Math 170: Quiz 2

Sayan Mukherjee's discussion

January 28, 2021

Problem 1. Find the following definite integral:

$$
\int_{-4}^{4}\left(x^{13}-x^{7}+x^{3}\right) d x
$$

Solution. As x^{13}, x^{7}, x^{3} are all odd functions, $\int_{-4}^{4} x^{13} d x=\int_{-4}^{4} x^{7} d x=\int_{-4}^{4} x^{3} d x=$ 0 , and therefore

$$
\int_{-4}^{4}\left(x^{13}-x^{7}+x^{3}\right) d x=0
$$

Alternate Solution. We know antiderivative of $x^{13}-x^{7}+x^{3}$ is $\frac{x^{14}}{14}-\frac{x^{8}}{8}+\frac{x^{4}}{4}$. Thus,

$$
\int_{-4}^{4}\left(x^{13}-x^{7}+x^{3}\right) d x=\left(\frac{4^{14}}{14}-\frac{4^{8}}{8}+\frac{4^{4}}{4}\right)-\left(\frac{(-4)^{14}}{14}-\frac{(-4)^{8}}{8}+\frac{(-4)^{4}}{4}\right)
$$

As $(-4)^{14}=4^{14}$ and $(-4)^{8}=4^{8}$ and $(-4)^{4}=4^{4}$, the individual terms cancel off to give 0 .

Rubric.

- +4 for correct answer
- +1 for correct explanation (odd powers / odd function)

OR,

- +3 points for correct antiderivative
- +1 point for correct expression after plugging in
- +1 point for correct answer

