Math 180 Worksheet 1 Partial Solutions

Sayan Mukherjee

Problem (1-d). The simplest example of a function f defined on the real numbers and satisfying $f(x) \geq 0$ for every x and $f(-4)=-f(4)$, is probably the zero function:

$$
f(x)=0 \text { for all real } x \text {. }
$$

However, we can think of other (non-zero) functions that we can determine, and a possible way of obtaining some examples is as follows:

So, we want the function f to satisfy both $f(x) \geq 0$ for all x and $f(4)=$ $-f(-4)$. Suppose $f(4)>0$. Then, $f(-4)=-f(4)$ is a negative number, contradicting the second condition. This means that $f(4) \leq 0$. We already know from the second condition that $f(4) \geq 0$, and this gives us $f(4)=0$. Thus any function f that we come up with, has to satisfy $f(4)=f(-4)=0$.

Now comes the main part. there are many functions that have roots at 4 and -4 , the easiest one being $f(x)=x^{2}-16$. The problem with this is that it falls below the x-axis at points in $(-4,4)$, so one possible way to overcome this is by taking the absolute value! So we have an example

$$
f(x)=\left|x^{2}-16\right| \text { for all real } x
$$

Some other functions that can work are,

$$
f(x)=|\sin 4 x| \text { for all real } x,
$$

or

$$
f(x)=\left(x^{2}-16\right)^{48} \text { for all real } x,
$$

etc.
Problem (3-c). Well, the only thing to keep in mind is that the value of sin at integer multiples of π is zero. The rest follows from plugging into the formula for slope:

$$
\text { Slope between }(0, f(0)) \text { and }(k \pi, f(k \pi))=\frac{f(k \pi)-f(0)}{k \pi-0}, \begin{aligned}
& =\frac{\sin (k \pi)-\sin 0}{k \pi-0} \\
& =\frac{0}{k \pi}=0 .
\end{aligned}
$$

Problem (3-d). I got a few wild stares for this. The problem asked for pairs other than the pairs 0 and $k \pi$ which have slope zero. From the graph in part (a) (which I am too lazy to draw), we can see that there are several possibilities for secant lines that are parallel to the x axis. Note that any secant line parallel to the x axis has a slope of 0 .

And examples of such points are,

$$
\begin{aligned}
& \bullet(\pi, f(\pi)) \text { and }(2 \pi, f(2 \pi)) \\
& \bullet(\pi, f(\pi)) \text { and }(2016 \pi, f(2016 \pi)) \\
& \bullet\left(\frac{\pi}{2}, f\left(\frac{\pi}{2}\right)\right) \text { and }\left(\frac{5 \pi}{2}, f\left(\frac{5 \pi}{2}\right)\right)
\end{aligned}
$$

Food for thought. For the last set of answers in $3-d$, the secant line joining the points on the graph of \sin with values at $\frac{\pi}{2}$ and $\frac{5 \pi}{2}$ is parallel to the x-axis. That means $f\left(\frac{\pi}{2}\right)=f\left(\frac{5 \pi}{2}\right)$. What is the difference between these two x-values? Is there anything special about the difference of 2π ?

