Quasiconvex Subgroups of Acylindrically Hyperbolic Groups ### Ping Wan Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago https://homepages.math.uic.edu/~pwan5/ August 31, 2025 # **Hyperbolic Groups** ### Hyperbolic group A group G is hyperbolic if for some finite $X \subseteq G$, the Cayley graph $\Gamma(G,X)$ is connected and δ -hyperbolic for some $\delta > 0$. #### Quasiconvex subgroup A subgroup H of G is quasiconvex if the inclusion map is a quasi-isometric embedding. Figure: Cayley graph of \mathbb{F}^2 [Wikimedia Commons contributors, 2024] # **Hyperbolic Groups** ### Hyperbolic group A group G is hyperbolic if for some finite $X \subseteq G$, the Cayley graph $\Gamma(G,X)$ is connected and δ -hyperbolic for some $\delta \geq 0$. #### Quasiconvex subgroup A subgroup H of G is quasiconvex if the inclusion map is a quasi-isometric embedding. Figure: \mathbb{Z} is a quasiconvex subgroup of \mathbb{F}^2 # **Acylindrically Hyperbolic Groups** # Acylindrically hyperbolic group [Martínez-Pedroza and Rashid, 2021] A group G is acylindrically hyperbolic if for some $X \subseteq G$ and some finite collection \mathcal{P} of infinite subgroups, the coned-off Cayley graph $\hat{\Gamma}(G,\mathcal{P},X)$ is connected, hyperbolic and fine at cone vertices. Figure: Coned-off Cayley graph of $\mathbb{Z}\oplus\mathbb{Z}$ along \mathbb{Z} [Page, 2017] # (G, \mathcal{P}) -Quasiconvex Subgroups # Acylindrically hyperbolic group [Martínez-Pedroza and Rashid, 2021] A group G is acylindrically hyperbolic if for some $X \subseteq G$ and some finite collection \mathcal{P} of infinite subgroups, the coned-off Cayley graph $\hat{\Gamma}(G,\mathcal{P},X)$ is connected, hyperbolic and fine at cone vertices. # (G,\mathcal{P}) -quasiconvex subgroup [Wan] A subgroup H is (G,\mathcal{P}) -quasi-convex, if there exists a compatible \mathcal{D} , and the extension of inclusion $\hat{\Gamma}(H,\mathcal{D},Y) \hookrightarrow \hat{\Gamma}(G,\mathcal{P},X)$ is a quasi-isometric embedding. # **Application** ### Dehn Filling Given a collection of subgroups $N_{\lambda} \triangleleft P_{\lambda}$, let K be the normal closure of $\cup_{\lambda \in \Lambda} N_{\lambda}$ in G. The *filling* of G is the quotient group $\overline{G} = G/K$. # **Application** ### Dehn Filling Given a collection of subgroups $N_{\lambda} \triangleleft P_{\lambda}$, let K be the normal closure of $\cup_{\lambda \in \Lambda} N_{\lambda}$ in G. The *filling* of G is the quotient group $\overline{G} = G/K$. ### Theorem (Wan) Suppose H is (G, \mathcal{P}) -quasi-convex. For sufficiently long H-fillings of G with kernel K, the induced filling on H has kernel $K_H = K \cap H$. Moreover, let $\bar{P} = \{P_{\lambda}/N_{\lambda}\}$, let $\bar{H} = H/K_H$. Then \bar{H} is (\bar{G}, \bar{P}) -quasi-convex. ## **Application** ### Dehn Filling Given a collection of subgroups $N_{\lambda} \triangleleft P_{\lambda}$, let K be the normal closure of $\cup_{\lambda \in \Lambda} N_{\lambda}$ in G. The *filling* of G is the quotient group $\overline{G} = G/K$. ### Theorem (Wan) Suppose G acts cocompactly on a CAT(0) cube complex X. Suppose every parabolic element of G fixes some point of X and that cell-stabilizers are full (G,\mathcal{P}) -quasi-convex. For sufficiently long fillings of G that fix each G-orbits of cubes of X pointwise, the quotient X/K is a CAT(0) cube complex. # Thank You #### References Martínez-Pedroza, E. and Rashid, F. (2021). A Note on Hyperbolically Embedded Subgroups. Page, M. (2017). An Introduction to Relatively Hyperbolic Groups. Wikimedia Commons contributors (2024). File:Cayley graph of F2.svg - Wikimedia Commons. publisher: Wikimedia Commons.