Math 180 Worksheet 1 Partial Solutions

Sayan Mukherjee

Problem (1-d). The simplest example of a function f defined on the real numbers and satisfying $f(x) \ge 0$ for every x and f(-4) = -f(4), is probably the zero function:

$$f(x) = 0$$
 for all real x .

However, we can think of other (non-zero) functions that we can determine, and a possible way of obtaining some examples is as follows:

So, we want the function f to satisfy both $f(x) \ge 0$ for all x and f(4) = -f(-4). Suppose f(4) > 0. Then, f(-4) = -f(4) is a negative number, contradicting the second condition. This means that $f(4) \le 0$. We already know from the second condition that $f(4) \ge 0$, and this gives us f(4) = 0. Thus any function f that we come up with, has to satisfy f(4) = f(-4) = 0.

Now comes the main part. there are many functions that have roots at 4 and -4, the easiest one being $f(x) = x^2 - 16$. The problem with this is that it falls below the x-axis at points in (-4, 4), so one possible way to overcome this is by taking the absolute value! So we have an example

$$f(x) = |x^2 - 16|$$
 for all real x .

Some other functions that can work are,

$$f(x) = |\sin 4x| \text{ for all real } x,$$

or

$$f(x) = (x^2 - 16)^{48}$$
 for all real x,

etc.

Problem (3-c). Well, the only thing to keep in mind is that the value of sin at integer multiples of π is zero. The rest follows from plugging into the formula for slope:

Slope between
$$(0, f(0))$$
 and $(k\pi, f(k\pi)) = \frac{f(k\pi) - f(0)}{k\pi - 0}$
= $\frac{\sin(k\pi) - \sin 0}{k\pi - 0}$
= $\frac{0}{k\pi} = 0.$

_	_	_	_
Г			
L			
L			
÷			

Problem (3-d). I got a few wild stares for this. The problem asked for pairs other than the pairs 0 and $k\pi$ which have slope zero. From the graph in part (a) (which I am too lazy to draw), we can see that there are several possibilities for secant lines that are parallel to the x axis. Note that any secant line parallel to the x axis has a slope of 0.

And examples of such points are,

•
$$(\pi, f(\pi))$$
 and $(2\pi, f(2\pi))$
• $(\pi, f(\pi))$ and $(2016\pi, f(2016\pi))$
• $\left(\frac{\pi}{2}, f\left(\frac{\pi}{2}\right)\right)$ and $\left(\frac{5\pi}{2}, f\left(\frac{5\pi}{2}\right)\right)$
:

Food for thought. For the last set of answers in 3-d, the secant line joining the points on the graph of sin with values at $\frac{\pi}{2}$ and $\frac{5\pi}{2}$ is parallel to the *x*-axis. That means $f(\frac{\pi}{2}) = f(\frac{5\pi}{2})$. What is the difference between these two *x*-values? Is there anything special about the difference of 2π ?