Math 170: Quiz 3

Sayan Mukherjee's discussion

February 2, 2021

Problem 1. Show using the ϵ-definition of limits, that

$$
\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}
$$

Solution. Fix $\epsilon>0$. We wish to solve for n in the following inequality:

$$
\left|\frac{n}{2 n+1}-\frac{1}{2}\right|<\epsilon
$$

This is equivalent to

$$
\left|\frac{2 n-(2 n+1)}{2(2 n+1)}\right|<\epsilon
$$

Or,

$$
\left|\frac{-1}{4 n+2}\right|<\epsilon
$$

As $|-1|=1$, we gotta solve

$$
\frac{1}{4 n+2}<\epsilon
$$

Which gives us

$$
\frac{4 n+2}{1}>\frac{1}{\epsilon} \Longleftrightarrow 4 n>\frac{1}{\epsilon}-2 \Longleftrightarrow n>\frac{1}{4}\left(\frac{1}{\epsilon}-2\right) .
$$

Rubric.

- +2 for correct equation $\left|\frac{n}{2 n+1}-\frac{1}{2}\right|<\epsilon$
- +2 for attempted algebra (even if incorrect due to sign errors or reciprocation errors).
- +1 for correct expression $n>\frac{1}{4 \epsilon}-\frac{1}{2}$ or anything equivalent to this expression.

