Math 170: Quiz 15 Solution

Sayan Mukherjee's discussion

March 16, 2021

Problem 1. Use the second derivative test to figure out and classify the local extrema of

$$
f(x)=x^{4}-8 x^{2} .
$$

Solution. The critical points of this function are obtained by solving $f^{\prime}(x)=0$. Observe that,

$$
f^{\prime}(x)=4 x^{3}-16 x=4 x\left(x^{2}-4\right)=4 x(x-2)(x+2)
$$

And therefore the roots of $f^{\prime}(x)=0$ are $x=0,2,-2$. We need to check which of these is a max and which is a min using the second derivative test. Note that $f^{\prime}(x)=4 x^{3}-16 x$ implies that $f^{\prime \prime}(x)=12 x^{2}-16$.

- $x=-2: f^{\prime \prime}(-2)=12(-2)^{2}-16=48-16=36>0$, so f looks like a "cup" at -2 , and it's a local min
- $x=0: f^{\prime \prime}(0)=12(0)^{2}-16=-16<0$, so f looks like a "crown" at 0 , and it's a local max
- $x=2: f^{\prime \prime}(2)=12(2)^{2}-16=48-16=36>0$, so f looks like a "cup" at -2 , and it's a local min.

Rubric.

- Left to the grader's discretion.

