M = 16 with a granularity of Nε = Nδ = 1000 per invocation.

The grating surface was (6.6) and physical parameters were (6.7).

Next, we considered normal incidence (α = 0) and changed the lower index of re-

fraction nw to match representative values of silver (Ag) and gold (Au) as reported by

Johnson & Christy (108), in particular

nAg = 0.05 + 2.275i, nAu = 1.48 + 1.883i.

Using the same frequency and wavelength ranges, we studied

f(x) = cos(4x), εmax = 0.2, (6.8)

with the parameters

α = 0, σ = 0.99, nu = 1, Nx = Nz = 32, N =M = 15. (6.9)

In Figure 19(a) we plot six different subsets of the Reflectivity Map where the lower

index of refraction is selected to model the optical constant of silver. In Figure 19(b)

we plot six different subsets of the Reflectivity Map where the lower index of refraction

is changed to the optical constant for gold.
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(a) Reflectivity Map for Silver (b) Reflectivity Map for Gold

Figure 19: The Reflectivity Map, R(ε, δ), for silver (left) and gold (right) with Padé

summation. We set N = M = 15 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.8) and physical parameters were (6.9) with nw = nAg (left)

and nw = nAu (right).

We then changed the lower index of refraction nw to match representative values of

tungsten (W ) and iron (Fe) as reported by Ordal et al. (109), where

nW = 3.8313 + 2.9043i, nFe = 4.274 + 9.579i.

From these, we studied

f(x) = sin(4x), εmax = 0.2, (6.10)

with the parameters

α = 0, σ = 0.99, nu = 1, Nx = Nz = 32, N =M = 15. (6.11)

In Figure 20(a) we plot six different subsets of the Reflectivity Map where the lower

index of refraction is selected to model the optical constant of tungsten. In Figure 20(b)

we plot six different subsets of the Reflectivity Map where the lower index of refraction

is changed to the optical constant for iron.
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(a) Reflectivity Map for Tungsten (b) Reflectivity Map for Iron

Figure 20: The Reflectivity Map, R(ε, δ), for tungsten (left) and iron (right) with Padé

summation. We set N = M = 15 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.10) and physical parameters were (6.11) with nw = nW (left)

and nw = nFe (right).

We then changed back to non–normal incidence (α ̸= 0) and reduced our total

computation time by simulating R in the following frequency/wavelength ranges

q = 1 : ω ∈ [1.005, 1.995] =⇒ λ ∈ [3.14947, 6.25193],

q = 2 : ω ∈ [2.005, 2.995] =⇒ λ ∈ [2.09789, 3.13376],

q = 3 : ω ∈ [3.005, 3.995] =⇒ λ ∈ [1.57276, 2.09091].

We selected

f(x) = cos(3x), εmax = 0.2, (6.12)

with the parameters

α = 0.01, σ = 0.99, nu = 1, nw = 3.1874, Nx = Nz = 64, N =M = 13, (6.13)

and the value of nw is meant to model Zinc germanium phosphide (110). In Figure 21(a)

we plot three different subsets of the Reflectivity Map on one set of coordinate axes. In

Figure 21(b) we plot the Energy Defect to show the accuracy of our scheme in the case

α ̸= 0.
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(a) Reflectivity Map (b) Energy Defect

Figure 21: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 13 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.12) and physical parameters were (6.13) with nw = 3.1874

(Zinc germanium phosphide).

Next, we studied

f(x) = sin(3x), εmax = 0.2, (6.14)

with the parameters

α = 0.01, σ = 0.99, nu = 1, nw = 2.1054, Nx = Nz = 64, N =M = 13, (6.15)

and the value of nw is meant to model Zinc monoxide (111). In Figure 22(a) we plot

three different subsets of the Reflectivity Map on one set of coordinate axes. In Figure

22(b) we plot the Energy Defect to show the accuracy of our scheme in the case α ̸= 0.

(a) Reflectivity Map (b) Energy Defect

Figure 22: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 13 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.14) and physical parameters were (6.15) with nw = 2.1054

(Zinc monoxide).
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Seeking to understand what occurs for non–physical values of the dielectric constants,

we simulated R with the first frequency/wavelength range in (6.3) and selected

f(x) = cos(x), εmax = 0.4, (6.16)

with the high refractive indices

α = 0, σ = 0.99, nu = 5, nw = 8.1, Nx = Nz = 32, N =M = 12, (6.17)

In Figure 23(a) we plot a single subset of the Reflectivity Map on a single coordinate

axis, and in Figure 23(b) we plot the Energy Defect. Our choice of dielectric constants

produces an interesting pattern in the computation of R.

(a) Reflectivity Map (b) Energy Defect

Figure 23: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 12 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.16) and physical parameters were (6.17).

We then studied

f(x) = cos(x), εmax = 0.2, (6.18)

with a purely imaginary index of refraction in the lower layer

α = 0.1, σ = 0.99, nu = 15, nw = 20i, Nx = Nz = 32, N =M = 15. (6.19)

In Figure 24(a) we plot a single subset of the Reflectivity Map on a single coordinate

axis, and in Figure 24(b) we plot the Energy Defect, where we once again observe an

interesting pattern generated through our choice of dielectric constants. As the lower

refractive index, nw, is purely imaginary, we do not expect that (6.2) holds and D ̸= 0.

Nonetheless, we still found scattered energy in the far–field and small values of D when

the value of nw is purely imaginary.
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(a) Reflectivity Map (b) Energy Defect

Figure 24: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N =M = 15 with a granularity of Nε = Nδ = 1000 per invocation.

The grating surface was (6.18) and physical parameters were (6.19).

Finally, we selected

f(x) = sin(x), εmax = 0.2, (6.20)

with the parameters

α = 0.1, σ = 0.99, nu = 10, nw = 40i, Nx = Nz = 32, N =M = 20. (6.21)

In Figure 25(a) we plot a single subset of the Reflectivity Map and in Figure 25(b) we

plot the Energy Defect.

(a) Reflectivity Map (b) Energy Defect

Figure 25: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 20 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.20) and physical parameters were (6.21).
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6.4 Simulations of the Reflectivity Map: Smooth, Rough, and Lips-

chitz Profiles

We then simulated R with the first frequency/wavelength range in (6.3) with TM polar-

ization and selected two–dimensional domains whose upper boundaries are shaped by

the profiles

fs1(x) =
cos(4x)

4
, (6.22a)

fs2(x) =
exp (cos(3x))

3
− c0, (6.22b)

fr(x) =
(
2× 10−4

)
x4
(
2π − x4

)
− c1, (6.22c)

fL(x) =

−2x/π + 1, 0 ≤ x ≤ π,

2x/π − 3, π ≤ x ≤ 2π,
(6.22d)

where fs1 , fs2 represent a smooth (C∞) boundary and fr, fL depict moderately smooth

(C4) and Lipschitz boundaries. Following (112), the constant c0 in (6.22b) is chosen so

that fs2 has zero mean (as does fr with the appropriate choice of c1). The Fourier series

representation of fr and fL are

fr(x) =
∞∑
k=1

96
(
2k2π2 − 21

)
125k8

cos(kx), (6.23a)

fL(x) =

∞∑
k=1

8

π2(2k − 1)2
cos
(
(2k − 1)x

)
, (6.23b)

and to minimize the effect of aliasing errors we approximated fr and fL by the truncated

Fourier series

fr,P (x) =
P∑
k=1

96
(
2k2π2 − 21

)
125k8

cos(kx), (6.24a)

fL,P (x) =

P/2∑
k=1

8

π2(2k − 1)2
cos
(
(2k − 1)x

)
. (6.24b)

If P ≪ Nx/2 then the effects of aliasing are minimal and we chose P = 120 for all of

our simulations. For the smooth profiles, we selected

f(x) = fs1(x), εmax = 4.0, a = 10, b = −10, (6.25)

and

f(x) = fs2(x), εmax = 2.0, a = 4, b = −4, (6.26)
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with the parameters

α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 256, Nz = 128, N =M = 20. (6.27)

In Figures 26(a) and 27(a) we plot a single subset of the Reflectivity Map on a coordinate

axis and in Figures 26(b) and 27(b) we plot the Energy Defect.

(a) Reflectivity Map (b) Energy Defect

Figure 26: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 20 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.25) and physical parameters were (6.27).

(a) Reflectivity Map (b) Energy Defect

Figure 27: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 20 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.26) and physical parameters were (6.27).

Next, for the rough profile, we selected

f(x) = fr,P (x), εmax = 2.0, a = 4, b = −4, (6.28)
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and for the Lipschitz profile, we selected

f(x) = fL,P (x), εmax = 2.0, a = 4, b = −4, (6.29)

with the parameters

α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 1024, Nz = 128, N =M = 20. (6.30)

In Figures 28(a) and 28(b) we plot the Reflectivity Map and Energy Defect for the rough

profile on a single coordinate axis and compare this to an equivalent simulation for the

Lipschitz profile in Figures 28(c) and 28(d).

(a) Reflectivity Map (b) Energy Defect

(c) Reflectivity Map (d) Energy Defect

Figure 28: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 20 with a granularity of Nε = Nδ = 100 per invocation.

(Top) The rough profile with grating surface, (6.28), and physical parameters, (6.30).

(Bottom) The Lipschitz profile with grating surface, (6.29), and physical parameters,

(6.30).
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6.5 Simulations of the Reflectivity Map: TE Mode

We then changed to TE polarization (cf. §1.6) and turned back to computing

RN,M,Nx,Nz ,TE
HOPS/AWE ≈ R,

for a range of ε and δ. As in TM polarization, we simulated R with the frequency/wave-

length ranges in (6.3). For our first simulation, we studied

f(x) = cos(x), εmax = 0.2, a = 1, b = −1, (6.31)

with the parameters

α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = Nz = 32, N =M = 15. (6.32)

In Figure 29(a) we plot all six of these subsets of the Reflectivity Map on one set of

coordinate axes, and in Figure 29(b) we plot the Energy Defect.

(a) Reflectivity Map (b) Energy Defect

Figure 29: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Taylor

summation. We set N = M = 15 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.31) and physical parameters were (6.32).

We then changed to non–normal incidence (α ̸= 0) and increased the granularity to

Nε = Nδ = 1000 per invocation. We once again studied

f(x) = cos(x), εmax = 0.2, a = 1, b = −1, (6.33)

with the parameters

α = 10−4, σ = 0.99, nu = 1, nw = 1.1, Nx = Nz = 32, N =M = 15. (6.34)
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In Figure 30(a) we plot all six of these subsets of the Reflectivity Map on one set of

coordinate axes, and in Figure 30(b) we plot the Energy Defect, to verify the accuracy

of our expansions.

(a) Reflectivity Map (b) Energy Defect

Figure 30: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Taylor

summation. We set N =M = 15 with a granularity of Nε = Nδ = 1000 per invocation.

The grating surface was (6.33) and physical parameters were (6.34).

Next, we considered normal incidence (α = 0) and changed the lower index of re-

fraction nw to match representative values of copper (Cu) and cobalt (Co) as reported

by Johnson & Christy (108; 113), in particular

nCu = 0.94 + 1.337i, nCo = 2.1396 + 3.9840i.

Using the same frequency and wavelength ranges, we studied

f(x) = sin(5x), εmax = 0.2, a = 2/π, b = −2/π, (6.35)

with the parameters

α = 0, σ = 0.99, nu = 1, Nx = Nz = 32, N =M = 15. (6.36)

In Figure 31(a) we plot six different subsets of the Reflectivity Map where the lower

index of refraction is selected to model the optical constant of copper. In Figure 31(b)

we plot six different subsets of the Reflectivity Map where the lower index of refraction

is changed to the optical constant for cobalt.
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(a) Reflectivity Map for Copper (b) Reflectivity Map for Cobalt

Figure 31: The Reflectivity Map, R(ε, δ), for copper (left) and cobalt (right) with Padé

summation. We set N = M = 15 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.35) and physical parameters were (6.36) with nw = nCu (left)

and nw = nCo (right).

We then analyzed non–physical values of the dielectric constants. We simulated R

with the first frequency/wavelength range in (6.3) and selected

f(x) = cos(x), εmax = 0.2, a = π/2, b = −π/2, (6.37)

with a purely imaginary index of refraction in the lower layer

α = 0.001, σ = 0.99, nu = 5, nw = 20i, Nx = Nz = 32, N =M = 15. (6.38)

In Figure 32 we plot the Reflectivity Map and Energy Defect on a single coordinate axis

to demonstrate the accuracy of our scheme with a non–physical dielectric constant.

(a) Reflectivity Map (b) Energy Defect

Figure 32: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 15 with a granularity of Nε = Nδ = 100 per invocation.

The grating surface was (6.37) and physical parameters were (6.38).
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Lastly, we selected

f(x) = sin(x), εmax = 0.2, a = 2/π, b = −2/π, (6.39)

and

f(x) = cos(x), εmax = 0.2, a = 2/π, b = −2/π, (6.40)

with the parameters

α = 0.1, σ = 0.99, nu = 10, nw = 25i, Nx = Nz = 32, N =M = 15. (6.41)

In Figures 33(a) and 33(b) we plot the Reflectivity Map and Energy Defect for the sine

profile on a single coordinate axis and compare this to an equivalent simulation for the

cosine profile in Figures 33(c) and 33(d).

(a) Reflectivity Map (b) Energy Defect

(c) Reflectivity Map (d) Energy Defect

Figure 33: The Reflectivity Map, R(ε, δ), and Energy Defect D computed with Padé

summation. We set N = M = 15 with a granularity of Nε = Nδ = 100 per invocation.

(Top) The grating surface was (6.39) and physical parameters were (6.41). (Bottom)

The grating surface was (6.40) and physical parameters were (6.41).



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis establishes a novel HOPS/AWE algorithm that is particularly well suited

to simulating scattering returns for periodic media problems. Our main contribution is

that of Theorem 4.6.1 which guarantees the existence and uniqueness of solutions to a

system of partial differential equations which model the interaction of linear waves in

periodic layered structures with respect to multiple perturbation parameters. Through

the introduction of DNOs and a change of variables based on the TFE methodology, we

have shown that solutions to the Helmholtz problem are jointly analytic with respect to

both interfacial and frequency perturbations. As a result, our HOPS/AWE algorithm

is able to handle a variety of numerical simulations that are physically challenging in

both the TE and TM polarization modes. Moreover, our extensive numerical results

demonstrate the accuracy, speed, and robustness expected of all HOPS methods.

7.1 Future Directions

There are a wide range of improvements to both the HOPS/AWE algorithm and the

proof of analyticity for linear waves in periodic layered media. Our main goals for

future research are to expand the TFE method through a new proof of convergence, in-

vestigate expanding around singularities, evaluate analyticity theorems in multilayered

configurations, add new parallel programming functionality, explore alternative meth-

ods to recover surface data without Dirichlet–Neumann Operators, and to reduce the

execution time of the HOPS algorithm. We now summarize these six research goals and

suggest predictions for future research.

Goal 1- Choice of Parameters: Does the geometry of the perturbation im-

pact how large the size of the perturbation can be?

Goal 2- Rayleigh Singularities: Can we build a full HOPS algorithm based

on points where the Taylor expansion is invalid?

Goal 3- Multiple Layers: Can we prove analyticity results when the number

of layers is greater than three? Do the same theorems hold for ten or

one hundred layers?

Goal 4- Parallel Programming: Can we implement parallel programming

techniques so that our HOPS code runs on N processors?

Goal 5- Alternatives to DNOs: Do we need to use DNOs to recover surface

data from information stored in the transformed field? Is there an

alternative method which preserves the inversion of a single, sparse

operator at the interface?

128
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Goal 6- Computational Costs: Can we reduce the execution time per time

step in our HOPS algorithm?

7.2 Choice of Parameters

Our HOPS/AWE algorithm is based on two smallness assumptions:

[1] Boundary Perturbation: g(x) = εf(x), ε ∈ R, ε≪ 1,

[2] Frequency Perturbation: ω = (1 + δ)ω = ω + δω, ω ∈ R, δ ≪ 1,

with the additional assumption that f is sufficiently smooth (f ∈ C2 (114; 68) or

even Lipschitz (115)). Numerical simulations show that our HOPS/AWE algorithm can

handle larger perturbations of ε (the height/slope) in comparison to δ (the frequency).

With modest test parameters and a period of d = 2π, we are able to perturb the value

of ε (to ε = 0.1 or even ε = 0.2) and still get reasonable convergence results. At a value

around ε = 10−4, our HOPS/AWE algorithm converges to machine precision provided

that we sum to high enough Taylor orders.

(a) Large ε, Small δ (b) Small ε, Large δ

Figure 34: A contour plot of the relative error computed with our HOPS/AWE algorithm

by holding N = M = 8 Taylor orders fixed. In Figure 34(a) we expand up to ε = 0.1

and δ = 10−10 simultaneously with N = M = 8 Taylor orders. In Figure 34(b) we

expand up to ε = 10−10 and δ = 0.1 simultaneously with N =M = 8 Taylor orders.

Supplementary testing in both the upper and lower layers confirms that our HOP-

S/AWE algorithm is better suited towards larger ε.

Predictions: Our HOPS/AWE methodology takes advantage of exact enforcement

of the OWC at an artificial boundary in order to truncate the computational domain to

one of finite extent. After flattening the surface, the DNOs recover information through

the solution stored at the interface. We suspect that this process mitigates large pertur-

bations of the height/slope. By following techniques developed in (93; 116; 98; 117), we
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intend to rigorously prove that the TFE method is analytic when ε is large. Addition-

ally, we are interested in perturbing other physical parameters in the context of layered

media problems. These are discussed in the engineering literature (118; 119).

7.3 Rayleigh Singularities

A fundamental equation in the HOPS/AWE algorithm is

α2
p + (γqp(δ))

2 = (kq)2,

where kq represents the wavenumber, q ∈ {u,w}, and α = kq sin(θ), γ = kq cos(θ), are

parameters corresponding to refraction/reflection of the incidence angle θ. As shown

in §5.4, a Rayleigh singularity (or Wood’s anomaly) occurs when α2
p = (kq)2 for any

integer p ̸= 0. That is, if γq
p
(δ) = 0 for p ̸= 0 then the Taylor series expansion of γqp(δ)

is invalid. In (75), the author investigated changing the Taylor expansion to a Puiseux

expansion (120):

γqp(δ) =
∞∑
m=0

γqp,mδ
m+1/2 = δ1/2

∞∑
m=0

γqp,mδ
m.

However, he found that this approach ran into external difficulties (§6 of (75)) simplify-

ing explicit forms of the Dirichlet and Neumann trace operators.

Predictions: Rayleigh singularities are a central obstruction to the convergence of

our HOPS/AWE algorithm. In all of our numerical tests, we select custom frequency

ranges which maximize the radius of convergence of our algorithm by expanding away

from the singularities (cf. §5.6). Alternative methods such as Padé summation also

fail to be analytic in a neighborhood of a Rayleigh singularity. General perturbation

theory provides a variety of known techniques (121; 122; 123; 124; 125) for expanding

around divergent perturbation series. We suspect that adding these techniques to our

HOPS/AWE algorithm will allow us perform a series expansion of γq
p
(δ) that does not

diverge when γq
p
(δ) = 0.

7.4 Multiple Layers

In (98), the author discusses how to apply our HOPS methodology in multilayered

configurations. He considers a multilayered material with M (finite) interfaces at

z = a(m) + g(m)(x, y), 1 ≤ m ≤M,

which are dx × dy periodic

g(m)(x+ dx, y + dy) = g(m)(x, y), 1 ≤ m ≤M,

separating (M + 1)–many layers.
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Figure 35: A five–layer problem configuration with layer interfaces z = a(m) + g(m)(x).

A generalization of our analyticity theorems (cf. §4.5) up to M parameters is in-

cluded as Theorem 3.2 in (98). For this, we consider quite general systems of linear

equations of the form

A(ε̃)V(ε̃) = R(ε̃), (7.1)

where

A(ε̃) =

∞∑
ñ=0

Añε̃
ñ, R(ε̃) =

∞∑
ñ=0

Rñε̃
ñ.

The tildes represent multi–index notation (126), in particular

ε̃ :=


ε1
...

εM

 , ñ :=


n1
...

nM

 ,

and the convention

∞∑
ñ=0

Añ ε̃
ñ =

∞∑
n1=0

· · ·
∞∑

nM=0

An1,...,nM ε
n1
1 · · · εnM

M .

As in §4.5, we seek a solution of the form

V(ε̃) =

∞∑
ñ=0

Vñε̃
ñ, (7.2)

and from (7.1) we find at order O(ε̃ñ)

A0Vñ = Rñ −

 ñ∑
ℓ̃=0

Añ−ℓ̃Vℓ̃ −A0Vñ

 ,
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or

Vñ = A−1
0

Rñ −

 ñ∑
ℓ̃=0

Añ−ℓ̃Vℓ̃ −A0Vñ

 . (7.3)

The above notation represents multi–indices in the form

ñ∑
ℓ̃=0

Añ−ℓ̃Vℓ̃ =

n1∑
ℓ1=0

· · ·
nM∑
ℓM=0

An1−ℓ1,...,nM−ℓMVℓ1,...,ℓm ,

where ñ = (n1, . . . , nM ), ℓ̃ = (ℓ1, . . . , ℓM ), and 0 = (0, . . . , 0) with the convention

ñ ≥ 0 ⇐⇒ n1 ≥ 0, . . . , nM ≥ 0, ℓ̃ ≥ 0 ⇐⇒ ℓ1 ≥ 0, . . . , ℓM ≥ 0.

With these, we can extend our existence theorem (Theorem 4.5.1) to M parameters.

Theorem 7.4.1. Given two Banach spaces, X and Y , suppose that:

[1] Rñ ∈ Y for all ñ ≥ 0, and there existM–multi–indexed constants CR > 0, BR > 0,

CR =


CR,1
...

CR,M

 , Bñ
R =


Bn1
R,1
...

BnM
R,M

 ,

such that

∥Rñ∥Y ≤ CRB
ñ
R,

[2] Añ : X → Y for all ñ ≥ 0, and there exist M–multi–indexed constants CA > 0,

BA > 0 such that

∥Añ∥X→Y ≤ CAB
ñ
A,

[3] A−1
0 : Y → X, and there exists a constant Ce > 0 such that

∥∥A−1
0

∥∥
Y→X

≤ Ce.

Then the equation (7.1) has a unique solution,

V(ε̃) =

∞∑
ñ=0

Vñε̃
ñ, (7.4)

and there exist M–multi–indexed constants CV > 0 and BV > 0 such that

∥Vñ∥X ≤ CVB
ñ
V ,
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for all ñ ≥ 0 and any

CV ≥ 2CeCR, BV ≥ max
{
BR, 2BA, 2

M+1CeCABA
}
,

enforced componentwise. This implies that, for any M–multi–indexed constant 0 ≤ ρ̃ <

1, (7.4), converges for all ε̃ such that Bε̃ < ρ̃, i.e., ε̃ < ρ̃/B.

Remark 7.4.1. Our proof strategy is a form of multidimensional induction where given a

statement P(n1, n2, n3, ..., nM ) for some M ∈ N, we will show that ∀n1, n2, . . . , nM ≥ 0,

P(n1, n2, n3, ..., nM ) is true by inducting on nM . We will follow the steps outlined below.

[1] Establish P(0, . . . , nj , . . . , 0) for all 1 ≤ j < M and n1, . . . , nj ≥ 0.

[2] Given P(n1, n2, . . . , nj , . . . , 0) for all 1 ≤ j < M and n1, . . . , nj ≥ 0, establish

P(n1, n2, . . . , n̄j , . . . , 0). This can be accomplished through the two steps below.

(a) Establish P(0, . . . , n̄j , . . . , 0) for all n̄j ≥ 0 (where the hypothesis in [2] gives

the required case for nj < n̄j).

(b) Given P(n1, n2, . . . , n̄j , . . . , 0) for all 1 ≤ j < M and n1 < n̄1, n2 < n̄2, . . . ,

nj−1 < n̄j−1 and n̄j ≥ 0, establish P(n̄1, n̄2, . . . , n̄j , . . . , 0).

[3] Given P(n1, n2, . . . , nj , nj+1, . . . , 0) for all 1 ≤ j + 1 < M and n1, . . . , nj+1 ≥ 0,

establish P(n1, n2, . . . , nj , n̄j+1, . . . , 0). This can be accomplished by following the

two steps outlined below.

(a) Establish P(0, . . . , n̄j+1, . . . , 0) for all n̄j+1 ≥ 0 (where the hypothesis in [3]

gives the required case for nj+1 < n̄j+1).

(b) Given P(n1, n2, . . . , nj , n̄j+1, . . . , 0) for all 1 ≤ j + 1 < M and n1 < n̄1, n2 <

n̄2, . . . , nj < n̄j and n̄j+1 ≥ 0, establish P(n̄1, n̄2, . . . , n̄j , n̄j+1 . . . , 0).

[4] Given P(n1, n2, . . . , nM−1, nM ) for all n1, n2, . . . , nM−1 ≥ 0 and nM < n̄M , estab-

lish P(n1, n2, . . . , nM−1, n̄M ). This can be accomplished by the two steps below

(the base cases are handled through [2] and [3]).

(a) Establish P(0, . . . , n̄M ) for n̄M ≥ 0 (where the hypothesis in [4] handles the

required case for nM < n̄M ).

(b) Given P(n1, n2, . . . , nM−1, n̄M ) for all n1 < n̄1, n2 < n̄2, . . . nM−1 < n̄M−1

and n̄M ≥ 0, establish P(n̄1, n̄2, . . . , n̄M−1, n̄M ).

Proof. [Theorem 7.4.1] As with ε̃ and ñ, we represent ρ̃ by

ρ̃ :=


ρ1
...

ρM

 .



134 7.4 Multiple Layers

As before, we will work by induction and consider the general case for finite M > 0

where we want to establish

∥Vn1,...,nM ∥X ≤ CV,1 . . . CV,MB
n1
V,1 . . . B

nM
V,M , ∀n1, . . . , nM ≥ 0.

We prove this via an induction on nM . The base case n1, n2, . . . , nj−1, nj+1, . . . , nM = 0

and 1 ≤ j < M : ∥∥V0,...,nj ,...,0

∥∥
X

≤ CV,jB
nj

V,j , ∀nj ≥ 0,

has previously been established by Theorem 4.5.1 where ε̃ = εj and δ = 0. We now

assume

∥∥Vn1,...,nj ,...,0

∥∥
X

≤ CV,1 . . . CV,jB
n1
V,1 . . . B

nj

V,j , ∀n1, . . . , nj−1 ≥ 0, ∀nj < n̄j , 1 ≤ j < M,

and seek

∥∥Vn1,...,n̄j ,...,0

∥∥
X

≤ CV,1 . . . CV,jB
n1
V,1 . . . B

n̄j

V,j , ∀n1, . . . , nj−1 ≥ 0.

This can be obtained through a chain of (M − 1) inductions on n1, . . . , nj where 1 ≤
j < M . For simplicity, we will show what happens in the arbitrary case nj . The base

case n1, . . . , nj−1 = 0:

∥∥V0,...,n̄j ,...,0

∥∥
X

≤ CV,jB
n̄j

V,j , ∀n̄j ≥ 0,

is established by Theorem 4.5.1 where ε̃ = εj and δ = 0. Therefore, we assume

∥∥Vn1,...,n̄j ,...,0

∥∥
X

≤ CV,1 . . . CV,jB
n1
V,1 . . . B

n̄j

V,j , ∀n1 < n̄1, . . . , nj−1 < n̄j−1, ∀n̄j ≥ 0,

1 ≤ j < M,

and seek ∥∥Vn̄1,...,n̄j ,...,0

∥∥
X

≤ CV,1 . . . CV,jB
n̄1
V,1 . . . B

n̄j

V,j .

Recalling ñ = (n1, . . . , nj) and ℓ̃ = (ℓ1, . . . , ℓj), we define

ñ∑
ℓ̃=0

∗

Añ−ℓ̃Vℓ̃ :=

ñ∑
ℓ̃=0

Añ−ℓ̃Vℓ̃ −A0Vñ, (7.5)

and apply (7.3), (7.5) and the mapping properties of A−1
0 to find

∥∥Vn̄1,...,n̄j ,...,0

∥∥
X

≤ Ce

∥∥Rn̄1,...,n̄j

∥∥
Y
+

ñ∑
ℓ̃=0

∗ ∥∥Añ−ℓ̃Vℓ̃

∥∥
Y

 .
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Using the estimates on Rn1,...,nj and An1,...,nj (for all n1, . . . , nj) and Vn1,...,nj (n1 <

n̄1, . . . , nj < n̄j) we have

∥∥Vn̄1,...,n̄j ,...,0

∥∥
X

≤ Ce

{
CR,1 . . . CR,jB

n̄1
R,1 . . . B

n̄j

R,j +
ñ∑
ℓ̃=0

∗

CA,1 . . . CA,jB
n̄1−ℓ1
A,1 . . . B

n̄j−ℓj
A,j

× CV,1 . . . CV,jB
ℓ1
V,1 . . . B

ℓj
V,j

}
= CeCR,1 . . . CR,jB

n̄1
R,1 . . . B

n̄j

R,j + CeCA,1 . . . CA,jCV,1 . . . CV,j

×
(
BA,1
BV,1

)
Bn̄1
V,1 · · ·

(
BA,j
BV,j

)
B
n̄j

V,j

ñ∑
ℓ̃=0

∗(
BA,1
BV,1

)
Bn̄1−ℓ1−1
V,1 · · ·

×
(
BA,j
BV,j

)
B
n̄j−ℓj−1
V,j

≤ CeCR,1 . . . CR,jB
n̄1
V,1 . . . B

n̄j

V,j + CeCA,1 . . . CA,jCV,1 . . . CV,j

×
(
BA,1
BV,1

)
Bn̄1
V,1 · · ·

(
BA,j
BV,j

)
B
n̄j

V,j

(
1

1− 1/2

)j
,

if BA,k/BV,k ≤ 1/2, k = 1, . . . , j (implying BV,k ≥ 2BA,k). We are done if we demand

that

BV,k ≥ BR,k, CeCR,k ≤ CV,k/2, 2jCeCA,kCV,k(BA,k/BV,k) ≤ CV,k/2.

This can be realized if

CV,k ≥ 2CeCR,k, BV,k ≥ max
{
BR,k, 2BA,k, 2

j+1CeCA,kBA,k
}
.

We then assume

∥∥Vn1,...,nj+1,...,0

∥∥
X

≤ CV,1 . . . CV,j+1B
n1
V,1 . . . B

nj+1

V,j+1, ∀n1, . . . , nj ≥ 0, ∀nj+1 < n̄j+1,

1 ≤ j < M,

and seek

∥∥Vn1,...,n̄j+1,...,0

∥∥
X

≤ CV,1 . . . CV,j+1B
n1
V,1 . . . B

n̄j+1

V,j+1, ∀n1, . . . , nj ≥ 0.

As before, this can be obtained through a chain of M inductions on n1, . . . , nj+1 where

1 ≤ j < M . For simplicity, we will show what happens in the arbitrary case nj+1. The

base case n1, . . . , nj = 0:

∥∥V0,...,n̄j+1,...,0

∥∥
X

≤ CV,j+1B
n̄j+1

V,j+1, ∀n̄j+1 ≥ 0,
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is established by Theorem 4.5.1 where ε̃ = εj+1 and δ = 0. Therefore, we assume

∥∥Vn1,...,n̄j+1,...,0

∥∥
X

≤ CV,1 . . . CV,j+1B
n1
V,1 . . . B

n̄j+1

V,j+1, ∀n1 < n̄1, . . . , nj < n̄j , ∀n̄j+1 ≥ 0,

1 ≤ j < M,

and seek ∥∥Vn̄1,...,n̄j+1,...,0

∥∥
X

≤ CV,1 . . . CV,j+1B
n̄1
V,1 . . . B

n̄j+1

V,j+1.

In this scenario, ñ = (n1, . . . , nj+1) and ℓ̃ = (ℓ1, . . . , ℓj+1), so we apply (7.3), (7.5) and

the mapping properties of A−1
0 to find

∥∥Vn̄1,...,n̄j+1,...,0

∥∥
X

≤ Ce

∥∥Rn̄1,...,n̄j+1

∥∥
Y
+

ñ∑
ℓ̃=0

∗ ∥∥Añ−ℓ̃Vℓ̃

∥∥
Y

 .

Using the estimates on Rn1,...,nj+1 and An1,...,nj+1 (for all n1, . . . , nj+1) and Vn1,...,nj+1

(n1 < n̄1, . . . , nj+1 < n̄j+1) we have

∥∥Vn̄1,...,n̄j+1,...,0

∥∥
X

≤ Ce

{
CR,1 . . . CR,j+1B

n̄1
R,1 . . . B

n̄j+1

R,j+1 +
ñ∑
ℓ̃=0

∗

CA,1 . . . CA,j+1B
n̄1−ℓ1
A,1 . . .

×B
n̄j+1−ℓj+1

A,j+1 CV,1 . . . CV,j+1B
ℓ1
V,1 . . . B

ℓj+1

V,j+1

}
= CeCR,1 . . . CR,j+1B

n̄1
R,1 . . . B

n̄j+1

R,j+1 + CeCA,1 . . . CA,j+1CV,1 . . . CV,j+1

×
(
BA,1
BV,1

)
Bn̄1
V,1 · · ·

(
BA,j+1

BV,j+1

)
B
n̄j+1

V,j+1

ñ∑
ℓ̃=0

∗(
BA,1
BV,1

)
Bn̄1−ℓ1−1
V,1 · · ·

×
(
BA,j+1

BV,j+1

)
B
n̄j+1−ℓj+1−1
V,j+1

≤ CeCR,1 . . . CR,j+1B
n̄1
V,1 . . . B

n̄j+1

V,j+1 + CeCA,1 . . . CA,j+1CV,1 . . . CV,j+1

×
(
BA,1
BV,1

)
Bn̄1
V,1 · · ·

(
BA,j+1

BV,j+1

)
B
n̄j+1

V,j+1

(
1

1− 1/2

)j+1

,

if BA,t/BV,t ≤ 1/2, t = 1, . . . , j + 1 (implying BV,t ≥ 2BA,t). We are done if we demand

that

BV,t ≥ BR,t, CeCR,t ≤ CV,t/2, 2j+1CeCA,tCV,t(BA,t/BV,t) ≤ CV,t/2.

This can be realized if

CV,t ≥ 2CeCR,t, BV,t ≥ max
{
BR,t, 2BA,t, 2

j+2CeCA,tBA,t
}
.
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To complete the general case for finite M > 0, we assume

∥Vn1,...,nM ∥X ≤ CV,1 . . . CV,MB
n1
V,1 . . . B

nM
V,M , ∀n1, . . . , nM−1 ≥ 0, ∀nM < n̄M ,

and seek

∥Vn1,...,n̄M ∥X ≤ CV,1 . . . CV,MB
n1
V,1 . . . B

n̄M
V,M , ∀n1, . . . , nM−1 ≥ 0.

The base case n1, n2, . . . , nM−1 = 0:

∥V0,...,n̄M ∥X ≤ CV,MB
n̄M
V,M , ∀n̄M ≥ 0,

has previously been established by Theorem 4.5.1 where ε̃ = εM and δ = 0. Finally, we

assume

∥∥Vn1,...,nM−1,n̄M

∥∥
X

≤ CV,1 . . . CV,MB
n1
V,1 . . . B

n̄M
V,M , ∀n1 < n̄1, . . . , nM−1 < n̄M−1,

∀n̄M ≥ 0,

and seek ∥∥Vn̄1,...,n̄M−1,n̄M

∥∥
X

≤ CV,1 . . . CV,MB
n̄1
V,1 . . . B

n̄M
V,M .

In this case, ñ = (n1, . . . , nM ) and ℓ̃ = (ℓ1, . . . , ℓM ), so we apply (7.3), (7.5) and the

mapping properties of A−1
0 to find

∥Vn̄1,...,n̄M ∥X ≤ Ce

∥Rn̄1,...,n̄M ∥Y +

ñ∑
ℓ̃=0

∗ ∥∥Añ−ℓ̃Vℓ̃

∥∥
Y

 .

Using the estimates on Rn1,...,nM and An1,...,nM (for all n1, . . . , nM ) and Vn1,...,nM (n1 <

n̄1, . . . , nM < n̄M ) we have

∥Vn̄1,...,n̄M ∥X ≤ Ce

{
CR,1 . . . CR,MB

n̄1
R,1 . . . B

n̄M
R,M +

ñ∑
ℓ̃=0

∗

CA,1 . . . CA,MB
n̄1−ℓ1
A,1 . . . Bn̄M−ℓM

A,M

× CV,1 . . . CV,MB
ℓ1
V,1 . . . B

ℓM
V,M

}
= CeCR,1 . . . CR,MB

n̄1
R,1 . . . B

n̄M
R,M + CeCA,1 . . . CA,MCV,1 . . . CV,M

×
(
BA,1
BV,1

)
Bn̄1
V,1 · · ·

(
BA,M
BV,M

)
Bn̄M
V,M

ñ∑
ℓ̃=0

∗(
BA,1
BV,1

)
Bn̄1−ℓ1−1
V,1 · · ·

×
(
BA,M
BV,M

)
Bn̄M−ℓM−1
V,M
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≤ CeCR,1 . . . CR,MB
n̄1
V,1 . . . B

n̄M
V,M + CeCA,1 . . . CA,MCV,1 . . . CV,M

×
(
BA,1
BV,1

)
Bn̄1
V,1 · · ·

(
BA,M
BV,M

)
Bn̄M
V,M

(
1

1− 1/2

)M
,

if BA,i/BV,i ≤ 1/2, i = 1, . . . ,M (implying BV,i ≥ 2BA,i). We are done if we demand

that

BV,i ≥ BR,i, CeCR,i ≤ CV,i/2, 2MCeCA,iCV,i(BA,i/BV,i) ≤ CV,i/2.

This can be realized if

CV,i ≥ 2CeCR,i, BV,i ≥ max
{
BR,i, 2BA,i, 2

M+1CeCA,iBA,i
}
.

Using a similar approach in conjunction with the analysis in Chapters 2 and 3, we

predict a more general form of Theorems 2.9.2 and 3.8.1 exists, which would establish

the analyticity of the transformed field with respect to any finite M > 0 perturbation

parameters.

Conjecture 7.4.2. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Uñ ∈ Hs+3/2([0, d]),

Wñ ∈ Hs+3/2([0, d]) such that

∥Uñ∥Hs+3/2 ≤ KUB
ñ
U , ∥Wñ∥Hs+3/2 ≤ KWB

ñ
W ,

for constants KU ,KW > 0 and M–multi–indexed constants BU , BW > 0, then uñ ∈
Hs+2([0, d]× [0, a]), wñ ∈ Hs+2([0, d]× [−b, 0]) and

∥uñ∥Hs+2 ≤ KBñ, ∥wñ∥Hs+2 ≤ K̃B̃ñ,

for constants K, K̃ > 0 and M–multi–indexed constants B, B̃ > 0.

Analogously, a similar procedure would establish a more general form of Theorems

2.10.2 and 3.9.2 for the analyticity of the DNOs for any finite M > 0 perturbation

parameters.

Conjecture 7.4.3. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Uñ ∈ Hs+3/2([0, d]),

Wñ ∈ Hs+3/2([0, d]) such that

∥Uñ∥Hs+3/2 ≤ KUB
ñ
U , ∥Wñ∥Hs+3/2 ≤ KWB

ñ
W ,

for constants KU ,KW > 0 and M–multi–indexed constants BU , BW > 0, then Gñ ∈
Hs+1/2([0, d]), Jñ ∈ Hs+1/2([0, d]) and

∥Gñ∥Hs+1/2 ≤ K̃B̃ñ, ∥Jñ∥Hs+1/2 ≤
≈
K

≈
Bñ,
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for constants K̃,
≈
K > 0 and M–multi–indexed constants B̃,

≈
B > 0.

Upon proving these, one has two key ingredients to the more general version of

Theorem 4.6.1 which establishes the existence and uniqueness of solutions to a system

of partial differential equations with respect to M perturbation parameters.

Conjecture 7.4.4. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) then the equation (7.1)

has a unique solution, (7.4), and there exist a constant C > 0 and M–multi–indexed

constants B > 0 such that

∥Vñ∥Xs ≤ CBñ,

for all ñ ≥ 0. This implies that for any M–multi–indexed constant 0 ≤ ρ̃ < 1, (7.4),

converges for all ε̃ such that Bε̃ < ρ̃, i.e., ε̃ < ρ̃/B.

Predictions: In application oriented fields such as signal processing or sea ice mod-

eling, practitioners work with multiple frequencies (127; 128; 129; 130) at short or long

wavelengths. Also, as depicted in Figure 35, the grating surface could have M different

layers (131) with distinct values of gj(x) = εfj(x), j = 1, . . . ,M . A proof of Conjecture

7.4.4 would enable the freedom to enforce any number of perturbation parameters and

obtain an analytic solution. Given the widespread availability of parallel computing

resources coupled with additional perturbation parameters associated with elastic me-

dia, we believe that future research will force hundreds or even thousands of distinct

perturbation parameters, all of which should yield an analytic solution.

7.5 Parallel Programming

In the case of multiple layered interfaces, we need to compute intermediate DNOs for

up to M layers. This will greatly increase the computational cost and execution time

of our HOPS/AWE algorithm and we suspect that it will be necessary to introduce

parallel programming techniques to offset the computational expense. In the context of

the Operator Expansion (OE) method, preliminary work (132) has been completed in

C++ to parallelize the computation of Navier’s equations (83; 133). These techniques

can be adapted to the TFE method through the choice of OpenMP (134), MPI (135),

or CUDA (136).

Predictions: In two or three dimensions, our HOPS code is robust, efficient and has a

runtime less than an hour. A local machine with an Intel Core i5 CPU, 8GB of RAM,

and Windows 10 OS completed almost every simulation in this thesis in less than thirty

minutes. However, with ten to one hundred layer configurations, we suspect that many

simulations will take on the order of weeks or even months. As a result, it will be nec-

essary to parallelize our Matlab code in a compiled programming language such as C or

C++.
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7.6 Alternatives to DNOs

In Chapter 4 we wrote our scattering problem as a linear system

AV = R,

where, upon expanding {A,V,R} in both ε and δ, we arrived at the flat–interface

solution A0,0V0,0 = R0,0 at order O(ε0, δ0). We then saw it was necessary to invert

A0,0 =

(
I −I

−G0,0 −τ2J0,0

)
,

which features the two DNOs, G0,0 and J0,0, in order to show the existence and unique-

ness of solutions. A primary feature of all HOPS schemes is the inversion of a single,

sparse operator A0,0 through the use of DNOs. However, one may ponder if a different

technique could produce a more competitive algorithm that is comparable to our HOP-

S/AWE algorithm (or even better). Is it absolutely necessary to pass in transformed

field data in order to efficiently compute and recover internal information stored at the

grating surface?

Predictions: A primary advantage of our HOPS/AWE scheme is that for every per-

turbation order, it is only necessary to invert a single sparse operator corresponding to a

flat–interface, order–zero approximation. There are a number of competing approaches

in general perturbation theory within the context of layered media problems. In regards

to electromagnetic wave scattering, Galerkin and boundary element methods are dis-

cussed in (137; 138; 139; 140; 141) and a high–order perturbation approach based on

boundary integral equations in (142). High–order schemes for linear waves can be com-

puted using level set methods (143) and fast marching methods, as well as other methods

involving domain decomposition (144; 145; 146; 147; 148; 149). A holistic evaluation of

these competing methods could potentially improve our HOPS/AWE algorithm if we

found a faster method of inverting linear operators without the use of DNOs.

7.7 Computational Complexity

One of the fundamental reasons for developing our HOPS/AWE algorithm is its advan-

tageous computational complexity for problems within its domain of applicability. In

comparison with other classical methods, our HOPS/AWE approach has several advan-

tages for computing quantities such as the Reflectivity Map, R = R(ε, δ). To demon-

strate this we begin by fixing the problem of computing R for Nε many values of ε and

Nδ many values of δ.

In the case of computing the DNOs G and J , we recall from §2.11 and §3.10 that

our HOPS/AWE algorithm requires Nx × Nz unknowns at every perturbation order,
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(n,m), corresponding to the Nx equally–spaced gridpoints in the lateral direction and

the Nz + 1 collocation points in the vertical dimension. In §4.5 we saw that we could

write our scattering problem as A(ε, δ)V(ε, δ) = R(ε, δ) where

A(ε, δ) =

∞∑
n=0

∞∑
m=0

An,mε
nδm, R(ε, δ) =

∞∑
n=0

∞∑
m=0

Rn,mε
nδm,

and

V(ε, δ) =
∞∑
n=0

∞∑
m=0

Vn,mε
nδm.

At order O(εn, δm) this becomes

A0,0Vn,m = Rn,m −
n−1∑
ℓ=0

An−ℓ,0Vℓ,m −
m−1∑
r=0

A0,m−rVn,r

−
n−1∑
ℓ=0

m−1∑
r=0

An−ℓ,m−rVℓ,r.

(7.6)

A careful study of (7.6) reveals that the computational complexity of forming the right–

hand side at order (n,m) is

O (nmNx log(Nx)Nz log(Nz)) .

Inverting the operator A0,0 has complexity O (Nx log(Nx)Nz log(Nz)) so the full cost of

computing the Vn,m, {0 ≤ n ≤ N, 0 ≤ m ≤M}, is

O
(
N2M2Nx log(Nx)Nz log(Nz)

)
.

Once these coefficients are recovered, the cost of summing the series in (ε, δ) is minimal,

provided it is done in an efficient manner (e.g., by Horner’s rule (150; 151)). Our

algorithm then requires an additional O (NεNδ) steps to sum over every value of (ε, δ),

therefore the full cost of computing the Reflectivity Map by our HOPS/AWE method

is

O
(
N2M2Nx log(Nx)Nz log(Nz) +NεNδ

)
. (7.7)

In contrast, for a single (ε, δ) pair, a Boundary Integral Method solver with Nx lateral

gridpoints requires time proportional to O
(
N3
x

)
for Gaussian elimination to solve the

resulting dense system of Nx equations in Nx unknowns (150; 151; 56). Applying this

Nε ×Nδ times results in a total computational complexity of

O
(
N3
xNεNδ

)
. (7.8)

Thus, once Nε and Nδ become large, e.g.,
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NεNδ >
N2M2Nx log(Nx)Nz log(Nz)

N3
x

,

our new algorithm becomes far more efficient. We speculate that the cost of (7.7) could

be reduced to

O (NM log(NM)Nx log(Nx)Nz log(Nz) +NεNδ) , (7.9)

provided that we develop a more efficient method of computing the Vn,m, {0 ≤ n ≤
N, 0 ≤ m ≤ M}, such as reducing the problem space at every step. Alternative ap-

proaches to layered media problems have also been proposed by other authors (152; 153),

including interpolation (154) and Green’s function (155).

Predictions: The combination of implementing parallel programming techniques (through,

e.g., OpenMP or CUDA) and reducing the problem space at every step will greatly en-

hance the speed and fidelity of our HOPS/AWE algorithm. Considering the natural

advantage surface methods have over conventional methods, such as finite difference, fi-

nite element, and spectral element methods, we expect that our HOPS/AWE algorithm

will be among the most competitive available for periodic layered media problems.
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Appendix A

MATLAB CODE

We present a subset of the Matlab code used to simulate our numerical results. Three

essential algorithms used to define the upper and lower fields are the computation of the

flat–interface solution of A0,0, the upper and lower layer DNOs, Gn,m = Gn,m(x; ε, δ)

and Jn,m = Jn,m(x; ε, δ), and the upper and lower transformed field solvers, un,m =

un,m(x, z; ε, δ) and wn,m = wn,m(x, z; ε, δ). In Algorithm A.0.1 we show our technique

for inverting the flat–interface solution of A0,0 (cf. §4.8).

Algorithm A.0.1 Inversion of the flat–interface operator A0,0

1: Set Nx: The number of discretization points

2: Set iγup : The Fourier multiplier for G0,0

3: Set iγwp : The Fourier multiplier for J0,0

4: Set γq = (1 + δ)γq, q ∈ {u,w}, where δ represents a small frequency perturbation

5: Set τ : Constant representing TE or TM polarization mode

6: ζ0,0 ∈ RNx , ψ0,0 ∈ RNx

7: ζ̂0,0 ∈ CNx , ψ̂0,0 ∈ CNx

8: for j = 1 : Nx do → Entries of
[
Â0,0(p)

]−1

9: detp = −
{
iγu
p
(j) + τ2

(
iγw
p
(j)
)}

10: a(j) =
[
τ2
(
−iγw

p
(j)
)
ζ̂0,0(j) + ψ̂0,0(j)

]
/ detp

11: b(j) =
[(
iγu
p
(j)
)
ζ̂0,0(j) + ψ̂0,0(j)

]
/ detp

12: end for

13: U0,0 = IFFT(a), W0,0 = IFFT(b)

14: return U0,0,W0,0

Next, Algorithm A.0.2 demonstrates how we calculate the upper layer DNO, G (cf.

§2.10 and §2.11).

Algorithm A.0.2 Computation of the upper layer DNO, G

1: Set Nx: The number of discretization points

2: Set Nz: The number of collocation points

3: Set N : The maximum number of Taylor orders for the interfacial perturbation

4: Set M : The maximum number of Taylor orders for the frequency perturbation

5: Set dx: The partial derivative with respect to the x component

6: Set dz: The partial derivative with respect to the z component

7: Set a: The artificial boundary imposed at the top of the upper layer

144
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8: Set p̃ = (2π/d)p for an integer p where d is the periodicity of the grating interface
9: Set f = sin(x), or a similar test function representing the grating surface
10: Set fx : The derivative of f with respect to the x component
11: Set ℓbottom = Nz + 1, the bottom or last collocation point on the z–axis
12: un,m ∈ CNx×(Nz+1)×(M+1)×(N+1), Gn,m ∈ CNx×(M+1)×(N+1)

13: ux ∈ CNx×(Nz+1), uz ∈ CNx×(Nz+1)

14: for n = 1 : N do
15: for m = 1 :M do → Order (n,m) terms in equation (2.52) in §2.10
16: uz = dz(un,m(:, :,m, n), a)
17: Gn,m(:,m, n) = −uz(:, ℓbottom)
18: if n > 1 then → Order (n− 1,m) terms in equation (2.53) in §2.10
19: ux = dx(un,m(:, :,m, n− 1), p̃)
20: Gn,m(:,m, n) = Gn,m(:,m, n) + fxux(:, ℓbottom)
21: Gn,m(:,m, n) = Gn,m(:,m, n) + (1/a) · (f ·Gn,m(:,m, n− 1))
22: end if
23: if n > 2 then → Order (n− 2,m) terms in equation (2.53) in §2.10
24: ux = dx(un,m(:, :,m, n− 2), p̃)
25: Gn,m(:,m, n) = Gn,m(:,m, n)− (1/a) · (ffx · ux(:, ℓbottom))
26: uz = dz(un,m(:, :,m, n− 2), a)
27: Gn,m(:,m, n) = Gn,m(:,m, n)− (f2x · uz(:, ℓbottom))
28: end if
29: end for
30: end for
31: return Gn,m

Lastly, Algorithm A.0.3 summarizes how we compute the upper transformed field, u

(cf. §2.4, §2.6, and §2.11). Due to its complexity and length, we leave out some details

to the Matlab implementation in Listing A.1.

Algorithm A.0.3 Computation of the upper transformed field, u

1: Set Nx: The number of discretization points

2: Set Nz: The number of collocation points

3: Set N : The maximum number of Taylor orders for the interfacial perturbation

4: Set M : The maximum number of Taylor orders for the frequency perturbation

5: Set dx: The partial derivative with respect to the x component

6: Set dz: The partial derivative with respect to the z component

7: Set a: The artificial boundary imposed at the top of the upper layer

8: Set p̃ = (2π/d)p for an integer p where d is the periodicity of the grating interface

9: Set f = cos(x), or a similar test function representing the grating surface

10: Set fx : The derivative of f with respect to the x component

11: Set ℓtop = 0 + 1, the top or first collocation point on the z–axis

12: Set T u : Expansion of frequency operator, cf. §5.4
13: Set g(x) = εf(x), where ε represents a small interfacial perturbation

14: Set γu = (1 + δ)γu, α = (1 + δ)α, where δ is a small frequency perturbation



146 Appendix A Matlab Code

15: Set z′ = a(z − g(x))/(a− g(x)), per transformation rules in §2.4. Relabel z = z′

16: ξn,m ∈ RNx×(M+1)×(N+1), ξ̂n,m ∈ CNx×(M+1)×(N+1)

17: Un,m ∈ RNx×(Nz+1), Ûn,m ∈ CNx×(Nz+1)

18: Fn,m ∈ RNx×(Nz+1), F̂n,m ∈ CNx×(Nz+1)

19: un,m ∈ CNx×(Nz+1)×(M+1)×(N+1), Jn,m ∈ RNx , Ĵn,m ∈ CNx

20: Compute Axx1 , Axz1 , A
zx
1 , A

zz
1 , A

xx
2 , Axz2 , A

zx
2 , A

zz
2 , B

x
1 , B

z
1 , B

x
2 , B

z
2 , S0, S1, and

21: S2 through equations (2.16) in §2.4
22: for n = 1 : N do

23: for m = 1 :M do

24: if n > 1 then → Order (n− 1,m) terms in equation (2.28) in §2.6
25: ux = dx(un,m(:, :,m, n− 1), p̃)

26: Fn,m = Fn,m − dx(Axx1 · ux, p̃)
27: Fn,m = Fn,m − dz(Azx1 · ux, a)
28: Fn,m = Fn,m −Bx

1 · ux
29: uz = dz(un,m(:, :,m, n− 1), a)

30: Fn,m = Fn,m − dx(Axz1 · uz, p̃)
31: Fn,m = Fn,m − (2iα) · S1 · ux
32: Fn,m = Fn,m − (γu)2 · S1 · un,m(:, :,m, n− 1)

33: end if

34: if m > 1 then → Order (n,m− 1) terms in equation (2.28) in §2.6
35: ux = dx(un,m(:, :,m− 1, n), p̃)

36: Fn,m = Fn,m − (2iα) · ux
37: Fn,m = Fn,m − (2(γu)2) · un,m(:, :,m− 1, n)

38: end if

39: if n > 1 and m > 1 then → Order (n− 1,m− 1) terms in equation (2.28)

40: ux = dx(un,m(:, :,m− 1, n− 1), p̃)

41: Fn,m = Fn,m − (2iα) · S1 · ux
42: Fn,m = Fn,m − (2(γu)2) · S1 · un,m(:, :,m− 1, n− 1)

43: end if

44: if n > 2 then → Order (n− 2,m) terms in equation (2.28) in §2.6
45: ux = dx(un,m(:, :,m, n− 2), p̃)

46: Fn,m = Fn,m − dx(Axx2 · ux, p̃)
47: Fn,m = Fn,m − dz(Azx2 · ux, a)
48: Fn,m = Fn,m −Bx

2 · ux
49: uz = dz(un,m(:, :,m, n− 2), a)

50: Fn,m = Fn,m − dx(Axz2 · uz, p̃)
51: Fn,m = Fn,m − dz(Azz2 · uz, a)
52: Fn,m = Fn,m −Bz

2 · uz − (2iα) · S2 · ux
53: Fn,m = Fn,m − (γu)2 · S2 · un,m(:, :,m, n− 2)

54: end if
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55: if m > 2 then → Order (n,m− 2) terms in equation (2.28) in §2.6
56: Fn,m = Fn,m − (γu)2 · un,m(:, :,m− 2, n)

57: end if

58: if n > 1 and m > 2 then → Order (n− 1,m− 2) terms in equation (2.28)

59: Fn,m = Fn,m − (γu)2 · S1 · un,m(:, :,m− 2, n− 1)

60: end if

61: if n > 2 and m > 1 then → Order (n− 2,m− 1) terms in equation (2.28)

62: ux = dx(un,m(:, :,m− 1, n− 2), p̃)

63: Fn,m = Fn,m − (2iα) · S2 · ux
64: Fn,m = Fn,m − (2(γu)2) · S2 · un,m(:, :,m− 1, n− 2)

65: end if

66: if n > 2 and m > 2 then → Order (n− 2,m− 2) terms in equation (2.28)

67: Fn,m = Fn,m − (γu)2 · S2 · un,m(:, :,m− 2, n− 2)

68: end if

69: for r = 0 : m− 1 do → Transparent boundary condition, (2.29) in §2.6
70: Jn,m = Jn,m + IFFT((T u(:,m− r)) · FFT(un,m(:, ℓtop, r, n)))
71: end for

72: if n > 1 then

73: for r = 0 : m do → Transparent boundary condition, (2.29) in §2.6
74: Sn,m = IFFT(T u(:,m− r)) · FFT(un,m(:, ℓtop, r, n− 1)))

75: Jn,m = Jn,m − (1.0/a) · f · Sn,m
76: end for

77: end if

78: F̂n,m = FFT(Fn,m), Ĵn,m = FFT(Jn,m)

79: Ûn,m = Chebyshev collocation method of parameters in (2.63) of §2.11
80: if n > 0 or m > 0 then

81: un,m(:, :,m, n) = IFFT(Ûn,m)

82: end if

83: end for

84: end for

85: return un,m

We now turn to example Matlab implementations. Our first script is the code for the

upper transformed field, u = u(x, y; ε, δ) (cf. Algorithm A.0.3). A computational novelty

of our HOPS/AWE algorithm is the speed at which we can compute the flat–interface

solution in Fourier space by inverting a sparse operator at every wavenumber. To do

this, we apply the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform

(IFFT) in Matlab. Because Matlab array indices start from 1 (linear indexing), we will

add “+1” in all of the loop variables executed in our Matlab scripts.
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Listing A.1: Upper Field Solver for the TFE Method

1 f unc t i on [unm] = f i e l d t f e h e lmho l t z m and n ( xi n m , f , p , gammap , alpha , . . .

2 gamma,Dz , a ,Nx,Nz ,N,M, identy )

3

4 unm = ze ro s (Nx,Nz+1,M+1,N+1) ;

5

6 k2 = p(0+1)ˆ2 + gammap(0+1) ˆ2 ;

7

8 e l l t o p = 0 + 1 ;

9 xi n m hat = 0∗ xi n m ;

10 f o r n=0:N

11 f o r m=0:M

12 xi n m hat ( : ,m+1,n+1) = f f t ( xi n m ( : ,m+1,n+1) ) ;

13 end

14 end

15 f x = r e a l ( i f f t ( (1 i ∗p) .∗ f f t ( f ) ) ) ;

16

17 l l = [ 0 : Nz ] ’ ;

18 z min = 0 ; z max = a ;

19 D = (2/( z max−z min ) ) ∗Dz ;

20 D2 = D∗D;

21 D star t = D( 1 , : ) ;

22 D end = D( end , : ) ;

23 t i l d e z = cos ( p i ∗ l l /Nz) ;

24 z = ( ( z max−z min ) /2 . 0 ) ∗( t i l d e z − 1 . 0 ) + z max ;

25

26 f f u l l = repmat ( f , 1 ,Nz+1) ;

27 f x f u l l = repmat ( f x , 1 ,Nz+1) ;

28 a m i nu s z f u l l = repmat ( a − z . ’ ,Nx, 1 ) ;

29

30 Uhat = ze ro s (Nx,Nz+1) ;

31

32 Tu = Tu dno ( alpha , p , gamma, gammap , k2 ,Nx,M) ;

33

34 % n=0 and m=0

35

36 f o r e l l =0:Nz

37 unm( : , e l l +1,0+1,0+1) = i f f t ( exp (1 i ∗gammap∗z ( e l l +1) ) .∗ xi n m hat (: ,0+1 ,0+1) ) ;

38 end

39

40 A1 xx = −(2.0/a ) ∗ f f u l l ;

41 A1 xz = −(1.0/a ) ∗( a m i nu s z f u l l ) .∗ f x f u l l ;

42 A1 zx = A1 xz ;

43 %A1 zz = 0 ;

44

45 A2 xx = (1 . 0/ a ˆ2) ∗ f f u l l . ˆ 2 ;

46 A2 xz = (1 . 0/ a ˆ2) ∗( a m i nu s z f u l l ) . ∗ ( f f u l l .∗ f x f u l l ) ;

47 A2 zx = A2 xz ;

48 A2 zz = (1 . 0/ a ˆ2) ∗ ( ( a m i nu s z f u l l ) . ˆ 2 ) . ∗ ( f x f u l l . ˆ 2 ) ;

49

50 B1 x = (1 . 0/ a ) ∗ f x f u l l ;

51 %B1 z = 0 ;

52

53 B2 x = −(1.0/a ˆ2) ∗ f f u l l .∗ f x f u l l ;
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54 B2 z = −(1.0/a ˆ2) . ∗ ( a m i nu s z f u l l ) . ∗ ( f x f u l l . ˆ 2 ) ;

55

56 S1 = −(2.0/a ) ∗ f f u l l ;

57 S2 = (1 . 0/ a ˆ2) ∗ f f u l l . ˆ 2 ;

58

59 f o r n=0:N

60 f o r m=0:M

61

62 % Form Fnm, Jnm

63 Fnm = ze ro s (Nx,Nz+1) ;

64 Jnm = ze ro s (Nx, 1 ) ;

65

66 i f (n>=1)

67 u x = dx (unm( : , : ,m+1,n−1+1) ,p) ;

68 temp = A1 xx .∗ u x ;

69 Fnm = Fnm − dx ( temp , p) ;

70 temp = A1 zx .∗ u x ;

71 Fnm = Fnm − dz ( temp ,Dz , a ) ;

72 temp = B1 x .∗ u x ;

73 Fnm = Fnm − temp ;

74

75 u z = dz (unm( : , : ,m+1,n−1+1) ,Dz , a ) ;

76 temp = A1 xz .∗ u z ;

77 Fnm = Fnm − dx ( temp , p) ;

78 %A1 zz = 0

79 %B1 z = 0

80

81 temp = 2∗1 i ∗ alpha .∗ S1 .∗ u x ;

82 Fnm = Fnm − temp ;

83 temp = gammaˆ2 .∗ S1 .∗unm( : , : ,m+1,n−1+1) ;

84 Fnm = Fnm − temp ;

85 end

86

87 i f (m>=1)

88 u x = dx (unm( : , : ,m−1+1,n+1) ,p) ;

89 temp = 2∗1 i ∗ alpha .∗ u x ;

90 Fnm = Fnm − temp ;

91 temp = 2∗gammaˆ2 .∗unm( : , : ,m−1+1,n+1) ;

92 Fnm = Fnm − temp ;

93 end

94

95 i f (n>=1 && m>=1)

96 u x = dx (unm( : , : ,m−1+1,n−1+1) ,p) ;

97 temp = 2∗1 i ∗ alpha .∗ S1 .∗ u x ;

98 Fnm = Fnm − temp ;

99 temp = 2∗gammaˆ2 .∗ S1 .∗unm( : , : ,m−1+1,n−1+1) ;

100 Fnm = Fnm − temp ;

101 end

102

103 i f (n>=2)

104 u x = dx (unm( : , : ,m+1,n−2+1) ,p) ;

105 temp = A2 xx .∗ u x ;

106 Fnm = Fnm − dx ( temp , p) ;

107 temp = A2 zx .∗ u x ;

108 Fnm = Fnm − dz ( temp ,Dz , a ) ;
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109 temp = B2 x .∗ u x ;

110 Fnm = Fnm − temp ;

111

112 u z = dz (unm( : , : ,m+1,n−2+1) ,Dz , a ) ;

113 temp = A2 xz .∗ u z ;

114 Fnm = Fnm − dx ( temp , p) ;

115 temp = A2 zz .∗ u z ;

116 Fnm = Fnm − dz ( temp ,Dz , a ) ;

117 temp = B2 z .∗ u z ;

118 Fnm = Fnm − temp ;

119

120 temp = 2∗1 i ∗ alpha .∗ S2 .∗ u x ;

121 Fnm = Fnm − temp ;

122 temp = gammaˆ2 .∗ S2 .∗unm( : , : ,m+1,n−2+1) ;

123 Fnm = Fnm − temp ;

124 end

125

126 i f (m>=2)

127 temp = gammaˆ2 .∗unm( : , : ,m−2+1,n+1) ;

128 Fnm = Fnm − temp ;

129 end

130

131 i f (n>=1 && m>=2)

132 temp = gammaˆ2 .∗ S1 .∗unm( : , : ,m−2+1,n−1+1) ;

133 Fnm = Fnm − temp ;

134 end

135

136 i f (n>=2 && m>=1)

137 u x = dx (unm( : , : ,m−1+1,n−2+1) ,p) ;

138 temp = 2∗1 i ∗ alpha .∗ S2 .∗ u x ;

139 Fnm = Fnm − temp ;

140 temp = 2∗gammaˆ2 .∗ S2 .∗unm( : , : ,m−1+1,n−2+1) ;

141 Fnm = Fnm − temp ;

142 end

143

144 i f (n>=2 && m>=2)

145 temp = gammaˆ2 .∗ S2 .∗unm( : , : ,m−2+1,n−2+1) ;

146 Fnm = Fnm − temp ;

147 end

148

149 f o r r=0:m−1

150 Jnm = Jnm + i f f t ( (Tu ( : ,m−r+1) ) .∗ f f t (unm( : , e l l t o p , r+1,n+1) ) ) ;

151 end

152 i f (n>=1)

153 f o r r=0:m

154 Snm = i f f t ( (Tu ( : ,m−r+1) ) .∗ f f t (unm( : , e l l t o p , r+1,n−1+1)) ) ;

155 Jnm = Jnm − ( 1 . 0/ a ) ∗ f .∗Snm;

156 end

157 end

158

159 % Solve e l l i p t i c equat ion

160

161 Fnmhat = f f t (Fnm) ;

162 Jnmhat = f f t (Jnm) ;

163
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164 b = Fnmhat . ’ ;

165 alphaalpha = 1 . 0 ;

166 betabeta = 0 . 0 ;

167 gammagamma = gamma∗gamma − p .ˆ2 − 2∗ alpha .∗p ;

168 d min = 1 . 0 ;

169 n min = 0 . 0 ;

170 r min = xi n m hat ( : ,m+1,n+1) ;

171 d max = −1 i ∗gammap ;

172 n max = 1 . 0 ;

173 r max = Jnmhat ;

174

175 % Solve BVP through the Chebyshev c o l l o c a t i o n method

176

177 Uhat = so l v ebvp c o l l o c (Uhat , b , alphaalpha , betabeta , gammagamma , . . .

178 d min , n min , r min , d max , n max , r max ,Nx, identy ,D,D2 , D start , D end ) ;

179

180 i f ( ( n>0) | | (m>0) )

181 unm( : , : ,m+1,n+1)=i f f t (Uhat ) ;

182 end

183

184 end

185 end

186

187 r e turn ;

Our next script shows how we use the boundary data from the upper field solver to

calculate the transformed field in Fourier space. We recover field data by inverting this

operation for every perturbation order of ε and δ.

Listing A.2: BVP Solver for the Chebyshev Collocation Method

1 f unc t i on [ Uhat ] = s o l v ebvp c o l l o c (Uhat , b , alpha , beta , gamma, d min , n min , . . .

2 r min , d max , n max , r max ,Nx, identy ,D,D2 , D start , D end )

3

4 A = alpha ∗D2 + beta ∗D + reshape (gamma, 1 , 1 ,Nx) .∗ identy ;

5 A( end , : , : ) = repmat ( n min∗D end , [ 1 , 1 ,Nx ] ) ;

6 b( end , : ) = r min ;

7

8 A( 1 , : , : ) = repmat (n max∗D start , [ 1 , 1 ,Nx ] ) ;

9 A( end , end , : ) = A( end , end , : ) + d min ;

10 A(1 , 1 , : ) = A( 1 , 1 , : ) + reshape (d max , 1 , 1 ,Nx) ;

11 b ( 1 , : ) = r max ;

12

13 f o r j =1:Nx

14 u t i l d e = l i n s o l v e (A( : , : , j ) ,b ( : , j ) ) ; % A\b
15 Uhat ( j , : ) = u t i l d e . ’ ;

16 end

17

18 r e turn ;

Linsolve (or, equivalently, the backslash operator) is the most computationally expensive

part of our algorithm. We can increase the computational speed through making the

following changes in the Parallel Computing Toolbox in Matlab. Further improvements
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could be made by switching to a compiled programming language such as C++, Fortran,

or Julia.

Listing A.3: Parallel Version of the BVP Solver for the Chebyshev Collocation Method

1 % Execute for−loop i t e r a t i o n s in p a r a l l e l on workers

2 par f o r j =1:Nx

3 u t i l d e = l i n s o l v e (A( : , : , j ) ,b ( : , j ) ) ; % A\b
4 Uhat ( j , : ) = u t i l d e . ’ ;

5 end

6

7 % Remove the f o r loop by mldiv ide with GPU arrays

8 Uhat = permute ( pagefun ( @mldivide ,A, reshape (b , [ ] , 1 , Nx) ) , [ 2 , 1 , 3 ] ) ;

We note that these changes are only necessary for large simulations (such asN =M = 15

or more Taylor orders and a granularity of Nδ = Nε = 1000 per invocation, cf. §6.3
and §6.5). The additional overhead and partitioning for parallel workers or the GPU is

unwarranted for smaller simulations which can often be computed in a few minutes or

less. Our next script shows how we calculate the upper layer DNO through our TFE

methodology (cf. Algorithm A.0.2).

Listing A.4: Upper Layer DNO for the TFE Method

1 f unc t i on [Gnm] = dno t fe he lmhol tz m and n (unm, f , p ,Dz , a ,Nx,Nz ,N,M)

2

3 Gnm = ze ro s (Nx,M+1,N+1) ;

4

5 e l l bo t tom = Nz + 1 ;

6 f x = i f f t ( (1 i ∗p) .∗ f f t ( f ) ) ;

7

8 f o r n=0:N

9 f o r m=0:M

10 u z = dz (unm( : , : ,m+1,n+1) ,Dz , a ) ;

11 Gnm( : ,m+1,n+1) = −u z ( : , e l l bo t tom ) ;

12 i f (n>=1)

13 u x = dx (unm( : , : ,m+1,n−1+1) ,p) ;

14 Gnm( : ,m+1,n+1) = Gnm( : ,m+1,n+1) + f x .∗ u x ( : , e l l bo t tom ) ;

15

16 Gnm( : ,m+1,n+1) = Gnm( : ,m+1,n+1) + (1 . 0/ a ) ∗( f .∗Gnm( : ,m+1,n−1+1)) ;

17 end

18 i f (n>=2)

19 u x = dx (unm( : , : ,m+1,n−2+1) ,p) ;

20 Gnm( : ,m+1,n+1) = Gnm( : ,m+1,n+1) − ( 1 . 0/ a ) ∗( f . ∗ ( f x .∗ u x ( : , e l l bo t tom ) ) ) ;

21

22 u z = dz (unm( : , : ,m+1,n−2+1) ,Dz , a ) ;

23 Gnm( : ,m+1,n+1) = Gnm( : ,m+1,n+1) − f x . ∗ ( f x .∗ u z ( : , e l l bo t tom ) ) ;

24 end

25 end

26 end

27

28 r e turn ;

We then demonstrate how to invert A0,0 by Fourier inversion (cf. Algorithm A.0.1)

where we multiply the numerator and denominator by i.
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Listing A.5: Inversion of Flat–Interface A0,0

1 f unc t i on [U,W] = AInverse (Q,R, gammap ,gammapw,Nx, tau2 )

2 % Q = Zeta {0 ,0} , R = Ps i {0 ,0}
3

4 a = ze ro s (Nx, 1 ) ;

5 b = ze ro s (Nx, 1 ) ;

6 Q hat = f f t (Q) ;

7 R hat = f f t (R) ;

8

9 f o r j =1:Nx

10 det p = tau2∗gammapw( j ) + gammap( j ) ;

11 a ( j ) = ( ( tau2∗gammapw( j ) ) ∗Q hat ( j ) + 1 i ∗R hat ( j ) ) / det p ;

12 b( j ) = ((−gammap( j ) ) ∗Q hat ( j ) + 1 i ∗R hat ( j ) ) / det p ;

13 end

14

15 U = i f f t ( a ) ;

16 W = i f f t (b) ;

17

18 r e turn ;

Finally, in Figures 36 and 37, we show how Spectral methods are implemented in Matlab.

Recalling our strategy in §2.11, we enforce a Fourier spectral method in the x–axis with

Nx equally–spaced gridpoints and a Chebyshev spectral method in the z–axis withNz+1

collocation points where, for brevity, we demonstrate our methods with Nx = Nz = 8.

Figure 36: In Physical Space, we consider Nx discretization points on the x–axis

and Nz + 1 collocation points on the z–axis.
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Figure 37: In Fourier Space, wavenumbers are stored in the order −Nx/2,

. . . , 0, . . . , Nx/2 − 1 and ℓtop and ℓbottom are evaluated at the upper boundary z = a

and the surface z = 0 (cf. Algorithm A.0.2 and A.0.3).

More generally, we consider the Fourier transform on the Nx–point grid with a period

of d. For Nx discretization points and a step size of (d/Nx), we have

Physical Space : x ∈
{
0,

d

Nx
,
2d

Nx
, . . . ,

(Nx − 2)d

Nx
,
(Nx − 1)d

Nx

}
Fourier Space : p ∈

{
− Nx

2
,−Nx

2
+ 1, . . . ,

Nx

2
− 2,

Nx

2
− 1
}

where the Discrete Fourier Transform (DFT) is computed through several applications

of the Fast Fourier Transform (FFT).
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PROOF OF ALGEBRA PROPERTY, ELLIPTIC ESTIMATE, AND

TRANSLATION PROPERTY

As discussed in §2.7, we present the proof of the three major tools used to show joint

analyticity of the upper field in the appropriate Sobolev space. Our first property is

the “Algebra Property” for estimating products of functions, the second property is

a rigorous statement of the “Elliptic Estimate,” and our final property shows how to

bound translated elements in our function spaces. The same techniques will work for

the lower field in §3.6 where the interval [0, a] is translated to [−b, 0].

Lemma B.0.1 (Algebra Property). Given an integer s ≥ 0 and any σ > 0, there exists

a constant M = M(s) such that if f ∈ Cs([0, d]), u ∈ Hs([0, d]× [0, a]) then

∥fu∥Hs ≤ M|f |Cs∥u∥Hs , (B.1)

and if f̃ ∈ Cs+1/2+σ([0, d]), ũ ∈ Hs+1/2([0, d]) then there exists a constant M̃ = M̃(s)

such that

∥f̃ ũ∥Hs+1/2 ≤ M̃|f̃ |Cs+1/2+σ∥ũ∥Hs+1/2 . (B.2)

Proof. [Lemma B.0.1] Let s ∈ N0 := N ∪ {0}, f ∈ Cs([0, d]), and u ∈ Hs([0, d] × [0, a]).

We will first verify (B.1). For this, the definition of our Sobolev norms and Leibniz’s

formula delivers

∥fu∥2Hs =
s∑
ℓ=0

ℓ∑
m=0

∥∥∥∂s−ℓz ∂ℓ−mx (fu)
∥∥∥2
L2

=
s∑
ℓ=0

ℓ∑
m=0

∥∥∥∥∥∥
s−ℓ∑
p=0

ℓ−m∑
q=0

(
s− ℓ

p

)(
ℓ−m

q

)[
∂s−ℓ−pz ∂ℓ−m−q

x f
] [
∂pz∂

q
xu
]∥∥∥∥∥∥

2

L2

As f ∈ Cs([0, d]) only depends on the x–component, the expression inside the norm is

zero unless s− ℓ = p and we deduce

s−ℓ∑
p=0

ℓ−m∑
q=0

(
s− ℓ

p

)(
ℓ−m

q

)[
∂s−ℓ−pz ∂ℓ−m−q

x f
] [
∂pz∂

q
xu
]
=

ℓ−m∑
q=0

(
ℓ−m

q

)[
∂ℓ−m−q
x f

] [
∂s−ℓz ∂qxu

]
.
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Therefore

∥fu∥2Hs =

s∑
ℓ=0

ℓ∑
m=0

∥∥∥∥∥∥
ℓ−m∑
q=0

(
ℓ−m

q

)[
∂ℓ−m−q
x f

] [
∂s−ℓz ∂qxu

]∥∥∥∥∥∥
2

L2

≤
s∑
ℓ=0

ℓ∑
m=0

ℓ−m∑
q=0

(
ℓ−m

q

) ∣∣∣∂ℓ−m−q
x f

∣∣∣2
L∞

∥∥∥∂s−ℓz ∂qxu
∥∥∥2
L2

≤
s∑
ℓ=0

ℓ∑
m=0

ℓ−m∑
q=0

(
ℓ−m

q

)
|f |2Cs ∥u∥2Hs . (B.3)

By the binomial theorem we may observe

ℓ−m∑
q=0

(
ℓ−m

q

)
= 2ℓ−m.

Inserting the above expression into (B.3) and repeatedly applying the definition of the

geometric series gives

∥fu∥2Hs ≤
s∑
ℓ=0

ℓ∑
m=0

2ℓ−m |f |2Cs ∥u∥2Hs

=
s∑
ℓ=0

2ℓ
ℓ∑

m=0

2−m |f |2Cs ∥u∥2Hs

=

s∑
ℓ=0

2ℓ
(
2− 2−m

)
|f |2Cs ∥u∥2Hs

≤
s∑
ℓ=0

2ℓ+1 |f |2Cs ∥u∥2Hs

=
(
2s+2 − 2

)
|f |2Cs ∥u∥2Hs ,

and the inequality (B.1) follows by taking the square root.

Next, we follow (114) to verify (B.2). Suppose s = ρ for 0 < ρ < 1 and Ω ⊆ Rn.
Then a norm in Hρ(Ω) that is equivalent to the usual Sobolev space norm is defined as

∥ũ∥2Hρ := ∥ũ∥2L2 +

∫
Ω

∫
Ω

|ũ(x)− ũ(z)|2

|eix − eiz|2ρ+n
dx dz. (B.4)

The above definition is a fractional order Sobolev space known as the Sobolev–Slobodeckij

space. To establish (B.2) we start with the case s = 0 and evaluate (B.4) with ρ = 1/2

∥f̃ ũ∥2
H1/2 = ∥f̃ ũ∥2L2 +

∫
Ω

∫
Ω

|f̃(x)ũ(x)− f̃(z)ũ(z)|2

|eix − eiz|n+1
dx dz

≤ |f̃ |2L∞∥ũ∥2L2 + 2

∫
Ω

∫
Ω

|f̃(x)− f̃(z)|2

|eix − eiz|n+1
|ũ(x)|2 dx dz

+ 2

∫
Ω

∫
Ω
|f̃(z)|2 |ũ(x)− ũ(z)|2

|eix − eiz|n+1
dx dz,

(B.5)



Appendix B Algebra Property and Elliptic Estimate 157

where it is clear that the first and third terms in (B.5) can be grouped together and

bounded

|f̃ |2L∞∥ũ∥2L2 + 2

∫
Ω

∫
Ω
|f̃(z)|2 |ũ(x)− ũ(z)|2

|eix − eiz|n+1
dx dz ≤ C|f̃ |2L∞∥ũ∥2

H1/2 .

To bound the second term in (B.5) we observe

2

∫
Ω

∫
Ω

|f̃(x)− f̃(z)|2

|eix − eiz|n+1
|ũ(x)|2 dx dz

≤ 2|f̃ |2
C1/2+σ

∫
Ω

∫
Ω

|x− z|1+2σ

|eix − eiz|n+1
|ũ(x)|2 dx dz

≤ C|f̃ |2
C1/2+σ∥ũ∥2L2 ,

(B.6)

so that (B.5) and (B.6) establish the inequality (B.2) in the case s = 0

∥f̃ ũ∥H1/2 ≤ M̃(s)|f̃ |C1/2+σ∥ũ∥H1/2 .

In general, for s > 0 we have

∥ũ∥2
Hs+1/2 = ∥ũ∥2Hs + ∥∂sxũ∥2H1/2 , (B.7)

and from (B.1)

∥f̃ ũ∥Hs ≤ M̃(s)|f̃ |Cs∥ũ∥Hs . (B.8)

For s > 0, the regularity of f̃ ∈ Cs+1/2+σ(Ω) and the estimates (B.5) and (B.6) imply

∥∂sx(f̃ ũ)∥H1/2 ≤ M̃(s)|f̃ |Cs+1/2+σ∥ũ∥Hs+1/2 . (B.9)

Finally, the equation (B.7) and estimates (B.8) and (B.9) deliver

∥f̃ ũ∥2
Hs+1/2 = ∥f̃ ũ∥2Hs + ∥∂sx(f̃ ũ)∥2H1/2 ≤ M̃(s)|f̃ |2

Cs+1/2+σ∥ũ∥2Hs+1/2 ,

which is the required estimate for s > 0.

Theorem B.0.2 (Elliptic Estimate). Given an integer s ≥ 0, if F ∈ Hs([0, d]) ×
[0, a]), ζu ∈ Hs+3/2([0, d]), P ∈ Hs+1/2([0, d]), then there exists a unique solution u ∈
Hs+2([0, d])× [0, a]) of

∆u(x, z) + 2iα∂xu(x, z) + (γu)2u(x, z) = F (x, z), 0 < z < a, (B.10a)

u(x, 0) = ζu(x, 0), at z = 0, (B.10b)

u(x+ d, z) = u(x, z), (B.10c)

∂zu(x, a)− T u0 [u(x, a)] = P (x), at z = a, (B.10d)
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satisfying

∥u∥Hs+2 ≤ Ce{∥F∥Hs + ∥ζu∥Hs+3/2 + ∥P∥Hs+1/2}, (B.11)

for some constant Ce = Ce(s) > 0.

Proof. [Lemma B.0.2] Following (156), we let ζ̃u = [−∂zu]z=0 where we define the DNO

G : (ζu, P, F ) → ζ̃u, G[ζu, P, F ] = G(0)[ζu] +G(a)[P ] +G([0,a])[F ].

With these, we will obtain the estimates∥∥∥G(0)[ζu]
∥∥∥
Hs+1/2

≤ CG(0) ∥ζu∥Hs+3/2 , (B.12a)∥∥∥G(a)[P ]
∥∥∥
Hs+1/2

≤ CG(a) ∥P∥Hs+1/2 , (B.12b)∥∥∥G([0,a])[F ]
∥∥∥
Hs+1/2

≤ CG([0,a]) ∥F∥Hs . (B.12c)

As in §2.11, we posit the expansions

{u, F}(x, z) =
∞∑

p=−∞
{ûp, F̂p}(z)eip̃x, {ζu, P}(x) =

∞∑
p=−∞

{ζ̂up , P̂p}eip̃x,

into (B.10) which delivers the two–point boundary value problem

∂2z ûp(z) +
(
(γu
p
)2 − p̃2 − 2αp̃

)
ûp(z) = F̂p(z), 0 < z < a,

ûp(0) = ζ̂up , at z = 0,

∂z [ûp(a)]− (iγu
p
)[ûp(a)] = P̂p, at z = a,

where

γu
p
=


(γu
p
)′ :=

√
(ku)2 − α2

p, α2
p < (ku)2,

0, α2
p = (ku)2,

i(γu
p
)′′ := i

√
α2
p − (ku)2, α2

p > (ku)2,

(γu
p
)′, (γu

p
)′′ ∈ R, (γu

p
)′, (γu

p
)′′ > 0.

The primed notation denotes ′ as the real part and ′′ as the imaginary part. Observing

(γu
p
)2 − p̃2 − 2αp̃ = α2 + (γu

p
)2 − (α+ p̃)2 := (ku)2 − α2

p = (γu
p
)2,

delivers
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∂2z ûp(z) + (γu
p
)2ûp(z) = F̂p(z), 0 < z < a,

ûp(0) = ζ̂up , at z = 0,

∂z [ûp(a)]− (iγu
p
)[ûp(a)] = P̂p, at z = a.

We now consider a function Φ0(z; p) satisfying

∂2zΦ0(z; p) + (γu
p
)2Φ0(z; p) = 0, 0 < z < a,

Φ0(0; p) = 1, at z = 0,

∂zΦ0(a; p)− (iγu
p
)Φ0(a; p) = 0, at z = a,

so that the solution of

∂2z ûp(z) + (γu
p
)2ûp(z) = 0, 0 < z < a,

ûp(0) = ζ̂up , at z = 0,

∂z [ûp(a)]− (iγu
p
)[ûp(a)] = 0, at z = a,

is

ûp(z) = ζ̂upΦ0(z; p).

Similarly, we consider a function Φa(z; p) satisfying

∂2zΦa(z; p) + (γu
p
)2Φa(z; p) = 0, 0 < z < a,

Φa(0; p) = 0, at z = 0,

∂zΦa(a; p)− (iγu
p
)Φa(a; p) = 1, at z = a,

so that the solution of

∂2z ûp(z) + (γu
p
)2ûp(z) = 0, 0 < z < a,

ûp(0) = 0, at z = 0,

∂z [ûp(a)]− (iγu
p
)[ûp(a)] = P̂p, at z = a,

is

ûp(z) = P̂pΦa(z; p).

With these, the unique solution of the two–point boundary value problem is given by

ûp(z) = ζ̂upΦ0(z; p) + P̂pe
iγu

p
a
Φa(z; p)− I0[F̂p](z)− Ia[F̂p](z), (B.13)
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where one can readily verify that

Φ0(z; p) = e
iγu

p
z
:=


e
i(γu

p
)′z
, α2

p < (ku)2,

1, α2
p = (ku)2,

e
−(γu

p
)′′z
, α2

p > (ku)2,

and

Φa(z; p) =
sinh(γu

p
z)

γu
p

:=



sin
(
(γu

p
)′z

)
(γu

p
)′ , α2

p < (ku)2,

z, α2
p = (ku)2,

sinh
(
(γu

p
)′′z

)
(γu

p
)′′ , α2

p > (ku)2,

and

I0[F̂p](z) :=

∫ z

0
Φ0(z; p)Φa(s; p)F̂p(s) ds,

Ia[F̂p](z) :=

∫ a

z
Φ0(s; p)Φa(z; p)F̂p(s) ds.

By the Leibniz integral rule

∂zI0[F̂p](z) = Φ0(z; p)Φa(z; p)F̂p(z) +

∫ z

0
(∂zΦ0(z; p)) Φa(s; p)F̂p(s) ds,

∂zIa[F̂p](z) = −Φ0(z; p)Φa(z; p)F̂p(z) +

∫ a

z
Φ0(s; p) (∂zΦa(z; p)) F̂p(s) ds.

Adding the two expressions above and substituting the result into (B.13) gives

∂zûp(z) = ζ̂up ∂zΦ0(z; p) + P̂pe
iγu

p
a
∂zΦa(z; p)− Ĩ0[F̂p](z)− Ĩa[F̂p](z), (B.14)

where

Ĩ0[F̂p](z) :=

∫ z

0
(∂zΦ0(z; p)) Φa(s; p)F̂p(s) ds,

Ĩa[F̂p](z) :=

∫ a

z
Φ0(s; p) (∂zΦa(z; p)) F̂p(s) ds.

Evaluating (B.14) at z = 0 and multiplying by negative one yields

−∂zûp(0) = −ζ̂up ∂zΦ0(0; p)− P̂pe
iγu

p
a
∂zΦa(0; p) + Ĩ0[F̂p](0) + Ĩa[F̂p](0)

= −ζ̂up (iγup)− P̂pe
iγu

p
a
+

∫ a

0
e
iγu

p
s
F̂p(s) ds.

From this, we deduce

G(0)[ζu] = −
∞∑

p=−∞

[
∂zΦ0(0; p)

]
ζ̂up e

ip̃x =
∞∑

p=−∞
(−iγu

p
)ζ̂up e

ip̃x,
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and

G(a)[P ] = −
∞∑

p=−∞

[
e
iγu

p
a
∂zΦa(0; p)

]
P̂pe

ip̃x =

∞∑
p=−∞

(−eiγ
u
p
a
)P̂pe

ip̃x,

and

G([0,a])[F ] =
∞∑

p=−∞

∫ a

0

(
e
iγu

p
s
F̂p(s) ds

)
eip̃x.

With these, we use our Sobolev norms in §2.7 and follow the proof of Lemma 2.8.2 to

estimate ∥∥∥G(0)[ζu]
∥∥∥2
Hs+1/2

=
∞∑

p=−∞

∣∣∣(iγu
p
)ζ̂up

∣∣∣2 ⟨p̃⟩2(s+1/2)

≤ CG(0)

∞∑
p=−∞

∣∣∣ζ̂up ∣∣∣2 ⟨p̃⟩2(s+3/2)

= CG(0) ∥ζu∥2Hs+3/2 .

and ∥∥∥G(a)[P ]
∥∥∥2
Hs+1/2

=

∞∑
p=−∞

∣∣∣(eiγupa) P̂p∣∣∣2 ⟨p̃⟩2(s+1/2)

≤ CG(a)

∞∑
p=−∞

∣∣∣P̂p∣∣∣2 ⟨p̃⟩2(s+1/2)

= CG(a) ∥P∥2Hs+1/2 .

We then apply the Cauchy–Schwarz inequality to estimate

∥∥∥G([0,a])[F ]
∥∥∥2
Hs+1/2

=

∞∑
p=−∞

∣∣∣∣∫ a

0
e
iγu

p
s
F̂p(s) ds

∣∣∣∣2 ⟨p̃⟩2(s+1/2)

≤
∞∑

p=−∞

∫ a

0

∣∣∣eiγups∣∣∣2 ds ∫ a

0

∣∣∣F̂p(s)∣∣∣2 ds ⟨p̃⟩2(s+1/2).

By the definition of Φ0(s; p) the middle term becomes

∫ a

0

∣∣∣eiγups∣∣∣2 ds =

a, α2

p < (ku)2,

a, α2
p = (ku)2,∫ a

0 e
−2(γu

p
)′′s

ds, α2
p > (ku)2,

where

∫ a

0
e
−2(γu

p
)′′s

ds =
1

2(γu
p
)′′

(
1− e

−2(γu
p
)′′a
)
≤ 1

2(γu
p
)′′
.
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By defining for q ∈ {u,w}

Uq := {p ∈ Z | α2
p ≤ (kq)2}, γq

p
:=


√

(kq)2 − α2
p, p ∈ Uq,

i
√
α2
p − (kq)2, p ̸∈ Uq,

(B.15)

the third estimate follows from the bounds∥∥∥G([0,a])[F ]
∥∥∥2
Hs+1/2

≤
∞∑

p=−∞

∫ a

0

∣∣∣eiγups∣∣∣2 ds ∫ a

0

∣∣∣F̂p(s)∣∣∣2 ds ⟨p̃⟩2(s+1/2)

≤
∑
p∈Uu

a⟨p̃⟩2(s+1/2)
∥∥∥F̂p∥∥∥2

L2([0,a])
+
∑
p ̸∈Uu

⟨p̃⟩2(s+1/2)

2(γu
p
)′′

∥∥∥F̂p∥∥∥2
L2([0,a])

≤ C
∑
p∈Uu

⟨p̃⟩2s
∥∥∥F̂p∥∥∥2

L2([0,a])
+ C̃

∑
p ̸∈Uu

⟨p̃⟩2s
∥∥∥F̂p∥∥∥2

L2([0,a])

≤ CG([0,a])

∞∑
p=−∞

⟨p̃⟩2s
∥∥∥F̂p∥∥∥2

L2([0,a])
, CG([0,a]) = max {a⟨p̃⟩, 1/2}

= CG([0,a]) ∥F∥2Hs ,

which validates (B.12). These imply

∥u∥Hs+2 ≤ Ce{∥F∥Hs + ∥ζu∥Hs+3/2 + ∥P∥Hs+1/2},

where

Ce := max
{
CG(0) , CG(a) , CG([0,a])

}
.

Lemma B.0.3 (Translation Property). Given an integer s ≥ 0, if F ∈ Hs([0, d]) ×
[0, a]), then (a−z)F ∈ Hs([0, d])× [0, a]) and there exists a positive constant Za = Za(s)

such that

∥(a− z)F∥Hs ≤ Za∥F∥Hs .

Proof. [Lemma B.0.3] As (a−z) is a constant, it is clear that (a−z)F ∈Hs([0, d])×[0, a]).

The required estimate then follows from applying Lemma B.0.1.



Appendix C

CHANGE OF VARIABLES

This appendix covers a fundamental step in our Boundary Perturbation algorithm. One

of the primary objectives in Chapters 2 and 3 is to show that both the upper/lower fields

and the upper/lower layer DNOs are analytic with respect to two small perturbation

parameters. In order to do this, we perform a domain–flattening change of variables

(known as σ–coordinates in oceanography (157) and the C–method in the dynamical

theory of gratings (158; 159)). We will present the theory in Cartesian coordinates and

will later state the effects on the Helmholtz equation and the overall impact on our

governing equations. The bulk of our analysis is based on Appendix E in (84).

We begin by considering the doubly–perturbed domain

SL,U := {L(x) < z < U(x)} = {ℓ+ ℓ(x) < z < u+ u(x)}, (C.1)

where the change of variables

x′ = x, z′ = ℓ

(
U − z

U − L

)
+ u

(
z − L

U − L

)
, (C.2)

maps SL,U to Sℓ,u. As discussed in Chapter 1, the variables u and U both refer to the

upper boundary while ℓ and L reference the lower boundary. In the upper layer, the

upper boundary is the artificial boundary at {z = a} while the lower boundary is the

surface z = g(x). In the lower layer, the upper boundary is the surface z = g(x) and

the lower boundary is the artificial boundary at {z = −b}. Defining the height of the

layer to be

h := u− ℓ,

and using the formulas for L and U , we find(
1 +

u(x)− ℓ(x)

h

)
z′ = z −

(
uℓ(x)− ℓu(x)

h

)
,

or

C(x)z′ = z −D(x),

where

C(x) := 1 +
u(x)− ℓ(x)

h
, D(x) :=

uℓ(x)− ℓu(x)

h
. (C.3)

In the upper layer we have

ℓ = 0, ℓ = g, u = a, u = 0, h = u− ℓ = a.

163
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Similarly, in the lower layer we have

ℓ = −b, ℓ = 0, u = 0, u = g, h = u− ℓ = b.

For a function v = v(x, z), v ∈ {u,w}, which is transformed to

v′ = v′(x′, z′) = v(x(x′, z′), z(x′, z′)), v = v(x, z) = v′(x′(x, z), z′(x, z)),

and v′ ∈ {u′, w′}, we apply the chain rule

∂v

∂x
=
∂v′

∂x′
∂x′

∂x
+
∂v′

∂z′
∂z′

∂x
,

∂v

∂z
=
∂v′

∂x′
∂x′

∂z
+
∂v′

∂z′
∂z′

∂z
.

Then
∂x′

∂x
= 1,

∂x′

∂z
= 0,

∂z′

∂z
=

1

C
,

where differentiating Cz′ = z −D with respect to x yields

(∂xC) z
′ + C

(
∂z′

∂x

)
= − (∂xD) ,

and
∂z′

∂x
= −

(
(∂xC) z

′ + (∂xD)

C

)
= −E

C
.

We define

E(x, z′) := (∂xC) z
′ + (∂xD) ,

and observe that

∂xC =
∂xu− ∂xℓ

h
, ∂xD =

u∂xℓ− ℓ∂xu

h
.

This implies

E =
(∂xu− ∂xℓ)z

′ + u∂xℓ− ℓ∂xu

h
= (∂xu)ZL + (∂xℓ)ZU , (C.4)

for the definitions

ZL :=
z′ − ℓ

h
, ZU :=

u− z′

h
.

We will later realize that it is more convenient to express our differentiation rules when

premultiplied by C (either C(x) or C(x′) as appropriate) by which we settle upon the

following differentiation rules under the change of variables in (C.2)

C∂x = C∂x′ − E∂z′ , C∂z = ∂z′ . (C.5)

In §2.2 and §3.2 we showed that the Helmholtz equation in the upper and lower layers

can be represented by

∆v + 2iα∂xv + (γv)2v = 0. (C.6)



Appendix C Change of Variables 165

We restate (C.6) as

0 = C2
{
∆v + 2iα∂xv + (γv)2v

}
= C2

{
∂x[∂xv] + ∂z[∂zv] + +2iα∂xv + (γv)2v

}
= C∂x[C∂xv]− C(∂xC)∂xv + C∂z[C∂zv] + 2C2iα∂xv + C2(γv)2v.

By our transformation rules

0 = [C∂x′ − E∂z′ ][C∂x′v
′ − E∂z′v

′]− (∂x′C)[C∂x′v
′ − E∂z′v

′] + ∂z′ [∂z′v
′] + 2C2iα∂x′v

′

+ C2(γv
′
)2v′

= C∂x′ [C∂x′v
′]− E∂z′ [C∂x′v

′]− C∂x′ [E∂z′v
′] + E∂z′ [E∂z′v

′]− (∂x′C)C∂x′v
′

+ (∂x′C)E∂z′v
′ + ∂2z′v

′ + 2C2iα∂x′v
′ + C2(γv

′
)2v′

= ∂x′ [C
2∂x′v

′]− (∂x′C)C∂x′v
′ − ∂z′ [EC∂x′v

′] + (∂z′E)C∂x′v
′ − ∂x′ [CE∂z′v

′]

+ (∂x′C)E∂z′v
′ + ∂z′ [E

2∂z′v
′]− (∂z′E)E∂z′v

′ − (∂x′C)C∂x′v
′ + (∂x′C)E∂z′v

′

+ ∂2z′v
′ + 2C2iα∂x′v

′ + C2(γv
′
)2v′,

where

(∂x′C)E∂z′v
′ − (∂z′E)E∂z′v

′ − (∂x′C)C∂x′v
′ + (∂x′E)C∂z′v

′ = 0,

because

∂z′E = ∂x′C = ∂xC.

The second, forth, eight, and tenth terms cancel so that

0 = ∂x′ [C
2∂x′v

′]− ∂z′ [EC∂x′v
′]− ∂x′ [CE∂z′v

′] + (∂x′C)E∂z′v
′

+∂z′ [E
2∂z′v

′]− (∂x′C)C∂x′v
′ + ∂2z′v

′ + 2C2iα∂x′v
′ + C2(γv

′
)2v′.

This may be written more compactly as

0 = div′[A∇′v′] +B · ∇′v′ + 2C2iα∂x′v
′ + C2(γv

′
)2v′,

where for S = C2

A =

(
S −EC

−EC 1 + E2

)
, B = (∂x′C)

(
−C
E

)
.

By the definitions of C and E, (C.3) and (C.4), we have

S = 1 +
2

h
u− 2

h
ℓ+

1

h
2u

2 +
1

h
2 ℓ

2 − 2

h
2 ℓu,
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CE = ZL(∂xu) + ZU (∂xℓ) +
ZL

h
u(∂xu)−

ZU

h
ℓ(∂xℓ)−

ZL

h
ℓ(∂xu) +

ZU

h
u(∂xℓ),

E2 = Z2
L(∂xu)

2 + Z2
U (∂xℓ)

2 + 2ZLZU (∂xℓ)(∂xu).

If ℓ = δℓ̃ and u = εũ then

A = A(δ, ε) = A0,0 +A1,0δ +A0,1ε++A2,0δ
2 +A0,2ε

2 +A1,1δε,

B = B(δ, ε) = B1,0δ +B0,1ε++B2,0δ
2 +B0,2ε

2 +B1,1δε,

S = S(δ, ε) = S0,0 + S1,0δ + S0,1ε++S2,0δ
2 + S0,2ε

2 + S1,1δε,

where

A0,0 =

(
1 0

0 1

)
, A1,0 =

1

h

(
−2ℓ̃ −hZU (∂xℓ̃)

−hZU (∂xℓ̃) 0

)
,

A0,1 =
1

h

(
−2ũ −hZL(∂xũ)

−hZL(∂xũ) 0

)
,

A2,0 =
1

h
2

(
ℓ̃2 hZU ℓ̃(∂xℓ̃)

hZU ℓ̃(∂xℓ̃) h
2
Z2
U (∂xℓ̃)

2

)
,

A0,2 =
1

h
2

(
ũ2 −hZLũ(∂xũ)

−hZLũ(∂xũ) h
2
Z2
L(∂xũ)

2

)
,

A1,1 =
1

h
2

 −2ℓ̃ũ h
(
ZLℓ̃(∂xũ)− ZU ũ(∂xℓ̃)

)
h
(
ZLℓ̃(∂xũ)− ZU ũ(∂xℓ̃)

)
2h

2
ZUZL(∂xℓ̃)(∂xũ)

 ,

and

B1,0 =
1

h

(
(∂xℓ̃)

0

)
, B0,1 =

1

h

(
−(∂xũ)

0

)
,

B2,0 =
1

h
2

(
−ℓ̃(∂xℓ̃)

−hZU (∂xℓ̃)2

)
,

B0,2 =
1

h
2

(
−ũ(∂xũ)
hZL(∂xũ)

2

)
,

B1,1 =
1

h
2

(
ũ(∂xℓ̃) + ℓ̃(∂xũ)

h(ZU − ZL)(∂xℓ̃)(∂xũ)

)
,

and

S0,0 = 1, S1,0 = −2

h
ℓ̃, S0,1 =

2

h
ũ,

S2,0 =
1

h
2 ℓ̃

2, S1,0 =
1

h
2 ũ

2, S0,1 = − 2

h
2 ℓ̃ũ.



Appendix D

PERMISSIONS FOR THE INCLUSION OF PUBLISHED WORKS

The proof of joint analyticity and computation of the Reflectivity Map, including the

related algorithms and numerical experiments, are submitted to two separate SIAM

journals, which allows authors to use their articles in their thesis. Their policy states

“Figures or tables created by someone other than the author or borrowed from a previ-

ously published source, even those created by the author and published elsewhere, must

carry an appropriate credit line at the end of the caption.” The full policy is available at

https://epubs.siam.org/journal-authors. Upon acceptance, the author will update the

necessary chapters and give the appropriate credit to the respective journal.
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pii, 2020.

124. Dienes, P.: The Taylor series: an introduction to the theory of functions of a
complex variable. Dover New York, 1957.

125. Arteca, G. A., Fernández, F. M., and Castro, E. A.: Summation of strongly di-
vergent perturbation series. Journal of mathematical physics, 25(12):3492–
3496, 1984.

126. Evans, L. C.: Partial differential equations. Providence, RI, American Mathemat-
ical Society, second edition, 2010.

127. Qiu, Y.: High-frequency modeling and analyses for buck and multiphase buck
converters. Doctoral dissertation, Virginia Polytechnic Institute and State
University, 2005.

128. Bosse, E., Turner, R. M., and Riseborough, E. S.: Model-based multifrequency
array signal processing for low-angle tracking. IEEE Transactions on
Aerospace and electronic systems, 31(1):194–210, 1995.

129. Zhao, S., Wang, F., Xu, H., and Zhu, J.: Multi-frequency identification method in
signal processing. Digital Signal Processing, 19(4):555–566, 2009.

130. Blanchard-Wrigglesworth, E., Donohoe, A., Roach, L. A., DuVivier, A., and Bitz,
C. M.: High-frequency sea ice variability in observations and models.
Geophysical Research Letters, 48(14):e2020GL092356, 2021.

131. Imperatore, P., Iodice, A., and Riccio, D.: Perturbation theory for scattering
from multilayers with randomly rough fractal interfaces: remote sensing
applications. Sensors, 18(1):54, 2017.

132. Fang, Z.: Operator Expansions for Linear Waves: Parallel Implementation
and Multilayer Inversion. Doctoral dissertation, University of Illinois at
Chicago, 2015.

133. Achenbach, J.: Wave propagation in elastic solids. Elsevier, 2012.

134. Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., and McDonald, J.:
Parallel programming in OpenMP. Morgan kaufmann, 2001.



178 Cited Literature

135. Snir, M., Gropp, W., Otto, S., Huss-Lederman, S., Dongarra, J., and Walker, D.:
MPI–the Complete Reference: the MPI core, volume 1. MIT press, 1998.

136. Sanders, J. and Kandrot, E.: CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional, 2010.
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