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Abstract

This dissertation concerns itself with two distinct projects applying homotopical and derived

category techniques to the study of singularities in equal characteristic. The first concerns

maps of commutative noetherian local rings containing a field of positive characteristic.

Given such a map φ of finite flat dimension, the results relate homological properties of the

relative Frobenius of φ to those of the fibers of φ. The focus is on the complete intersection

property and the Gorenstein property.

The second concerns derived splinter characterizations of singularities in characteristic

zero. Let X be a normal, excellent, noetherian scheme over SpecQ with a dualizing complex.

In this note, we find an alternate characterization of the multiplier ideal of X, as defined by

de Fernex-Hacon, by considering maps π∗ωY → OX where π∶Y →X ranges over all regular

alterations. As a corollary to this result, we give a derived splinter characterization of klt

singularities, akin to the characterization of rational singularities given by Kovács and Bhatt.

We also give an analogous description of the test ideal in characteristic p > 2 as a corollary

to a result of Epstein-Schwede.
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Chapter 1

Introduction

While smooth varieties have many nice properties, we are often forced to deal with varieties

that are singular. For example, the minimal model program, focused on classifying algebraic

varieties, often identifies a singular variety as the ”simplest” representative of a birational

equivalence class. In moduli theory, it is generally necessary to consider singular objects

when compactifying the moduli space of smooth objects. For example, the compactification

of the moduli space of smooth stable curves requires we include nodal curves. In commutative

algebra, singular rings arise naturally when studying group actions on a polynomial ring or

rings arising from combinatorially from objects such as graphs or matroids.

The methods used to study singularities are often characteristic dependent. In 1964,

Hironaka [Hir64] proved that given a variety X over an algebraically closed field of char-

acteristic zero, there exists a resolution of singularities, that is a birational map π∶Y →X

where Y is smooth. Many classes of singularities in characteristic zero are defined using the

relationship between the variety X and its resolutions of singularities, including terminal,

canonical, Kawamata log terminal (klt), log canonical, rational, and du Bois singularities.

In positive characteristic, resolutions of singularities aren’t known to exist in general and we

are forced to use different tools. A 1969 theorem of Kunz characterizing smooth varieties as

those whose Frobenius endomorphism is flat, so we can instead turn to the Frobenius to

classify singularities.

This dissertation concerns itself with two distinct projects applying homotopical and

derived category techniques to the study of singularities in equal characteristic. In Chapter

3, we discuss homological properties of the relative Frobenius in positive characteristic.

Given a map φ∶R → S of commutative noetherian rings of characteristic p > 0, the relative

Frobenius is the natural map FS/R∶S ⊗R F∗R → F∗S factoring the Frobenius on S. In this

setting, Radu [Rad92] and André [And93] give a relative version of Kunz’s theorem, which

1



2 Chapter 1. The First

says φ is regular if and only if the relative Frobenius is flat. This was soon modified by

Dumitrescu [Dum96] who showed that if we assumed φ is flat, then φ is regular if and only

if the relative Frobenius has finite flat dimension.

Our work comes from weakening the assumption that φ is flat to simply requiring that φ

has finite flat dimension. In this setting, we generalize Dumitrescu’s result that φ is regular

if and only if the relative Frobenius is finite flat dimension, and prove a similar result for

complete intersection dimension, generalizing a result of Blanco-Majadas [BM98]. We also

discuss a similar result for Gorenstein dimension.

These results rely on studying properties of the Frobenius on the (derived) fiber of the

map R → S, which requires an understanding of simplicial algebras. Chapter 2 is devoted to

this background material, with some additional background on model categories for the sake

of completeness.

In Chapter 4, we study (derived) splinter characterizations of singularitities in charac-

teristic zero. Thanks to the Direct Summand Theorem [And18], we can consider (derived)

splinters as a class of singularities, and work of Kovács [Kov00] and Bhatt [Bha12] shows that

in characteristic zero being a derived splinter is equivalent to having rational singularities.

If we consider klt singularities, which are rational, we expect that adding a condition to the

derived splinter property will allow us to characterize klt singularities. If X is a normal

excellent scheme over a field of characteristic zero with a dualizing complex and π∶Y →X is

a sufficiently large regular alteration, we show that the relevant condition is requiring that

the splitting Rπ∗OY → OX must locally factor through π8 ∗ ωY . This follows from a new

characterization of the multiplier ideal in terms of maps π∗ωY → OX .



Chapter 2

Simplicial methods in commutative algebra

The purpose of this section is to introduce simplicial rings for commutative algebraists.

Roughly speaking, a simplicial ring can be thought of as a collection of rings {Rn}n≥0 with

maps between adjacent degrees satisfying certain simplicial identities. This provides a way

of discussing homotopy theory in the setting of rings.

Via the Dold-Kan correspondence, simplicial rings may be related to differential graded

rings, which may be more familiar to commutative algebraists. However, there are often

real reasons to prefer the simplicial to the differential graded setting. In particular, the

Frobenius has a natural definition in the simplicial setting - it’s simply the Frobenius applied

degreewise. In contrast, the pth power map is not a map of differential graded rings, as it is

not degree preserving.

To begin, we will introduce the framework of model categories, introduced by Quillen

in [Qui67]. We will then use the example of chain complexes over a commutative ring to

illustrate these concepts before moving on to simplicial rings. We end with a discussion

of the Dold-Kan correspondence to move between the simplicial and differential graded

settings.

2.1 Model categories

Oftentimes, we are working in a category where there are certain maps that we wish were

isomorphisms. For example, commutative algebraists often want to look at chain complexes

of modules over a commutatitive ring up to quasi-isomorphism and topologists want to

consider (pointed) topoloical spaces up to homotopy equivalence. To rememdy this, one

can formally invert this class of maps, though this risks a poorly-behaved quotient category.

Specifically, the class of maps between two objects may no longer be a set.

Model categories, introduced by Quillen in [Qui67], offer one solution to the localization

3



4 Chapter 2. Simplicial methods in commutative algebra

problem. The localization of a model category is particularly well-behaved, coming with a

clear description of maps between objects and other additional structures that allow us to

use tools from homotopy theory. One particularly important idea is that of lifting:

Definition 2.1.1. Suppose i ∶ A→ B and p ∶X → Y are maps in a category C. We say that i

has the left lifting property with respect to p and p has the right lifting property with respect

to i if, for every commutative diagram

A X

B Y

f

i p

g

there is a lift h ∶ B such that hi = f and ph = g.

We now introduce the definition of a model category, following [Hov99] who provides an

updated perspective on the original axioms of Quillen:.

Definition 2.1.2 ( [Hov99] Definition 1.1.3). A model structure on a category C is three

subcategories of C called weak equivalences, cofibrations, and fibrations satisfying the

following properties:

1. (2-out-of-3) If f and g are two composable morphisms of C and two of f, g, and gf are

weak equivalences, then so is the third.

2. (Retracts) If f and g are morphisms of C such that f is a retract of g and g is a weak

equivalence, cofibration, or fibration, then so is f .

3. (Lifting) Define a map to be a trivial (co)fibration if it is both a (co)fibration and a

weak equivalence. Then trivial cofibrations have the left lifting property with respect

to fibrations, and cofibrations have the left lifting property with respect to trivial

fibrations.

4. (Factorization) For any morphism f , f can be factored as a cofibration followed by

a trivial fibration and a trivial cofibration followed by a fibration. Moreover, these

factorizations can be chosen to be functorial.

A model category is a category C with all small limits and colimits together with a model

structure on C.



2.1. Model categories 5

Definition 2.1.3. Let C be a model category. By considering the limit and colimit of the

empty diagram, we will have an initial object and a terminal object. Let X and Y be objects

of C. We say that X is cofibrant if the map to X from the initial object is a cofibration and

we say that Y is fibrant if the map from Y to the terminal object is a fibration. We say that

C is a pointed model category if the map from the initial object to the terminal object is an

isomorphism.

Note that by taking the functorial factorization of the map from the initial object to X,

we get a cofibrant object QX such that the map QX →X is a trivial fibration. We call Q

the cofibrant replacement functor of C. Dually, by taking the functorial factorization of the

map from X to the terminal object, we get a fibrant object RX such that the map X → RX

is a trivial cofibration. We call R the fibrant replacement functor.

Remark 2.1.4 ( [Hov99] Lemma 1.1.10). If C is a model category, then a map is a cofibration

(resp. trivial cofibration) if and only if it has the left lifting property with respect to all

trivial fibrations (resp. fibrations). Dually, a map is a fibration (resp. trivial fibration)

if and only if it has the right lifting property with respect to all trivial cofibrations (resp.

cofibrations).

Given a model category C, we can form the homotopy category HoC by inverting the

class of weak equivalences. This gives us a functor γ∶ C → HoC that is universal in the sense

that any other functor F ∶ C → D sending weak equivalences to isomorphisms must factor

uniquely as Ho(F ) ○ γ where Ho(F )∶HoC → D.
With some work, we can show that this is equivalent to HoCc, HoCf and HoCcf [Hov99,

Proposition 1.2.3]. Here, Cc is the full subcategory of cofibrant objects, Cf is the full

subcategory of fibrant objects, and Ccf is the full subcategory of objects that are both fibrant

and cofibrant. Additionally, HoC is equivalent to π(Ccf) which has the same objects as Ccf
with Homπ(CCf )

(X,Y ) = HomCcf (X,Y )/ ∼ where f ∼ g if they are right (equivalently left)

homotopic. We have opted not to dive into the notion of homotopy here and refer the reader

to [Qui67, §I.1], [GJ99, Ch. 2], or [Hov99, §1.2] for details.

Remark 2.1.5 ( [Hov99] Theorem 1.2.10). Let C be a model category with objects X and Y .

Then there are natural isomorphisms

HomC(QRX,QRY )/ ∼≅ HomHoC(γX, γY ) ≅ HomC(RQX,RQY )/ ∼

as well as a natural isomorphism HomHoC(γX, γY ) ≅ HomC(QX,RY )/ ∼.
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2.1.1 An example: Chain complexes over a commutative ring

Let R be a commutative noetherian ring. In this section, we’ll consider a variety of model

structures on a variety of categories of chain complexes of R-modules. We’ll use the notation

C(R) for chain complexes of R-modules and write C≥0(R) (resp. C≤0(R)) for the category of

chain complexes of R-modules concentrated in non-negative (resp. non-positive) homological

degree.

The projective model structure on C≥0(R)

We can define a model structure on C≥0(R) as follows:

• A mapX → Y is a weak equivalence if it is a quasi-isomorphism, that is, an isomorphism

of homology groups

• A map X → Y is a cofibration if it is injective with a degreewise projective cokernel

• A map X → Y is a fibration if it has the right lifting property with respect to the class

of trivial cofibrations

With this setup, it is straightforward to show that fibrations are degreewise surjective in

positive homological degree. To see this, consider the following diagram where i is a trivial

cofibration and p is degreewise surjective in positive homological degree.

A X

B Y

i p

Let P be the cokernel of i, a complex of projectives with no homology. By design, we can

write B ≅ A ⊕ P and so to construct our lift B → X we simply need to construct a lift

P → X. We get a map P1 → X1 using the fact that X1 → Y1 is surjective, and from here

we can inductively construct the lift in all higher degrees. The only question is what the

map P →X looks like in degree zero. This is where we use that P has no homology. This

implies that P1 surjects onto P0 and thus that P0 is a summand of P1. We then have a map

P0 →X1 →X0 which completes our construction of the map P →X and thus B →X.

Remark 2.1.6. In this model structure, every object is fibrant and the cofibrant objects are

complexes of projective modules.
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The injective model structure on C≤0(R)

We can define a model structure on C≥0(R) as follows:

• A mapX → Y is a weak equivalence if it is a quasi-isomorphism, that is, an isomorphism

of homology groups

• A map X → Y is a fibration if it is surjective with a degreewise injective kernel

• A map X → Y is a cofibration if it has the left lifting property with respect to the

class of trivial fibrations

With this setup, it is straightforward to show that cofibrations are degreewise injective

in negative homological degree. To see this, consider the following diagram where i is

degreewise injective in positive homological degree and p is a trivial fibration.

A X

B Y

i p

Let I be the kernel of p, a complex of injectives with no homology. by design X ≅ I ⊕ Y .

We already have a map B → Y so we just need to define a map B → I. Using the map

A → I and the fact the A → B is injective in negative homological degrees, we get a map

Bi → Ii for i ≤ −1. The only question is what the map B → I looks like in degree zero. This

is where we use that I has no homology. This implies that I0 injects into I−1 and thus that

I0 is a summand of I−1. We then have a map B0 → B−1 → I−1 → I0 which completes our

construction of the map B → I and thus B →X.

Remark 2.1.7. In this model structure, every object is cofibrant and the fibrant objects are

complexes of injective modules.

Model structures on C(R)

The above model structures will be relevant when we discuss (co)simplicial algebras in a few

pages. However, one issue with this perspective in general is that by enforcing such a rigid

cutoff in degree zero, we restrict our ability to shift our complexes. In other words, their

homotopy categories are not stable and thus not triangulated. If we want to use tools for

triangulated categories, such as thick subcategories, we need to consider unbounded chain

complexes. In this setting, small modifications to the model structures above will give us

both a projective and an injective model structure on C(R).
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Proposition 2.1.8 ( [Hov99] Theorem 2.3.11). Let Rbe a ring. Then there is a cofibrantly

generated, proper, stable model structure on Ch(R) where a morphism f ∶X → Y is a:

• weak equivalence if it is a quasi-isomorphism;

• fibration if it is a degreewise epimorphism;

• cofibration if it is a degreewise split injection with cofibrant cokernel.

We will call this the projective model structure. All objects are fibrant in this model structure.

The cofibrant objects are those complexes which can be written as an increasing union of

complexes such that the associated quotients are complexes of projectives with zero differential.

Proposition 2.1.9 ( [Hov99] Theorem 2.3.11). Let Rbe a ring. Then there is a cofibrantly

generated, proper, stable model structure on Ch(R) where a morphism f ∶X → Y is a:

• weak equivalence if it is a quasi-isomorphism;

• fibration if it is a degreewise split epimorphism with injectively fibrant kernel;

• cofibration if it is a degreewise monomorphism.

We will call this the injective model structure. All objects are cofibrant in this model structure.

Remark 2.1.10 ( [Bal21] Lemma 7.2.9). The identity functor on Ch(R) gives an equivalence

between the homotopy categories of Ch(R) under each model structure.

2.1.2 Derived functors

The framework of a model category also offers a good setup for computing derived functors,

such as − ⊗LRM and RHom(M,−), and RHom(−M). We give a streamlined discussion of

this here, but for a more complete reference see [Hov99].

Definition 2.1.11. Let C and D be model categories.

1. We say that F ∶ C → D is a left Quillen functor if F is a left adjoint and preserves

cofibrations and trivial cofibrations.

2. We say that U ∶D → D is a right Quillen functor if U is a right adjoint and preserves

fibrations and trivial fibrations.
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3. Suppose (F,U,φ) is an adjunction from C to D. We say that (F,U,φ) is a Quillen

adjunction if F is a left Quillen functor (equiv. if U is a right Quillen functor [Hov99,

Lemma 1.3.4]).

Definition 2.1.12. Let C and D be model categories.

1. If F ∶ C → D is a left Quillen functor, the total left derived functor LF ∶HoC → HoD is

the composite

HoC HoCc DHoQ HoF

2. If U ∶D → C is a right Quillen functor, the total right derived functor RF ∶HoD → HoC
is the composite

HoD HoCf CHoR HoU

Example 2.1.13. Let R be a commutative ring and consider Ch≥0(R) with the projective

model structure. Let M be a cofibrant object of Ch≥0(R). Then we claim that − ⊗RM is

left Quillen. Let A→ B be a cofibration so that we have a short exact sequence of complexes

0→ A→ B → P → 0

where P is degreewise projective. Applying −⊗RM we see that A⊗RM → B ⊗RM remains

injective with cokernel P ⊗RM degreewise projective, as M is degreewise projective. Thus,

we get that the total left derived functor of − ⊗RM is the functor − ⊗LRM that sends

X ↦ QX ⊗RM.

Note that because M is cofibrant, the natural map QX ⊗R M → X ⊗R M is a quasi-

isomorphism, so in practice we only need to take the cofibrant replacement of one of the

arguments in our tensor product to compute the derived tensor product, and so given any

two objects M and N of Ch≥0(R) we will write M⊗LR for the derived tensor product.

Given a Quillen adjunction, this always descends to an adjunction on the corresponding

homotopy categories.

Lemma 2.1.14 ( [Hov99] Lemma 1.3.10). Let C and D be model categories and (F,U,φ) be a

Quillen adjunction. Then LF and RU are part of an adjunction L(F,U,φ) = (LF,RU,Rγ)
that we call the derived adjunction.

Sometimes, this adjunction on homotopy categories is an equivalence (even if the original

adjunction is not an equivalence) leading us to the following definition.
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Definition 2.1.15. A Quillen adjunction (F,U,φ)∶ C → D is called a Quillen equivalence if

and only if, for every cofibrant X in C and fibrant Y in D, a map f ∶FX → Y is a weak

equivalence in D if and only if φ(f)∶X → UY is a weak equivalence in C.

Proposition 2.1.16 ( [Hov99] Prop. 1.3.13 and Cor. 1.3.14). Suppose (F,U,φ)∶ C → D is a

Quillen adjunction. The following are equivalent.

1. (F,U,φ) is a Quillen equivalence

2. L(F,U,φ) is an adjoint equivalence of categories

2.2 Simplicial algebras

We are now ready to introduce our main construction of interest - simplicial algebras. As

discussed above, the reason for this is that simplicial algebras come equipped with a natural

Frobenius map in a way DG algebras do not. Simplicial algebras are also used to compute

Andé-Quillen homology, though this application is outside the scope of this dissertation.

To begin, we introduce the simplex category ∆, largely following [Rie11]. This is the

category of finite, non-empty, totally ordered sets with order-preserving maps. We can then

immediately make the following definition:

Definition 2.2.1. A simplicial set is a functor from ∆op → Set. More generally, given a

category C, a simplicial object of C is a functor from ∆op → C. We use the notation sC to

denote the category of simplicial objects in C, that is, the functor category Fun(∆op,C).

The simplicity of this definition belies the combinatorial implications the come from

working with the category ∆. We will denote by [n] the set {0, . . . , n}. Any map in ∆ can

be factored into co-face maps di ∶ [n − 1] → [n] and co-degeneracy si ∶ [n + 1] → [n] defined
as follows

di(k) =
⎧⎪⎪⎨⎪⎪⎩

k , k < i
k + 1 , k ≥ i

si(k) =
⎧⎪⎪⎨⎪⎪⎩

k , k ≤ i
k − 1 , k > i

These maps satisfy the following identities

djdi = didj−1, i < j

sjsi = sisj+1, i ≤ j

sjdi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

disj−1 i < j
1 i = j, j + 1
di−1sj i > j + 1
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Thus we can think of a simplicial object in a category C both as a functor X ∶∆op → C
and as collection of objects {Xn}n≥0 with face maps di∶Xn → Xn−1 and degeneracy maps

si∶Xn →Xn+1 satisfying identities dual to the ones above.

Remark 2.2.2. Two important things to note when working with simplicial objects in a

category C are

1. C embeds in sC by taking an object X in C to the object in sC which has X in all

degrees and the identity for all face and degeneracy maps

2. Given an object X in sC, there is a unique map from X0 →Xn for all n coming from

the unique map [n] → [0]

Given a commutative ring k, let sk −Alg be the category of simplicial k-algebras. If

we take k = Z we get the category of simplicial rings. We will want to talk about derived

functors in this setting, so we want to put a model structure on sk −Alg.
The original model structure is due to Quillen [Qui67, §II.4 Theorem 4] and can be

obtained by transferring along the free-forgetful adjunction between sSet and sk − Alg.
Without getting into the details, we give a model structure on sk −Alg where a morphism

f ∶X → Y is a

• weak equivalence if the underlying morphism of simplicial sets is a weak equivalence

in sSet;

• fibration if the underlying morphism of simplicial sets is a fibration;

• cofibration if it has the left-lifting property with respect to the class of trivial fibrations.

Quillen also showed that the cofibrations are well-understood.

Proposition 2.2.3 ( [Qui67] p. 4.11). A morphism in sk −Alg is a cofibration if and only if

it is a retract of a free map.

Here, a free map means the cokernel is a free k-algebra in each degree, and so a cofibration

will have cokernal that is a projective k-algebra in each degree.

Given a simplicial ring A, we will use the notation of Mod(A) for simplicial modules

over A. The model structure on Mod(A), discussed in [Qui67, §II.6], is essentially the same,

where a map is a weak equivalence (equiv. fibration) if the map of underlying simplicial sets

is a weak equivalence (resp. fibration) and cofibrations have the left lifting property against
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trivial fibrations. Again, cofibrations are retracts of free maps. We will write Ho(A) for the
corresponding homotopy category.

Given a simplicial abelian group A (such as a module over a simplicial ring), we have an

abelian group structure on the set

πn(A,0) = [(∆n, ∂∆n), (A,0)]

of homotopy classes of pairs of maps which satisfies an interchange law with respect to the

canonical group structure for the homotopy group. It follows that the homotopy group

structure and the induced abelian group structure coincide. In particular, there is a natural

isomorphism

πn(A,0) ≅Hn(NA).

We will often just write πn(A).

Remark 2.2.4. Given a simplicial ring A and an integer n ≥ 0, there is a simplicial ring B

and a map of simplicial rings φ∶A→ B with the following properties:

(1) πi(B) = 0 for i ≥ n + 1;

(2) πi(φ) is bijective for i ≤ n.

The map can be obtained by a process of killing the homology in A in degree n + 1 and

higher; see also the discussion on [Toë10, pp. 162] for the construction of φ. This is part of

the data of a Postnikov tower for A.

2.3 The Dold-Kan correspondence

We end this section with a discussion of a powerful tool that will allow is to transition between

the (co)simplicial and (co)chain/DGA settings. Known as the Dold-Kan correspondence, this

classical theorem gives an equivalence of categories between simplicial objects in an abelian

category A and chain complexes of objects of A concentrated in nonnegative homological

degrees. Moreover, in many relevant cases, the equivalence is also a Quillen equivalence.

Let R be a classical commutative ring. The Dold-Kan correspondence then says that

there is an equivalence of categories

Mod(sR) Ch≥0(R)
N

≃
Γ



2.3. The Dold-Kan correspondence 13

that preserves the natural (projective) model structures. Moreover, the homotopy of an

object M of Mod(sR) is isomorphic to the homology of N(M).
We first review the construction of these functors in this setting. For a more complete

reference see [GJ99, §III.2]. Let M be an object of Mod(sR). Then we define N(M),

the normalized chain complex of M , to be the chain complex with N(M)k∶ =
k

⋂
i=1

kerdi and

differential given by the restriction of d0.

In the other direction, let C be an object of Ch≥0(R). Then define Γ(V ) to be the

simplicial R-module with

Γ(C)n∶ = ⊕
[n]↠[k]

Ck.

The degeneracy maps from Γ(C)n → Γ(C)n+1 send Ck indexed by the surjection [n] ↠ [k]
so the surjection [n + 1] → [n] ↠ [k] where the map [n + 1] → [n] is the corresponding

co-degeneracy map in ∆. To determine where the face maps from Γ(C)n → Γ(C)n−1 send

the summand Ck indexed by [n] ↠ [k], we consider the composition [n − 1] ↪ [n] ↠ [k]
with the corresponding co-face map. If this map is surjective, then we are done. Otherwise,

you can check that it will miss exactly one element of [k], which means it can be factored

uniquely into a surjection from [n − 1] → [k − 1] and a coface map [k − 1] → [k]. Then the

map Ck → Ck−1 is given by (−1)n∂ if the coface map is d0 and is zero otherwise.

We will often need to upgrade to the setting to a simplicial ring A, in which case NA

is a differential graded ring concentrated in nonnegative homological degree. Luckily, we

have the following result of Schwede and Shipley [SS03, Theorem 1.1] upgrades the Dold-

Kan correspondence to this setting. Here, connective means concentrated in non-negative

homological degrees.

Theorem 2.3.1 (Theorem 1.1 [SS03]). 1. Given a connective differential graded ring R,

there is a Quillen equivalence between the categories of connective differential graded

R-modules and simplicial modules over the simplicial ring ΓR

Mod(R) ≃Q Mod(ΓR)

where Γ is the right adjoint of the Quillen equivalence

2. Given a simplicial ring A, there is a Quillen equivalence between the categories of

connective differential-grade NA-modules and simplicial modules over A

Mod(NA) ≃Q Mod(A)
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where normalization is the right adjoint of the Quillen equivalence.

3. Given a commutative ring k, there is a Quillen equivalence between the categories of

connective differential graded k-algebras and simplicial k-algebras

DGAk ≃Q sk −Alg

where normalization is the right adjoint of the Quillen equivalence.

4. Given a simplicial commutative ring A, there is a Quillen equivalence between the

categories of connective differential graded NA-algebras and simplicial A-algebras

NA −Alg ≃Q A −Alg

where normalization is the right adjoint of the Quillen equivalence.

Note that the left adjoints are not the usual Dold-Kan functors and are discussed

in [SS03, §3.3].

One unfortunate consequence of working in this setting is that because the normalization

functor is only a right adjoint, it doesn’t necessarily preserve cofibrations. This means if we

want to compute say, the homology of a derived tensor product in Mod(A), we can’t just

compute the derived tensor product and normalize it. That is to say, if we have X and Y in

Mod(A), it’s not necessarily the case that the following map is weak equivalence:

NQ(X) ⊗NA NQ(Y ) → N(QX ⊗A QY ) ≅ N(X ⊗LA Y ).

Luckily, the following result of Avramov will allow us to compute the homology of simplicial

modules over a simplicial ring by instead working over the corresponding DG ring.

Proposition 2.3.2 (Prop. 2.2 [Avr99]). Let Y be a simplicial left module over a simplicial

ring A, X a cofibrant simplicial right module over A, and let X ′ be a right differential

graded module over the differential graded ring NA such that (X ′)♮ is free over NA♮, where

(−)♮ is the functor that forgets differentials. If µ∶X ′ → NX is a weak equivalence, then the

composition

X ′ ⊗NA NY NX ⊗NA NY N(X ⊗A Y )
µ

is a weak equivalence.



Chapter 3

Homological properties of the relative Frobenius

Given a ring R of characteristic p > 0, the Frobenius endomorphism is the map F ∶R → R

sending r to rp. Given an R-module M , the R-module structure on M via restriction of

scalars along the e-fold Frobenius is denoted by F e∗M . Studying properties of this module

structure allows us to understand the singularities of R, thanks to a theorem of Kunz [Kun69]

which says that R is regular if and only if F e∶R → R is flat for some (equivalently all) e > 0.
Work of Rodicio [Rod88] generalizes Kunz’s result to the case where the Frobenius has

finite flat dimension, and work of Blanco-Majadas [BM98], Takahasi-Yoshino [TY04], and

Iyengar-Sather-Wagstaff [ISW04] does the same for other homological dimensions.

In this paper, we work instead in the relative setting. Given a map of commutative rings

of positive characteristic φ∶R → S, we consider the following diagram:

R S

F∗R S ⊗R F∗R F∗S

φ

F
F

FS/R

where FS/R is the relative Frobenius of φ induced by the universal property of the tensor

product. It sends s ⊗ r to spr. Recall that a map φ∶R → S is regular if it flat and has

geometrically regular fibers. We have a relative version of Kunz’s theorem due to Radu and

André [Rad92,And93,And94] which says that φ is regular if and only if FS/R is flat for some

(equivalently, all) e ≥ 1. This implies Kunz’s theorem by considering the following diagram:

Fp R

Fp R F∗R

φ

F=1Fp
F

φ

Taking this result as inspiration, we investigate how homological properties of the relative

Frobenius are reflected in homological properties of the Frobenius on the (derived) fibers

15
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of φ∶R → S. In this direction, work of Dumitrescu [Dum96] shows that the original result

is equivalent to φ being flat and FS/R having finite flat dimension, and recent work of

Alvite-Barral-Majadas [ABM22] extends this to the non-Noetherian setting.

Assuming R is a local ring with residue field k, the derived fiber of φ refers to S ⊗LR k,
thought of as a simplicial k-algebra. When φ is flat, this is simply S ⊗R k. The Frobenius

extends naturally to the setting of simplicial rings by applying the classical Frobenius

degreewise, and so we can consider F ∶S ⊗LR k → S ⊗LR k. This leads us to our first result.

Theorem 3.0.1. Let R and S be F -finite local rings of positive characteristic. If φ∶R → S is

a local homomorphism of finite flat dimension, the Betti numbers of the relative Frobenius

FS/R grow at the same rate as the Betti numbers of the Frobenius on S ⊗LR k.

A precise formulation of this result can be found in Theorem 3.2.1. As a corollary,

we recover the results of Radu [Rad92], André [And93,And94] and Dumitrescu [Dum96]

(concerning regularity) and Blanco-Majadas [BM98] (concering the complete intersection

property) while also weakening the hypothesis that φ is flat to requiring that φ has finite

flat dimension.

Corollary 3.0.2. For φ as in Theorem 3.2.1, the fibers of φ are regular (resp. complete

intersection) if and only if FS/R has finite flat (resp. CI-) dimension.

We also prove a similar result for the Gorenstein property.

Theorem 3.0.3. Let R and S be F -finite local rings of positive characteristic. If φ∶R → S is

a flat local homomorphism, then the fibers of φ are Gorenstein if and only if FS/R has finite

G-dimension.

Note that we require φ to be flat here rather than finite flat dimension as in the previous

results. The reason for this is that for φ of finite flat dimension, we must consider the derived

fibers of φ. We plan to take this up on a later occasion.

3.1 Simplicial rings

Going forward, our rings will be commutative and noetherian. Given a local ring R, we

will write mR for its maximal ideal and kR for its residue field. Given a map of local rings

φ∶R → S of positive characteristic, the proof of the Radu-André theorem relies, in part, on

investigating the properties of the Frobenius on the fibers of φ.
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In general, we do not assume φ is flat, so we instead want to consider its derived fiber,

S⊗LRkR. In order to talk about the Frobenius on S⊗LRkR, we think of S⊗LRkR as a simplicial

kR-algebra, in which case the Frobenius is simply the usual Frobenius applied degreewise.

Compare this to the differential graded setting, where the pth power map is not a map of

differential graded algebras because it is not degree-preserving.

We discuss the generalization of familiar tools for modules over a classical ring to

modules over a simplicial ring. Given a simplicial ring A, we write Mod(A) for the category

of simplicial A-modules with the projective model structure and Ho(A) for the corresponding
homotopy category.

3.1.1 The Koszul complex

One construction we will often use is the Koszul complex. To start, consider the ordinary

ring Z[x]. The Koszul complex on Z[x] with respect to x is the complex

0 Z[x] Z[x] 0x

which we denote K[Z[x];x]. Passing along the Dold-Kan correspondence, we can consider

this complex as a simplicial module over the discrete simplicial ring Z[x], which we also call

K[Z[x];x]. Note that N(K[Z[x];x]) =K[Z[x];x].
Given a simplicial ring A with degree zero ring A0 a local ring with maximal ideal m

and residue field k, consider f ∈ m. Consider Z[x] → A0 sending x ↦ f . This extends to

Z[x] → A and define the Koszul complex of A with respect to f to be

K[A; f]∶ = A⊗Z[x]K[Z;x]

Given a sequence f1, . . . , fk ∈ m, we can define the Koszul complex of A with respect to

f1, . . . , fk by either iterating the above construction for maps Z[xi+1] → K[A; f1, . . . , fi]
sending xi+1 ↦ fi+1 or by considering Z[x1, . . . , xk] → A sending xi ↦ fi and taking the

appropriate tensor product as above.

Given an A-module M , the Koszul complex on M with respect to f1, . . . , fk is

K[M ; f1, . . . , fk]∶ =M ⊗AK[A; f1, . . . , fk].

We write KA for the Koszul complex on a minimal generating set for the ideal m and KM

for M ⊗AKA.
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Remark 3.1.1. Let A be as above with f ∈ m. The Koszul complex on A with respect to f is

directly inherited from the Koszul complex on A0 with respect to f via the isomorphism

A⊗Z[x]K[Z[x];x] ≅ A⊗A0 A0 ⊗Z[x]K[Z[x];x] ≅ A⊗A0 K[A0; f].

This also implies

K[M ; f] ≅M ⊗A0 K[A0, f]

3.1.2 Betti numbers

Over ordinary commutative rings, Betti numbers are important homological invariants. In

this section, we define them for modules over simplicial rings and prove several lemmas

about how they behave along maps of rings.

Definition 3.1.2. Let A be a commutative simplicial ring. We say that A is local if A0 is a

noetherian local ring. If k is the residue field of A0, we write (A,k). Given M ∈Mod(A), we
say that M is a finite A-module if πi(M) is a finite π0(A)-module for each i and πi(M) = 0
for i≫ 0. We write mod(A) for the category of finite A-modules.

Definition 3.1.3. Let (A,k) be a local simplicial ring and M ∈mod(A). Define the ith Betti

number of M as

βAi (M)∶ = rankk πi(M ⊗LA k)

where M ⊗LA k is computed by applying −⊗A k to a cofibrant replacement of M (equivalently

applying M ⊗A − to a cofibrant replacement of k).

The formal power series

PAM(t)∶ =
∞

∑
n=0

βAn (M)tn

is the Poincaré series of M over A.

The homological properties we are interested in are captured in the asymptotic properties

of Betti numbers. Specifically, we are interested in the notion of curvature, first introduced

for modules over an ordinary commutative ring by Avramov in [Avr96].

Definition 3.1.4. Let (A,k) be a local simplicial ring and M ∈mod(A). The curvature of M

is the number

curvAM = lim sup
n

n
√
βAn (M)

This is the inverse of the radius of convergence of the Poincaré series of M over A.
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While we prefer to work in the simplicial setting in order to use the Frobenius, we will

occasionally use the following lemma to pass along the Dold-Kan correspondence to the dg

algebra setting for computations involving Betti numbers.

Lemma 3.1.5. Let (A,k) be a local simplicial ring and M ∈mod(A). Then

βAi (M) = β
N(A)
i (N(M)) = rankkTorN(A)i (N(M), k)

Proof. Let F → M be a cofibrant replacement and let F ′ → N(F ) be a free resolution.

Letting (−)♮ be the functor that forgets differentials, (F ′)♮ is a free N(A)♮-module and so,

by [Avr99, Proposition 2.2], the following map is a quasi-isomorphism

F ′ ⊗N(A) N(k) → N(F ) ⊗N(A) N(k) → N(F ⊗A k) .

The benefit of this is that we can view Mod≥0(N(A)) inside of Mod(N(A)) which has a

stable homotopy category which we denote Ho(N(A)). We again use the projective model

structure, which restricts to the projective model structure on Mod≥0(N(A)).

Lemma 3.1.6. Let (A,k) be a local simplicial ring and M ∈ mod(A). Suppose N(M ′) ∈
thick(N(M)) (as a subcategory of Ho(N(A))), then curvA(M ′) ≤ curvA(M).

Proof. By Lemma 3.1.5, we can compute Betti numbers and hence curvature as N(A)-
modules. Since N(M) ⊗LN(A) k is independent of whether we work in the category of

unbounded or nonnegatively graded dg N(A)-modules, we can work in the category of

unbounded modules. We now claim that the following is a thick subcategory of Ho(N(A)):

CM ∶ = {X ∈ Ho(N(A)) ∶ curvN(A)(X) ≤ curvN(A)(N(M))} .

It is clearly closed under suspensions and summands. Suppose X → Y → Z → is a triangle

in Ho(N(A)) with X,Y ∈ CM . Applying −⊗LN(A) k to this triangle and considering the long

exact sequence in homology we get

curvN(A)(Z) ≤max{curvN(A)(X), curvN(A)(Y )} ≤ curvN(A)(N(M)).

We work in the relative setting with φ∶A → B a map of simplicial rings and M ∈
mod (B). While this could pose problems, as a finite module over the target ring may no

longer be finite over the source, we will avoid this by only treating the case where φ is finite.

A definition for relative Betti numbers and curvature in the setting of ordinary commutative

rings without the assumption that φ is finite can be found in [AIM06] and can be generalized



20 Chapter 3. Homological properties of the relative Frobenius

to the simplicial setting. However, we include the simplifying assumption that φ is finite to

avoid clouding the essential parts of our argument with technical details.

These next two results discuss how curvature changes along certain maps. This first

lemma is adapted, with similar proof, from [AHIY12, Proposition 3.3].

Lemma 3.1.7. Let (A,kA) and (B,kB) be local simplicial rings and M,N ∈ mod(B). Let

A→ B be a finite map of local simplicial rings. Then

curvA(M ⊗LB N) ≤max{curvA(M), curvB(N)}

Proof. By Theorem II.6.6 of [Qui67], we have a spectral sequence

E2
p,q ∶ = πp(N ⊗LB πq(M ⊗LA kA)) Ô⇒ πp+q((M ⊗LB N) ⊗LA kA)

Because A→ B is finite, mBπq(M ⊗LA kA) ⊗B kB = 0 and so

πp(N ⊗LB πq(N ⊗LA kA)) ≅ πp(N ⊗LB kB) ⊗kA πq(M ⊗LA kA))

From this, we get the following coefficientwise inequality

PA
M⊗L

BN
(t) ⪯ PAM(t)PBN (t)

and thus that

curvA(M ⊗LB N) ≤max{curvA(M), curvB(N)}.

This next lemma is reminiscent of [AIM06, Theorem 9.3.2] which discusses how curvature

changes along complete intersection maps.

Lemma 3.1.8. Let (A,kA) and (B,kB) be local simplicial rings and M ∈mod(B). Let A→ B

be a finite map of local simplicial rings. Then

curvA(M) ≤max{curvA(B), curvB(M)}

curvB(M) ≤max{curvA(M), curvB̄(kB)}

where B̄ ∶= B ⊗LA kA.

Proof. The first inequality follows from Lemma 3.1.7 as

curvA(M) = curvA(B ⊗LBM) ≤max{curvA(B), curvB(M)}
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We now work to prove the second inequality. We have

kB ⊗LB̄ (kA ⊗
L
AM) ≅ kB ⊗LB̄ (kA ⊗

L
A B) ⊗LBM ≅ kB ⊗LBM

By [Qui67, Theorem II.6.6], we have a spectral sequence

E2
p,q ∶ = πp(kB ⊗LB̄ πq(kA ⊗

L
AM)) Ô⇒ πp+q(kB ⊗LBM)

From this we get the inequality

βBn (M) ≤
n

∑
i=0

βB̄n−i(πi(kA ⊗LAM)) ≤
n

∑
i=0

βB̄n−i(kB)βAi (M)

Note that the second inequality holds because πi(kA⊗LAM) is a finite kB-vector space. Then

PBM(t) ⪯ P B̄k (t)PAM(t)

and we get

curvB(M) ≤max{curvA(M), curvB̄(kB)}.

We will generally use this lemma with more specific hypotheses on φ and we record these

use-cases in the following corollaries.

Definition 3.1.9 ( [TV08] Lemma 2.2.2.2). A map φ∶A→ B of simplicial rings is flat if π0(B)
is a flat π0(A)-module and the natural map π(A) ⊗π0(A) π0(B) → π(B) is an isomorphism.

Corollary 3.1.10. Let (A,kA) and (B,kB) be local simplicial rings and let M ∈mod(B). If

φ∶A→ B is a flat map of local simplicial rings then

curvA(M) ≤ curvB(M) ≤max{curvA(M), curvB̄(kB)}

where B̄∶ = B ⊗LA kA ≅ π0(B) ⊗π0(A) kA.

Proof. The discussion in the proof of [TV08, Lemma 2.2.2.2] implies B̄ ≅ π0(B) ⊗π0(A) kA,
which also implies curvA(B) = 0. The result follows immediately from Lemma 3.1.8.

Corollary 3.1.11. Let (A,k) be a local simplicial ring and let B be a Koszul complex on

x1, . . . , xr ∈ m, the maximal ideal of A0. Then

curvA(M) ≤ curvB(M) ≤max{curvA(M),1}.
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Proof. It suffices to consider the case where B = K[A;x], the Koszul complex on a single

element. By construction, curvA(B) = 0. We claim curvB̄(kB) = 1. By Lemma 3.1.5, we

can compute this in the DG setting, where B̄ is an exterior algebra over k on x in degree

1. Then by [Avr98, Proposition 6.1.7] or, more directly, [AI18, Lemma 1.5], the divided

power algebra B̄⟨X ∣ ∂(X) = x⟩, is a resolution of k over B̄ and so k ⊗L
B̄
k ≅ k⟨X⟩ which has

curvature 1.

3.1.3 Simplicial rings in positive characteristic

In this section, we collect some results about simplicial rings in positive characteristic

that will help contextualize our later results on homological dimension. We first prove the

following result which is simply a re-framing of [BIL+23, Theorem 2.1] for simplicial rings.

The proof is exactly the same aside from checking that various statements remain true when

we replace a classical ring R with a simplicial ring A. We include it here for the convenience

of the reader.

Proposition 3.1.12. Let (A,k) be a local simplicial ring of characteristic p > 0. Then there is

a natural number c such that for any A-module M and any pe > c there is an isomorphism

F e∗K
M ≃ π(F e∗KM)

in Ho(A). In particular, k is a summand of F e∗K
M when π(KM) ≠ 0.

Proof. Let m = ker(A → k). We can complete A at m by computing limnA/mn, noting

that limits are computed degree-wise. Let Â be the completion and note that because

mπ(KM) = 0, the natural map

KM → Â⊗AKM ≃KÂ⊗AM

is an isomorphism and so we can assume A and thus A0 are complete. Let B → A0 be a

minimal Cohen presentation of A0. Let ρ∶B{X} ∼Ð→ A and B{Y } ∼Ð→ k be simplicial free

resolutions of A and k respectively as B-algebras. Then

B{X,Y }∶ = B{X} ⊗B B{Y }

is a simplicial free resolution of KA over B{X}. We also get that B{X,Y } ≃Ð→ k{X} by
applying B{X} ⊗B − to the quasi-isomorphism B{Y } ≃Ð→ k.

Consider J = ker(k{X} → k). k{X} is a free simplicial k-algebra, so [Qui70, The-

orem 6.12] says that for every integer n ≥ 0 πi(Jn+1) = 0 for i ≤ n. In particular,
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k{X} → k{X}/Jn+1 will be bijective on homology in degrees ≤ n. Because k{X} ≃KA we

know that for c > sup{i∶πi (KA) ≠ 0}

πi (k{X}) ≅ πi (KA) = 0 for i > c

By Remark 2.2.4 we have a map of simplicial rings k{X}/Jc+1 → C that is bijective on

homology in degree ≤ c and with πi(C) = 0 for i > c. Then the composition

k{X} Ð→ k{X}/Jc+1 Ð→ C

is a quasi-isomorphism by construction. Let I ∶ = ker (ε∶B{X} → k) and let e be such that

pe ≥ c + 1. Then the composition

B{X} F e

Ð→ B{X} Ð→ B{X,Y } Ð→ k{X}

takes I into Jc+1, and so the map B{X} → C factors through ε, yielding the following

commutative diagram

A A KA

B{X} B{X} B{X,Y } k{X}

k C

F e

F e

≃ ρ

ε

≃

≃

≃

≃

Ψ

Given a C-module M , the A-module ρ∗ε∗Ψ∗(M) must be isomorphic to its homology after

normalizing, as this is true for any k-module. Thus, by the above commutative diagram

we get that any simplicial KA-module M ′, the simplicial A-module F e∗(M ′) is isomorphic

to its homology after normalizing, and letting M ′ be KM we prove the result. The final

statement comes from the fact that if π(KM) ≠ 0 then π(F e∗KM) has F e∗k, and thus k, as a

summand.

From this we can derive a simplicial version of Theorem 1.1 of [AHIY12], itself a

generalization of [Kun69, Theorem 2.1] and [Rod88, Theorem 2].

Proposition 3.1.13. Let (A,k) be a local simplicial ring andM ∈mod(A). If curvA(F e∗M) = 0,
then A has finite global dimension and thus A ≃ π0(A) is a regular ring.

Proof. If curvA(F e∗M), then curvN(A)N(F e∗M) = 0 by Lemma 3.1.5. Then N(F e∗M) and
N(F e∗KM) are in thick(N(A)). Then, by Proposition 3.1.12, k ∈ thick(N(A)). Then,

by [Jør10, Theorem A], A ≃ π0(A) and so π0(A) is regular.
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We can also use Proposition 3.1.12 to extend, with similar proof, [AHIY12, Theorem 5.1].

Lemma 3.1.14. Let (A,k) be a local simplicial ring and M ∈mod(A). Then curv(F e∗M) =
curv(k) for all e ≥ 1.

Proof. First, note that for e≫ 0 and any M a finitely generated A-module

curv(k) ≤ curv(F e∗KM) = curv(F e∗M) ≤ curv(k).

The first inequality follows from Proposition 3.1.12 and Lemma 3.1.6. The second equality

follows because [Avr99, Proposition 2.2] implies that N(KM) ≅ N(KA) ⊗N(A) N(M).
Because N(KA) is a perfect complex, curvN(A)(N(KM)) = curvN(A)(N(M)) and so the

equality follows from Lemma 3.1.5. The third inequality holds because curv(N) ≤ curv(k)
for any finite A-module N . Thus we get that curv(F e∗M) = curv(k) for e≫ 0.

We now show that this holds for e ≥ 1. Define

M (1)∶ =M

M (n+1)∶ =M (n) ⊗LR F∗M

Tautologically, curv(F∗M (1)) ≤ curv(F∗M), so assume that curvA(Fn∗M (n)) ≤ curvA(F∗M).
Applying Lemma 3.1.7 to the maps A→ Fn∗A→ Fn+1∗ A, we get

curvA(Fn∗M (n+1)) = curvA (Fn∗M (n) ⊗LFn
∗
R F

n+1
∗ M)

≤max{curvA(Fn∗M (n)), curvFn
∗
A(Fn+1∗ M)}

=max{curvA(Fn∗M (n)), curvA(F∗M)}

≤ curvA(F∗M).

Then we get that for e≫ 0

curv(k) = curv(F e∗M (e)) ≤ curv(F∗M) ≤ curv(k).

3.2 Homological dimension

This section contains the main results connecting the homological properties of the relative

Frobenius of a map φ of local rings to the homological properties of the (derived) fibers of φ.

We first focus on regularity and the complete intersection property, as these are characterized

in terms of Betti number growth, before turning to the Gorenstein property.
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3.2.1 Growth of Betti numbers

Throughout, all rings will be commutative, noetherian of characteristic p > 0. We will also

assume all rings are F -finite. Fix a local homomorphism φ∶ (R,mR, kR) → (S,mS , kS) of
finite flat dimension. In this setting, a result of Peskine-Szpiro [PS73] gives that S ⊗LR F∗R ≅
S⊗RF∗R. Our goal is to understand how the homological properties of the relative Frobenius

relate to those of the (derived) fibers of φ. Recall the following diagram

R S

F∗R A∶ = S ⊗R F∗R F∗S

φ

F
F

FS/R

where FS/R is the relative Frobenius of φ induced by the universal property of the tensor

product. The main idea that we exploit to investigate this relationship is that the Frobenius

on the derived closed fiber, F ∶S ⊗LR kR → F∗ (S ⊗LR kR), can be factored as follows:

S ⊗R F∗R F∗S

S ⊗LR kR S ⊗LR F∗kR F∗(S ⊗LR kR)

FS/R

(1) (2)

That is, the Frobenius on the derived closed fiber is the base change of the relative Frobenius

up to a field extension. More generally, we can consider the perfect fibers S ⊗LR k′ for k′ a
finite, purely inseparable extension of kR and use that k′ ⊆ F e∗kR for e ≫ 0 to identify an

analogous factorization of the Frobenius on S ⊗LR k′. We are ready to state our main result.

Theorem 3.2.1. Let R and S be F -finite local rings of positive characteristic with residue

fields kR and kS respectively. Let φ∶R → S be a map of local rings. If φ has finite flat

dimension, then

curvS̄′(F∗S̄′) ≤ curvA(F∗S) ≤max{curvS̄′(F∗S̄′),1}

where S̄′ ∶= S ⊗LR k′ for k′ any finite, purely inseparable extension of kR and A is the

localization of S ⊗R F∗R at the contraction of the maximal ideal of F∗S.

Proof. Let k′ be a finite, purely inseparable field extension of kR and let e be such that

k′ ⊆ F e∗kR. Let Ae be the localization of S ⊗R F e∗R at the contraction of the maximal ideal
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of F e∗S, let kAe be the residue field of Ae, and fix the following notation:

S̄ ∶= S ⊗LR kR

S̄′ ∶= S̄ ⊗kR k′

Āe ∶= Ae ⊗LF e
∗
R F

e
∗kR ≃ S ⊗LR F e∗kR

Our goal is to compare the Betti numbers of the relative Frobenius to those of the Frobenius

on the perfect fibers of φ∶R → S, so we first look at the Betti numbers of F eS/R∶A
e → F e∗S.

Note that

F e∗S ⊗LAe kAe ≃ F e∗S ⊗LAe (Āe ⊗LĀe kAe)

≃ (F e∗S ⊗LF e
∗
R F

e
∗kR) ⊗LĀe kAe

≃ F e∗ S̄ ⊗LĀe kAe .

Thus

βA
e

i (F e∗S) = βĀ
e

i (F e∗ S̄)

and so

curvAe(F e∗S) = curvĀe(F e∗ S̄).

We now turn to the Betti numbers of the Frobenius on the perfect fibers. Notice that

F e∶S ⊗LR k′ → F e∗(S ⊗LR k′) factors as

S ⊗LR k′ S ⊗LR F e∗kR F e∗(S ⊗LR kR) F e∗(S ⊗LR k′)
(1) (2) (3)

which in our notation is

S̄′ Āe F e∗ S̄ F e∗ S̄
′

(1) (2) (3)

Now we note that

F e∗ S̄
′ ⊗LĀe kA ≅ (F e∗ S̄ ⊗F e

∗
kR F

e
∗k
′) ⊗LĀe kAe ≅ (F e∗ S̄ ⊗LĀe kA) ⊗F e

∗
kR F

e
∗k
′

which gives us

curvĀe(F e∗ S̄) = curvĀe(F e∗ S̄′).

Finally, consider S̄′ → Āe. This is flat, and because Āe⊗L
S̄′
kS′ ≅ kAe⊗k′ kS′ , which is complete

intersection, Lemma 3.1.8 tells us

curvS̄′(F e∗ S̄′) ≤ curvĀe(F e∗ S̄′) ≤max{curvS̄′(F e∗ S̄′),1}.
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Combining this with the fact that curvAe(F e∗S) = curvĀe(F e∗ S̄) = curvĀe(F e∗ S̄′) we get

curvS̄′(F e∗ S̄′) ≤ curvAe(F e∗S) ≤max{curvS̄′(F e∗ S̄′),1}.

Invoking Lemma 3.1.14 we immediately get

curvS̄′(F∗S̄′) ≤ curvAe(F e∗S) ≤max{curvS̄′(F∗S̄′),1}.

We would like to remove e from the middle term, as right now e depends on the extension

k′ of kR. This is immediate when curvA(F∗S) ≥ 1, so we only need to consider the cases

where curvA(F∗S) = 0. In this case, we claim curvAe(F e∗S) = 0 for all e ≥ 1. We prove

this by induction. It is tautological for e = 1 so suppose it’s true up to e = n. Note that

S ⊗R Fn+1∗ R → Fn+1∗ S factors as

(S ⊗R F∗R) ⊗F∗R Fn∗R F∗S ⊗F∗R Fn+1∗ R Fn+1∗ S

The first map is simply FS/R⊗F∗RFn∗R and so has curvature zero. The second map is simply

F∗(FnS/R) and so has curvature zero. Thus, by Lemma 3.1.7 curvAn+1(Fn+1∗ S) = 0. Thus

curvS̄′(F∗S̄′) ≤ curvA(F∗S) ≤max{curvS̄′(F∗S̄′),1}.

From this, we recover the results of Radu, André and Dumitrescu. First, recall the

definition of a regular homomorphism of rings.

Definition 3.2.2. A map φ∶R → S of noetherian rings is regular if it is flat and all the fibers

are geometrically regular, meaning for every p ∈ SpecR and every finite purely inseparable

field extension k(p) ⊆ k′, the ring S ⊗R k′ is regular.

Corollary 3.2.3. Let R and S be F -finite local rings of positive characteristic. Let φ∶R → S

be a map of local rings of finite flat dimension. Then FS/R has finite flat dimension if and

only if φ is regular.

Proof. Suppose FS/R has finite flat dimension. Regularity is a local condition, so we can

work in the setting of Theorem 3.2.1 and assume R and S are local. Let k′ be a finite,

purely inseparable field extension of kR, the residue field of R and let S̄′ ∶= S ⊗LR k′. Because
βAi (F∗S) = 0 for i≫ 0, Theorem 3.2.1 tells us βS̄i (F∗S̄) = 0 for i≫ 0. By Proposition 3.1.13,

S̄′ ≅ S ⊗R k′ is regular and flatness of φ follows immediately. The reverse direction follows

from [Rad92,And93].
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From here, we move on to consider CI-dimension, so-named because a ring R is complete

intersection if and only if the CI-dimension of every finite R-module is finite. This was first

defined in [AGP97].

Definition 3.2.4. A finite R-module M is said to have finite CI-dimension if there is a local

flat homomorphism R → R′ and a surjective homomorphism Q→ R′ with kernel generated

by a regular sequence such that pdQ(M ⊗R R′) < ∞.

Definition 3.2.5. Let φ∶ (R,mR) → (S,mS) be a local homomorphism of commutative local

rings and let φ̀ denote the composition of φ with the completion map S → Ŝ. A Cohen

factorization of φ̀ is a commutative diagram

R Ŝ

R′

φ̇

φ̀

φ′

of local homomorphisms such that

(i) φ̇ is flat

(ii) R′ is complete and R′/mRR
′ regular

(iii) φ′ is surjective

Definition 3.2.6 ( [Avr99] §1). We say that a map of local rings φ∶R → S is complete

intersection at the maximal ideal of S if for some (equiv. any) Cohen factorization R →
R′ → Ŝ of φ, the ideal ker(R′ → Ŝ) is generated by a regular sequence. f ′.

Finally, we define the minimal model of a map of local rings. For more details, see [Avr98]

Definition 3.2.7. Let φ∶R → S be a map of local rings. A minimal model for φ is a

factorisation R → A→ S, where A is a dg R-algebra with the following properties:

(1) A = R[X] is the free strictly graded commutative R-algebra on a graded set X =
X1,X2, ..., each Xi being a set of degree i variables;

(2) the differential of A satisfies ∂(mA) ⊆ mRA +m2
A;

(3) A→ S is a quasi-isomorphism

Note that A⊗R kR ≅ S ⊗LR kR.



3.2. Homological dimension 29

We are now ready to state and prove the following corollary to Theorem 3.2.1.

Corollary 3.2.8. Let R and S be F -finite local rings of positive characteristic. Let φ∶R → S

be a map of local rings of finite flat dimension. Then FS/R has finite CI dimension if and

only if φ is complete intersection at mS.

Proof. Let A be the localization of S⊗R F∗S at the contraction of the maximal ideal of F∗S.

Let S̄∶ = S ⊗LR kR where kR is the residue field of R. Since FS/R has finite CI-dimension,

curvA(F∗S) ≤ 1, by [AGP97, Theorem 5.3], and hence curvS̄(kS) ≤ 1, by Theorem 3.2.1. We

claim that this implies φ is complete intersection at mS ; to deduce this we use the results

from [Avr99, Theorem 3.4]; see also [AI03, Theorem 5.4].

First, we reduce to the case where φ∶R → S is surjective and S is complete. Note that

S ⊗LR kR → Ŝ ⊗LR kR is flat and both rings have common residue field kS . Lemma 3.1.10 tells

us that curvature stays constant along this map, and so we can assume S = Ŝ.
Take a Cohen presentation of φ:

R S

R′

φ̇

φ̀

φ′

Let R̄′ = R′ ⊗R kR. This is a regular local ring so its residue field, kS , is resolved by the

Koszul complex KR̄′ and

(S ⊗LR kR) ⊗R̄′ KR̄′ ≅ (S ⊗LR′ R̄′) ⊗LR̄′ kS ≅ S ⊗
L
R′ kS .

Thus S ⊗LR′ kS is a Koszul complex on S ⊗LR kR and so by Corollary 3.1.11 we see that

curvS⊗L
RkR
(kS) ≤ 1 if and only if curvS⊗L

R′
kS
(kS) ≤ 1.

Thus, we can assume R → S is a surjective map of complete local rings. Let k be their

common residue field. We know that curvS̄(k) = curvS̄(F∗S̄) ≤ 1 and we aim to show the

εn(φ) = 0 for n ≥ 3, which will show R → S is c.i. at mS by [Avr99, Theorem 3.4]. Here

εn(φ) is the nth deviation of φ, defined originally in [Avr99], though a typo in the formula

was corrected in [AI03, 2.5]. The important fact for us will be that for a minimal model

R → R[X] → S, εn(φ) = card(Xn−1) for n ≥ 3.
Let R → R[X] → S be a minimal model and note that for n ≥ 3 one has

εn(φ) = rankk πn−1(S ⊗LR k).

Then, because k[X] ⊆ TorS̄(k, k) and curvS̄(k) ≤ 1, lim
n→∞

n
√
εn(φ) ≤ 1, and so, by [AI03,

Corollary 5.5], φ is complete intersection at mS .
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For the reverse direction, suppose R → S is complete intersection at mS . Then ker(R → S)
is generated by a regular sequence x and K[R;x] ≃ S. Then S̄ ≅K[R;x] ⊗R k, which is an

exterior algebra on x with zero differential. Then by [Avr98, Proposition 6.1.7] or, more

directly, [AI18, Lemma 1.5], the divided power algebra S̄⟨X ∣ ∂(X) = x⟩, is a resolution of k

over S̄ and so k ⊗L
S̄
k ≅ k⟨X⟩ which has curvature 1.

3.2.2 G-dimension

With a Radu-André-type result for flat and CI-dimension, it is natural to ask whether a

similar result can be proven for G-dimension, an analogue of CI-dimension for the Gorenstein

property. This was first defined for finite modules in [AB69] and was generalized to modules

over local homomorphisms in [ISW04].

Definition 3.2.9. Given M a homologically finite complex of R-modules, meaning H(M) is
degreewise finite and bounded, we say M has finite G-dimension if the following natural

map is an isomorphism

M RHomR(RHomR(M,R),R).∼

That is to say, M is derived reflexive.

In the following result, we restrict to a flat homomorphism φ∶R → S, rather than requiring

φ to have finite flat dimension as in the previous section. This is to avoid discussing the

definition of finite G-dimension in the setting of derived rings which we plan to take up on a

later occasion.

Theorem 3.2.10. Let R and S be F -finite local rings of positive characteristic. Let φ∶R → S

be a flat map of local rings. Then the relative Frobenius FS/R∶S ⊗R F∗R → F∗S has finite

G-dimension if and only if φ is Gorenstein at mS.

Proof. Recall the following diagram

R S

F∗R A∶ = S ⊗R F∗R F∗S

φ

F
F

FS/R

where FS/R is the relative Frobenius of φ induced by the universal property of the tensor

product. The main idea that we exploit to investigate this relationship is that the Frobenius
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on the derived closed fiber, F ∶S ⊗LR kR → F∗ (S ⊗LR kR), can be factored as follows:

S ⊗R F∗R F∗S

S ⊗LR kR S ⊗LR F∗kR F∗(S ⊗LR kR)

FS/R

(1) (2)

Since the (1) is just the base change of a field extension, if we can show the (2) has finite
G-dimension, we will be done. So, we simply want to show that finite G-dimension is

preserved when we base change along F∗R → F∗kR. Let A∶ = S ⊗R F∗R. Since the relative

Frobenius has finite G-dimension, we consider the following isomorphism

F∗S RHomA(RHomA(F∗S,A),A).∼

Applying − ⊗LF∗R F∗kR, we get

F∗(S/mRS) RHomA(RHomA(S,A),A) ⊗LF∗R F∗kR.
∼

Then, because φ is flat,

F∗(S/mRS) RHomĀ(RHomĀ(F∗(S/mRS), Ā), Ā)∼

where again Ā∶ = S ⊗R F∗kR.
For the reverse direction, consider the exact triangle in Ho(R)

F∗S → RHomA(RHomA(F∗S,A),A) → C

where C is the cone of the natural map F∗S → RHomA(RHomA(F∗S,A),A). If, after

applying − ⊗LR F∗kR to the triangle, we get that the first map is a quasi-isomorphism, this

implies C ⊗LR F∗kR is acyclic. By Nakayama’s Lemma, this implies C is acyclic.

Thus we have that SS/R has finite G-dimension if and only if F ∶ S⊗R kR → F∗(S⊗R kR)
has finite G-dimension, and the result follows from [TY04, Theorem 6.2].
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Chapter 4

Multiplier ideals and klt singularities via

(derived) splittings

Let X be a normal, excellent, noetherian scheme over SpecQ with a dualizing complex. For

∆ ≥ 0 a Q-divisor on X such that KX +∆ is Q-Cartier, we can consider the multiplier ideal

J(X,∆) ⊆ OX as a measure of the severity of the singularities of the pair (X,∆). Introduced
in the analytic setting by Nadel [Nad90] and further developed by Demailley, Siu and others

[Dem93,Siu93,AS95,Siu98], Esnault and Viehweg [EV92, Chapter 7] independently developed

the theory in the algebro-geometric setting. Lipman also encountered multiplier ideals in

connections with his work on the Briancon-Skoda theorem [Lip94], and their applications to

algebra were studied by many others [EL97,Kaw99a,Kaw99b,EL99,DEL00,ELS01].

While J(X,∆) depends on the geometry of the pair (X,∆), de Fernex and Hacon

introduced in [dFH09] an object J(X) whose definition doesn’t require the choice of a

boundary divisor while also showing that J(X) is the unique maximal element in the

collection {J(X,∆)} where ∆ ranges over all effective Q-divisors on X such that KX +∆
is Q-Cartier. We call J(X) the multiplier ideal of X and say that X is has klt type if

J(X) = OX .

We set out to prove an alternate characterization of the multiplier ideal by considering

maps π∗ωY → OX where π ∶ Y →X is a regular alteration. This leads us to the main result

of this paper:

Theorem 4.0.1. Let X be a normal, excellent, noetherian scheme over SpecQ with a dualizing

complex and I = ∏J
ak
k be a formal effective Q-linear combination of ideal sheaves on X. The

multiplier ideal J(X,I) can be realized as

J(X,I) = ∑
π∶Y→X

Im (HomX(π∗ωY ,OX) ⊗OX
π∗ωY (−EY ) → OX)

33
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where π ∶ Y → X ranges over all log regular alterations of (X,I) with EY = ∑akEk for

JkOY = OY (−Ek) and the map HomX(π∗ωY ,OX)⊗OX
π∗ωY (−EY ) → OX is the evaluation

map.

Roughly speaking, we can interpret this as saying, at least locally, that an element

f ∈ J (X,I) if and only if it is in the image of some map ϕ ∶ π∗ωY → OX restricted to

π∗ωY (−EY ). Showing that J(X,I) is contained in this sum of images is fairly straightforward.

It is in showing the reverse containment where the work is done by proving the following

key lemma inspired by Lemma 1.1 of [FG12], though the proof technique is quite different.

Lemma 4.0.2. Let ρ ∶ SpecS → SpecR be a finite map of normal, excellent, noetherian

domains containing Q with dualizing complexes and let I = ∏J
ak
k be a formal effective

Q-linear combination of ideal sheaves on SpecR. Suppose we have a Q-Cartier divisor

Γ ≥ ρ∗KR with nΓ = div g. Then

TrS/R (ρ∗J(ωS ,Γ, IS)) ⊆ J(R, I).

In the case where I = R and TrS/R (ρ∗J(ωS ,Γ)) = R, this implies that R has klt type.

The original motivation for this work was to develop a derived splinter characterization

of klt singularities, akin to the following characterization of rational singularities by Bhatt

and Kovács [Bha12,Kov00]:

Theorem 4.0.3 ( [Bha12] Theorem 2.12, [Kov00] Theorem 3). A scheme X of essentially

finite type over a field of characteristic 0 has rational singularities if and only if it is a derived

splinter, meaning for ever proper surjective map π ∶ Y →X, the natural map OX → Rπ∗OY
splits in the derived category of coherent sheaves on X.

If X has klt type, then it has rational singularities and hence OX → Rπ∗OY splits for

any proper surjective map π ∶ Y →X. Thus, we might expect that some extra conditions on

the splitting Rπ∗OY → OX may characterize schemes having klt type. Ultimately, such a

characterization follows as a corollary to Theorem 4.0.1:

Corollary 4.0.4. Let X be a normal, excellent, noetherian scheme over SpecQ with a dualizing

complex and I = ∏J
ak
k be a formal effective Q-linear combination of ideal sheaves on X. The

following are equivalent

1. (X,I) has klt type
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2. For all sufficiently large regular alterations π ∶ Y →X, the natural map OX → Rπ∗OY
splits and locally factors through Rπ∗ωY (−EY ) = π∗ωY (−EY )

3. For all sufficiently large regular alterations π ∶ Y → X, OX is locally a summand of

Rπ∗ωY (−EY ) = π∗ωY (−EY )

Here, EY ∶= ∑akEk where OY (−EY ) = JkOY .

In positive characteristic, the test ideal plays a role analogous to the multiplier ideal

and can be used to a define strongly F -regular singularities, an analog of klt singularities in

positive characteristic. In [BST15], Blickle, Schwede and Tucker give a characteristic-free

description of an ideal J(X,∆) that specializes to the multiplier ideal in characteristic zero

and the test ideal in characteristic p > 0, so we might expect that our characterization

of the multiplier ideal might carry over to a characterization of the test ideal in positive

characteristic. We achieve such a result in characteristic p > 2 as a corollary to a result of

Epstein and Schwede [ES14] combined with the existence of quasi-Gorenstein finite covers.

Proposition 4.0.5. Let R be a Noetherian, F -finite reduced ring of characteristic p > 2. The

test ideal τ(R) can be realized as

τ(R) = ∑
R→S

Im (HomR(ωS ,R) ⊗R τ(ωS) → R)

where the sum ranges over all finite extensions R → S and HomR(ωS ,R) ⊗R τ(ωS) → R is

the evaluation map.

Here τ(ωS) ⊆ ωS is the parameter test submodule which plays an analogous role to π∗ωY ,

which is sometimes called the Grauert-Riemenschneider sheaf or multiplier submodule, in

characteristic zero.

Remark 4.0.6. The above results could be stated for regular alterations by a similar argument

outlined in the characteristic zero case for the multiplier ideal using the fact that τ(X) =
∑ τ(X,∆) for finitely many log-Q-Gorenstein pairs (X,∆) (see [Sch11]). However, we leave

the result in this format as the local statement statement is more readily applicable to

questions in local algebra.

This also gives us the following splinter characterization of strongly F -regular singularities

as a byproduct.

Corollary 4.0.7. Let R be a Noetherian, F -finite reduced ring of characteristic p > 2. Then

R is strongly F -regular if and only if R is a summand of τ(ωS) for any sufficiently large

finite cover SpecS → SpecR.
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4.1 Characteristic zero

4.1.1 Preliminaries

Throughout this section, all schemes are noetherian, normal and integral over a field of

characteristic zero. We will often additionally require our schemes be excellent with a

dualizing complex, but will always make this explicit. Before we discuss our main object of

study, the multiplier ideal, we will review some preliminaries about canonical modules and

the trace map. We assume that the reader is familiar with canonical modules at the level

of [Har77] and [KM98]. This discussion largely follows Section 2 in [BST15], but we include

it here for the convenience of the reader.

Given a normal integral scheme X with canonical sheaf ωX , we say an integral divisor

KX is a canonical divisor for X if OX(KX) ≅ ωX . Given π ∶ Y → X a proper generically

finite map of normal integral schemes over a field k, we can consider the trace map

TrY /X ∶ π∗ωY → ωX

Since any generically finite map can be factored as a proper birational map followed by a

finite map, we discuss the trace map in these contexts.

Let π ∶ Y →X be a proper birational map of normal integral schemes and fix a canonical

divisor KY on Y and set KX = π∗KY (which ensures KY and KX agree on the locus where

π is an isomorphism). Because π is an isomorphism outside a codimension 2 subset of X,

π∗OY (KY ) is a torsion-free sheaf whose reflexification is OX(KX) and the trace map is

simply the natural reflexification map π∗OY (KY ) ↪ OX(KX).
If π ∶ Y → X is a finite surjective map of normal integral schemes, then π∗ωY ≅

HomOX
(π∗OY , ωX). We can then identify the trace map with the evaluation-at-1 map,

HomOX
(π∗OY , ωX) → ωX . Assuming additionally that π ∶ Y →X is a finite separable map

of normal integral schemes with ramification divisor Ramπ, we fix a canonical divisor KX

on X and set KY = π∗KX +Ramπ. Then the field-trace map

TrK(Y )/K(X) ∶K(Y ) →K(X)

restricts to a map π∗OY (KY ) → OX(KX) which can be identified with the Grothendieck

trace map. Throughout the rest of the paper, whenever we have a generically finite map of

normal integral schemes π ∶ Y →X, we will always choose KX and KY compatibly according

to the above discussion.
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We are now ready to introduce the concept of pairs. A Q-divisor Γ on X is a formal

linear combination of prime Weil divisors with coefficients in Q. Writing Γ = ∑aiZi where
the Zi are distinct prime divisors, we use ⌈Γ⌉ = ∑⌈ai⌉Zi and ⌊Γ⌋ = ∑⌊ai⌋Zi to denote the

round up and round down of Γ, respectively. We say that Γ is Q-Cartier if there exists an

integer n > 0 such that nΓ is an integral Cartier divisor, and the smallest such n is called

the index of Γ.

Definition 4.1.1. A pair (X,∆) is the combined data of a normal integral scheme X together

with a Q-divisor ∆ on X. The pair (X,∆) is called log-Q-Gorenstein if KX +∆ is Q-Cartier.

Definition 4.1.2. Given a log-Q-Gorenstein pair (X,∆), a log resolution of singularities of

the pair (X,∆) is a resolution of singularities π ∶ Y → X such that except(π) is a divisor

and π−1∗ (∆) + except(π) has simple normal crossing support.

More generally, let I = ∏J
ak
k be an effective formal Q-linear combination of ideal sheaves

on X. A log resolution of (X,I) is a proper birational morphism π ∶ Y →X with Y smooth

such that for every k the sheaf JkOY ≅ OY (−Ek) for Ek ≥ 0 Q-Cartier, except(π) is also a

divisor, and except(π) +EY has simple normal crossing support where EY = ∑akEk. Log
resolutions exist when X is quasi-excellent by [Tem08, Theorem 2.3.6].

For our purposes, we will also want to move beyond resolutions of singularities to consider

regular alterations.

Definition 4.1.3. A map π ∶ Y →X of schemes is a regular alteration if it is surjective, proper,

and generically finite and Y is nonsingular.

The main benefit to this is the Stein factorization. If π ∶ Y →X is a regular alteration,

then π factors as
Y X

Z

τ

π

ρ

where ρ ∶ Z →X is a finite surjective map and τ ∶ Y → Z is a resolution of singularities.

Given a log Q-Gorenstein pair (X,∆), we will say that π ∶ Y → X is a log regular

alteration if it is a regular alteration, except(τ) is a divisor, and π−1∗ (∆) + except(τ) has
simple normal crossing support.

This then leads us to the object of interest: the multiplier ideal. The theory of multiplier

ideals was largely developed by Esnault and Viehweg in our setting [EV92], and more details

on the theory can be found in [Laz04].
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Definition 4.1.4. Let X be a normal, excellent, noetherian scheme over SpecQ with a

dualizing complex. Given a log-Q-Gorenstein pair (X,∆) with ∆ ≥ 0, the multiplier ideal of

the pair (X,∆) is

J(X,∆) ∶= π∗OY (⌈KY − π∗(KX +∆)⌉) ⊆ OX

where π ∶ Y → X is a log resolution of singularities of the pair (X,∆). Note that [Mur21,

Theorem A] ensures that Rπ∗OY (⌈KY − π∗(KX +∆)⌉) = π∗OY (⌈KY − π∗(KX +∆)⌉).

More generally, we can let π ∶ Y →X be a log regular alteration of (X,∆) and consider

J(X,∆) = TrY /X(π∗OY (⌈KY − π∗(KX +∆)⌉)) ⊆ OX

via Theorem 8.1 of [BST15].

We will also use the related concept of multiplier submodules, sometimes called Grauert-

Riemenschneider sheaves as they were first suggested as objects of study by Grauert and

Riemenschneider [GR70]. As far as we know, the first instance of the name multiplier

submodule appears in [Bli04].

Definition 4.1.5 ( [Bli04]). Let X be a normal, excellent, noetherian scheme over SpecQ

with a dualizing complex ω●X . Let ωX be the canonical module, the last non-vanishing

cohomology sheaf of ω●X , and fix KX a canonical divisor with OX(KX) ≅ ωX . Given an

effective Q-Cartier divisor ∆, we define the multiplier submodule J(ωX ,∆), also known as

the Grauert-Riemenschneider sheaf, as

J(ωX ,∆) ∶= π∗OY (⌈KY − π∗∆⌉)

where π ∶ Y → X is a log resolution of (X,∆). Once again, [Mur21, Theorem A] ensures

Rπ∗OY (⌈KY − π∗∆⌉) = π∗OY (⌈KY − π∗∆⌉).

The hypothesis that KX +∆ be Q-Cartier is included because there is a well-defined

theory of pullbacks for Cartier divisors. Work of de Fernex and Hacon [dFH09] removes this

hypothesis by defining a pullback operation that uses the fractional ideal sheaf corresponding

to a divisor.

Assume the same hypotheses as 4.1.5. Given a divisor D on X and π ∶ Y → X proper,

birational, de Fernex and Hacon define the natural pullback of D along π to be

π♮(D) ∶= divY (OX(−D) ⋅ OY ).
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In particular, OY (−π♮D) = (OX(−D) ⋅ OY )∨∨ where F∨ ∶= Hom(F ,OY ) for any quasi-

coherent sheaf on Y . Applying this operation to multiples of KX , we come to the following

definition.

Definition 4.1.6 ( [dFH09] 2.6, 3.1). Given a proper birational morphism of normal, excellent,

noetherian schemes over SpecQ with dualizing complexes π ∶ Y → X, the mth limiting

relative canonical divisor Km,Y /X is

Km,Y /X ∶=KY −
1

m
π♮(mKX)

If I = ∏J
ak
k be an effective formal Q-linear combination of ideal sheaves on X, define

Jm(X,I) ∶= π∗OY (⌈Km,Y /X −EY ⌉)

where π ∶ Y →X is a log resolution of (X,I +OX(−mKX)).

Proposition 4.1.7 (cf. [dFH09] Proposition 4.7). Let X be a normal, excellent, noetherian

scheme over SpecQ with a dualizing complex and I = ∏J
ak
k be a formal effective Q-linear

combination of ideal sheaves on X. The collection {Jm(X,I)}m≥1 has a unique maximal

element.

Proof. Fix π ∶ Y →X a proper birational morphism of normal, excellent, noetherian schemes

over SpecQ with dualizing complexes. We first note that Km,Y /X ≤ Kmq,Y /X for all m,q

positive integers as mv♮(D) ≥ v♮(mD). Thus Jm(X,∆) ⊆ Jmq(X,∆) and the existence of a

unique maximal element follows by noetherianity.

Definition 4.1.8. Let X be a normal, excellent, noetherian scheme over SpecQ with a

dualizing complex and I = ∏J
ak
k be a formal effective Q-linear combination of ideal sheaves

on X. We call the unique maximal element of {Jm(X,I)}m≥1 the multiplier ideal of the

pair (X,I) and denote it J(X,I). When I = OX , we call this unique maximal element the

multiplier ideal of X and denote it by J(X).

Remark 4.1.9. For sufficiently divisible n, J(X) = J(ωX , (ω(−n)X )1/n). To see this, let π ∶ Y →
X be a log resolution of (X,OX(−nKX)) and note that

J(X) = π∗OY (⌈KY −
1

n
π♮(nKX))⌉)

= π∗OY (⌈KY −
1

n
divY (OX(−nKX) ⋅ OY )⌉)

= J(ωX , (ω(−n)X )1/n).
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If we additionally assumed that X is a variety, [dFH09, Corollary 5.5] shows that

J(X,I) is also the unique maximal element of {J((X,∆); I)}. This follows from [dFH09,

Proposition 5.2], which says that J(X,I) = Jm(X,I) = J((X,∆); I) whenever ∆ is what is

called m-compatible, and [dFH09, Theorem 5.4], which shows that an m-compatible ∆ exists

for all m ≥ 0. We will introduce a variant of their result in our more general setting, which

will require defining an m-compatible boundary and a Bertini theorem from [LM22].

Definition 4.1.10 ( [dFH09] Definition 5.1). Let X be a normal, excellent, noetherian

scheme over SpecQ with a dualizing complex and I = ∏J
ak
k be a formal effective Q-linear

combination of ideal sheaves on X. Fix an integer m ≥ 2. Given a log resolution π ∶ Y →X of

(X,IOX(−mKX)), we say that the log Q-Gorenstein pair (X,∆) is said to be m-compatible

for (X,I) with respect to π if

(i) m∆ is integral and ⌊∆⌋ = 0,

(ii) no component of ∆ is contained in Zk for any k where Zk is the subscheme defined by

Jk

(iii) π is a log resolution of the pair ((X,∆); IOX(−mKX))

(iv) KY +∆Y − π∗(KX +∆) =Km,Y /X where ∆Y is the proper transform of ∆ on Y

Theorem 4.1.11 (Theorem 10.1 [LM22]). Let (R,m, k) be a Noetherian local domain contain-

ing Q. Fix an integer N ≥ 1. Let f ∶ X → PNR be a separated morphism of finite type from

a regular Noetherian scheme X. Assume that every closed point of X lies over the unique

closed point of SpecR.

Let T0, T1, . . . , TN be a basis of H0(PNR ,O(1)) as a free R-module. Then, there exists a

nonempty Zariski open subset W ⊆ AN+1k with the following property: For all a0, a1, . . . , aN ∈
R, if

(ā0, ā1, . . . , āN) ∈W (k),

then the section

h = a0T1 + a1T1 +⋯ + aNTN

is such that f−1(V (h)) is regular.

We will want a slightly more specific application of this result for our purposes, so we

include that statement here, making no claims over its ownership.
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Lemma 4.1.12. Let (R,m, k) be a Noetherian local domain containing Q. Let J = (g0, . . . , gr)
be an ideal of R, let I = ∏J

ak
k be an effective Q-linear combination of ideal sheaves on

X = SpecR, and let π ∶ Y → X be a log resolution of (X,I, J). Then for a general choice

of (a0, . . . , ar) ∈ An+1k we have that, for f ∶ = a0g0 +⋯argr, divX f is reduced and avoids the

components of I and π ∶ Y →X is a log resolution of (X,I,divX f).

Proof. Let X̃ be the blowup of J in R. Consider the following diagram coming from the

universal property of the blowup

Y X̃ PrR

X

τ

π

i

b
p

where i comes from the surjection of graded rings R[T0, . . . , Tr] → BlI(R) sending Ti ↦ gi

in degree one. Let h = a0T0 +⋯ + arTr. Then divX̃ f = divX̃ h. By Theorem 4.1.11, divY f

is smooth for a Zariski dense subset of (a0, . . . , ar) ∈ Ar+1k , and by [LM22, Remark 10.2],

we can also ensure that except(π) +EY + divY f is simple normal crossing (as π ∶ Y →X is

already a log resolution of (R, I)) and that divX f avoids the components of I.

We now show that, working sufficiently locally, m-compatible boundaries exist in our

setting and thus the multiplier ideal agrees with the multiplier ideal of some pair.

Proposition 4.1.13 (cf. [dFH09] Theorem 5.4, Corollary 5.5). Let R be a local, normal,

excellent, noetherian domain containing Q with a dualizing complex, let X = SpecR and

I = ∏J
ak
k be a formal effective Q-linear combination of ideal sheaves on X. Then

J(X,I) = J((X,∆); I)

for some log Q-Gorenstein pair (X,∆).

Proof. This proof is essentially identical to the work of de Fernex-Hacon but we include

it here for the convenience of the reader. We first claim that J((X,I);∆) ⊆ J(X,I) for
any effective log Q-Gorenstein pair (X,∆) [dFH09, cf. Remark 5.3]. Suppose m is the

Q-Cartier index for KX +∆. It is straightforward to show that π♮(C +D) = π♮(C) + π♮(D)
for C Cartier, so π♮(mKX) = π♮(m(KX +∆) −m∆) = mπ∗(KX +∆) + π♮(−m∆). This

implies KY +∆Y − π∗(KX +∆) ≤Km,Y /X =KY − 1
mπ
♮(mKX) and thus that J((X,∆); I) ⊆

Jm(X,I) ⊆ J(X,I).
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We next claim that J((X,I);∆) = Jm(X,I) for any m ≥ 2 and any m-compatible

boundary ∆ [dFH09, cf. Proposition 5.2]. This is because, since ∆ shares no common

components with Z and ⌊∆⌋ = 0 we have, for any log resolution π ∶ Y →X of ((X,∆); I),

J((X,I);∆) = π∗OY (⌈KY − π∗(KX +∆) −EY ⌉)

= π∗OY (⌈KY +∆Y − π∗(KX +∆) −EY ⌉)

= Jm(X,I).

Finally, we claim that we can find an m-compatible log Q-Gorenstein pair (X,∆) for
every m ≥ 2 [dFH09, cf. Theorem 5.4]. Let D be an effective divisor such that KX −D is

Q-Cartier and let π ∶ Y → X be a log resolution of (X,OX(−mKX) + OX(−mD)) and let

E = π♮(mD). By Lemma 4.1.12, we can find g ∈ OX(−mD) such that divX g∶ = G =M +mD
is reduced and shares no common components with D or I. Set ∆∶ = 1

mM . Note that by

design, KX +∆ =KX −D + 1
mG is Q-Cartier and 1

mπ
∗G =∆Y + 1

mE. To se that (X,∆) is
an m-compatible log Q-Gorenstein pair, note that m∆ is integral and ⌊∆⌋ = 0. Working

generally enough, we can assume π is also a log resolution of ((X,∆); I). Finally, note that

KY +∆Y − π∗(KX +∆) =KY +∆Y − π∗(KX +∆ −
1

m
G) − 1

m
π∗G

=KY − π∗(KX −D) −
1

m
E

=Km,Y /X .

The last result we will need is a variant of [Laz04, Proposition 9.2.28].

Proposition 4.1.14. Let X = SpecR be a local, normal, excellent, noetherian domain contain-

ing Q with a dualizing complex and let I = ∏J akk an effective formal Q-linear combination

of ideal sheaves on SpecR. Let J ⊆ R be an ideal and fix c > 0 a rational number. For k > c,
we can find find f1, . . . , fk ∈ J such that, for D = 1

k ∑i divX fi,

J(ωR, I, Jc) = J(ωR, I, c ⋅D).

Proof. Let π ∶ Y → X be a log resolution of (X,I, Jc) and let JOY = OY (−B) for B ≥ 0
Q-Cartier. By repeated applications of Lemma 4.1.12, we can choose f1, . . . , fk generally so

that π ∶ Y →X is a log resolution of (X,I, c ⋅D).
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Write divY fi = B +Ai for Ai effective and reduced. Then

J(ωR, I, c ⋅D) = π∗OY (⌈KY −EY − cπ∗D⌉)

= π∗OY (⌈KY −EY − c ⋅B −
c

k
∑Ai⌉)

= π∗OY (⌈KY −EY − c ⋅B⌉)

= J(ωR, I, Jc).

4.1.2 Results

Throughout this section, fix X, a normal, excellent, noetherian scheme over SpecQ with a

dualizing complex and I = ∏J
ak
k be an effective formal Q-linear combination of ideal sheaves

on X. Whenever we have a log resolution of singularities or log regular alteration of the pair

(X,I), we will use the notation EY = ∑akEk where JkOY = OY (−Ek) is the ideal sheaf of

an effective Cartier divisor Ek on Y for each k. We begin by showing one direction of the

containment.

Proposition 4.1.15. Let X be a normal, excellent, noetherian scheme over SpecQ with a

dualizing complex. Then the multiplier ideal J(X,I) satisfies

J(X,I) ⊆ ∑
π∶Y→X

Im (HomX(π∗ωY ,OX) ⊗OX
π∗ωY (−EY ) → OX)

where π ∶ Y →X ranges over all regular log alterations of (X,I) and the map

HomX(π∗ωY ,OX) ⊗OX
π∗ωY (−EY ) → OX

is the evaluation map.

Proof. We check containment locally. By Proposition 4.1.13, let J(X,I) = J((X,∆); I)
for some ∆ ≥ 0 such that KX +∆ is Q-Cartier. Let τ ∶ X̃ → X be a log resolution of

the triple (X,∆, I). By [BST15, Lemma 4.5] we can finite a finite cover ρ ∶ Y → X̃ with

π = τ ○ ρ such that π ∗ (KX +∆) and ρ∗EX̃ = EY are both effective Cartier divisors. Let

π∗(KX +∆) = div(g) ∈ OY . Using the projection formula we get that

Tr(g ⋅ π∗ωY (−EY )) = Tr(π∗OY (KY − div g −EY ))

= Tr(π∗OY (KY − π∗(KX +∆) −EY ))

= J((X,∆); I)

= J(X,I)

with the penultimate equality coming from Theorem 8.1 of [BST15].
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For the reverse containment, multiplier submodules on finite covers will play a key role.

The key idea is that for π ∶ Y → X a regular alteration, any map ϕ ∶ π∗ωY → OX factors

through the multiplier submodule J(ωZ ,Γ) of some divisor Γ on X, where ρ ∶ Z →X is the

finite part of the Stein factorization of π. This ultimately implies, thanks to a key lemma,

Imϕ ⊆ J(X) (as well as the analogous statement for pairs (X,I)). Before we proceed, we

need the following fact about how multiplier submodules transform when we enlarge finite

covers of our base.

Lemma 4.1.16. Let SpecS′
ϕÐ→ SpecS

ψÐ→ SpecR be finite surjective maps of normal, excellent,

noetherian affine schemes over SpecQ with dualizing complexes with Γ ≥ 0 a Q-Cartier

Q-divisor on SpecS and I an effective formal Q-linear combination of ideal sheaves on

SpecS. Then

ImTrS/R (ψ∗J(ωS ,Γ, I)) = ImTrS′/R (ψ∗ϕ∗J(ωS′ , ϕ∗Γ, IS′)) .

Proof. Use Proposition 4.1.14 to replace I with some divisor D and IS′ with ϕ∗D. Because

any regular alteration of SpecS′ will also be a regular alteration of SpecS, [BST15, Theo-

rem 8.1] gives

TrS′/S (ϕ∗J(ωS′ , ϕ∗Γ, IS′)) = J(ωS ,Γ, I).

[BST15, Lemma 2.3] tells us that TrS′/R = TrS/R ○ψ∗TrS′/S and so we get that

ImTrS/R (ψ∗J(ωS ,Γ, I)) = ImTrS/R ○ψ∗TrS′/S (ϕ∗J(ωS′ , ϕ∗Γ, IS′))

= ImTrS′/R (ψ∗ϕ∗J(ωS′ , ϕ∗Γ, IS′)) .

Lemma 4.1.17. Let ρ ∶ SpecS → SpecR be a finite surjective map of normal, excellent,

noetherian affine schemes over SpecQ with dualizing complexes and let I = ∏J
ak
k be a formal

effective Q-linear combination of ideal sheaves on SpecR. Suppose we have a Q-Cartier

divisor Γ ≥ ρ∗KR with nΓ = div g. Then

TrS/R (ρ∗J(ωS ,Γ, IS)) ⊆ J(R, I).

In the case where I = R and TrS/R (ρ∗J(ωS ,Γ)) = R, this implies that R has klt type.

Proof. Without lost of generality, we can assume R → S is a map of local rings. Fix

KR ≥ 0 and note that we can assume R → S is generically Galois. Indeed, let S′ be a the

normalization of S inside a Galois closure of K(S) over K(R). This a finite extension, so
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by replacing Γ with its pullback along this extension and invoking Lemma 4.1.16, we can

assume R → S is generically Galois.

Because div g ≥ nρ∗KR we know that g ∈ S(−nρ∗KR). Choosing a general element

f ∈ S(−nρ∗KR), Proposition 4.1.14 implies

J(ωS , g1/n, IS) ⊆ J(ωS , S(−nρ∗KR)1/n, IS) = J(ωS , f1/n, IS).

Let G = Gal(K(S)/K(R)) and let

h = ∏
σ∈G

σ(f)

Then we claim that

J(ωS , h1/(n∣G∣), IS) = J(ωS , f1/n, IS)

To see this, let Y be a G-equivariant log resolution of singularities of (SpecS,S(−nρ∗KR), I)
(see [Tem23, Remark 2.1.5(ii)]). Then for any σ ∈ G we have the following commutative

square

R(−nKR)S S(−nρ∗KR)

R(−nKR)S S(−nρ∗KR)

σ σ

The horizontal maps are given by reflexification and are thus functorial and so since the

lefthand vertical map is an isomorphism, so is the righthand vertical map. Thus, the ideal

S(−nρ∗KR) is stable under the Galois action. We note that for S(−nρ∗KR) ⋅OY = OY (−F ),
this implies that for any σ ∈ G,

⌊ 1
n
F ⌋ = ⌊ 1

n
σF ⌋ = ⌊ 1

n
divY f⌋

and so the portion of 1
n divY f that is not fixed by the Galois action will have coefficients < 1.

This implies that ⌊ 1
n∣G∣ divY h⌋ = ⌊

1
n divY f⌋, proving the claim that J(ωS , h1/(n∣G∣), IS) =

J(ωS , f1/n, IS). Then because h is Galois invariant and thus in R(−n∣G∣KR), an application

of Lemma 4.1.16 gives

ρ∗J(ωS , h1/n∣G∣, IS) J(ωR, h1/n∣G∣, I) ⊆ J(ωR,R(−n∣G∣KR)1/n∣G∣, I) ⊆ R.
TrS/R

and thus TrS/R(ρ∗J(ωS , g1/n, IS) ⊆ J(ωR,R(−n∣G∣KR)1/n∣G∣, I). By Proposition 4.1.7 and

the chain of equalities in Remark 4.1.9,

J(ωR,R(−n∣G∣KR)1/n∣G∣, I) ⊆ J(R, I),

with equality if we choose n such that n∣G∣ is sufficiently divisible.
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Our goal now is to show that given a π ∶ Y → X a log regular alteration of the pair

(X,I) and ϕ ∶ π∗ωY (−EY ) → OY , we can find a divisor on a finite cover of X such that the

trace of the multiplier submodule corresponding to that divisor agrees with the image of ϕ.

Lemma 4.1.18. Let X = SpecR be a normal, excellent, noetherian scheme over SpecQ with

a dualizing complex and consider π ∶ Y →X a log regular alteration of the pair (X,I) and
ϕ ∶ π∗ωY → OX . Let ρ ∶ Z →X be the finite portion of the Stein factorization. Then we can

find a principal divisor Γ = div(h) ≥ ρ∗KX on Z such that

Im (Tr ∶ ρ∗J(ωZ ,Γ, IOZ) → OX) = Im (ϕ ∶ π∗ωY (−EY ) → OX) .

Proof. Fix KX ≥ 0. Because X is S2, ϕ factors through (π∗ωY )S2 ≅ ρ∗ωZ , so by abuse of

notation, we consider ϕ ∶ ρ∗ωZ → OX . By a standard Grothendieck duality argument we see

ρ∗OZ(−ρ∗KX) ≃ ρ∗HomZ(ωZ ⊗Z ρ∗ωX , ωZ)

≃HomX(ρ∗ωZ ⊗X ωX , ωX)

≃HomX(ρ∗ωZ ,OX)

Taking global sections, we get that Γ(Z,OZ(−ρ∗KX)) ≃ HomX(ρ∗ωZ ,OX). Tracing through

the sequence of isomorphisms, we claim that this isomorphism sends s ∈ Γ(Z,OZ(−ρ∗KX)) to
TrZ/X(s−). To see this, note that, at the level of global sections, the first isomorphism above

sends s to the multiplication-by-s map µs ∶ ωZ ⊗Z ρ∗ωX → ωZ . The second isomorphism

sends µs to TrZ/X ○ρ∗µs = TrZ/X(s−) via Grothendieck duality. The final isomorphism can

be understood by viewing TrZ/X(s−) ∶K(Z) →K(X) and thinking of the isomorphism as

restriction to different OX -submodules of K(Z).
Then, let ϕ = TrZ/X(h−) for h ∈ Γ(Z,OZ(−ρ∗KX)). Viewing h as an element of OZ , we

get a divisor divh such that divh ≥ ρ∗KX and, by the projection formula, such that

ϕ(π∗ωY (−EY )) = Tr(h ⋅ π∗ωY (−EY )) = Tr(ρ∗J(ωZ ,divh, IOZ)).

We are now ready to show the reverse containment holds.

Proposition 4.1.19. With notation as above

J(X) ⊇ ∑
π∶Y→X

Im (HomX(π∗ωY ,OX) ⊗OX
π∗ωY (−EY ) → OX)

Proof. Since both these objects are OX -submodules, we can check containment locally.

By Lemma 4.1.18, given π ∶ Y → X a log regular alteration of the pair (X,I) and



4.1. Characteristic zero 47

ϕ ∶ π∗ωY → OX , we can find a finite cover Z → X and a divisor Γ on Z such that

Tr(J(ωZ ,Γ, I)) = ϕ(π∗ωY (−EY )). Then by Proposition 4.1.17 we can find ∆ on X such that

Imϕ ⊆ J(X,∆, I) ⊆ J(X,I).

Together, Lemmas 4.1.15 and 4.1.19 give us our main result.

Theorem 4.1.20 (Theorem 4.0.1). Let X be a normal, excellent, noetherian scheme over

SpecQ with a dualizing complex and I = ∏J
ak
k be a formal effective Q-linear combination of

ideal sheaves on X. The multiplier ideal J(X,I) in the sense of [dFH09] can be realized as

J(X,I) = ∑
π∶Y→X

Im (HomX(π∗ωY ,OX) ⊗OX
π∗ωY (−EY ) → OX)

where π ∶ Y → X ranges over all log regular alterations of (X,I) with EY = ∑akEk for

JkOY = OY (−Ek) and the map HomX(π∗ωY ,OX)⊗OX
π∗ωY (−EY ) → OX is the evaluation

map.

As a corollary, we deduce the following derived splinter characterization of klt singularities:

Corollary 4.1.21. Let X be a normal, excellent, noetherian scheme over SpecQ with a

dualizing complex and I = ∏J
ak
k be a formal effective Q-linear combination of ideal sheaves

on X. The following are equivalent

1. (X,I) has klt type

2. For all sufficiently large regular alterations π ∶ Y →X, the natural map OX → Rπ∗OY
splits and locally factors through Rπ∗ωY (−EY ) = π∗ωY (−EY )

3. For all sufficiently large regular alterations π ∶ Y → X, OX is locally a summand of

Rπ∗ωY (−EY ) = π∗ωY (−EY )

Here, EY ∶= s∑akEk where OY (−EY ) = JkOY .

Proof. By Theorem 4.0.1, (2)Ô⇒ (1)⇐⇒ (3). To see (1)⇐⇒ (3)Ô⇒ (2), let π ∶ Y →X a

regular log alteration of (X,∆, I) and localize so that OX is a summand of π∗ωY . Then

because X has klt type and thus rational singularities we can find maps p1, p2, and i such

that the following composition is the identity:

OX Rπ∗OY OX π∗ωY (−EY ) OX .
p1 i p2
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4.2 Positive characteristic

4.2.1 Preliminaries

Let R be a noetherian ring of characteristic p > 0. We will denote by F ∶ R → R the Frobenius

morphism defined by F (r) = rp and denote by F e the e-fold composition of the Frobenius

with itself. Given an R-module M , we denote by F e∗M the R-module where R acts via

restriction of scalars along the e-th iterate of the Frobenius. We say that R is F -finite if

F ∶ R → R is a finite map.

Because we do not have resolutions of singularities in characteristic p, we are forced

to use different methods to study singularities. The Frobenius turns out to be a valuable

tool, allowing us to relate singularities of rings and schemes to properties of their Frobenius

endomorphism. In particular, we are able to define an analog of the multiplier ideal using

such methods.

Definition 4.2.1. Let R be an F -finite, reduced ring. The test ideal τ(R) is the unique

smallest ideal J ⊆ R, not contained in any minimal prime of R, such that ϕ(F e∗J) ⊆ J for

every ϕ ∈ Hom(F e∗R,R) and every e > 0.

This leads to a definition of strongly F -regular singularities, the positive characteristic

analog of klt singularities.

Definition 4.2.2. Let R be an F -finite, reduced ring. Then R is strongly F -regular if τ(R) = R.

Similarly, we are able to define analogs of multiplier submodules. Suppose R is an

F -finite, locally equidimensional reduced ring with canonical module ωR. Consider the e-th

iterate of the Frobenius R → F e∗R and apply the functor Hom(−, ωR). This gives us a map

Hom(F e∗R,ωR) → ωR

and using that Hom(F e∗R,ωR) ≅ F e∗ωR, we get a map T e ∶ F e∗ωR → ωR that is dual to the

Frobenius.

Definition 4.2.3 ( [Smi95], [Bli04], [ST08]). Let R be an F -finite, locally equidimensional ring

with canonical module ωR and T ∶ F∗ωR → ωR dual to the Frobenius. Then the parameter

test submodule τ(ωR) is the unique smallest submodule M ⊆ ωR, nonzero at any minimal

prime of R, such that

T (F∗M) ⊆M
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Ultimately, our result in characteristic p > 2 is a corollary to the following result of [ES14]

combined with the existence of quasi-Gorenstein finite covers.

Proposition 4.2.4 ( [ES14] Corollary 6.5). If R is an F -finite reduced ring of characteristic

p > 0 and R ⊆ S is a finite extension with S reduced, then

τ(R) = ∑
e≥0
∑
ϕ

ϕ(F e∗τ(S))

where ϕ ranges over all elements of HomR(F e∗S,R).

We give an overview of the construction of quasi-Gorenstein finite covers which we

expect is well-known to experts. See, for example, the construction in the proof of [Kaw88,

Theorem 8.5]. We include the argument here for the convenience of the reader.

Lemma 4.2.5. Let R be a normal commutative Noetherian ring of essentially finite type over

a field k of characteristic not equal to 2. Then SpecR has a quasi-Gorenstein finite cover.

Proof. We first claim that we can find H ∼ −2KR sufficiently general and hence reduced. In

characteristic zero, this follows from Bertini’s theorem for basepoint-free linear systems, here

thinking of ∣ − 2KR∣ as a linear system on the regular locus of SpecR. In characteristic p > 0,
let X → SpecR be the normalized blowup of ω

(−2)
R . Then because ω

(−2)
R OX ≅ OX(−G) is

very ample, if k is infinite, Bertini’s theorem tells us that a general divisor H ′ ∼ −G will be

normal, hence reduced. Pushing H ′ down to H on SpecR, we get that H is reduced and

H ∼ −2KR, as this holds outside a codimension 2 subset of SpecR and R is normal. If k is

not infinite, we can find such an H on R⊗k Fp and thus on R⊗k Fpe for some e. Since we

are only looking for a finite cover of SpecR at the end of the day, we can assume we have

such an H by working on R⊗k Fpe .
Given such an H with H + 2KR = div f , let

S = R⊕ ωR = R⊕ ωRt

and define multiplication as (a, b)(x, y) = (ax + byf, ay + bx). Since R is regular outside of

a set of codimension two, ωR will be a line bundle outside of this set and ω
(2)
R ≅ R(−H)

(via multiplication by f) on the smooth locus. Because R is S2, this isomorphism will hold

everywhere and so we get an R-algebra that is finite as an R-module. Furthermore, since f

is reduced, S is normal.

We then claim that S is quasi-Gorenstein. To see this, note that ωS ≃ HomR(S,ωR).
However, since S is normal and hence S2, ωS = HomR(S,ωR) ≃ S and thus S is quasi-

Gorenstein.
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4.2.2 Results

In this section, we assume that R is a normal, F -finite, Noetherian ring of characteristic

p > 2 and let X = SpecR. By excluding characteristic 2, we have quasi-Gorenstein finite

covers by Lemma 4.2.5, a key ingredient in showing that the multiplier ideal contains the

image of any map π∗ωY → OX . We then have the following analogous description of the

test ideal.

Proposition 4.2.6. Let R be a Noetherian, F -finite reduced ring of characteristic p > 2. The

test ideal τ(R) can be realized as

τ(R) = ∑
R→S

Im (HomR(ωS ,R) ⊗R τ(ωS) → R)

where the sum ranges over all finite extensions R → S and HomR(ωS ,R) ⊗R τ(ωS) → R is

the evaluation map.

Proof. Consider ϕ ∶ τ(ωS) → R and consider S → S′ a quasi-Gorenstein finite cover. Then

by a restatement of the main theorem of [ST14] we get that ϕ ○TrS′/S(τ(ωS′)) = ϕ(τ(ωS)).
Thus we can restrict ourself to only considering quasi-Gorenstein covers in the sum.

Checking equality locally, consider a quasi-Gorenstein cover S with an isomorphism

ωS ≃ S (and thus τ(ωS) ≃ τ(S)). R → F e∗S is finite for all e and so by Proposition 4.2.4 and

the above observation we have

τ(R) = ∑
e≥0
∑
ϕ

ϕ(F e∗τ(S)) = ∑
e≥0
∑
ϕ

ϕ(F e∗τ(ωS)) = ∑
R→S′

∑
ϕ

ϕ(τ(ωS′))

where the final sum again ranges over all R ↪ S′ finite and ϕ ∈ HomR(ωS′ ,R).

As a corollary, we get the following characterization of strongly F -regular singularities.

Corollary 4.2.7. Let R be a Noetherian, F -finite reduced ring of characteristic p > 2. Then

R is strongly F -regular if and only if R is a summand of τ(ωS) for any sufficiently large

finite cover SpecS → SpecR.

Proof. R is strongly F -regular if and only if τ(R) = R. By the previous proposition, this

implies there is some finite R → S and a surjection τ(ωS) → R which must split as a map of

R-modules. The reverse direction follows from Proposition 4.2.6 by letting π ∶ τ(ωS) → R be

the projection onto the summand, implying τ(R) = R.
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