Math 181 Extra Problems: u-substitution

Sayan Mukherjee

Problem 1. Find the following antiderivative:

$$
\int \frac{x^{2}-1}{x\left(x^{2}+1\right)} d x
$$

Solution. We shall use u-substitution after noting that

$$
\int \frac{x^{2}-1}{x\left(x^{2}+1\right)} d x=\int \frac{\left(x^{2}-1\right) x}{x^{2}\left(x^{2}+1\right)} d x
$$

Which suggests us to substitute $u=x^{2}$. Indeed, this means $d u=2 x d x$, and thus $d x=\frac{d u}{x}$. Then, we have to find

$$
\int \frac{(u-1)}{u(u+1)} d u
$$

To find this, we need to use partial fractions! Note that

$$
\int \frac{u-1}{u(u+1)} d u=\int \frac{2 u-(u+1)}{u(u+1)} d u=\int\left(\frac{2}{u+1}-\frac{1}{u}\right) d u
$$

Which tells us

$$
\int \frac{x^{2}-1}{x\left(x^{2}+1\right)} d x=2 \ln (|u+1|)-\ln (|u|)+c=2 \ln \left(x^{2}+1\right)-\ln \left(x^{2}\right)+c
$$

Problem 2. Find

$$
\int \frac{x^{2}-1}{x^{2}\left(x^{2}+3 x+1\right)} d x
$$

Solution. This is a hard integral. You need to use a very clever substitution that is almost impossible to notice! But, notice that

$$
\int \frac{x^{2}-1}{x\left(x^{2}+3 x+1\right)} d x=\int \frac{\frac{x^{2}-1}{x}}{\frac{x\left(x^{2}+3 x+1\right)}{x}} d x=\int \frac{x-\frac{1}{x}}{x\left(x+3+\frac{1}{x}\right)} d x
$$

Let $u=x+\frac{1}{x}$, then $d u=\left(1-\frac{1}{x^{2}}\right) d x$, ie $d u=\frac{x^{2}-1}{x^{2}} d x$. Magically, $\frac{x-\frac{1}{x}}{x}=\frac{x^{2}-1}{x^{2}}$!
This point on it's just algebra that tells us

$$
\int \frac{x-\frac{1}{x}}{x\left(x+3+\frac{1}{x}\right)} d x=\int \frac{d u}{u+3}=\ln |u+3|+c
$$

So we have

$$
\int \frac{x^{2}-1}{x^{2}\left(x^{2}+3 x+1\right)} d x=\ln \left|x+\frac{1}{x}+3\right|+c
$$

Problem 3. Find

$$
\int \tan ^{3} x d x
$$

Solution. There are several ways of approaching this problem. Let's try the following:

$$
\int \tan ^{3} x d x=\int \frac{\sin ^{3} x}{\cos ^{3} x} d x=\int \frac{\sin ^{2} x \cdot \sin x}{\cos ^{3} x} d x
$$

This suggests us to take $u=\cos x$, and thus $d u=-\sin x d x$. However, there is an extra $\sin ^{2} x$ in the numerator, which we need to express in terms of $u=\cos ^{2} x$. The key to this is to use the trig identity $\sin ^{2} x=1-\cos ^{2} x$, which means $\sin ^{2} x=1-u^{2}$. Then our integral just becomes

$$
\int \frac{1-u^{2}}{u^{3}}(-d u)=-\int\left(\frac{1}{u^{3}}-\frac{1}{u}\right) d u=-\int\left(u^{-3}-u^{-1}\right) d u=-\left(\frac{u^{-2}}{-2}-\ln u\right)+c
$$

So

$$
\int \tan ^{3} x d x=\frac{1}{2}(\cos x)^{-2}+\ln |\cos x|+c
$$

