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1 Introduction

Consider a manifold M of real dimension 2k. There exists an observed relationship
between the vanishing of its higher homotopy groups and the topological Euler
characteristic, which has been called the Hopf conjecture. If a topological space
has a fundamental group G = π1(M) and vanishing higher homotopy groups, then
we say M is a K(G, 1) space. The Hopf conjecture is the following:

Conjecture 1.1. If a closed, orientable manifold M2k is a K(G, 1) space, then
(−1)kχ(M2k) ≥ 0.

Albeit being called the Hopf conjecture, this was originally conjectured by
William Thurston in the 1970s and is a topological version of an earlier conjecture
by Heinz Hopf: if a 2k-dimensional Riemannian manifold has non-negative
sectional curvature everywhere, then does the inequality (−1)kχ(M) ≥ 0 hold?
Note that, by the Cartan-Hadamard theorem, such a Riemannian manifold has
vanishing higher homotopy groups. So Thurston’s version of the Hopf conjecture
is a stronger statement.

In this thesis, we will look at the 4 dimensional Hopf conjecture; that is,
4-manifolds with vanishing higher homotopy groups have non-negative Euler
characteristic. We take a peek at the various techniques that have been used to
study K(G, 1) manifolds (also called aspherical manifolds). We will first begin
with a discussion of the 2 dimensional case and then discuss various techniques to
study the 4 dimensional case. The conjecture is shown to work for complex
surfaces, and some partial results which have been obtained by strengthening the
hypothesis of the conjecture (placing restrictions on the class of the manifold) will
be presented.
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2 Definitions

First, excepting section 3 of the thesis which covers the 2 dimensional case, we
restrict ourselves to compact, smooth, 4 dimensional manifolds. We will denote a
manifold of this type by M and we will denote the universal covering space of M
by M̃ . We will also denote the Euler characteristic of M by χ(M) and the
signature of the intersection form on M by σ(M).

We also denote a genus g surface by Σg. For example, the 2 dimensional torus is
Σ1. We denote spheres by S2, real projective space by RP2, and complex
projective space by CP2. If M,N are spaces, the connected sum, wedge product,
and disjoint union are denoted M#N , M ∨N , and M tN , respectively.

The most important definition in our study is that of an aspherical manifold. We
present two definitions.

Definition 2.1. A topological space X is said to be a K(G,n) space or an Eilenberg-
Maclane space if πn(X) = G and πi(X) = 0 for i 6= n.

Definition 2.2. A manifold is said to be aspherical if it is a K(G, 1) space; that
is, all higher homotopy groups vanish.

Observe that the next definition is identical to definition 2.2

Definition 2.3. A manifold M is said to be aspherical if M̃ is contractible.

Since the fundamental group of M̃ must be trivial and the covering map induces
isomorphisms of homotopy groups, πi(M̃) = 0 for all i. By Hurewicz’s theorem,

Hi(M̃) = 0 for all i. Finally, since M̃ is a weakly contractible manifold, it is
contractible. The converse holds for each theorem, showing us the two definitions
are identical.

We note that the Hopf conjecture for 4-manifolds boils down to whether or not all
aspherical 4-manifolds have non-negative Euler characteristic.

Looking at the Euler characteristic in terms of Betti numbers, we obtain

χ(M) =
∑
i

(−1)ibi = b0 − b1 + b2 − b3 + b4

Since M is orientable, H0(M) ∼= H4(M) ∼= Z and b0 = b4 = 1. Further, since M
is a smooth manifold, we can apply Poincaré duality so that b1 = b3. We obtain
χ(M) = 2−2b1 + b2. So we can take the liberty of restricting our view to manifolds
with b1 ≥ 2.
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3 The Conjecture in 2 Dimensions

This theorem is simple in 2 dimensions due to the classification of compact
surfaces. While compact surfaces can be categorized according to genus and
orientability, 4-manifolds are in a sense unclassifiable. Any finitely generated
group is the fundamental group for some 4-manifold, and so classification reduces
to the word problem. Indeed, it is common to restrict oneself to the simply
connected case and even then a classification has not yet been found (and may
even be impossible!).

The well known classification of compact surfaces is the following statement:

Theorem 3.1. Let M be a compact surface. Then M ∼= S2, M ∼= nΣ1, or M ∼=
nRP1, where nΣ1 is a connected sum of tori and nRP1 is an n-fold connected sum
of real projective planes.

Since we only care about orientable surfaces, we can discard the last case. This
simplifies the classification to the following: a compact, orientable surface is either
the sphere S2 or a genus g surface Σg ∼= gΣ1. We now show that S2 is the only
non-aspherical manifold (indeed, the term aspherical derives its origins from the
fact that all oriented surfaces that are K(G, 1) are precisely those which are not a
sphere).

Proposition 3.2. The 2-sphere S2 has a nontrivial higher homotopy group. In
particular, π2(S2) = Z.

Proof. We begin by recalling that the singular homology for S2 is
H0(S2) = H2(S2) = Z and Hk(S2) = 0 for k 6= 0, 2. Let hi : πi(S

2) → Hk(S2)
be the Hurewicz map. Then since S2 is simply connected, the Hurewicz theorem
guarantees that h2 : π2(S2)→ H2(M) ∼= Z is an isomorphism.

While this proposition is intended to show that S2 is non-aspherical, the fact that
π2(S2) = Z will make an appearance later when we prove the non-asphericality of
some more interesting manifolds.

To prove that surfaces Σg are aspherical, usually a little more is required. For the
sake of brevity, only the claim is presented, but the full proof can be found as
example 14 in Section 1.B of [Hat00].

Proposition 3.3. Σg is an aspherical manifold for g ≥ 1.

Now that we have classified all compact closed surfaces into aspherical and non-
aspherical surfaces, we can finish the proof by calculating the Euler characteristic
of all the aspherical surfaces.
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Theorem 3.4. The Hopf conjecture holds for orientable, closed surfaces. That is,
if M is an aspherical surface, then χ(M) ≤ 0.

Proof. If we assume that M is an aspherical surface, then M ∼= Σg for some g ≥ 1.
By the product property of the Euler characteristic, χ(Σ1) = χ(S1)2 = 0. Let D2

be the closed 2 disk. If we consider Σg = S2#gΣ1, then by the inclusion-exclusion
property, we have

χ(Σg) = gχ(Σ1 −D2) + χ(S2 − gD2)− gχ(S1)

= g[χ(Σ1)− χ(D2)] + [χ(S2)− gχ(D2)]

= −g + 2− g = 2− 2g

Since g ≥ 1, we have χ(M) = χ(Σg) = 2− 2g ≤ 0, finishing the proof.

4 Results from the Fundamental Group

We present useful results obtained by just looking at the fundamental group of M .
The following theorems revolve around the following inequality.

Definition 4.1 (Winkelnkemper’s inequality). A 4-manifold M is said to satisfy
Winkelnkemper’s inequality if |σ(M)| ≤ χ(M).

Definition 4.2. A group G is said to be a W-group if it is finitely presented and
all 4-manifolds M with π1(M) ∼= G satisfy Winkelnkemper’s inequality.

Johnson and Dotschik [JK93] give several conditions for G to be a W-group. Three
are as follows.

Theorem 4.3. If G contains a sequence of nested subgroups K1K2K3 · · · , each
with finite index [Kn : Kn+1], so that the Betti number of the group homology
dimHi(Ki,R) is bounded, then G is a W-group.

Theorem 4.4. If G has an extension 1 → K → G → ∆ → 1 with K finitely
presented and ∆ satisfying the hypothesis of the previous theorem, then G is a W-
group.

Theorem 4.5. If G is a W-group with subgroup K and G′ contains a subgroup K ′

so that [G : K] = [G′ : K ′] and K ∼= K ′ then G′ is a W-group.

From these theorems, we can begin to determine what fundamental groups
necessitate an aspherical manifold to have non-negative Euler characteristic.

Proposition 4.6. Z is a W-group.

Proof. We note that the homology of a group G is equivalent to the homology of
the classifying space BG. Since the classifying space of Z is S1, the homology of Z
is

Hk(Z,R) =

{
Z k = 0, 1

0 otherwise
.
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From this we see that b1(Z) = dimH1(S1;R) = 1. Now we choose our infinite
sequence of subgroups to be the subgroups Ki = 2iZ. Each is isomorphic to Z and
each Ki has index 2 in Ki+1. This satisfies the conditions of theorem 4.3 and so Z
is a W group.

Proposition 4.7. Any finitely generated abelian group is a W-group.

Proof. Let G be a finitely generated abelian group. By the fundamental theorem
of finitely generated abelian groups, G ∼= Zn × Zp1 × · · ·Zpk .
Let Ki = 2iZ× Zn−1 × {0}k. Then the index of Ki in G is
[G : Ki] = |G/Ki| = |Z/2Z× {0}n−1 × Zp1 × · · · × Zpk | = 2ip1 · · · pk which is finite
for all Ki. Since [G : Ki] = [G : Ki−1] · [G : Ki], the index of each subgroup in the
subgroup above it is finite. Further, Ki

∼= Zn and so
dimH1(Ki;R) = dimH1(Zn;R) = dimH1((S1)n;R) = 1. So G satisfies the
conditions of theorem 4.3 and is a W-group.

We also have the following general fact about manifolds, which is proposition 2.45
in Hatcher’s Algebraic Topology [Hat00].

Theorem 4.8. If a finite-dimensional CW-complex X is a K(G, 1), then π1(X) is
torsion-free.

Thus, we can restrict ourselves to studying nonabelian fundamental groups with no
torsion (in particular, π1(X) is finite excepting the trivial case).
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5 The Hopf Conjecture for Complex Surfaces

We now take a look at compact complex surfaces, which make up a large class of
examples of 4-manifolds. Furthermore, this allows us to use some tools of
algebraic geometry to get a better look at these manifolds. In particular, we will
be using the Enriques-Kodaira classification for compact complex surfaces.

We first begin with a quick look at blow ups, which are central to the classification.
We first motivate the definition by a simple example.
Consider the complex plane Cn and let 0 denote the origin. The blow-up ”zooms
in” on the origin by replacing it with the space of all possible directions from the
origin. To make this more concrete, we let CPn be the space of lines coming from
the origin and construct the space

K = {(p, `) | p and 0 lie in `} ⊂ C× CPn.

Then for each p 6= 0, there is precisely one element of K of the form (p, `) since two
points in the plane exactly determine a line. However, there are infinitely many
points of the form (0, `), and those points form a copy of CPn in K. So the blow-up
is the same space but with a copy of CPn attached to the blow-up point. This is
made more general in the following definition.

Definition 5.1 (Blow-Up). Let X be a complex surface with complex dimension

n. The blow-up of X at a point x, which we will denote X̂, is a space with a map
p : X̂ → X such that p induces a homeomorphism outside of x and p−1(x) is a

copy of CPn−1, called the exceptional divisor. In particular, X̂ ∼= X#CP2. If such
a map exists from X to another space Y , we call Y the blow-down of X. If no such
Y exists that is a blow down of X, we call X a minimal surface. Lastly, if there
exists a series of blow-downs p1, p2, · · · , pk from X to Y and Y is minimal, we call
Y a minimal model of X.

The Enriques-Kodaira classification works by assigning a surface a Kodaira
dimension, denoted κ(M). This number gives the size of the canonical model, a
ring which encodes information about the cotangent bundle. In particular, it
assigns a surface the Kodaira dimension of its minimal model (this process is
well-defined). The precise definition of the Kodaira dimension is unnecessary here,
but a full treatment is given in Chapter I Section VII of Barth’s Compact Complex
Surfaces [Bar04].
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Now, we take a look at the table that classifies minimal compact complex surfaces.
This comes from Chapter VI, Section I of [Bar04].

Class of M κ(M) b1(M)

1) minimal
rational surfaces

0

2) minimal
surfaces of class
VII

−∞ 1

3) ruled surfaces of
genus ≥ 1

2g

4) Enriques
surfaces

0

5) Bi-elliptic
surfaces

2

6) Kodaira
surfaces

0

a) primary 3

b) secondary 1

7) K3 surfaces 0

8) Tori 4

9) Minimal
properly elliptic
surfaces

1

10) minimal
surfaces of general
type

2 0 mod 2
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Definitions for the surfaces featured in the classification are as follows. Note that a
fiber bundle is holomorphic if the projection map p : M → B can be written as a
complex differentiable function from an open subset of C2 to C in a neighborhood
of any point b ∈ B.

Definition 5.2 (Surfaces in the Enriques-Kodaira classification).

• Rational Surfaces are surfaces that are birationally equivalent to CP2.

• Surfaces of Class VII are surfaces with κ(M) = −∞ and b1 = 1. There are
several examples of Class VII surfaces, but there does not exist a classification.

• Ruled surfaces are surfaces which admit a fiber bundle by CP1 over a surface
of genus g.

• Bi-elliptic surfaces are surfaces with b1 = 2 which admit a holomorphic fiber
bundle of an elliptic curve over an elliptic curve.

• Primary Kodaira surfaces are surfaces with b1 = 3 and which admit a
holomorphic fiber bundle of an elliptic curve over an elliptic curve.

• A torus refers to the 4-torus, i.e. S1 × S1 × S1 × S1.

• Properly elliptic surfaces are fibrations of elliptic curves over a smooth complex
curve.

• Surfaces of general type are simply surfaces with κ = 2.

We can see by this chart and the definitions a general rule associated with
Kodaira dimensions: the higher the dimension, the more general the surface and
the harder it is to say anything concrete about it. One can work case by case and
use specific properties of the surfaces in each case, but the more general surfaces
have more freedom and thus less shared properties.

The reader may note that several definitions were omitted from the definition list
(the Enriques surface, K3 surface, and the Kodaira surface of secondary type).
This is because they are not particularly interesting; since the first Betti number
satisfies b1 ≤ 1, they trivially satisfy the antecedent of the Hopf conjecture.
Rational surfaces were included, however, because while they have non-negative
Euler characteristic, they become objects of consideration when consider
non-minimal complex surfaces. It is also of note that in fact there exist no
aspherical ruled surfaces.
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Theorem 5.3. There exist no aspherical ruled surfaces.

Proof. Let M be a ruled 4-manifold. Firstly, we note that CP1 ∼= S2 as manifolds
and so we can treat M as an S2 fibration over the Riemannian manifold B. Then
we have a fibration p : M → B, where p−1(x) = S2 for x ∈ B. Since M is compact,
B is as well, and so B ∼= Σg for g > 0 or B ∼= S2. In the first case, the long exact
sequence

· · · → π3(B)→ π2(S2)→ π2(M)→ π2(B)→ . . .

yields the short exact sequence

0→ Z→ π2(M)→ 0

since Σg is itself aspherical. Then π2(M) ∼= Z and M is not aspherical.

In the second case, we can consider an open circular cap Ṽ in B ∼= S2, then remove
an open circular cap that is a subset of Ṽ to obtain a punctured sphere, Ũ . Note
that Ũ ∩ Ṽ is an open annulus. Then let U and V be the fibration restricted to Ũ
and Ṽ . We can then apply the Seifert-van Kampen theorem on U and V . Since
both have contractible base spaces, they are homeomorphic to the trivial bundle
D2 × S2. So

π1(M) ∼= π1(D2 × S2) ∗
π1(U∩V )

π1(S2 × S2) ∼= {0} ∗
π1(U∩V )

{0} = {0}.

Looking at the sequence again, we have π2(M)
p∗→ π2(S2) → 0. Since p∗ must be

surjective and π2(S2) ∼= Z, π2(M) is non-empty and so M is not aspherical.

We now endeavor to prove that all compact complex surfaces of real dimension 4
satisfy the Hopf conjecture.

Theorem 5.4. Let M be a closed aspherical minimal complex surface of real
dimension 4. Then χ(M) ≥ 0.

Proof. We naturally work case-by-case through the possible Kodaira dimensions of
M and check that each subcategory satisfies χ(M) ≥ 0.

Case 1: M has a Kodaira dimension of −∞:

This case is relatively simple. We begin with the case of rational surfaces. It is
known that the fundamental group is a birational invariant; so π1(M) ∼= π1(CP2).
But CPn is simply connected for n ≥ 1 and so π1(M) = 0. This case then
degenerates to the contractible case.

As mentioned earlier, the minimal surfaces of class VII have no general
classification, but this is no issue since it is known that b1(M) = 1. So χ(M) ≥ 0
in this case.

From theorem 5.3 we know there exist no aspherical ruled surfaces for us to
consider, and we are done with the κ(M) = −∞.
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Case 2: M has a Kodaira dimension of 0:

We begin by recalling again that b1(M) ≤ 1 implies that χ(M) ≥ 0. This allows
us to immediately rule out the cases of the Enriques surface, the secondary
Kodaira surfaces, and the K3 surface. We now tackle the rest of the cases.

The case of bi-elliptic surfaces and primary Kodaira surfaces can be considered
together because they are both fibrations of an elliptic curve over an elliptic curve.
However, this is simply a fibration of a torus over another torus. Not only are
both of these surfaces aspherical, but they indeed satisfy the Hopf conjecture,
since χ(M) = χ(Σ1)2 = 0.

Lastly, we cover the 4-torus, T 4. The 4-torus is aspherical since
πn(T 4) = πn(S1) × πn(S1) × πn(S1) × πn(S1), and πn(S1) = 0 for n ≥ 2. Then
χ(T 4) = χ(S1)4 = 0. This finishes the case κ(M) = 0.

Case 3: M has a Kodaira dimension of 1:

The only case we have to consider is that of the properly elliptic surfaces; that is,
elliptic fibrations over smooth curves. Let the fibration be denoted p : M → C and
let S ⊂ C be the set of points whose inverse images under p give the singular
fibers of the fibration. Then, according to Theorem 6.10 of [SS09], S is finite and
the Euler characteristic of an elliptic fibration over C is of the form
χ(M) =

∑
x∈S χ(p−1(x)). Further, according to the classification of singular fibers

given in [SS09], χ(Fx) = 0, b0(Fx), or b0(Fx) + 1 (where here b0 is the zeroth Betti
number, representing path connected components). Thus, χ(M) is a sum of
non-negative integers and χ(M) ≥ 0.

Case 4: M has a Kodaira dimension of 2:

Here we look at the surfaces of general type. While such a task seems daunting,
it is actually trivial. Theorem 1.1 in Chapter VII of [Bar04] gives a number of
conditions the Chern numbers c21 and c2 of a surface with κ(M) = 2 must conform
to. Luckily, one of these conditions is c2 > 0. Because we are working in dimension
4 and c2 is the top Chern class and is equal to the Euler class (and hence, the Euler
characteristic) of M (chapter 1 in [Bar04]). However, it is known that the top
Chern class of a manifold is precisely its Euler characteristic. So χ(M) = c2 > 0,
finishing this case and the proof in general.
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We have seen that every minimal model satisfies the Hopf conjecture. To prove that
every compact complex surface satisfies the conjecture, we take a look at the effect
that blowing up has on both the Euler characteristic and on the second homotopy
group. We begin with the following useful proposition.

Proposition 5.5. Let M be a compact complex surface of complex dimension 2
and M̂ a blow-up of M at a point p. Then χ(M̂) = χ(M) + 1.

Proof. We use the inclusion-exclusion formula for the Euler characteristic. The

blowup process M has the topological effect of adding a copy of CP2, CP2 with the

opposite orientation, via a connected sum. So M = M#CP2 and we obtain

χ(M) = χ(M#CP1) = χ(M) + χ(CP2)− χ(S4) = χ(M) + 3− 2 = χ(M) + 1.

So blowing up increments the Euler characteristic by 1.

We lastly focus precisely on the effect that a blow-up has on a ruled manifold;
specifically, we show that a n-fold wedge connected sum of a genus ≥ 1 ruled

manifold with CP2 forces the second homotopy group to be non-trivial. This is
the final tool that allows us to prove the Hopf conjecture for all compact complex
surfaces.

Theorem 5.6. Let M be a ruled manifold with genus greater than 0; that is, M is

a CP1 bundle over Σg. Then M#nCP2 is not aspherical.

Proof. We show that the second homotopy group of M#nCP2 is non-trivial using
the Hurewicz theorem.

We first note that the universal covering space of Σg is R2. Let p : R2 → Σg be the
covering map. Given a point x ∈ Σg, we obtain a discrete subset
p−1(x) = L ⊂ R2. Since π1(Σg) acts on p−1(x) (via monodromy) both transitively
and freely, there is a bijection between L and π1(M).

Now let f : M → Σg be the projection for the fiber bundle M . Then we can pull
back the projection of the fiber bundle under the projection for the universal

covering space: we obtain a function p∗(f) : N → R2, with
(
p∗(f)

)−1
(y) ∼= CP1.

Then this is a new fiber bundle; in particular, it is a covering space of M .
However, since R2 is a contractible space the new fiber bundle must be a product;
since the fiber is CP1, the bundle is simply CP1 × R2. Thus, M̃ ∼= S2 × R2, since
this product is clearly simply connected.

Let p′ : M̃ → M . Now consider the connected sum M#nCP2. Then each CP2

copy is summed at a point where a copy of B4 has been removed; label these
points xi. Then let Li = p−1(xi) ⊂ R2. We can choose open balls B4

i small enough
so that p−1(B4

i ) ∩ p−1(B4
j ) = ∅ for i 6= j. Now, we can pull back once again to the

universal covering space. Since CP2 is simply connected, we find that the universal

covering space of M#nCP2 is simply a connected sum of copies of CP2 near each
point p′−1(xi). Since S2 is simply connected, each p′−1(xi) gives a point (a, b)
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with a ∈ S2 and b ∈ Li.

Now we denote M̃#LCP2 as the connected sum of a copy of CP2 at p′−1
(⋃

Li
)
. We

also define the wedge product M̃ ∨L CP2 as a wedge sum at each point x ∈ L ⊂ M̃
and the disjoint union tLS3 as a disjoint collection of S3’s for each point in L (and

we consider tLS3 as a subset of M̃). Now, we note that every embedded ball B4

in S2×R2 has a neighborhood that retracts onto its boundary S3; thus (M̃,tLS3)
is a good pair and we can use the long exact reduced homology sequence

· · · → H̃i

(
tLS3

)
→ H̃i

(
(S2 × R2)#LCP2

)
→ H̃i

(
(S2 × R2) ∨L CP2

)
→ · · ·

Let X = M̃#LCP2. We look at i = 2 to get

· · · → H̃2

(
tLS3

)
→ H̃2 (X)→ H̃2

(
(S2 × R2) ∨L CP2

)
→ H̃1

(
tLS3

)
→ · · ·

Then because H̃i(S
3) = Z only if i = 3, we have that H̃1(tLS3) and H̃2(tLS3)

are both trivial. Plugging into the long exact sequence gives a short exact

sequence from which we obtain H̃2(X) ∼= H̃2

(
(S2 × R2) ∨L CP2

)
.

Now given that (S2 ×R2) and the collection tLCP2 have interiors that cover their
wedge product and that their intersection is a collection of points, the
Mayer-Vietoris sequence gives us the isomorphism

H̃2

(
(S2 × R2) ∨L CP2

)
∼= H̃2

(
S2 × R2

)
⊕ H̃2(tLCP2).

Now the homology of disjoint sum breaks up into direct sums of homology groups
so that

H̃2

(
(S2 × R2) ∨L CP2

)
∼= H̃2

(
S2 × R2

)
⊕
⊕
L

H̃2(CP2).

Lastly, we finally precisely calculate the homology of M̃ . We know that H̃2(CP2) =
Z. Using the Künneth formula along with the fact that H̃k(R2) = 0, we get that
H̃2(S2 × R2) = 0. Thus, our final answer is

H̃2(X) =
⊕
π1(M)

Zn.

And so the second homology group H2(X) 6= 0. By Hurewicz’ theorem, π2(X) =

H2(X) 6= 0. Then since X is the universal covering of M#nCP2, π2(M#nCP2) ∼=
π2(X) 6= 0 and M#nCP2 fails to be aspherical. Therefore, no blow-up of a ruled
surface is aspherical.

We are now in a position to prove the Hopf conjecture for all compact complex
manifolds.
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Theorem 5.7. Let M be a closed aspherical complex surface. Then χ(M) ≥ 0.

Proof. The final proof is very simple. We first note that M has a minimal model
from which M is obtained by a finite sequence of blow-ups. Theorem 5.4 tells us
that every class of minimal surface has non-negative Euler characteristic.
However, there is an exception which is the class of ruled manifolds which all have
negative Euler characteristic.

So in the first case, if M has a minimal model that is a ruled manifold, then we
know by Theorem 5.6 that M is in fact not aspherical and this case can be ruled
out completely.

Now let M have a minimal model that is not a ruled manifold. Denote this model
N . Then, topologically, M ∼= M#nCP2 for some n ≥ 0. Then, by Proposition 5.5,
we have that χ(M) = χ(N)+n. However, since N is a minimal model then from the
argument of the first paragraph χ(N) ≥ 0 and χ(M) ≥ 0. So if M were aspherical
then its Euler characteristic would be non-negative, solving the Hopf conjecture in
the case of complex surfaces.
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6 Partial Results for Symplectic Manifolds

Another family of manifolds we can restrict ourselves to further are symplectic
manifolds; that is, even-dimensional manifolds with a nondegenerate 2-form, ω.
We take a look at one method of classification of symplectic manifolds: the
Symplectic Kodaira dimension.

We begin with the definition of the Kodaira dimension, from [Li15]:

Definition 6.1. Let (M,ω) be a symplectic manifold. Let [ω] be the cohomology
class of the 2-form ω and Kω be the first Chern class of the cotangent bundle of M .
The symplectic Kodaira dimension of (M,ω) is defined to be the symplectic Kodaira
dimension of its minimal model. If M is minimal, then the symplectic Kodaira
dimensions is defined as

κs(M,ω) =


−∞ Kω · [ω] < 0 or Kω ·Kω < 0

0 Kω · [ω] = 0 and Kω ·Kω = 0

1 Kω · [ω] > 0 and Kω ·Kω = 0

2 Kω · [ω] > 0 and Kω ·Kω > 0.

Unlike the Enriques-Kodaira dimension above, the symplectic Kodaira dimension
is not quite as easy to work with, as symplectic manifolds behave badly compared
to complex surfaces. However, it is easy to prove the Hopf conjecture for
symplectic Kodaira dimension −∞ and 0.

Proposition 6.2. If M is a symplectic manifold with κs(M) = −∞, 0 then χ(M) ≥
0 if M is aspherical.

Proof. In the case that κs(M) = −∞, the symplectic manifolds are in fact more
restricted than the complex surfaces; the only such symplectic manifolds are ruled
manifolds and rational manifolds [Li15]. However, from Theorem 5.4 we know
that rational manifolds satisfy the conjecture, and therefore we know there exist
no aspherical ruled manifolds from Theorem 5.3.

Second, in the case that κs(M) = 0, there exists a classification of such symplectic
manifolds up to homology. It is known that M is either a homology K3 surface, a
homology Enriques surface, or an elliptic bundle over an elliptic surface. In the first
two cases, we can take a look at the table from page 5 it is known that the Euler
characteristic of the K3 and Enriques surface both have Euler characteristics of 0,
and an elliptic fiber has Euler characteristic χ(Σ1) · χ(Σ1) = 0. So the conjecture
holds in this case as well.
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7 Partial Results for Kähler Manifolds

Kähler manifolds are a particularly restricted class of well-behaved 4-manifolds.
The structure imposed on them grants us many tools to study their local and
global properties. In this section, we will look at some restrictions one can place
on these manifolds and prove that they satisfy the Hopf conjecture.

We begin with a definition for Kähler manifolds.

Definition 7.1. A Kähler manifold is a manifold M with triple (g, ω, J) with g
a Riemannian metric on M , ω a non-degenerate 2-form on M , and J an almost
complex structure on M (that is, a function J : TM → TM such that J2 = −Id
on tangent spaces). Specifically, M must not only admit these structures, but they
must satisfy the compatibility relation: g(X,Y ) = ω(JX, Y ).

7.1 Cohomological Einstein-Kähler manifolds

One type of restriction we can put on a Kähler manifold is for its first Chern class
c1 ∈ H2(M,R) to be definite; that is, positive everywhere, negative everywhere, or
c1 = 0. In this case, the Euler characteristic is always non-negative.

Theorem 7.2. Let M be a closed, aspherical, 4 dimensional Kähler manifold with
definite first Chern class. Then χ(M) ≥ 0.

Proof. As discussed before, we break up the proof into the case when c1 is positive
definite, c1 is negative definite, and when c1 is zero.
Case 1: c1 is negative definite: In the case that c1 < 0, it was proved in theorem
7.15 in [Aub82] that a metric exists for M that is both Einstein and Kähler. By
an Einstein metric, we mean a metric that is a scalar multiple of the Ricci tensor
of the manifold M (that is, g(X,Y ) = λ · Ric(X,Y )).

However, in [JK93] it is shown in theorem 1 that if a compact manifold admits an
Einstein metric, then |σ(M)| ≤ 2

3χ(M). Thus, χ(M) ≥ 0 (indeed, it satisfies
Winkelnkemper’s inequality) and the statement holds in the case of c1 < 0.

Case 2: c1 is positive definite: Next, in the case that c1 > 0 the Ricci curvature
Ricg is positive on M . We use Myer’s theorem: if Ricg ≥ (m − 1)k everywhere
(for some k ∈ R>0), then the length between any geodesic is bounded above by
π√
k

. First note that since M is compact, there exists an ε > 0 that bounds Ricg

uniformly from below. Now consider the universal covering space p : M̃ → M .
Then M̃ has a metric on it, specifically the pullback p∗g. However, since the Ricci
curvature of g is positive, the Ricci curvature of p∗g is positive. Furthermore, p∗g
is bounded below by some η > 0 because g is bounded uniformly below. Letting
k = η

3 , M̃ and Ricg satisfy the hypotheses of Myer’s theorem. So any two points in

the ambient space they have distance at most π√
k

and M̃ is bounded and compact.
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Now, given an open set U ⊂M , the set p−1(U) is a collection of disjoint open sets

of M̃ and so it is a finite collection. But this means that p is a finite covering of
M , which tells us that the fundamental group π1(M) is finite. But since M is
aspherical, theorem 4.8 tells us that π1(M) must be trivial. Since all the
homotopy groups of M are trivial, so too are the homology groups of M (by
Hurewicz) and so χ(M) = 0.

Case 3: c1 is the zero form: We lastly consider the case when c1 = 0. In this case,
the manifold is minimal and the (classical) Kodaira dimension is at most 0; that is,
κ(M) = −∞ or κ(M) = 0 [Bau08]. However, these manifolds are precisely those
manifolds which are considered in Theorem 5.4. So when c1 = 0 the conjecture
holds, and this finished the proof for cohomological Einstein-Kähler manifolds.

7.2 Homogeneous Kähler Manifolds

Another restriction we can place on a Kähler manifold is for it to be homogeneous;
this condition forces certain symmetries on the manifold.

Definition 7.3. We call a Riemannian manifold homogeneous if its automorphism
group Aut(M) acts transitively on the points of M .

This restriction has found use in geometric topology and many simple manifolds
satisfy this restriction, like Rn, Sn, RPn, and the special orthogonal group SO(n).
This restriction greatly simplifies the structure of Kähler manifolds and make the
asphericality of the space easy to verify and the Euler characteristic easy to
calculate.

Theorem 7.4. The Hopf conjecture holds for homogeneous Kähler manifolds.

Proof. The main tool we use here is the fundamental conjecture of homogeneous
Kähler manifolds (which is not a conjecture anymore). From [DN88], we get that
every homogeneous Kähler manifold is a fiber bundle

F →M → B

where F = F0 × F1, F0 a flat homogeneous Kähler manifold, F1 a compact simply
connected Kähler manifold, and B a homogeneous bounded domain.

In order to satisfy the hypothesis of the Hopf conjecture, B must have dimension
zero. To see this, if B has nonzero dimension, it would be a bounded subset of C1

or C2 with boundary ∂B 6= ∅. Taking a point b ∈ ∂B and looking at the local
trivialization of the bundle at an open set U around b, we obtain a product F × U
which has boundary ∂(F × U) = (∂F ) × U ∪ F × (∂U) 6= and so the bundle M is
not a closed manifold. So we can assume that F has dimension 4 so that
M = F0 × F1.

Next, we break up by cases. Since F0 and F1 are Kähler they have even dimension
and their dimension sums to 4. So we have three cases: dimF0 = 0, dimF0 = 2,
and dimF0 = 4.

16



Case 1: F0 has dimension zero:
This first case is trivial. Since F0 has dimension 0, F0 = {0} and M ∼= F1. So M
is a simply connected space. But this implies that all its homology groups are
trivial and thus χ(M) = 0, which finishes the case.

Case 2: F0 has dimension two:
In this case we have that both F0 and F1 have dimension 2. However, F0 and F1

are determined completely by the properties given to them by the fundamental
conjecture. Any flat Riemannian surface has diffeomorphism type of R2, R1 × S1,
S1 × S1, the Klein bottle, or the Möbius strip. F1 is a simply connected compact
Riemannian surface, which forces it to be S2. Since M is orientable F0 is neither
the Klein bottle nor the Möbius strip and since M = F0 × S2 is compact, F0

cannot be the plane or the cylinder. So M = Σ1 × S1. But this is not aspherical,
so the hypotheses of the Hopf conjecture are not satisfied in this case.

Case 3: F0 has dimension four:
In this case F1 is a point so that M ∼= F0. Then M has a flat Riemannian metric.
Since the metric is flat, M has zero sectional curvature. In particular, it has non-
positive curvature. By a result of Chern [Che55], all 4 dimensional manifolds with
non-positive curvature have χ(M) ≥ 0 (and in particular all such manifolds are
aspherical). This finishes the case and the proof.

7.3 Symplectic Kodaira dimension revisited

As mentioned in the previous section, for a given symplectic manifold with
symplectic Kodaira dimension κs(M) = −∞ or κs(M) = 0, M satisfies the Hopf
conjecture. However, given the restraint of our manifold being Kähler, we can
trivially prove that a Kähler manifold M satisfies the Hopf conjecture if
κ2(M) = 2.

Theorem 7.5. Let M be a closed aspherical Kähler manifold. If κs(M) = 2, then
χ(M) ≥ 0.

Proof. We know from the definition of symplectic Kodaira dimension that
Kω ·Kω > 0. However, this is equivalent to c21 = 2χ(M) + 3σ(M) > 0 for M . Now,
according to [Li15], it is known that Kähler manifolds of general symplectic type
satisfy the BMY inequality; c21 ≤ 3c2 = 3χ(M). Thus, we have that 3σ(M) ≤ χ(M).
In the case that χ(M) < 0, we have that 3σ(M) < 0 and 2χ(M) + 3σ(M) =
Kω ·Kω < 0 which contradicts κs(M) = 2. So χ(M) ≥ 0.

Out of all the subcases presented in this section, this is by far the most promising in
terms of proving the Hopf conjecture for Kähler manifolds. One only has to prove
it in the case that κs(M) = 1 (that is, when 2χ(M) + 3σ(M) = 0), and it is an
open conjecture that in fact every symplectic manifold M with κs(M) = 1 satisfies
χ(M) ≥ 0.
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8 Conclusion

The Hopf conjecture, while simple to state, is difficult to actually attack. Looking
at the two dimensional case, we see there is not any particular reason for it to
work. We simply classify all aspherical manifolds and calculate their Euler
characteristics. Further, as mentioned previously there is no such classification for
4-manifolds and so this method of attack is not possible. The positive result
obtained in this paper in fact mirrors the 2 dimensional case; complex 4-manifolds
do admit a useful classification which allowed us to tackle the problem case by
case.

In the scope of this thesis, one particular desideratum is a proof of the conjecture
for Kähler manifolds. Given their restrictions compared to symplectic or
Riemannian manifolds, they should be a simpler class of spaces to tackle. As
mentioned at the end of section 7, the Kähler case only needs to be solved for
those Kähler manifolds with symplectic Kodaira dimension 1. However, the
properties of spaces with positive Kodaira dimension (even those which are
Kähler) are not well understood. However, another strategy is to look at the
fundamental group of compact Kähler manifolds. These groups have several
restrictions on them; for example, the rank of such a group must be even
[Amo96]. Studying these groups restricted to aspherical Kähler manifolds along
with tools like Winkelnkemper’s inequality may yield positive results.

One other tool which was not covered in this thesis is the L2 Betti numbers of
Hermann Lück [Lüc02]. In a sentence, we can create the space of bounded functions
on the set of L2 bounded sum of formal sums over π1(M) with coefficients in C (that
is, elements of the form

∑
λg · g, g ∈ π1(M) and

∑
|λg|2 <∞). Taking the tensor

product of this set with the groups in the cellular chain complex of M̃ and then

creating a homology out of this complex gives us the L2 Betti numbers b
(2)
i (M̃).

While being fairly technical, this tool gives us new invariants which describe the
universal covering map as well as satisfying properties like homotopy invariance,
Künneth’s formula and, most importantly, the formula

χ(2)(M̃) =
∑
i≥0

(−1)ib
(2)
i (M̃) = χ(M).

This reduces the problem from studying aspherical manifolds to studying the L2

Betti numbers of contractible manifolds. Moreover, this expands the study of the
Hopf conjecture from smoothable manifolds, which we restricted ourselves to in our
look at the problem, to general closed and orientable 4-manifolds.
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