Math 170: Quiz 14

Sayan Mukherjee's discussion

March 11, 2021

Problem 1. Consider $f(x)=x^{3}-6 x^{2}-15 x+1$ on the interval $[-2,6]$. Find its intervals of monotonicity and local extrema.

Solution. The derivative of f is

$$
f^{\prime}(x)=3 x^{2}-12 x-15=3\left(x^{2}-4 x-5\right)=3(x-5)(x+1)
$$

Hence $f^{\prime}(x)=0$ at $x=-1$ and $x=5$, and these are our critical points in the interval $[-2,6]$.

We need to find the intervals of monotonicity, so plug in values in the intervals $[-2,-1),(-1,5),(5,6]$ to figure out what happens to f^{\prime}.
$f^{\prime}(-2)=3(-7)(-1)>0, f^{\prime}(0)=3(-5)(1)<0, f^{\prime}(6)=3(1)(7)>0$.
Thus, f is increasing on the intervals $[-2,-1]$ and $[5,6]$, and decreasing on the interval $[-1,5]$.

Additionally, to figure out which extrema is a maximum and which is a minimum, we can see what happens to the left and right of the critical points. Since f is increasing to the left of -1 and decreasing to the right, it looks like a crown at -1 , meaning that -1 is a maximum. Similarly, f is decreasing to the left of 5 and increasing to the right, so 5 is a minimum.

Local max: $x=-1$ and local min: $x=5$.

Rubric.

- Finding $f^{\prime}(x):+2 \mathrm{pts}$
- Finding roots $x=5$ and $x=-1:+1 \mathrm{pt}$
- Stating that $x=5$ and $x=-1$ are the extrema (no need to classify them as min/max): +1 pt
- Determining that f is increasing on $[-2,-1] \cup[5,6]$ and decreasing on $[-1,5]:+1 \mathrm{pt}$

