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Chapter 1

Introduction and Preparations

1.1 Introduction

Stat 511 is a first course in advanced statistical theory. This first set of notes is intended to
set the stage for the material that is the core of the course. In particular, these notes define
the notation we shall use throughout, and also set the conceptual and mathematical level
we will be working at. Naturally, both the conceptual and mathematical level will be higher
than in an intermediate course, such as Stat 411 at UIC.

On the mathematical side, real analysis and, in particular, measure theory, is very im-
portant in probability and statistics. Indeed, measure theory is the foundation on which
modern probability is built and, by the close connection between probability and statistics,
it is natural that measure theory also permeates the statistics literature. Measure theory
itself can be very abstract and difficult. I am not an expert in measure theory, and I don’t
expect you to be an expert either. But, in general, to read and understand research papers
in statistical theory, one should at least be familiar with the basic terminology and results
of measure theory. My presentation here is meant to introduce you to these basics, so that
we have a working measure-theoretic vocabulary moving forward to our main focus in the
course. Keener (2010), the course textbook, also takes a similar approach to its measure
theory presentation. Besides measure theory, I will also give some brief introduction to
group theory and convex sets/functions. The remainder of this first set of notes concerns
the transitions from measure theory to probability and from probability to statistics.

On the conceptual side, besides being able to apply theory to particular examples, I hope
to communicate why such theory was developed; that is, not only do I want you be familiar
with results and techniques, but I hope you can understand the motivation behind these
developments. Along these lines, in this chapter, I will discuss the basic ingredients of a sta-
tistical inference problem, along with some discussion about statistical reasoning, addressing
the fundamental question: how to reason from sample to population? Surprisingly, there’s
no fully satisfactory answer to this question.
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1.2 Mathematical preliminaries

1.2.1 Measure and integration

Measure theory is the foundation on which modern probability theory is built. All statisti-
cians should, at least, be familiar with the terminology and the key results (e.g., Lebesgue’s
dominated convergence theorem). The presentation below is based on material in Lehmann
and Casella (1998); similar things are presented in Keener (2010).

A measure is a generalization of the concept of length, area, volume, etc. More specif-
ically, a measure µ is a non-negative set-function, i.e., µ assigns a non-negative number to
subsets A of an abstract set X, and this number is denoted by µ(A). Similar to lengths, µ
is assumed to be additive:

µ(A ∪B) = µ(A) + µ(B), for each disjoint A and B.

This extends by induction to any finite set A1, . . . , An of disjoint sets. But a stronger
assumption is σ-additivity :

µ
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai), for all disjoint A1, A2, . . ..

Note that finite additivity does not imply σ-additivity. All of the (probability) measures
we’re familiar with are σ-additive. But there are some peculiar measures which are finitely
additive but not σ-additive. The classical example of this is the following.

Example 1.1. Take X = {1, 2, . . .} and define a measure µ as

µ(A) =

{
0 if A is finite

1 if A is co-finite,

where a set A is “co-finite” if it’s the complement of a finite set. It is easy to see that µ
is additive. Taking a disjoint sequence Ai = {i} we find that µ(

⋃∞
i=1Ai) = µ(X) = 1 but∑∞

i=1 µ(Ai) =
∑∞

i=1 0 = 0. Therefore, µ is not σ-additive.

In general, a measure µ cannot be defined for all subsets A ⊆ X. But the class of subsets
on which the measure can be defined is, in general, a σ-algebra, or σ-field.

Definition 1.1. A σ-algebra A is a collection of subsets of X such that:

• X is in A;

• If A ∈ A, then Ac ∈ A;

• and if A1, A2, . . . ∈ A, then
⋃∞
i=1 Ai ∈ A.

The sets A ∈ A are said to be measurable. We refer to (X,A) as a measurable space and, if
µ is a measure defined on (X,A), then (X,A, µ) is a measure space.
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A measure µ is finite if µ(X) is a finite number. Probability measures (see Section 1.3.1)
are special finite measures where µ(X) = 1. A measure µ is said to be σ-finite if there exists
a sequence of sets {Ai} ⊂ A such that

⋃∞
i=1 Ai = X and µ(Ai) <∞ for each i.

Example 1.2. Let X be a countable set and A the class of all subsets of X; then clearly A
is a σ-algebra. Define µ according to the rule

µ(A) = number of points in A, A ∈ A.

Then µ is a σ-finite measure which is refered to as counting measure.

Example 1.3. Let X be a subset of d-dimensional Euclidean space Rd. Take A to be the
smallest σ-algebra that contains the collection of open rectangles

A = {(x1, . . . , xd) : ai < xi < bi, i = 1, . . . , d}, ai < bi.

Then A is the Borel σ-algebra on X, which contains all open and closed sets in X; but there
are subsets of X that do not belong to A! Then the (unique) measure µ, defined by

µ(A) =
d∏
i=1

(bi − ai), for rectangles A ∈ A

is called Lebesgue measure, and it’s σ-finite.

Next we consider integration of a real-valued function f with respect to a measure µ on
(X,A). This more general definition of integral satisfies most of the familiar properties from
calculus, such as linearity, monotonicity, etc. But the calculus integral is defined only for a
class of functions which is generally too small for our applications.

The class of functions of interest are those which are measurable. In particular, a real-
valued function f is measurable if and only if, for every real number a, the set {x : f(x) ≤ a}
is in A. If A is a measurable set, then the indicator function IA(x), which equals 1 when
x ∈ A and 0 otherwise, is measurable. More generally, a simple function

s(x) =
K∑
k=1

akIAk(x),

is measurable provided that A1, . . . , AK ∈ A. Continuous f are also usually measurable.
The integral of a non-negative simple function s with respect to µ is defined as∫

s dµ =
K∑
k=1

aiµ(Ak). (1.1)

Take a non-decreasing sequence of non-negative simple functions {sn} and define

f(x) = lim
n→∞

sn(x). (1.2)
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It can be shown that f defined in (1.2) is measurable. Then the integral of f with respect
to µ is defined as ∫

f dµ = lim
n→∞

∫
sn dµ,

the limit of the simple function integrals. It turns out that the left-hand side does not
depend on the particular sequence {sn}, so it’s unique. In fact, an equivalent definition for
the integral of a non-negative f is∫

f dµ = sup
0 ≤ s ≤ f , simple

∫
s dµ. (1.3)

For a general measurable function f which may take negative values, define

f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0}.

Both the positive part f+ and the negative part f− are non-negative, and f = f+−f−. The
integral of f with respect to µ is defined as∫

f dµ =

∫
f+ dµ−

∫
f− dµ,

where the two integrals on the right-hand side are defined through (1.3). In general, a
measurable function f is said to be µ-integrable, or just integrable, if

∫
f+ dµ and

∫
f− dµ

are both finite.

Example 1.4 (Counting measure). If X = {x1, x2, . . .} and µ is counting measure, then∫
f dµ =

∞∑
i=1

f(xi).

Example 1.5 (Lebesgue measure). If X is a Euclidean space and µ is Lebesgue measure,
then

∫
f dµ exists and is equal to the usual Riemann integral of f from calculus whenever

the latter exists. But the Lebesgue integral exists for f which are not Riemann integrable.

Next we list some important results from analysis, related to integrals. The first two
have to do with interchange of limits1 and integration, which is often important in statistical
problems. The first is relatively weak, but is used in the proof of the second.

Theorem 1.1 (Fatou’s lemma). Given {fn}, non-negative and measurable,∫ (
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
fn dµ.

The opposite inequality holds for lim sup, provided that |fn| ≤ g for integrable g.

1Recall the notions of “lim sup” and “lim inf” from analysis. For example, if xn is a sequence of real
numbers, then lim supn→∞ xn = infn supk≥n xk and, intuitively, this is the largest accumulation point of
the sequence; similarly, lim infn→∞ xn is the smallest accumulation point, and if the largest and smallest
accumulations points are equal, then the sequence converges and the common accumulation point is the
limit. Also, if fn is a sequence of real-valued functions, then we can define lim sup fn and lim inf fn by
applying the previous definitions pointwise.
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Theorem 1.2 (Dominated convergence). Given measurable {fn}, suppose that

f(x) = lim
n→∞

fn(x) µ-almost everywhere,

and |fn(x)| ≤ g(x) for all n, for all x, and for some integrable function g. Then fn and f
are integrable, and ∫

f dµ = lim
n→∞

∫
fn dµ.

Proof. First, by definition of f as the pointwise limit of fn, we have that |fn−f | ≤ |fn|+|f | ≤
2g and lim supn |fn − f | = 0. From Exercise 8, we get∣∣∣∫ fn dµ−

∫
f dµ

∣∣∣ =
∣∣∣∫ (fn − f) dµ

∣∣∣ ≤ ∫ |fn − f | dµ
and, for the upper bound, by the “reverse Fatou’s lemma,” we have

lim sup
n

∫
|fn − f | dµ ≤

∫
lim sup

n
|fn − f | dµ = 0.

Therefore,
∫
fn dµ→

∫
f dµ, which completes the proof.

Note, the phrase “µ-almost everywhere” used in the theorem means that the property
holds everywhere except on a µ-null set, i.e., a set N with µ(N) = 0. These sets of measure
zero are sets which are “small” in a measure-theoretic sense, as opposed to meager first-
category sets which are small is a topological sense. Roughly, sets of measure zero can be
ignored in integration and certain kinds of limits, but one should always be careful.

The next theorem is useful for bounding integrals of products of two functions. You
may be familiar with this name from other courses, such as linear algebra—it turns out
actually, that certain collections of integrable functions act very much the same as vectors
in a finite-dimensional vector space.

Theorem 1.3 (Cauchy–Schwarz inequality). If f and g are measurable, then(∫
fg dµ

)2

≤
∫
f 2 dµ ·

∫
g2 dµ.

Proof. If either f 2 or g2 is not integrable, then the inequality is trivial; so assume that both
f 2 and g2 are integrable. Take any λ; then

∫
(f + λg)2 dµ ≥ 0. In particular,∫

g2 dµ︸ ︷︷ ︸
a

·λ2 + 2
∫
fg dµ︸ ︷︷ ︸
b

·λ+
∫
g2 dµ︸ ︷︷ ︸
c

≥ 0 ∀ λ.

In other words, the quadratic (in λ) can have at most one real root. Using the quadratic
formula,

λ =
−b±

√
b2 − 4ac

2a
,
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it is clear that the only way there can be fewer than two real roots is if b2−4ac is ≤ 0. Using
the definitions of a, b, and c we find that

4
(∫

fg dµ
)2

− 4

∫
f 2 dµ ·

∫
g2 dµ ≤ 0,

and from this the result follows immediately. A different proof, based on Jensen’s inequality,
is given in Example 1.8.

The next result defines “double-integrals” and shows that, under certain conditions, the
order of integration does not matter. Fudging a little bit on the details, for two measure
spaces (X,A, µ) and (Y,B, ν), define the product space

(X× Y,A⊗ B, µ× ν),

where X×Y is usual set of ordered pairs (x, y), A⊗B is the smallest σ-algebra that contains
all the sets A×B for A ∈ A and B ∈ B, and µ× ν is the product measure defined as

(µ× ν)(A×B) = µ(A)ν(B).

This concept is important for us because independent probability distributions induce a
product measure. Fubini’s theorem is a powerful result that allows certain integrals over the
product to be done one dimension at a time.

Theorem 1.4 (Fubini). Let f(x, y) be a non-negative measurable function on X×Y. Then∫
X

[∫
Y
f(x, y) dν(y)

]
dµ(x) =

∫
Y

[∫
X
f(x, y) dµ(x)

]
dν(y). (1.4)

The common value above is the double integral, written
∫
X×Y f d(µ× ν).

Our last result has something to do with constructing new measures from old. It also
allows us to generalize the familiar notion of probability densities which, in turn, will make
our lives easier when discussing the general statistical inference problem. Suppose f is a
non-negative2 measurable function. Then

ν(A) =

∫
A

f dµ (1.5)

defines a new measure ν on (X,A). An important property is that µ(A) = 0 implies ν(A) = 0;
the terminology is that ν is absolutely continuous with respect to µ, or ν is dominated by µ,
written ν � µ. But it turns out that, if ν � µ, then there exists f such that (1.5) holds.
This is the famous Radon–Nikodym theorem.

Theorem 1.5 (Radon–Nikodym). Suppose ν � µ. Then there exists a non-negative µ-
integrable function f , unique modulo µ-null sets, such that (1.5) holds. The function f ,
often written as f = dν/dµ is the Radon–Nikodym derivative of ν with respect to µ.

2f can take negative values, but then the measure is a signed measure.
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We’ll see later that, in statistical problems, the Radon–Nikodym derivative is the familiar
density or, perhaps, a likelihood ratio. The Radon–Nikodym theorem also formalizes the idea
of change-of-variables in integration. For example, suppose that µ and ν are σ-finite measures
defined on X, such that ν � µ, so that there exists a unique Radon–Nikodym derivative
f = dν/dµ. Then, for a ν-integrable function ϕ, we have∫

ϕdν =

∫
ϕf dµ;

symbolically this makes sense: dν = (dν/dµ) dµ.

1.2.2 Basic group theory

An important mathematical object is that of a group, a set of elements together with a
certain operation having a particular structure. Our particular interest (Section 1.3.6) is
in groups of transformations and how they interact with probability distributions. Here we
set some very basic terminology and understanding of groups. A course on abstract algebra
would cover these concepts, and much more.

Definition 1.2. A group is a set G together with a binary operation ·, such that:

• (closure) for each g1, g2 ∈ G , g1 · g2 ∈ G ;

• (identity) there exists e ∈ G such that e · g = g for all g ∈ G ;

• (inverse) for each g ∈ G , there exists g−1 ∈ G such that g−1 · g = e;

• (associative) for each g1, g2, g3 ∈ G , g1 · (g2 · g3) = (g1 · g2) · g3.

The element e is called the identity, and the element g−1 is called the inverse of g. The
group G is called abelian, or commutative, if g1 · g2 = g2 · g1 for all g1, g2 ∈ G .

Some basic examples of groups include (Z,+), (R,+), and (R\{0},×); the latter requires
that the origin be removed since 0 has no multiplicative inverse. These three groups are
abelian. The general linear group of dimension m, consisting of all m × m non-singular
matrices, is a group under matrix multiplication; this is not an abelian group. Some simple
properties of groups are given in Exercise 10.

We are primarily interested in groups of transformations. Let X be a space (e.g., a sample
space) and consider a collection G of functions g, mapping X to itself. Consider the operation
◦ of function composition. The identity element e is the function e(x) = x for all x ∈ X. If
we require that (G , ◦) be a group with identity e, then each g ∈ G is a one-to-one function.
To see this, take any g ∈ G and take x1, x2 ∈ X such that g(x1) = g(x2). Left composition
by g−1 gives e(x1) = e(x2) and, consequently, x1 = x2; therefore, g is one-to-one. Some
examples of groups of transformations are:

• For X = Rm, define the map gc(x) = x+ c, a shift of the vector x by a vector c. Then
G = {gc : c ∈ Rm} is an abelian group of transformations.
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• For X = Rm, define the map gc(x) = cx, a rescaling of the vector x by a constant c.
Then G = {gc : c > 0} is an abelian group of transformations.

• For X = Rm, let ga,b(x) = ax+ b1m, a combination of the shift and scaling of x. Then
G = {ga,b : a > 0, b ∈ R} is a group of transformations; not abelian.

• For X = Rm, let gA(x) = Ax, where A ∈ GL(m). Then G = {gA : A ∈ GL(m)} is a
group of transformations; not abelian.

• Let X = {1, 2, . . . ,m} and define gπ(x) = (xπ(1), . . . , xπ(m)), where π is a permutation
of the indices. Then G = {gπ : permutations π} is a group of transformations; not
abelian.

In the literature on groups of transformations, it is typical to write gx instead of g(x).
For a given group of transformations G on X, there are some other classes of functions which
are of interest. A function α, mapping X to itself, is called invariant (with respect to G ) if
α(gx) = α(x) for all x ∈ X and all g ∈ G . A function β, mapping X to itself, is equivariant
(with respect to G ) if β(gx) = gβ(x) for all x ∈ X and all g ∈ G . The idea is that α is not
sensitive to changes induced by mapping x 7→ gx for g ∈ G , and β doesn’t care whether g is
applied before or after. Next is a simple but important example.

Example 1.6. Let X = Rm and define maps gc(x) = x + c1m, the location shifts. The
function β(x) = x̄1m is equivariant with respect to G , where x̄ is the average of the entries
of x. The function α(x) = x− x̄1m is invariant with respect to G .

A slightly different notion of invariance with respect to a group of transformations, in a
context relevant to probability and statistics, will be considered in Section 1.3.6.

1.2.3 Convex sets and functions

There is a special property that functions can have which will we will occasionally take
advantage of later on. This property is called convexity. Throughout this section, unless
otherwise stated, take f(x) to be a real-valued function defined over a p-dimensional Eu-
clidean space X. The function f is said to be convex on X if, for any x, y ∈ X and any
α ∈ [0, 1], the following inequality holds:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

For the case p = 1, this property is easy to visualize. Examples of convex (univariate)
functions include ex, − log x, xr for r > 1.

In the case where f is twice differentiable, there is an alternative characterization of
convexity. This is something that’s covered in most intermediate calculus courses.

Proposition 1.1. A twice-differentiable function f , defined on p-dimensional space, is con-
vex if and only if

∇2f(x) =
((∂2f(x)

∂xi∂xj

))
i,j=1,...,p

,

the matrix of second derivatives, is positive semi-definite for each x.
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Convexity is important in optimization problems (maximum likelihood, least squares, etc)
as it relates to existence and uniqueness of global optima. For example, if the criterion (loss)
function to be minimized is convex and a local minimum exists, then convexity guarantees
that it’s a global minimum.

“Convex” can be used as an adjective for sets, not just functions. A set C, in a linear
space, is convex if, for any points x and y in C, the convex combination ax + (1 − a)y,
for a ∈ [0, 1], is also a point in C. In other words, a convex set C contains line segments
connecting all pairs of points in C. Examples of convex sets are interval of numbers, circles
in the plane, and balls/ellipses in higher dimensions. There is a connection between convex
sets and convex functions: if f is a convex real-valued function, then, for any real t, the set
Ct = {x : f(x) ≤ t} is convex (see Exercise 15). There will be some applications of convex
sets in the later chapters.3

1.3 Probability

1.3.1 Measure-theoretic formulation

It turns out the mathematical probability is just a special case of the measure theory stuff
presented above. Our probabilities are finite measures, our random variables are measurable
functions, our expected values are integrals.

Start with an essentially arbitrary measurable space (Ω,F), and introduce a probability
measure P; that is P(Ω) = 1. Then (Ω,F ,P) is called a probability space. The idea is that Ω
contains all possible outcomes of the random experiment. Consider, for example, the heights
example above in Section 1.4.1. Suppose we plan to sample a single UIC student at random
from the population of students. Then Ω consists of all students, and exactly one of these
students will be the one that’s observed. The measure P will encode the underlying sampling
scheme. But in this example, it’s not the particular student chosen that’s of interest: we
want to know the student’s height, which is a measurement or characteristic of the sampled
student. How do we account for this?

A random variable X is nothing but a measurable function from Ω to another space X.
It’s important to understand that X, as a mapping, is not random; instead, X is a function
of a randomly chosen element ω in Ω. So when we are discussing probabilities that X satisfies
such and such properties, we’re actually thinking about the probability (or measure) the set
of ω’s for which X(ω) satisfies the particular property. To make this more precise we write

P(X ∈ A) = P{ω : X(ω) ∈ A} = PX−1(A).

To simplify notation, etc, we will often ignore the underlying probability space, and work
simply with the probability measure PX(·) = PX−1(·). This is what we’re familiar with from
basic probability and statistics; the statement X ∼ N(0, 1) means simply that the probability

3e.g., the parameter space for natural exponential families is convex; Anderson’s lemma, which is used to
prove minimaxity in normal mean problems, among other things, involves convex sets; etc.
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measure induced on R by the mapping X is a standard normal distribution. When there is
no possibility of confusion, we will drop the “X” subscript and simply write P for PX .

When PX , a measure on the X-space X, is dominated by a σ-finite measure µ, the
Radon–Nikodym theorem says there is a density dPX/dµ = pX , and

PX(A) =

∫
A

pX dµ.

This is the familiar case we’re used to; when µ is counting measure, pX is a probability mass
function and, when µ is Lebesgue measure, pX is a probability density function. One of the
benefits of the measure-theoretic formulation is that we do not have to handle these two
important cases separately.

Let ϕ be a real-valued measurable function defined on X. Then the expected value of
ϕ(X) is

EX{ϕ(X)} =

∫
X
ϕ(x) dPX(x) =

∫
X
ϕ(x)pX(x) dµ(x),

the latter expression holding only when PX � µ for a σ-finite measure µ on X. The usual
properties of expected value (e.g., linearity) hold in this more general case; the same tools
we use in measure theory to study properties of integrals of measurable functions are useful
for deriving such things.

In these notes, it will be assumed you are familiar with all the basic probability calcu-
lations defined and used in basic probability and statistics courses, such as Stat 401 and
Stat 411 at UIC. In particular, you are expected to know the common distributions (e.g.,
normal, binomial, Poisson, gamma, uniform, etc) and how to calculate expectations for these
and other distributions. Moreover, I will assume you are familiar with some basic operations
involving random vectors (e.g., covariance matrices) and some simple linear algebra stuff.
Keener (2010), Sections 1.7 and 1.8, introduces these concepts and notations.

In probability and statistics, product spaces are especially important. The reason, as we
eluded to before, is that independence of random variables is connected with product spaces
and, in particular, product measures. If X1, . . . , Xn are iid PX , then their joint distribution
is the product measure

PX1 × PX2 × · · · × PXn = PX × PX · · · × PX = PnX .

The first term holds with only “independence;” the second requires “identically distributed;”
the last term is just a short-hand notation for the middle term.

When we talk about convergence theorems, such as the law of large numbers, we say
something like: for an infinite sequence of random variables X1, X2, . . . some event happens
with probability 1. But what is the measure being referenced here? In the iid case, it turns
out that it’s an infinite product measure, written as P∞X . We’ll have more to say about this
when the time comes.
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1.3.2 Conditional distributions

Conditional distributions in general are rather abstract. When the random variables in
question are discrete (µ = counting measure), however, things are quite simple; the reason
is that events where the value of the random variable is fixed have positive probability, so
the ordinary conditional probability formula involving ratios can be applied.

When one or more of the random variables in question are continuous (dominated by
Lebesgue measure), then more care must be taken. Suppose random variables X and Y
have a joint distribution with density function pX,Y (x, y), with respect to some dominating
(product) measure µ×ν. Then the corresponding marginal distributions have densities with
respect to µ and ν, respectively, given by

pX(x) =

∫
pX,Y (x, y) dν(y) and pY (y) =

∫
pX,Y (x, y) dµ(x).

Moreover, the conditional distribution of Y , given X = x, also has a density with respect to
ν, and is given by the ratio

pY |X(y | x) = pX,Y (x, y)/pX(x).

As a function of x, for given y, this is clearly µ-measurable since the joint and marginal
densities are measurable. Also, for a given x, pY |X(y | x) defines a probability measure Qx,
called the conditional distribution of Y , given X = x, through the integral

Qx(B) =

∫
B

pY |X(y | x) dν(y).

That is, pY |X(y | x) is the Radon–Nikodym derivative for the conditional distribution Qx. For
our purposes, conditional distribution can always be defined through its conditional density
though, in general, a conditional density may not exist even if the conditional distribution Qx

does exist. There are real cases where the most general definition of conditional distribution
(Keener 2010, Sec. 6.2) is required, e.g., in the proof of the Neyman–Fisher factorization
theorem and in the proof of the general Bayes theorem. Also, I should mention that con-
ditional distributions are not unique: the point being that the conditional density can be
redefined arbitrarily on a set of ν-measure zero, without affecting the integral that defines
Qx(B) above. We will not dwell on this point here, but students should be aware of the sub-
tleties of conditional distributions; the wikipedia page4 on the Borel paradox gives a clear
explanation of these difficulties, along with references, e.g., to Jaynes (2003), Chapter 15.

Given conditional distribution with density pY |X(y | x), we can define conditional prob-
abilities and expectations. That is,

P(Y ∈ B | X = x) =

∫
B

pY |X(y | x) dν(y).

4https://en.wikipedia.org/wiki/BorelKolmogorov_paradox
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Here I use the more standard notation for conditional probability. The law of total probability
then allows us to write

P(Y ∈ B) =

∫
P(Y ∈ B | X = x)pX(x) dµ(x),

in other words, marginal probabilities for Y may be obtained by taking expectation of the
conditional probabilities. More generally, for any ν-integrable function ϕ, we may write the
conditional expectation

E{ϕ(Y ) | X = x} =

∫
ϕ(y)pY |X(y|x) dν(y).

We may evaluate the above expectation for any x, so we actually have defined a (µ-measurable)
function, say, g(x) = E(Y | X = x); here I took ϕ(y) = y for simplicity. Now, g(X) is a
random variable, to be denoted by E(Y | X), and we can ask about its mean, variance, etc.
The corresponding version of the law of total probability for conditional expectations is

E(Y ) = E{E(Y | X)}. (1.6)

This formula is called smoothing in Keener (2010) but I would probably call it a law of
iterated expectation. This is actually a very powerful result that can simplify lots of calcu-
lations; Keener (2010) uses this a lot. There are versions of iterated expectation for higher
moments, e.g.,

V(Y ) = V{E(Y | X)}+ E{V(Y | X)}, (1.7)

C(X, Y ) = E{C(X, Y | Z)}+ C{E(X | Z),E(Y | Z)}, (1.8)

where V(Y | X) is the conditional variance, i.e., the variance of Y relative to its conditional
distribution and, similarly, C(X, Y | Z) is the conditional covariance of X and Y .

As a final word about conditional distributions, it is worth mentioning that conditional
distributions are particularly useful in the specification of complex models. Indeed, it can
be difficult to specify a meaningful joint distribution for a collection of random variables
in a given application. However, it is often possible to write down a series of conditional
distributions that, together, specify a meaningful joint distribution. That is, we can simplify
the modeling step by working with several lower-dimensional conditional distributions. This
is particularly useful for specifying prior distributions for unknown parameters in a Bayesian
analysis; we will discuss this more later.

1.3.3 Jensen’s inequality

Convex sets and functions appear quite frequently in statistics and probability applications,
so it can help to see the some applications. The first result, relating the expectation of a
convex function to the function of the expectation, should be familiar.

15



Theorem 1.6 (Jensen’s inequality). Suppose ϕ is a convex function on an open interval
X ⊆ R, and X is a random variable taking values in X. Then

ϕ[E(X)] ≤ E[ϕ(X)].

If ϕ is strictly convex, then equality holds if and only if X is constant.

Proof. First, take x0 to be any fixed point in X. Then there exists a linear function `(x) =
c(x − x0) + ϕ(x0), through the point (x0, ϕ(x0)), such that `(x) ≤ ϕ(x) for all x. To prove
our claim, take x0 = E(X), and note that

ϕ(X) ≥ c[X − E(X)] + ϕ[E(X)].

Taking expectations on both sides gives the result.

Jensen’s inequality can be used to confirm: E(1/X) ≥ 1/E(X), E(X2) ≥ E(X)2, and
E[logX] ≤ log E(X). An interesting consequence is the following.

Example 1.7 (Kullback–Leibler divergence). Let f and g be two probability density func-
tions dominated by a σ-finite measure µ. The Kullback–Leibler divergence of g from f is
defined as

Ef{log[f(X)/g(X)]} =

∫
log(f/g)f dµ.

It follows from Jensen’s inequality that

Ef{log[f(X)/g(X)]} = −Ef{log[g(X)/f(X)]}
≥ − log Ef [g(X)/f(X)]

= − log

∫
(g/f)f dµ = 0.

That is, the Kullback–Leibler divergence is non-negative for all f and g. Moreover, it equals
zero if and only if f = g (µ-almost everywhere). Therefore, the Kullback–Leibler divergence
acts like a distance measure between to density functions. While it’s not a metric in a
mathematical sense5, it has a lot of statistical applications. See Exercise 23.

Example 1.8 (Another proof of Cauchy–Schwartz). Recall that f 2 and g2 are µ-measurable
functions. If

∫
g2 dµ is infinite, then there is nothing to prove, so suppose otherwise. Then

p = g2/
∫
g2 dµ is a probability density on X. Moreover,(∫ fg dµ∫

g2 dµ

)2

=
(∫

(f/g)p dµ
)2

≤
∫

(f/g)2p dµ =

∫
f 2 dµ∫
g2 dµ

,

where the inequality follows from Theorem 1.6. Rearranging terms one gets(∫
fg dµ

)2

≤
∫
f 2 dµ ·

∫
g2 dµ,

which is the desired result.
5it’s not symmetric and does not satisfy the triangle inequality
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Another application of convexity and Jensen’s inequality will come up in the decision-
theoretic context to be discussed later. In particular, when the loss function is convex, it will
follow from Jensen’s inequality that randomized decision rules are inadmissible and, hence,
can be ignored.

1.3.4 A concentration inequality

We know that sample means of iid random variables, for large sample sizes, will “concentrate”
around the population mean. A concentration inequality gives a bound on the probability
that the sample mean is outside a neighborhood of the population mean. Chebyshev’s in-
equality (Exercise 25) is one example of a concentration inequality and, often, these tools
are the key to proving limit theorems and even some finite-sample results in statistics and
machine learning.

Here we prove a famous but relatively simple concentration inequality for sums of inde-
pendent bounded random variables. By “bounded random variables” we mean Xi such that
P(ai ≤ Xi ≤ bi) = 1. For one thing, boundedness implies existence of moment generating
functions. We start with a simple result for one bounded random variable with mean zero;
the proof uses some properties of convex functions. Portions of what follows are based on
notes prepared by Larry Wasserman.6

Lemma 1.1. Let X be a random variable with mean zero, bounded within the interval [a, b].
Then the moment generating function MX(t) = E(etX) satisfies

MX(t) ≤ et
2(b−a)2/8.

Proof. Write X = Wa + (1 −W )b, where W = (X − a)/(b − a). The function z 7→ etz is
convex, so we get

etX ≤ Weta + (1−W )etb.

Taking expectation, using the fact that E(X) = 0, gives

MX(t) ≤ − a

b− a
eta +

b

b− a
etb.

The right-hand side can be rewritten as eh(ζ), where

ζ = t(b− a) > 0, h(z) = −cz + log(1− c+ cez), c = −a/(b− a) ∈ (0, 1).

Obviously, h(0) = 0; similarly, h′(z) = −c+ cez/(1− c+ cez), so h′(0) = 0. Also,

h′′(z) =
c(1− c)ez

(1− c+ cez)2
, h′′′(z) =

c(1− c)ez(1− c− cez)
(1− c+ cez)3

.

6http://www.stat.cmu.edu/~larry/=stat705/Lecture2.pdf
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It is easy to verify that h′′′(z) = 0 iff z = log(1−c
c

). Plugging this z value in to h′′ gives
1/4, and this is the global maximum. Therefore, h′′(z) ≤ 1/4 for all z > 0. Now, for some
z0 ∈ (0, ζ), there is a second-order Taylor approximation of h(ζ) around 0:

h(ζ) = h(0) + h′(0)ζ + h′′(z0)
ζ2

2
≤ ζ2

8
=
t2(b− a)2

8
.

Plug this bound in to get MX(t) ≤ eh(ζ) ≤ et
2(b−a)2/8.

Lemma 1.2 (Chernoff). For any random variable X, P(X > ε) ≤ inft>0 e
−tεE(etX).

Proof. See Exercise 26.

Now we are ready for the main result, Hoeffding’s inequality. The proof combines the
results in the two previous lemmas.

Theorem 1.7 (Hoeffding’s inequality). Let Y1, Y2, . . . be independent random variables, with
P(a ≤ Yi ≤ b) = 1 and mean µ. Then

P(|Ȳn − µ| > ε) ≤ 2e−2nε2/(b−a)2 .

Proof. We can take µ = 0, without loss of generality, by working with Xi = Yi − µ. Of
course, Xi is still bounded, and the length of the bounding interval is still b− a. Write

P(|X̄n| > ε) = P(X̄n > ε) + P(−X̄n > ε).

Start with the first term on the right-hand side. Using Lemma 1.2,

P(X̄n > ε) = P(X1 + · · ·+Xn > nε) ≤ inf
t>0

e−tnεMX(t)n,

where MX(t) is the moment generating function of X1. By Lemma 1.1, we have

P(X̄n > ε) ≤ inf
t>0

e−tnεent
2(b−a)2/8.

The minimizer, over t > 0, of the right-hand side is t = 4ε/(b− a)2, so we get

P(X̄n > ε) ≤ e−2nε2/(b−a)2 .

To complete the proof, apply the same argument to P(−X̄n > ε), obtain the same bound as
above, then sum the two bounds together.

There are lots of other kinds of concentration inequalities, most are more general than
Hoeffding’s inequality above. Exercise 28 walks you through a concentration inequality for
normal random variables and a corresponding strong law. Modern work on concentration
inequalities deals with more advanced kinds of random quantities, e.g., random functions or
stochastic processes. The next subsection gives a special case of such a result.
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1.3.5 The “fundamental theorem of statistics”

Consider the problem where X1, . . . , Xn are iid with common distribution function F on
the real line; for simplicity, lets assume throughout that F is everywhere continuous. Of
course, if we knew F , then, at least in principle, we know everything about the distribution
of the random variables. It should also be clear, at least intuitively, that, if n is large, then
we would have seen “all the possible values” of a random variable X ∼ F , in their relative
frequencies, and so it should be possible to learn F from a long enough sequence of data. The
result below, called the Glivenko–Cantelli theorem or, by some, the fundamental theorem of
statistics, demonstrates that our intuition is correct.

First we need a definition. Given X1, . . . , Xn
iid∼ F , we want to construct an estimator F̂n

of F . A natural choice is the “empirical distribution function:”

F̂n(x) =
1

n

n∑
i=1

I(−∞,x](Xi), x ∈ R,

that is, F̂n(x) is just the proportion of the sample with values not exceeding x. It is a simple
consequence from Hoeffding’s inequality above (paired with the Borel–Cantelli lemma) that
F̂n(x) converges almost surely to F (x) for each x. The Glivenko–Cantelli theorem says that
F̂n converges to F not just pointwise, but uniformly.

Theorem 1.8 (Glivenko–Cantelli). Given X1, . . . , Xn
iid∼ F , where F is everywhere contin-

uous on R, let F̂n be the empirical distribution function as defined above. Set

‖F̂n − F‖∞ := sup
x
|F̂n(x)− F (x)|.

Then ‖F̂n − F‖∞ converges to zero almost surely.

Proof. Our goal is to show that, for any ε > 0,

lim sup
n

sup
x
|F̂n(x)− F (x)| ≤ ε, almost surely.

To start, given (arbitrary) ε > 0, let −∞ = t1 < t2 < · · · < tJ =∞ be a partition of R such
that

F (t−j+1)− F (tj) ≤ ε, j = 1, . . . , J − 1.

Exercise 29 demonstrates the existence of such a partition. Then, for any x, there exists j
such that tj ≤ x < tj+1 and, by monotonicity,

F̂n(tj) ≤ F̂n(x) ≤ F̂n(t−j+1) and F (tj) ≤ F (x) ≤ F (t−j+1).

This implies that

F̂n(tj)− F (t−j+1) ≤ F̂n(x)− F (x) ≤ F̂n(t−j+1)− F (tj).
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By adding-then-subtracting appropriate quantities on the upper- and lower-bounds, we get

F̂n(x)− F (x) ≥ F̂n(tj)− F (tj) + F (tj)− F (t−j+1)

F̂n(x)− F (x) ≤ F̂n(t−j+1)− F (t−j+1) + F (t−j+1)− F (tj).

By the way the partition was defined, we have

F̂n(tj)− F (tj)− ε ≤ F̂n(x)− F (x) ≤ F̂n(t−j+1)− F (t−j+1) + ε.

If we apply the law of large numbers for each of the finitely many j, then the upper and
lower bounds converge to ±ε/2, uniformly in x, which completes the proof.

Even stronger convergence results for the empirical distribution function are known. In
particular, the Dvoretzky et al. (1956) show that

P
(
‖F̂n − F‖∞ > ε

)
≤ 2e−2nε2 ,

which implies that the rate of convergence is n−1/2, i.e., ‖F̂n − F‖∞ = OP (n−1/2).
What are the implications of this result for statistics, i.e., why is it called the “fundamen-

tal theorem of statistics”? It means that any quantity which can be expressed in terms of the
distribution function F can be estimated from data. In most cases, the “parameter” of inter-
est (see below) is a function(al) of the distribution function F . For example, the mean of a
distribution can be expressed as θ = θ(F ) =

∫
x dF (x), the median is θ = θ(F ) = F−1(0.5),

etc. The Glivenko–Cantelli theorem says that any θ(F ) can be estimated with θ(F̂n) and,
moreover, one can expect that these plug-in estimators will have good properties. As we see
in Section 1.3.6 below, the distribution will be indexed by a parameter θ of interest, i.e., we
write Fθ instead of F and θ(F ). Glivenko–Cantelli insures that one can learn about Fθ from
the sample; in order to be able to learn about the parameter of interest, we require that θ
be identifiable, i.e., that θ 7→ Fθ be a one-to-one function.

It is worth emphasizing that pointwise convergence, F̂n(x) → F (x) for each x, is an
automatic consequence of the law of large numbers (which, for bounded random variables, is
a consequence of Hoeffding). The effort that is required here is to strengthen the conclusion
from pointwise to uniform convergence. This turns out to be a general problem—converting
pointwise convergence to uniform convergence—and there is considerable, and very technical,
work on the subject. A nice introduction is given by van der Vaart (1998, Chap. 19), and
more general versions of the Glivenko–Cantelli theorem are given, along with extensions
(e.g., “Donsker theorems”), and an introduction to the tools needed to prove such theorems.

1.3.6 Parametric families of distributions

As we will discuss in Section 1.4.1, in a statistical problem, there is not just one probability
measure in question, but a whole family of measures Pθ indexed7 by a parameter θ ∈ Θ.

7Note that the subscript in Pθ serves a different purpose than the subscript PX described in Section 1.3.1.
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You’re already familiar with this setup; X1, . . . , Xn iid N(θ, 1) is one common example. A
very important and broad class of distributions is the exponential family. That is, for a
given dominating measure µ, an exponential family has density function (Radon–Nikodym
derivative with respect to µ) of the form

pθ(x) = e〈η(θ),T (x)〉+A(θ)h(x),

where η(θ), T (x), A(θ), and h(x) are some functions, and 〈·, ·〉 is the Euclidean inner product.
You should be familiar with these distributions from a previous course, such as Stat 411 at
UIC. We will discuss exponential families in some detail later.

In this section we will consider another special family of probability measures which
are characterized by a “base measure” and a group of transformations. We begin with an
important special case.

Example 1.9. Let P0 be a probability measure with symmetric density p0 with respect to
Lebesgue measure on R. Symmetry implies that the median is 0; if the expected value exists,
then it equals 0 too. For X ∼ P0, define X ′ = X + θ for some real number θ. Then the
distribution of X ′ is Pθ(A) := P0(X + θ ∈ A). Doing this for all θ generates the family
{Pθ : θ ∈ R}. The normal family N(θ, 1) is a special case.

The family of distributions in Example 1.9 are generated by a single distribution, centered
at 0, and a collection of “location shifts.” There are four key properties of these location
shifts: first, shifting by zero doesn’t change anything; second, the result of any two con-
secutive location shifts can be achieved by a single location shift; third, the order in which
location shifts are made is irrelevant; fourth, for any given location, there is a shift that takes
the location back to 0. It turns out that these two properties characterize what’s called a
group of transformations, discussed in Section 1.2.2. Keener (2010, Ch. 10) has a few details
about group transformation models, and Eaton (1989) is a thorough introduction.

To generalize the location shift example, start with a fixed probability measure P on
(X,A). Now introduce a group G of transformations on X, and take Pe = P; here the
subscript “e” refers to the group identity e. Then define the family {Pg : g ∈ G } as

Pg(A) = Pe(g
−1A), A ∈ A.

That is, Pg(A) is the probability, under X ∼ Pe, that gX lands in A. In the case where Pe
has a density pe with respect to Lebesgue measure, we have

pg(x) = pe(g
−1x)

∣∣∣dg−1x

dx

∣∣∣,
which is just the usual change-of-variable formula from introductory probability; of course,
the above formula assumes that each g ∈ G is differentiable.

The explanation in the previous paragraph concerns the construction of a family of dis-
tributions which is, in a certain sense, invariant with respect to G . In many case, like the
normal example above, there is already a family P = {Pθ : θ ∈ Θ} of distributions on X,
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indexed by Θ. If G is a group of transformations on X, then one could ask if the family is
invariant with respect to G . That is, if X ∼ Pθ, is it possible that there is no θ′ ∈ Θ such
that gX ∼ Pθ′? In short, is GP = P? There are some distribution families and some groups
of transformations for which this holds (Exercise 11).

1.4 Conceptual preliminaries

1.4.1 Ingredients of a statistical inference problem

Statistics in general is concerned with the collection and analysis of data. The data-collection
step is an important one, but this will not be considered here—we will assume the data is
given, and concern ourselves only with how these data should be analyzed. In our case,
the general statistical problem we will face consists of data X, possibly vector-valued, taking
values in X, and a model that describes the mechanism that produced this data. For example,
if X = (X1, . . . , Xn) is a vector consisting of the recorded heights of n UIC students, then the
model might say that these individuals were sampled completely at random from the entire
population of UIC students, and that heights of students in the population are normally
distributed. In short, we would write something like X1, . . . , Xn are iid N(µ, σ2); here “iid”
stands for independent and identically distributed. There would be nothing to analyze if the
population in question were completely known. In the heights example, it shall be assumed
that at least one of µ and σ2 are unknown, and we want to use the observed data X to learn
something about these unknown quantities. So, in some sense, the population in question is
actually just a class/family of distributions—in the heights example this is the collection of
all (univariate) normal distributions. More generally, we shall specify a parametric family
{Pθ : θ ∈ Θ}, discussed in Section 1.3.6, as the model for the observable data X; in other
words, X ∼ Pθ for some θ ∈ Θ, though the specific θ that corresponds to the observed X = x
is unknown. The statistician’s charge then is to learn something about the true θ from the
observations. What it means to “learn something” is not so easy to explain; I will attempt
to clarify this in the next section.

The data and model should be familiar ingredients in the statistical inference problem.
There is an important but less-familiar piece of the statistical inference problem—the loss
function—that is not given much attention in introductory inference courses. To facilitate
this discussion, consider the problem of trying to estimate θ based on data X ∼ Pθ. The
loss function L records how much I lose by guessing that θ equals any particular a in Θ. In
other words, (θ, a) 7→ L(θ, a) is just a real-valued function defined on Θ × Θ. In introduc-
tory courses, one usually takes L(θ, a) = (a − θ)2, the so-called squared error loss, without
explanation. In this course, we will consider more general loss functions, in more general
inference problems, particularly when we discuss decision theory.

To summarize, the statistical inference problem consists of data X taking values in a
sample space Θ and a family of probability distributions {Pθ : θ ∈ Θ}. In some cases, we will
need to consider the loss function L(·, ·), and in other cases there will be a known probability
distribution Π sitting on the parameter space Θ, representing some prior knowledge about
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the unknown parameter, which we will need to incorporate somehow. In any case, the goal
is to identify the particular Pθ which produced the observed X.

1.4.2 Reasoning from sample to population

It is generally believed that statistics and probability are closely related. While this claim is
true in some sense, the connection is not immediate or obvious. Surely, the general sampling
model “X ∼ Pθ” is a probabilistic statement. For example, if X ∼ N(θ, 1) with θ known,
then we can compute Pθ(X ≤ c) = Φ(c − θ) for any c, where Φ is the standard normal
distribution function. Similar calculations can be made for other distributions depending on
a known θ. But this exercise is to make probabilistic statements about a yet-to-be-observed
value of a random variable X with parameter θ known. That is, probability is designed to
describe uncertainty about a sample to be taken from a fixed and known population. The
statistics problem, on the other hand, is one where the sample is given but some characteristic
of the population is unknown. This is basically the opposite of the probability problem and,
in this light, it seems very hard. Moreover, it is not clear how to use probability, or even if
it should be used at all.

A crucial issue is that it is not clear how to interpret probability statements about X ∼ Pθ
after X is observed.8 An illustration of this idea is in the context of p-values for hypothesis
testing. If the p-value is small, then the observed value is an “outlier” with respect to the
hypothesized distribution. It is typical to interpret such an outcome as evidence against the
hypothesis, but this is a choice the statistician is making—there is no basis for handling the
problem in this way, mathematical or otherwise. The point here is that the sampling model
on its own is insufficient for statistical inference, something more is needed.

To further illustrate this point, consider Fisher’s fiducial argument for statistical infer-
ence. Suppose data X and parameter θ are both scalars, and let Fθ(x) be the distribution
function. Take any p ∈ [0, 1] and assume that the equation p = Fθ(x) can be solved uniquely
for x, given θ, and for θ, given x. That is, there exists xp(θ) and θp(x) such that

p = Fθ(xp(θ)) = Fθp(x)(x), ∀ (x, θ).

If the sampling model is “monotone” in the sense that, for all (p, x, θ),

xp(θ) ≥ x ⇐⇒ θp(x) ≤ θ,

then it is an easy calculation to show that

p = Pθ{X ≤ xp(θ)} = Pθ{θp(X) ≤ θ}.

Fisher’s idea was to take the latter expression and give it an interpretation after X = x is
observed. That is, he defined

“P{θ ≥ θp(x)}” = p, ∀ p ∈ [0, 1], x is observed X.

8Students likely would have encountered this difficulty in their first exposure to Bayes’s formula, where
a conditional probability is reversed and there is an attempt to use probability to explain uncertainty about
the outcome of an experiment that has already been performed but not yet observed.
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The collection {θp(x) : p ∈ [0, 1]} defines the quantiles of a distribution and, therefore, a
distribution itself. Fisher called this the fiducial distribution and he made the controversial
claim that he had carried out the Bayesian task of getting a sort of “posterior distribution”
for the parameter without a prior distribution or by invoking Bayes’s theorem; see Zabell
(1992) for more on this. Our goal here is not to discuss the validity of Fisher’s claims,
but simply to point out that Fisher’s construction of a fiducial distribution, albeit intuitive,
requires a sort of “leap of faith”—in fact, the word fiducial actually means “based on belief
or faith.” Therefore, the fiducial argument is not a mathematical derivation of a solution to
the statistical inference problem based on the sampling model alone.

For the most part, we will avoid philosophical concerns in this course, but students should
be aware that (i) statistical inference is hard, and (ii) there is no widely agreed upon setup.
The issue is that the statistical inference problem is ill-posed, from a mathematical point of
view, so one cannot deduce, from first principles, a “correct answer.” (For this reason, no
one can say that one approach is “right” or better than another approach; the little poem in
Figure 1.1 is relevant here.) Fisher thought very carefully about such things and, although his
fiducial argument is not fully satisfactory, he was on the right track. The fiducial argument
was, at its core, meant to facilitate

the conversion of information in the observed data into a meaningful summary
of the evidence supporting the truthfulness of various hypotheses related to the
parameter of interest.

This is my definition of statistical inference; no textbooks (that I know of) give a formal def-
inition, so they neither agree nor disagree with my definition. Following this idea, there have
been attempts to extend/improve upon Fisher’s original argument, including generalized
fiducial inference (Hannig 2009), structural inference (Fraser 1968), and Dempster–Shafer
theory (Dempster 2008; Shafer 1976). An important point that is missing in these existing
approaches is a statement of what makes their summaries “meaningful.” The new inferen-
tial model framework (Martin and Liu 2013, 2015b) makes clear what “meaningful” means,
but I will not go into this point here.9 Although these alternative approaches discussed
above, which are neither frequentist nor Bayesian, have yet to reach the mainstream, the
developments are promising and I am hopeful.

1.5 Exercises

1. Keener, Problem 1.1, page 17.

2. Show that if A1, A2, . . . are members of a σ-algebra A, then so is
⋂∞
i=1 Ai.

3. Keener, Problem 1.6, page 17.

9I have a paper that discusses this and other points in detail, but it is not quite ready to be made public.
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It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.
The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to ball:
“God bless me!” but the Elephant
Is very like a wall!”
The Second, feeling of the tusk,
Cried “Ho! what have we here
So very round and smooth and sharp?
To me ’tis mighty clear
This wonder of an Elephant
Is very like a spear!”

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
“I see,” quoth he, “the Elephant
is very like a snake!”
The Fourth reached out an eager hand,
And felt about the knee.
“What most this wondrous beast is like
Is mighty plain,” quoth he;
“Tis clear enough the Elephant
is very like a tree!”
The Fifth, who chanced to touch the ear,
Said: “E’en the blindest man
Can tell what this resembles most;
Deny the fact who can
This marvel of an Elephant
is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,
Than, seizing within his scope,
“I see,” quoth he, “the Elephant
is very like a rope!”
And so these men of Indostan
Disputed loud and long.
Each in his own opinion
Exceeding stiff and strong
Though each was partly in the right
And all were in the wrong!
Moral: So oft in theologic wars,
The disputants, I ween,
Rail on utter ignorance
Of what each other mean,
And prate about an Elephant
Not one of them has seen!

Figure 1.1: Three Blind Men and the Elephant, John Godfrey Saxe, 1880.

4. For A1, A2, . . . ∈ A, define

lim supAn =
∞⋂
n=1

∞⋃
m=n

Am = {x: x is in An for infinitely many n}.

Show that lim supAn is also in A.

5. Prove the Borel–Cantelli Lemma: If µ is a finite measure (i.e., µ(X) < ∞) and∑∞
n=1 µ(An) <∞, then µ(lim supAn) = 0.

6. Keener, Problem 1.8, page 17.

7. Prove that if f and g are measurable functions, then so are f+g and f∨g = max{f, g}.
[Hint: For proving f + g is measurable, note that if f(x) ≤ a − g(x) then there is a
rational number r that sits between f(x) and a− g(x).]

8. Show that if f is µ-integrable, then |
∫
f dµ| ≤

∫
|f | dµ. [Hint: Write |f | in terms of

f+ and f−.]

9. (a) Use Fubini’s theorem to show that, for a non-negative random variable X, with
distribution function F , we have E(X) =

∫∞
0
{1− F (x)} dx.

(b) Use this result to derive the mean of an exponential distribution with scale pa-
rameter θ.

10. Let (G , ·) be a group. Show that:

(a) g · e = g for all g ∈ G ;

(b) g · g−1 = g for all g ∈ G ;

(c) the identity e is unique;
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(d) for each g, the inverse g−1 is unique;

(e) for each g, (g−1)−1 = g.

11. Let P = {N(0, θ) : θ > 0}. Show that P is invariant with respect to the group
G = {ga(x) = ax : a > 0}.

12. Suppose ϕ is convex on (a, b) and ψ is convex and nondecreasing on the range of ϕ.
Prove that ψ ◦ ϕ is convex on (a, b), where ◦ denotes function composition.

13. Suppose that ϕ1, . . . , ϕn are convex functions, and a1, . . . , an are positive constants.
Prove that ϕ(x) =

∑n
i=1 aiϕi(x) is convex.

14. Let {Ct : t ∈ T} be a collection of convex sets. Prove that
⋂
t∈T Ct is also convex.

15. Let f be a convex real-valued function and, for any real t, define Ct = {x : f(x) ≤ t}.
Prove that Ct is convex.

16. Keener, Problem 1.26, page 21.

17. Keener, Problems 1.36 and 1.37, page 22.

18. Let X ∼ N(µ, σ2) and, given X = x, Y ∼ N(x, τ 2). Find the conditional distribution
of X, given Y = y.

19. Prove the conditional expectation formulas (1.6), (1.7), and (1.8).

20. Let X be a random variable.

(a) If E(X2) <∞, find c to minimize E{(X − c)2}.
(b) If E|X| <∞, find c to minimize E|X − c|.

21. Keener, Problem 1.17, page 19. [Hint: Consider the probability generating function
g(t) = E(tX) and, in particular, g(1) and g(−1).]

22. A sort of reverse Jensen’s inequality. Let X be a bounded random variable, i.e.,
P(X ∈ [a, b]) = 1. If f is an increasing function, then Ef(X) ≤ f(E(X) + d), where
d = b− a.

23. Let f and g be density functions corresponding to N(θ, 1) and N(µ, 1). Compute the
Kullback–Leibler divergence K(f, g).

24. Markov’s inequality.

(a) Let X be a positive random variable with mean E(X). Show that

P(X > ε) ≤ ε−1E(X), ∀ ε > 0.
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(b) Consider a measure space (X,A, µ), where µ(X) <∞, and a µ-integrable function
f . State and prove a general measure-theoretic version of Markov’s inequality.

25. Chebyshev’s inequality. Let X be a random variable with mean µ and variance σ2. Use
Markov’s inequality to show that

P(|X − µ| > ε) ≤ ε−2σ2, ∀ ε > 0.

26. Prove Chernoff’s bound, Lemma 1.2.

27. (a) Specialize Hoeffding’s inequality (Theorem 1.7) to the case where X1, . . . , Xn are
iid Ber(µ) random variables.

(b) Given η, small, find ε = ε(n, η) such that P(|X̄n − µ| ≤ ε) ≥ 1− η.

28. (a) Let Z ∼ N(0, 1). Show that P(|Z| > ε) ≤ ε−1e−ε
2/2.

(b) Let X1, . . . , Xn
iid∼ N(µ, σ2), and X̄n the sample mean. Give a bound like the one

above for P(|X̄n − µ| > ε).

(c) Use your inequality in (b), with the Borel–Cantelli lemma in Exercise 5, to
prove the following strong law of large numbers for normals: If X1, X2, . . . are
iid N(µ, σ2), then X̄n → µ almost surely.

29. Let F be a distribution function on real line, and ε > 0 a fixed number. Let t1 = −∞
and, for j > 1, define

tj+1 = sup{t : F (t) ≤ F (tj) + ε}.

(a) Show that this sequence is finite and defines the partition used in the proof of
Theorem 1.8.

(b) How many points tj are needed for the partition?

30. Show that if X is distributed according to a scale family, then Y = logX is distributed
according to a location family.

31. Let X be a positive random variable, and consider the family P of distributions gener-
ated by X and transformations G = {gb,c : b > 0, c > 0} given by

gb,c(x) = bx1/c.

(a) Show G is a group under function composition.

(b) If X has a unit-rate exponential distribution, then show that the family P gener-
ated by {gb,c} is the Weibull family, with density

(c/b)(x/b)c−1 exp{−(x/b)c}, x > 0.

32. Recall the standard 100(1− α)% confidence interval for a normal mean θ with known
variance σ2 = 1, i.e., X̄ ± z1−α/2σn

−1/2, where Φ(z1−α/2) = 1− α/2.
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(a) When we say that the coverage probability is 1− α, what do we mean?

(b) Explain how this interval is to be interpreted after data is observed.

33. A fundamental concept in frequentist statistical theory is sampling distributions. For
an observable sample X1, . . . , Xn from a distribution depending on some parameter θ,
let T = T (X1, . . . , Xn) be some statistic.

(a) What do we mean by the sampling distribution of T?

(b) Explain how the sampling distribution is used to reason towards statistical infer-
ence. If it helps, you can use an example to explain.
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Chapter 2

Exponential Families, Sufficiency, and
Information

2.1 Introduction

In statistics, sufficiency and information are fundamental concepts, no matter what approach
one adopts—Bayesian, frequentist, or other. The basic idea is that, for a given statistical
model {Pθ : θ ∈ Θ}, indexed by a (finite-dimensional) parameter space Θ, there are functions
of the observable data X = (X1, . . . , Xn) which contain all the available information in X
concerning the unknown parameter θ. Such functions are called sufficient statistics, and the
idea is that it generally suffices for, say, point estimation, to restrict attention to functions of
sufficient statistics. The notion of “information” introduced above is meant to be informal;
however, for rigor, we must formulate a precise notion of information for a statistical problem.
In particular, we shall focus on the Fisher information, obviously due to R. A. Fisher. The
key result is that the Fisher information for θ in a T = T (X) function of the observable
data X is no more than the Fisher information for θ in X itself, and the two measures of
information are equal if and only if T is a sufficient statistic.

The definition of sufficiency is not helpful for finding a sufficient statistic in a given
problem. Fortunately, the Neyman–Fisher factorization theorem makes this task quite easy.
The idea is that, with some simple algebra on the likelihood function, a sufficient statistic
can be readily obtained. Sufficient statistics are not unique, however. Therefore, there is
some interest in trying to find the “best” sufficient statistic in a given problem. This best
sufficient statistic is called minimal, and we discuss some techniques for finding the minimal
sufficient statistic. It can happen, however, that even a minimal sufficient statistic T provides
an inefficient reduction of the data X—either the dimension of T is larger than that of θ, or
there is redundant information in T . In such cases, it makes sense to consider conditioning
on an ancillary statistic, a sort of complement to a sufficient statistic that contains no
information about θ. There are special cases where the minimal sufficient statistic T is
complete. This means that T contains no redundant information about θ, so conditioning
on an ancillary statistic is unnecessary (Basu’s theorem).
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We begin this chapter with an introduction to exponential families. This is a broad class
that contains almost all distributions encountered in an intermediate statistics course like
Stat 411 at UIC. Roughly speaking, what makes exponential families so useful is that their
corresponding likelihood functions are nice that lots of tricks can be done. For example,
the regularity conditions needed for, say, asymptotic normality of the maximum likelihood
estimators or the Cramer–Rao inequality, hold for (regular) exponential families. A key
result is Theorem 2.1 below, which is a nice application of the Lebesgue dominated conver-
gence theorem. Of particular importance here is that, essentially, only (regular) exponential
families admit a suitable dimension reduction via sufficiency (Theorem 2.4). Details about
exponential families, including everything presented here, are discussed in the (technical)
monograph by Brown (1986).

2.2 Exponential families of distributions

We discussed previously the general concept of a parametric family of probability measures,
with some detail to a special case with a structure induced by a group of transformations.
In this section we discuss a very important class of distributions that contains many of the
common statistical models, such as binomial, Poisson, normal, etc.

Definition 2.1. A collection of probability measures {Pθ : θ ∈ Θ} on (X,A), each dominated
by a σ-finite measure µ, is called an exponential family if the Radon–Nikodym derivatives
pθ(x) = (dPθ/dµ)(x) satisfy

pθ(x) = h(x)e〈η(θ),T (x)〉−A(θ) (2.1)

for some functions h, A, η, and T , where

η(θ) = (η1(θ), . . . , ηd(θ))
> and T (x) = (T1(x), . . . , Td(x))>.

Here 〈x, y〉 denotes the usual Euclidean inner product between d-vectors, 〈x, y〉 =
∑d

i=1 xiyi.

When convenient we may write a(θ) = e−A(θ) and write (2.1) as pθ(x) = a(θ)h(x)e〈η(θ),T (x)〉.
When considering expectations with respect to an exponential family distribution, we might
occasionally absorb the h(x) term into dµ(x); see, e.g., Theorem 2.1.

Example 2.1. Suppose X ∼ Pois(θ). The Poisson distribution is dominated by counting
measure on X = {0, 1, . . .}, with density

pθ(x) =
e−θθx

x!
=

1

x!
· ex log θ−θ, x = 0, 1, . . .

The right-hand side is of the form (2.1), so Poisson belongs to the exponential family.

Example 2.2. The following distributions are exponential family members: N(θ, 1), N(θ1, θ
2
2),

Exp(θ), Gam(θ1, θ2), Beta(θ1, θ2), Bin(n, θ), and Geo(θ). Common examples of distributions
which are not members of an exponential family include Cau(θ, 1), and Unif(0, θ).
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There are a number of nice statistical properties of exponential families, specifically
related to existence of sufficient statistics and, later on, to existence of minimum variance
unbiased estimates. The following mathematical properties of exponential families will be
useful in proving these statistical results.

Proposition 2.1. Consider an exponential family with µ-densities

pθ(x) = a(θ)h(x)e〈θ,T (x)〉. (2.2)

The set Θ =
{
θ :
∫
h(x)e〈θ,T (x)〉 dµ(x) <∞

}
is convex.

Proof. Exercise 1.

In Proposition 2.1, the parameter θ is called the natural parameter, and Θ the correspond-
ing natural parameter space. We have stated this in terms of the notation θ, but the basic
idea is to start with (2.1) and take η(θ) as the parameter; that is, just do a reparametrization.
The result states that the natural parameter space is a “nice” set.

The next theorem is useful for a number of calculations, in particular, for calculating
moments in exponential families or Fisher information. The proof is a nice application of
the dominated convergence theorem presented earlier.

Theorem 2.1. Let X ∈ X ⊆ Rd have density pθ(x) = a(θ)e〈θ,x〉 with respect to µ.1 Let
ϕ : X → R be µ-measurable and set Θϕ = {θ :

∫
|ϕ(x)|e〈θ,x〉 dµ(x) < ∞}. Then for θ in the

interior of Θϕ,

m(θ) :=

∫
ϕ(x)e〈θ,x〉 dµ(x)

is continuous and has continuous derivatives of all order. Moreover, the derivative can be
taken under the integral sign; i.e., for i = 1, . . . , d,

∂m(θ)

∂θi
=

∫
xiϕ(x)e〈θ,x〉 dµ(x).

Proof. Consider the case of one-dimensional θ; the general d-dimensional case is similar.
Choose a fixed θ ∈ Θϕ. For a suitable ε > 0, define dn(x) = (eεx/n − 1)/(ε/n), so that

m(θ + ε/n)−m(θ)

ε/n
=

∫
ϕ(x)eθxdn(x) dµ(x).

It is clear that dn(x)→ d(x) = x for each x, where d(x) is the derivative of z 7→ exz at z = 0.
Write fn(x) = ϕ(x)eθxdn(x), so that fn(x) → xϕ(x)eθx as n → ∞ for all x. It remains to
show that the µ-integral of fn converges to the µ-integral of f . To show this, we employ the
dominated convergence theorem.

Note the following inequalities for the exponential function:

|ez − 1| ≤ |z|e|z| and |z| ≤ e|z|, ∀ z.
1Here I have re-expressed the dominating measure, i.e., dµ(x)← h(x) dµ(x).
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With these inequalities, we may write

|fn(x)| ≤ |ϕ(x)|eθxε−1e2ε|x| ≤ |ϕ(x)|eθxε−1
(
e2εx + e−2εx

)
.

If we choose ε such that θ±2ε belong to Θϕ, then the upper bound, say, g(x), is µ-integrable.
Therefore, the dominated convergence theorem says

dm(θ)

dθ
= lim

n→∞

∫
fn(x) dµ(x) =

∫
f(x) dµ(x) =

∫
xϕ(x)eθx dµ(x).

That is, the derivative of the integral is the integral of the derivative, as was to be shown. To
show that one can take more derivatives, and that these further derivatives can be evaluated
by taking derivative inside the integral, can be checked by repeating the above argument.

There are a couple of hidden assumptions worth mentioning. First, we have silently
assumed that the support {x : pθ(x) > 0} of the distribution does not depend on θ. This
rules out cases like Unif(0, θ). Second, we have also silently assumed that Θ has a non-
empty interior. This ensures that it is possible to find an open interval/box, depending on
ε, centered at the given θ that fits inside Θ. Without this, the claim may be false. These
two assumptions are part of those “regularity conditions” listed in classical definitions of
exponential families (cf. my Stat 411 notes).

The same result holds for general exponential families, not just for those in the natural
or canonical form. The message is simply that for nice enough functions ϕ, the expected
value of ϕ(X) is a very nice function of the parameter θ. As an application of Theorem 2.1
we have the following.

Corollary 2.1. Suppose that X = (X1, . . . , Xd) has an exponential family density of the
form pθ(x) = a(θ)e〈θ,x〉. Then for i, j = 1, . . . , d,

Eθ(Xi) = − ∂

∂θi
log a(θ) and Cθ(Xi, Xj) = − ∂2

∂θi∂θj
log a(θ).

Higher-order moments of X can be found similarly.

Proof. Start with the identity
∫
a(θ)e〈x,θ〉 dµ(x) = 1 for all θ. Now differentiate both sides

with respect to θ as many times as needed, move derivative under the integral sign, and solve
for the appropriate moment.

This can be written in perhaps a more familiar form by recognizing that − log a(θ) =
A(θ). In this case, for example, Eθ(Xi) = (∂/∂θi)A(θ). The general formulae for means and
variances in the exponential family are given in Exercise 2. An alternative derivation of the
above result can be found by noticing that exponential families admit a moment-generating
function, and it’s given by

Mθ(u) = eA(θ+u)−A(θ) = a(θ)/a(θ + u). (2.3)
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2.3 Sufficient statistics

2.3.1 Definition and the factorization theorem

A statistic is simply a measurable function of the data; that is, if T : X→ T is measurable,
then T (X) is a statistic. But not all statistics will be useful for the statistical inference
problem. It is the goal of this section to begin understanding what kind of mappings T are
worth using. The definition involves general conditional distributions.

Definition 2.2. Suppose X ∼ Pθ. Then the statistic T = T (X), mapping (X,A) to (T,B),
is sufficient for {Pθ : θ ∈ Θ} if the conditional distribution of X, given T = t, is independent
of θ. More precisely, suppose there exists a map K : A × T → [0, 1], independent of θ,
such that K(·, t) is a probability measure on (X,A) for each t and K(A, ·) is a measurable
function for each A ∈ A, with

Pθ(X ∈ A, T ∈ B) =

∫
B

K(A, t) dPTθ (t), ∀ A ∈ A, B ∈ B.

Here, PTθ stands for the marginal distribution of T . Then T is sufficient for θ.

The key to the above definition is that the conditional probability of X, given T = t,
characterized by the kernel K(·, t), does not depend on θ. So, for example, if ϕ is some
integrable function, then

Eθ{ϕ(X) | T = t} =

∫
ϕ(x)dK(x, t)

actually does not depend on θ. Taking this argument one step further, one finds that
sufficiency implies that knowing the value of T is sufficient to generate new data X ′, say,
with the same probabilistic properties as X.

The measure-theoretic difficulties that arise with the conditional distributions in the
continuous case makes identifying sufficient statistics via the definition difficult in these
cases; there’s a slicker way to do it, which we discuss shortly. However, for discrete problems,
where conditioning is very straightforward, the definition is just fine.

Example 2.3. Suppose X1, . . . , Xn are iid Ber(θ). Let T (x) =
∑n

i=1 xi. Then

Pθ(X = x | T (X) = t) =
θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=

(
n

t

)−1

.

This is independent of θ, so T (X) is sufficient for θ. Here K(·, t) is just a uniform distribution
over all those n-tuples of 0’s and 1’s that consist of exactly t 1’s.

Example 2.4. Suppose X1, . . . , Xn are iid Pois(θ). Take T (x) =
∑n

i=1 xi. Then

Pθ(X1 = x1 | T (X) = t) =
e−θθx1/x1! · e−(n−1)θ[(n− 1)θ]t−x1/(t− x1)!

e−nθ(nθ)t/t!

=

(
t

x1

)
(1/n)x1(1− 1/n)t−x1 .
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That is, the conditional distribution of X1, given T = t, is Bin(t, 1/n). This holds for all
Xi’s, not just X1, and, in fact, the conditional distribution of the X vector, given T = t is is
multinomial with size t and weights 1/n. This distribution is independent of θ, hence T (X)
is sufficient for θ.

Example 2.5. Let X1, . . . , Xn be an iid sample from a distribution Pθ. Define the order
statistics (X(1), . . . , X(n)), the ordered list of data points. Given the order, there are n!
possible values of X, and they all have the same probability. Since this is independent of Pθ,
the order statistics must be sufficient for θ. Note, however, that sufficiency may fail without
the iid assumption.

In the case where the family {Pθ : θ ∈ Θ} consists of distributions dominated by a
common σ-finite measure µ, there is a very convenient tool to identify a sufficient statistic.

Theorem 2.2 (Neyman–Fisher Factorization Theorem). Let {Pθ : θ ∈ Θ} be dominated by
a common σ-finite measure µ, with densities pθ = dPθ/dµ. Then T (X) is sufficient for θ if
and only if there exists non-negative functions h and gθ such that

pθ(x) = gθ[T (x)]h(x) all θ, µ-almost all x. (2.4)

Proof. For a detailed proof, paying close attention to the measure-theoretic concerns about
conditions, see Keener (2010), Sec. 6.4. However, the basic idea is quite simple. Since
T is a statistic, a function of X, we (roughly) have that (i) the joint density of (X,T ) is
gθ[T (x)]h(x), and (ii) the marginal density of T is gθ(t). Then the conditional density is the
ratio of these two and we see that the dependence on θ drops out. Therefore, the conditional
distribution of X, given T , does not depend on θ, hence T is sufficient.

This theorem allows us to easily identify sufficient statistics, simply by algebraic manip-
ulations of the joint density/likelihood function.

Example 2.6. Suppose that X = (X1, . . . , Xn) consists of iid Unif(0, θ) samples. Then the
joint distribution can be written as

pθ(x) =
n∏
i=1

θ−1I(0,θ)(xi) = θ−nI(0,θ)(maxxi).

Since pθ(x) depends on θ only through T (x) = maxxi, it follows from Theorem 2.2 that
T (X) = maxXi is sufficient for θ.

Example 2.7. Suppose X = (X1, . . . , Xn) consists of iid N(µ, σ2) samples. The joint density
is

1

(
√

2πσ2)n
exp
{
− 1

2σ2

n∑
i=1

x2
i +

µ

σ2

n∑
i=1

xi −
n

2σ2
µ2
}
.

Therefore, by Theorem 2.2, T (X) = (
∑n

i=1Xi,
∑n

i=1X
2
i ) is sufficient for (µ, σ2). Equiva-

lently, T ′(X) = (X̄, s2(X)) is also sufficient.
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2.3.2 Minimal sufficient statistics

It should be clear that sufficient statistics are not unique; in fact, in Example 2.7, two
sufficient statistics were identified, and the order statistics are sufficient too as usual. More
generally, if T is sufficient, then so is ψ(T ) for any one-to-one mapping ψ. That being
said, it’s desirable to find the sufficient statistic which is “smallest” in some sense. This
minimal sufficient statistic T = Tmin is so that, for any other sufficient statistic U , there
exists a mapping h such that T = h(U). A powerful technique for finding minimal sufficient
statistics is described by the following theorem.

Theorem 2.3. Suppose, for each θ ∈ Θ, Pθ has a density pθ(x) = gθ[T (x)]h(x) wrt µ. If
pθ(x) = cpθ(y), for some c = c(x, y), implies T (x) = T (y), then T is minimal sufficient.

Proof. See Keener (2010), page 47.

Example 2.8. Suppose X = (X1, . . . , Xn) is an iid sample with common density

pθ(x) = h(x)e
∑d
j=1 ηj(θ)Tj(x)−A(θ). (2.5)

Then T (X) = [T1(X), . . . , Td(X)], with Tj(X) =
∑n

i=1 Tj(Xi), is sufficient. To see that T is
minimal sufficient (under some condition), we shall apply Theorem 2.3. Take x and y such
that pθ(x) = cpθ(y) for some c = c(x, y). Then this implies 〈η(θ), T (x)〉 = 〈η(θ), T (y)〉 + c′

for some c′ = c′(x, y). Take two points θ0 and θ1 in Θ and, by subtraction, we get

〈η(θ0)− η(θ1), T (x)〉 = 〈η(θ0)− η(θ1), T (y)〉

which implies
〈η(θ0)− η(θ1), T (x)− T (y)〉 = 0,

i.e., T (x)−T (y) and η(θ0)− η(θ1) are orthogonal. Since θ0 and θ1 are arbitrary, this implies
T (x)− T (y) must be orthogonal to the linear space spanned by S = {η(θ0)− η(θ1) : θ0, θ1 ∈
Θ}. If S spans the whole Rd (see explanation below), then this implies T (x) = T (y) and,
hence, T is minimal sufficient by Theorem 2.3.

The condition in the previous example—that the space S spans the entire space—is
enough to prove that the natural sufficient statistic, T (X), in the exponential family is
minimal sufficient. But, this condition alone is not entirely satisfactory. First, it is not
an obvious thing to check and, second, desirable properties, such as asymptotic normality
of maximum likelihood estimators, require even more regularity. For this reason, we often
impose a stronger condition, one that implies, in particular, that the space S above spans
the entire space. To make this formal, first say that an exponential family of the form
(2.5) is full rank if η(Θ) has non-empty interior and [T1(x), . . . , Td(x)] do not satisfy a
linear constraint for µ-almost all x. You will recognize these as further regularity conditions
classically imposed on exponential families.2 If η(Θ) has non-empty interior, then so does

2See, for example, Chapter 3 of my Stat 411 notes.
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{η(θ0)− η(θ1) : θ0, θ1 ∈ Θ}, which implies that the span S in the previous example fills the
whole space. In fact, if Θ contains an open set, and η is a continuous one-to-one map, then
η(Θ) also contains an open set.

It is a beneficial exercise to consider how a collection of vectors containing an open
set would imply that its span fills the entire space. For this, consider an open set in two
dimensions. Take a vector v = (v1, v2) in this open set. That the set is open means that
there exists a sufficiently small ε > 0 such that ṽ = (v1 + ε, v2 + ε) also resides in the set.
The claim is that, as long as v1 6= v2, the pair of vectors (v, ṽ) are linearly independent.
From linear algebra, there is a test for linear independence based on the determinant of the
matrix obtained by stacking the set of vectors in question. In this case,

det

(
v1 v1 + ε
v2 v2 + ε

)
= v1v2 + v1ε− v1v2 − v2ε = ε(v1 − v2).

Of course, if v1 6= v2, then this determinant cannot be zero, hence (v, ṽ) are linearly inde-
pendent. Finally, a pair of linearly independent vectors in two dimensions is a basis, and
hence its span fills the space.

Most exponential families we know are full rank: e.g., normal, binomial, Poisson, gamma,
etc. The classical example of a non-full rank exponential family is N(θ, θ2), which is one of
those so-called curved exponential families (Keener 2010, Chap. 5). The name “curved”
comes from the fact that the natural parameter space is a curve or, more generally, a set
whose effective dimension is smaller than the actual dimension. In this case, the natural
parameter η(θ) is given by

η1(θ) = 1/θ and η2(θ) = −1/2θ2.

Since η2 = −η2
1/2, it is clear that the natural parameter space η(Θ) looks like an upside-down

parabola. Since the one-dimensional subset of the two-dimensional space cannot contain an
open set, we conclude that this curved exponential family cannot be full rank. However, the
natural sufficient statistic T = (T1, T2) = (

∑n
i=1 Xi,

∑n
i=1X

2
i ) is still minimal sufficient. To

see this, we need to check that the set S defined in Example 2.8 spans R2. Take two pairs
of points (x1, y1) and (x2, y2) and consider the two vectors of differences:

vj =
(
xj − yj, 1

2
(y2
j − x2

j)
)>
, j = 1, 2.

Stick the two vectors into a matrix, i.e.,(
x1 − y1 x2 − y2

1
2
(y2

1 − x2
1) 1

2
(y2

2 − x2
2)

)
.

If, for example, we take x1 = 1 and y1 = −1, then the determinant of the matrix equals
y2

2 − x2
2. So, in the case x1 = 1 and y1 = −1, as long as x2 6= ±y2, the determinant is

non-zero, the vectors are linearly independent, and the span fills the space. Therefore, the
natural sufficient statistic T above is minimal sufficient, even though the exponential family
is not full rank.
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The reduction of dimension via sufficiency greatly simplifies things. Therefore, it is
interesting to ask in what problem is such a substantial reduction of dimension possible. It
turns out that it is essentially only the exponential family case. As a last bit of terminology,
say that a distribution family admits a continuous k-dimensional sufficient statistic U if
the factorization (2.4) holds for all x (not almost all x) and if U(x) = [U1(x), . . . , Uk(x)] is
continuous in x. The following theorem is in Lehmann and Casella (1998, Chap. 1.6)

Theorem 2.4 (Characterization of Sufficiency). Suppose X1, . . . , Xn are real-valued and iid
from a distribution with continuous density fθ(x) with respect to Lebesgue measure, supported
on an interval X that does not depend on θ. Denote the joint density by

pθ(x) = fθ(x1) · · · fθ(xn),

and assume there is a continuous k-dimensional sufficient statistic. Then

• if k = 1, then (2.5) holds for some h, η1 and A.

• if k > 1 and if fθ(xi) have continuous partial derivatives with respect to xi, then (2.5)
holds for some d ≤ k.

This theorem says that, among those smooth absolutely continuous families with fixed
support, essentially the only ones that admit a continuous sufficient statistic are the expo-
nential families. Note that the theorem says nothing about those irregular problems where
the support depends on θ; indeed, the family Unif(0, θ) admits a one-dimensional sufficient
statistic for all n.

2.3.3 Ancillary and complete statistics

There are sufficient statistics of varying dimensions; e.g., if X1, . . . , Xn are iid N(θ, 1), then
the order statistics and the mean X̄ are both sufficient. The ability of a sufficient statistic to
admit a signficant reduction seems related to the amount of ancillary information it contains.
A statistic U(X) is said to be ancillary if its distribution is independent of θ. Ancillary
statistics themselves contain no information about θ, but even minimal sufficient statistics
can contain ancillary information. For example, in Exercise 7, the minimal sufficient statistic
is not complete.

Just because ancillary statistics contain no information about θ doesn’t mean they’re
not useful. A common, but not universally accepted/used, suggestion is to perform analysis
conditional on the values of ancillary statistics. Conditioning on something that carries no
information about θ causes no logical difficulties, and Fisher argued that conditioning on
ancillary statistics gives a clever way to give the resulting inference more meaning for the
problem at hand. Intuitively, it restricts the sample space to a “relevant subset”—the set
where U(X) = uobs—getting closer to inference conditioned on the observed X. This idea
is often used when, e.g., a maximum likelihood estimate, is not minimal sufficient. We will
discuss this more in Section 2.5.

A statistic T is complete if Eθ{f(T )} = 0 for all θ implies f = 0 almost everywhere. In
other words, there are no non-constant functions of T which are ancillary. Alternatively,
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a complete sufficient statistic is one that contains exactly all the information about θ in
X; that is, it contains no redundant information about θ since every feature f(T ) of T has
information about θ. To see how this relates to the formal definition, note that no non-zero
functions of T are ancillary. Complete sufficient statistics are especially effective at reducing
the data; in fact, complete sufficient statistics are minimal.

Theorem 2.5. If T is complete and sufficient, then T is also minimal sufficient.

Proof. Let T ′ be a minimal sufficient statistic. By minimality, we have T ′ = f(T ) for some
function f . Write g(T ′) = Eθ(T | T ′), which does not depend on θ by sufficiency of T ′.
Moreover, by iterated expectation, Eθg(T ′) = Eθ(T ). Therefore, Eθ{T − g(T ′)} = 0 for all
θ and, since T − g(T ′) = T − g(f(T )) is a function of T , completeness implies T = g(T ′)
almost everywhere. Since T = g(T ′) and T ′ = f(T ) we see that T and T ′ are equivalent up
to one-to-one transformations; hence, T is also minimal sufficient (Exercise 6).

Because of the strength of a complete sufficient statistic, it is helpful to be able to identify
cases when one exists. Not surprisingly, exponential families admit a complete sufficient
statistic.

Theorem 2.6. If X is distributed as a full rank d-dimensional exponential family with
density (2.5), then [T1(X), . . . , Td(X)] is complete.

Proof. This is just a sketch in a simple case; for the detailed proof in the general case,
see Brown (1986, Theorem 2.12). Take the one-dimensional case with pθ(x) = eθx−A(θ)

and dominating measure µ. Then T (x) = x. Let f(x) be some integrable function with
Eθ{f(X)} = 0 for all θ. Writing out the integral form of expectation gives∫

f(x)eθx dµ(x) = 0 ∀ θ.

The integral is essentially the Laplace transform of f . The Laplace transform of the zero
function is constant equal to zero and, since Laplace transforms are (µ-a.e.) unique, it follows
that f must equal the zero function (µ-a.e.). Therefore, X is complete.

Example 2.9. Theorem 2.6 shows that T (X) =
∑n

i=1 Xi is complete when X1, . . . , Xn is
an iid sample from Ber(θ), Pois(θ), and N(θ, 1).

Example 2.10. Let X1, . . . , Xn be an iid sample from N(θ, θ2). It was shown above that
T = (T1, T2) = (

∑n
i=1 Xi,

∑n
i=1X

2
i ) is minimal sufficient. However, it is not complete. To

see this, consider the function f(t1, t2) = t21 − n+1
2
t2. Then

Eθ{f(T1, T2)} = Eθ(T
2
1 )− n+1

2
Eθ(T2)

= nθ2 + (nθ)2 − n+1
2
· 2nθ2

= 0 ∀ θ.

Since this not-exactly-zero function of T = (T1, T2) has mean equal zero, the statistic T is
not complete. This is not a contradiction to Theorem 2.6 because this curved exponential
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family is not full rank, i.e., the natural parameter space is a one-dimensional curve in the
two-dimensional plane and, therefore, does not contain an open set. An example similar to
this one is considered in Exercise 7.

Example 2.11. Let X1, . . . , Xn be iid Unif(0, θ). The claim is that T (X) = X(n) is complete.
A straightforward calculation shows that the density of T is

pθ(t) = ntn−1/θn, 0 < t < n.

Suppose that Eθ{f(T )} = 0 for all θ. Then we have∫ θ

0

tn−1f+(t) dt =

∫ θ

0

tn−1f−(t) dt ∀ θ > 0.

Since this holds for integration ranges [0, θ] for all θ, it must hold for all intervals [a, b]. The
set of all intervals generates the Borel σ-algebra, so, in fact,∫

A

tn−1f+(t) dt =

∫
A

tn−1f−(t) dt for all Borel sets A.

Therefore, f must be zero almost everywhere, so T is complete.

According to Basu’s theorem, it’s pointless to condition on ancillaries (as described briefly
at the beginning of this section) in cases where the sufficient statistic is complete.

Theorem 2.7 (Basu). If T is a complete sufficient statistic for {Pθ : θ ∈ Θ}, then any
ancillary statistic U is independent of T .

Proof. Since U is ancillary, the probability pA = Pθ(U ∈ A) does not depend on θ for any
A. Define the conditional distribution πA(t) = Pθ(U ∈ A | T = t); by iterated expectation,
Eθ{πA(T )} = pA for all A and all θ. Therefore, by completeness, πA(t) = pA for almost all
t. Since the conditional distribution πA(t) for U , given T = t does not depend on t, the two
must be independent.

Example 2.12. Basu’s theorem can be used to show that the mean and variance of an
independent sample from N(µ, σ2) are independent. Suppose first that σ2 is known to be
equal to 1. We know that the sample mean X̄ is complete and sufficient for µ, and also
that the sample variance s2(X) = (n − 1)−1

∑n
i=1(Xi − X̄)2 is ancillary. Therefore, Basu’s

theorem says X̄ and s2(X) are independent. But this was for σ2 = 1—how to extend to
the unknown σ2 case? The point is that the general σ2 case corresponds to a simple scale
transformation of the data, which clearly cannot alter the correlation structure between X̄
and s2(X). Therefore, X̄ and s2(X) are independent for all (µ, σ2).

Example 2.13. Suppose X1, . . . , Xn is an iid sample from N(0, 1), and let X̄ and M denote
the sample mean and sample median, respectively. The goal is to calculate the covariance
between X̄ and M . Introduce a mean parameter ξ; in so doing, we find that X̄ is complete
and sufficient, while X̄ − M is ancillary. Then Basu’s theorem says X̄ and X̄ − M are
independent, and hence:

0 = C(X̄, X̄ −M) = V(X̄)− C(X̄,M) =⇒ C(X̄,M) = n−1.
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It is common in stat theory courses and textbooks to give the impression that Basu’s
theorem is just a trick for doing certain calculations, like in the two examples above. However,
the real contribution of Basu’s theorem is that point mentioned above about conditioning
on ancillary statistics. More on this in Section 2.5

2.4 Fisher information

2.4.1 Definition

We colloquially understand that a sufficient statistic contains all the information inX1, . . . , Xn

concerning the parameter of interest θ. The concept of “Fisher information” will make this
more precise. Some of the material here comes from Chapter 2.3 in Schervish (1995).

Definition 2.3. Suppose θ is d-dimensional and pθ(x) is the density of X with respect to
µ. Then the following are the FI regularity conditions.

I. ∂pθ(x)/∂θi exists µ-a.e. for each i.

II.
∫
pθ(x) dµ(x) can be differentiated under the integral sign.

III. The support of pθ is the same for all θ.

Definition 2.4 (Score; Fisher information). Assume the FI regularity conditions. The score
vector is defined as ∂ log pθ(X)/∂θi for i = 1, . . . , d. The Fisher information IX(θ) is the
covariance matrix of the score vector; i.e.,

IX(θ)ij = Cθ
(∂ log pθ(X)

∂θi
,
∂ log pθ(X)

∂θj

)
. (2.6)

It turns out that the expected value of the score is zero. In this case, if we can differentiate
twice under the integral sign (as we can in exponential families; cf. Theorem 2.1), then there
is an alternative formula for the Fisher information:

IX(θ)ij = −Eθ
{ ∂2

∂θi∂θj
log pθ(X)

}
.

If X1, . . . , Xn are iid from a distribution that satisfies the FI regularity conditions, then
it’s fairly easy to show that IX1,...,Xn(θ) = nIX1(θ); see Exercise 13. That is, information
is accumulated as more data comes in, which makes sense if it’s meant to measure the
information in a data set. If data are not iid, then the information still increases, but at a
rate no faster than that for the iid case.

It is worth mentioning that the FI regularity conditions are not necessary here. In
particular, that θ 7→ pθ(x) be differentiable for all x is far too strong. Fisher information can
be defined under the much less strict condition of differentiability in quadratic mean (van der
Vaart 1998, Chap. 6). See Chapter 6.
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2.4.2 Sufficiency and information

The next result helps the interpretation of sufficient statistics containing all available infor-
mation relevant to θ.

Theorem 2.8. Assume the FI regularity conditions. Suppose θ is d-dimensional and Pθ is
dominated by µ. If T = g(X) is a statistic, then IX(θ)− IT (θ) is positive semidefinite. The
matrix is all zeros if and only if T is sufficient.

Proof. Since T is a function of X, the joint distribution is determined by the marginal
distribution of X. In particular,

p
X|T
θ (x | t) =

{
pXθ (x)/pTθ (t) if T (x) = t

0 otherwise.

Here we use pθ for all densities, and the superscripts indicate the distribution. Therefore,

pXθ (x) = pX,Tθ (x, t) = pTθ (t)p
X|T
θ (x | t), if T (x) = t.

Taking logs gives

∂ log pXθ (X)

∂θi
=
∂ log pTθ (T )

∂θi
+
∂ log p

X|T
θ (X | T )

∂θi
∀ θ. (2.7)

We will show that the two terms on the right-hand side are uncorrelated, and that the last
term is zero if and only if T is sufficient. Using the iterated expectation,

Cθ
(∂ log pTθ (T )

∂θi
,
∂ log p

X|T
θ (X|T )

∂θi

)
= Eθ

{∂ log pTθ (T )

∂θi

∂ log p
X|T
θ (X|T )

∂θi

}
= Eθ

{∂ log pTθ (T )

∂θi
Eθ
(∂ log p

X|T
θ (X|T )

∂θi

∣∣∣T)}.
We claim that the inner conditional expectation is zero with PTθ -probability 1. To show this,
note first that

1 =

∫
p
X|T
θ (x | t) dµ(x) =⇒ 0 =

∂

∂θi

∫
p
X|T
θ (x | t) dµ(x),

for all t outside a PTθ -null set. If we can interchange the latter derivative and conditional
expectation, then we’re done. Since∫

p
X|T
θ (x | t) dµ(x) =

1

pTθ (t)

∫
{x:T (x)=t}

pXθ (x) dµ(x),

taking derivative with respect to θi and simplifying gives

1

pTθ (t)

∂

∂θi

∫
{x:T (x)=t}

pXθ (x) dµ(x)− ∂

∂θi
log pTθ (t). (2.8)
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The restriction on the range of integration does not prevent us from interchanging derivative
and pXθ integral3 (as in FI), we get

∂

∂θi

∫
{x:T (x)=t}

pXθ (x) dµ(x)

=

∫
{x:T (x)=t}

[ ∂
∂θi

log pTθ (t) +
∂

∂θi
log p

X|T
θ (x|t)

]
pXθ (x) dµ(x)

= pTθ (t)
∂

∂θi
log pTθ (t) + pTθ (t)

∫
∂

∂θi
log p

X|T
θ (x|t)pX|Tθ (x|t) dµ(x).

This latter calculation shows that (2.8) simplifies to∫
∂

∂θi
log p

X|T
θ (x|t)pX|Tθ (x|t) dµ(x).

Therefore,
∂

∂θi

∫
p
X|T
θ (x | t) dµ(x) =

∫
∂

∂θi
log p

X|T
θ (x|t)pX|Tθ (x|t) dµ(x),

and since we can interchange derivative and integral with respect to the conditional distribu-
tion, we get that the conditional expectation of the conditional score function is zero (with
PTθ -probability 1). This, in turn, shows that the two terms on the right-hand side in (2.7)
are uncorrelated. Then the covariance matrix of the sum on the right-hand side of (2.7) is
the sum of the respective covariance matrices. Therefore,

IX(θ) = IT (θ) + Eθ{IX|T (θ)},

and it’s clear that IX(θ)− IT (θ) is positive semidefinite. The matrix Eθ{IX|T (θ)} is all zeros
if and only if the conditional score ∂ log pX|T,θ(X|T )/∂θi is constant (must be zero, right?)
in θ or, in other words, T is sufficient.

This formalizes the claim made in the introduction that sufficient statistics T preserve all
the information about θ in data X. That is, in the one-dimensional case, we have IT (X) ≤ IX
with equality if and only if T is sufficient.

2.4.3 Cramer–Rao inequality

We have seen that Fisher information provides a justification for the claim that sufficient
statistics contain all the relevant information in a sample. However, the Fisher information
plays an even deeper role in statistical inference, in particular, it is involved in many opti-
mality results that provide a baseline for comparison among estimators, tests, etc. Below is
a familiar but important result, which states that, under some conditions, the variance of an
estimator cannot be less than a bound involving the Fisher information.

3In fact, it can be shown that the derivative of
∫
g(x)pXθ (x) dµ(x) with respect to each coordinate in θ

can be taken under the integral, for any bounded function g; this follows from the dominated convergence
theorem. For the present case, take g(x) to be the appropriate indicator function.
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Theorem 2.9 (Cramer–Rao). For simplicity, take θ to be a scalar, and assume that pθ
satisfies the FI regularity conditions. Let X1, . . . , Xn

iid∼ pθ and let T = T (X1, . . . , Xn) be a
real-valued statistic with Eθ(T ) = g(θ). Then

Vθ(T ) ≥ {g′(θ)}2{nI(θ)}−1.

Proof. By Exercise 14, the covariance between T and the score function is g′(θ). Since the
variance of the score is nI(θ), the Cauchy–Schwartz inequality gives

g′(θ)2 ≤ Vθ(T ){nI(θ)}.

Solve for Vθ(T ) to get the desired result.

One application of the Cramer–Rao inequality is in experimental design. In those prob-
lems, one has control on certain inputs and the goal is to select those inputs in such a way
that the estimator has, say, as small a variance as possible. In such cases, the strategy is to
chose those inputs in such a way that the Fisher information is maximized,4 which has some
intuition driven by Cramer–Rao, i.e., the variance is small if the Fisher information is big.

2.4.4 Other measures of information

Is Fisher information the only measure of information? Technically, the answer is NO, there
are other measures, but they don’t get much attention. The reason is that the Fisher infor-
mation is the “right” choice provided that the model satisfies the FI regularity conditions.
Since most models (e.g., regular exponential families) satisfies these, there is not so much
reason to look beyond Fisher information. However, there are models which do not satisfy
the regularity conditions, such as Unif(0, θ). In such cases, the Fisher information is not
defined, so it obviously cannot be used. The question is if there is some other kind of infor-
mation, one that reduces to the Fisher information when it exists, but is more versatile in
the sense that it can be defined when Fisher information cannot.

Towards extending the Fisher information, it helps to understand where the Fisher infor-
mation comes from. Recall the Kullback–Leibler divergence from Chapter 1, which (roughly)
measures the distance between two models. Consider here two models with density functions
pθ and pθ+ε, with respect to the same dominating measure µ, where the latter means a small
change in the parameter. Kullback (1997, Sec. ??) shows that the Kullback–Leibler diver-
gence of pθ+ε from pθ is approximately quadratic in ε, in particular, K(pθ, pθ+ε) ≈ ε>I(θ)ε,
as ε→ 0, where I(θ) is the Fisher information matrix from before; see Exercise 17. Then the
key idea to generalizing Fisher information matrix is to recognize that, outside the regular
cases, the Kullback–Leibler divergence or, better, the Hellinger divergence, defined as

h(θ, θ′) =

∫
(p

1/2
θ − p

1/2
θ′ )2 dµ,

4Since I(θ) is a generally matrix, it is not clear what it means to “maximize” it; usually this is formulated
in terms of maximizing a certain functional of I(θ), such as its determinant.
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is not quadratic in ε anymore. But this same expansion can be carried out and the coefficient
defines a suitable “Hellinger information.” For example, consider the Unif(0, θ) case. The
Hellinger divergence is

h(θ + ε, θ) =

∫ [ 1√
θ + ε

I(0,θ+ε)(x)− 1√
θ
I(0,θ)(x)

]2

dx = · · · = ε

θ
+ o(ε). (2.9)

This has a linear instead of quadratic approximation, a result of the non-regularity of the
Unif(0, θ) distribution. But a “Hellinger information” for Unif(0, θ) can be defined as θ−1.
There are versions of the Cramer–Rao bound for the Hellinger information too, but I will
not present this here.5

2.5 Conditioning

Here we discuss some interesting examples in which the classical frequentist approach gives
strange answers. These examples shall be used to motivate conditioning in inference.

Example 2.14. Suppose X1 and X2 are iid with distribution Pθ satisfying

Pθ(X = θ − 1) = Pθ(X = θ + 1) = 0.5, θ ∈ R.

The goal is to construct a confidence interval for the unknown θ. Consider

C =

{
{X̄} if X1 6= X2

{X1 − 1} if X1 = X2.

To be clear, in either case, C is a singleton. It can be shown that C has confidence 75%. But
let’s look at this procedure more carefully. From the structure of the problem, if X1 6= X2,
then one observation is θ − 1 and the other is θ + 1. In this case, X̄ is exactly equal to θ
so, given X1 6= X2, C is guaranteed to be correct. On the other hand, if X1 = X2, then C
is {θ} with probability 0.5 and {θ − 2} with probability 0.5 so, given X1 = X2, C is correct
with probability 0.5. Putting this together, C has confidence 100% when X1 6= X2 and 50%
when X1 = X2. So on average the confidence is 75% but since, for a given problem, we know
which case we’re in, wouldn’t it make sense to report the conditional confidence of either
100% or 50%?

Example 2.15. Suppose data X can take values in {1, 2, 3} and θ ∈ {0, 1}. The probability
distribution for X for each θ is described by the following table.

x 1 2 3
p0(x) 0.0050 0.0050 0.99
p1(x) 0.0051 0.9849 0.01

5I am currently working on this Hellinger information thing with applications to optimal experimental
design, and the papers are in preparation.
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The most powerful level α = 0.01 test of H0 : θ = 0 versus H1 : θ = 1 is based on
the likelihood ratio p0(x)/p1(x) for the given X = x. It can be shown that this test has
power 0.99, which suggests that there is a lot of confidence in the decision made based on
the observed x. But is this the case? If X = 1 is observed, then the likelihood ratio is
0.005/0.0051 ≈ 1. In general, a likelihood ratio close to 1 does not give strong preference to
either H0 or H1, so measuring our certainty about the procedures choice using the “global”
measure of power might be misleading.

Example 2.16. Consider the following experiment: flip a fair coin and, if the coin lands
on Heads, then take X ∼ N(θ, 1); otherwise, take X ∼ N(θ, 99). Suppose that the outcome
of the coin flip is known. The goal is to use X to estimate θ. What distribution should we
use to construct a confidence interval, say? The marginal variance of X is (1 + 99)/2 = 50.
However, this seems like a poor explanation of the actual error in X as an estimator of θ,
since we actually know whether X is sampled from N(θ, 1) or N(θ, 99). Then the question
is, why not use the “conditional” variance, given the outcome of the coin flip? This is an
intuitively natural thing to do, but this is not what frequentism says to do.

Example 2.17. Let (X1i, X2i), i = 1, . . . , n be an iid bivariate sample from a distribution
with density pθ(x1, x2) = e−θx1−x2/θ, where x1, x2, and θ are all positive. It can be shown that
the minimal sufficient statistic is T = (T1, T2), where Tj =

∑n
i=1Xji, j = 1, 2. Note that the

minimal sufficient statistic is two-dimensional while the parameter is only one-dimensional.
For estimating θ, a reasonable choice is θ̂ = {T2/T1}1/2, the maximum likelihood estimator.
However, this is not a minimal sufficient statistic, so we have to choose whether we should
condition or not. An ancillary statistic to condition on is A = {T1T2}1/2. As discussed in
Ghosh et al. (2010), the unconditional Fisher information in T and in θ̂, respectively, are

IT (θ) =
2n

θ2
and Iθ̂(θ) =

2n

θ2

2n

2n+ 1
;

of course, as expected, IT (θ) > Iθ̂(θ). The conditional Fisher information, however, is

Iθ̂|A(θ) = IT (θ)
K1(2A)

K0(2A)
, (2.10)

where K0 and K1 are Bessel functions. A plot of the ratio—call it r(A)—on the right-hand
side above, as a function of A = a, is shown in Figure 2.1. When A is large, r(A) is near
1 so Iθ̂|A(θ) ≈ IT (θ). However, if A is not large, then the conditional information can be
much larger, and since larger information is “better,” we can see that there is an advantage
to conditioning in this case.

The foregoing examples are meant to shed light on the drawbacks of pure frequentism.
At least in some examples, there is clearly a reason to consider conditioning on something:
sometimes it’s clear what to condition on (Example 2.16) and other times it’s not (Exam-
ple 2.17). Conditional inference is when sampling distributions are based on conditional
distributions of estimators given the observed value of an ancillary statistic; e.g., in Exam-
ple 2.14, |X1 − X2| is an ancillary statistic. When the estimator is a complete sufficient
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Figure 2.1: Plot of the ratio r(a) on the right-hand of (2.10) as a function of A = a, the
ancillary statistic.

statistic, then Basu’s theorem says there is no need to condition. But in problems where the
estimator is not a complete sufficient statistic (Example 2.17), there is a need to condition.
There are extensive discussions in the literature about conditional inference, for example,
Fraser (2004) and Ghosh et al. (2010); Berger (2014) gives a more recent discussion. Despite
the benefits of conditional inference, this stuff has not really permeated applied statistics;
this is due to some additional technicalities, both in finding an appropriate ancillary to
condition on, and in actually doing the conditioning. A nice applied look at conditional
inference and related topics is in Brazzale et al. (2007). A different look at conditioning and
related issues can be found in Martin and Liu (2014, 2015a).

2.6 Discussion

2.6.1 Generalized linear models

An important application of exponential family distributions are the so-called generalized
linear models, or GLMs for short. These models generalize the usual linear models (e.g.,
regression and analysis of variance) presented in introductory statistics methodology courses.
This topic typically does not appear in a course such as this—there’s no mention of GLMs
in Keener (2010)—and I think the reason for its omission is that the details of the theory
can be understood in the simpler exponential family setup discussed in Section 2.2, leaving
the specific modeling and computational details to other courses/texts. However, I think
it’s important for students to get some minimal exposure to this application of exponential
family models in this theoretical course, if only so that they know of the existence of such
things so they can read more on their own or take more specialized courses. Here I give

46



a very brief explanation of GLMs with a few examples. A comprehensive introduction to
GLMs is given in McCullagh and Nelder (1983).

Consider a problem with two variables: Y is called the response variable and X the
predictor variable or covariate, where X is, say, d-dimensional. The usual linear model
states that, given X = x, the mean of the response variable Y is a linear function of x,
i.e., E(Y | X = x) = x>β, where β is a d-dimensional parameter of coefficients. If we have
independent samples, i.e., {(Xi, Yi) : i = 1, . . . , n}, then the model states that, given Xi = xi,
Yi are independent with mean µi = x>i β, i = 1, . . . , n. A key point is that β is the same for
each i; moreover, this is one of the most common independent but not iid models students
will see. The least-squares method can be used to estimate β based on the observations, and
this solution has many desirable properties that we will not dig into here.

A question to consider is this: is this kind of linear model always appropriate? That
is, should the mean of the response variable distribution (conditioned on the predictor X)
be expressed as a linear function of the predictor? As an example, consider the case where
Y is Poisson or Bernoulli distributed. In both cases, the mean of the distribution has a
constraint—in (0,∞) in one case and in (0, 1) in the other—so a linear function, which has
no constraints, i.e., can take values in (−∞,∞), may not be appropriate. A GLM can handle
this by not extending too far beyond the comfort of a linear model.

Suppose that response variables Y1, . . . , Yn are independent with densities

pθi(yi) = h(yi)e
η(θi)yi−A(θi), i = 1, . . . , n,

which is of the exponential family form in Section 2.2, but with a different parameter θi
for each data point. Assume that there is some common structure, in particular, that the
mean µi = Eθi(Yi) satisfies the condition g(µi) = x>i β for some smooth one-to-one function
g, called the link function. When the link function is such that η(θi) = x>i β, it is called the
canonical link. The result of this construction is a general way to introduce an effectively
linear model connecting the response variable Yi to the predictor variable Xi but avoid the
shortcomings of an actual linear model.

As a quick example, consider the case where Yi ∼ Pois(θi), i = 1, . . . , n, independent.
It is easy to check that Poisson is an exponential family model and η(θi) = log θi. Since
θi is also the mean of Yi, if we want to construct a Poisson GLM with canonical link, then
g(u) = log u, so that

θi = ex
>
i β ⇐⇒ log θi = x>i β.

The latter formula explains why this Poisson GLM is often called a log-linear model. Another
example, for the Bernoulli model, is given in Exercise 19.

2.6.2 A bit more about conditioning

In stat theory courses and books, sufficiency is treated as a critically important aspect of
statistical inference. Here I want to make a case that there is nothing really special about
sufficient statistics, provided that some appropriate conditioning is done. The message here
is that conditioning is a more fundamental concept than sufficiency.
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I’ll make this case using a simple example. Let X1, X2 be iid N(θ, 1). A reasonable
estimator of θ is X̄ = (X1 + X2)/2, a sufficient statistic, with sampling distribution is
N(θ, 1/2). Consider, on the other hand, the estimator θ̂ = X1, which is not a sufficient
statistic. Classical considerations would suggest that inference based on X1 is worse than
that based on X̄. However, consider the conditional sampling distribution of X1, given
X2 −X1. It is easy to check that

X1 | (X2 −X1) ∼ N(θ + X2−X1

2
, 1/2),

and, for example, confidence intervals based on this conditional sampling distribution are
the same as those based on the marginal sampling distribution of the sufficient statistic X̄.
So, in this problem, one could argue that there is really nothing special about the sufficient
statistic X̄, since one can get effectively the same sampling distribution using some other
non-sufficient statistic, provided that proper conditioning is performed. The result here is
more general (see Exercise 21), though continuity seems to be important.

Sufficiency, when it gives something meaningful, can be convenient, since conditioning
isn’t needed, which saves some effort. However, there are cases where sufficiency provides
no improvement. For example, in the Student-t location problem with known degrees of
freedom, the full data is the minimal sufficient statistic. However, one can easily get a
reasonable (location equivariant) estimator, such as the sample mean, and condition on the
the maximal invariant, an ancillary statistic. The point is that conditioning works when
sufficiency doesn’t, and even when sufficiency does work, conditioning can be just as good.
So, I would argue that conditioning is more fundamental than sufficiency.

2.7 Exercises

1. Hölder’s inequality is a generalization of the Cauchy–Schwartz inequality.

Let 1 ≤ p, q ≤ ∞ be numbers with 1/p+ 1/q = 1. Let f and g be functions
such that fp and gq are µ-integrable. Then∫

|fg| dµ ≤
(∫
|f |p dµ

)1/p(∫
|g|q dµ

)1/q

.

Cauchy–Schwartz corresponds to p = q = 2.

Use Hölder’s inequality to prove Proposition 2.1.

2. Suppose X has an exponential family distribution with density

pθ(x) = h(x)eη(θ)T (x)−A(θ).

Derive the mean and variance formulas

Eθ[T (X)] =
A′(θ)

η′(θ)
, Vθ[T (X)] =

A′′(θ)

[η′(θ)]2
− η′′(θ)A′(θ)

[η′(θ)]3
.
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3. Prove (2.3), a formula for the exponential family moment-generating function.

4. A discrete random variable with pmf

pθ(x) = a(x)θx/C(θ), x ∈ {0, 1, . . .}; a(θ) ≥ 0; θ > 0

has a power series distribution.

(a) Show that the power series distribution is an exponential family.

(b) Show that binomial and Poisson are special cases of power series distributions.

5. (a) Prove Stein’s identity.6 For X ∼ N(µ, σ2), let ϕ be a differentiable function with
Eθ|ϕ′(X)| <∞. Then

E[ϕ(X)(X − µ)] = σ2E[ϕ′(X)].

[Hint: Without loss of generality, assume µ = 0 and σ = 1. Use integration-by-
parts. You’ll need to show that ϕ(x)e−x

2/2 → 0 as x → ±∞. There is also an
approach that uses Fubini’s theorem.]

(b) Let X ∼ N(µ, σ2). Use Stein’s identity to find the first four moments, E(Xk),
k = 1, 2, 3, 4, of X. [Hint: For E(Xk) use ϕ(x) = xk−1.]

6. Argue that a one-to-one function of a minimal sufficient statistic is also a minimal
sufficient statistic.

7. Suppose X1, . . . , Xn are iid N(θ, θ2).

(a) Show that N(θ, θ2) has an exponential family form.

(b) Find the minimal sufficient statistic for θ.

(c) Show that your minimal sufficient statistic is not complete.

8. The inverse Gaussian family, denoted by IG(λ, µ) has density function

(λ/2π)1/2 exp{(λµ)1/2}x−3/2 exp{−(λx−1 + µx)/2}, x > 0; λ, µ > 0.

(a) Show that IG(λ, µ) is an exponential family.

(b) Show that IG(λ, µ) is invariant with respect to the group of scale transformations,
i.e., G = {gc(x) = cx : c > 0}.7

(c) Let T1(X) = n−1
∑n

i=1Xi and T2(X) =
∑n

i=1(1/Xi−1/T1(X)). Show that (T1, T2)
is complete and sufficient.

6This is just a special case; a similar result holds for all exponential families.
7The inverse Gaussian, together with normal and gamma, are the only three distributions which are both

exponential families and group families.
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(d) Show that T1 ∼ IG(nλ, nµ).8

9. Suppose that pairs (X1, Y1), . . . , (Xn, Yn) are iid from a bivariate normal distribution,
where E(X1) = E(Y1) = 0, V(X1) = V(Y1) = 1, and E(X1Y1) = θ. Here θ ∈ (−1, 1) is
the correlation between X and Y .

(a) Find a (two-dimensional) minimal sufficient statistic for θ.

(b) Prove that the minimal sufficient statistic is not complete.

(c) Let Z1 =
∑n

i=1X
2
i and Z2 =

∑n
i=1 Y

2
i . Show that both Z1 and Z2 are ancillary,

but not (Z1, Z2).

10. This exercise describes an alternative approach to finding minimal sufficient statistics.
It is related to that given in Theorem 2.3.

(a) Prove the following theorem:

Consider a finite family of distributions with densities p0, p1, . . . , pK, all
having the same support. Then

T (X) =
(p1(X)

p0(X)
,
p2(X)

p0(X)
, . . . ,

pK(X)

p0(X)

)
is minimal sufficient.

(b) Prove the following theorem: Let P be a parametric family of distributions with
common support, and P0 a subset of P. If T is minimal sufficient for P0 and
sufficient for P, then it’s minimal sufficient for P.

(c) Use the previous two results to prove that, for the Pois(θ) family, T =
∑n

i=1 Xi

is a minimal sufficient statistic. [Hint: Pick a two-element subset P0 = {p0 =
Pois(θ0), p1 = Pois(θ1)} of P = {Pois(θ) : θ > 0}.]

11. (a) Consider a location family with densities pθ(x) = p(x − θ), θ ∈ R. For X ∼ pθ,
show that the Fisher information for θ is

IX(θ) =

∫ ∞
−∞

[p′(x)]2/p(x) dx,

which is independent of θ.

(b) Consider a scale family pθ(x) = p(x/θ)/θ, θ > 0. For X ∼ pθ, show that the
Fisher information for θ is

IX(θ) =
1

θ2

∫ [xp′(x)

p(x)
+ 1
]2

p(x) dx.

12. For each case, find the Fisher information based on a single observation X.

8It can also be shown that T2 ∼ (1/λ)ChiSqn−1, but the proof is more difficult.
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(a) Ber(θ).

(b) Pois(θ).

(c) Cau(θ, 1).

(d) N(0, θ), where θ > 0 denotes the variance.

13. For iid X1, . . . , Xn, show that IX1,...,Xn(θ) = nIX1(θ).

14. Let pθ be a density that satisfies the FI regularity conditions, and let T = T (X1, . . . , Xn)
have Eθ(T ) = g(θ). Show that Cθ(T, Uθ) = g′(θ), where Uθ =

∑n
i=1

∂
∂θ

log pθ(Xi) is the
score function.

15. Suppose the Fisher information in X about θ is IX(θ), where θ is a scalar. Let ξ be
a (scalar-valued) smooth one-to-one reparametrization of θ, and write ĨX(ξ) for the
Fisher information in X about ξ. Show that ĨX(ξ) = (dθ/dξ)2IX(θ). Generalize to the
case of vector θ and ξ.

16. Let X ∼ Nn(θ,Σ) be a single n-dimensional normal sample; here, the covariance matrix
Σ is known but the vector θ is unknown.

(a) Find the Fisher information matrix IX(θ). [Hint: You can verify this directly via
the formulas, or generalize the result in Exercise 11(a).]

(b) Suppose that θ = Dξ, where D is a n × p matrix of rank p, where p < n, and
ξ is an unknown p × 1 vector. Here D is the “design matrix.” Use the result in
Exercise 15 to find the Fisher information ĨX(ξ) in X about ξ.

(The information matrix in part (b) depends on the design matrix D, and the theory
of optimal designs seeks to choose D to make ĨX(ξ), as “large as possible.” Of course,
the Fisher information here is a matrix, so one must define what it means for a matrix
to be large, but the intuition is perfectly clear.)

17. Let {pθ : θ ∈ Θ} be a class of µ-densities that satisfy the FI regularity conditions.
By interchanging differentiation and integration, work out a two-term Taylor approx-
imation to the function η 7→ K(pθ, pη), for η near θ, where K is the Kullback–Leibler
divergence from Chapter 1. You should see the Fisher information emerge in the
quadratic approximation.

18. Fill in the missing details in (2.9).

19. Let Yi ∼ Ber(θi), i = 1, . . . , n, independent.

(a) Show that the Bernoulli model is an exponential family with η(θ) = log θ
1−θ .

(b) Find the canonical link and write down the formula for θi in terms of a predictor
variable xi and a parameter β like in Section 2.6.1.
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(c) Look up the “logistic distribution” (e.g., on wikipedia) to see why they call this
Bernoulli GLM with canonical link logistic regression.

20. Let X1, X2 be iid Unif(θ − 1
2
, θ + 1

2
).

(a) Show that A = (X2 −X1)/2 is an ancillary statistic.

(b) Find the distribution of X̄, given A = a.

(c) Compare V(X̄) and V(X̄ | A = a).

(See Example 2.2 in Fraser (2004) for a different illustration in this example: there he
shows that “optimal” unconditional confidence intervals for θ are junk, whereas the
the conditional confidence interval is very reasonable.)

21. Let X1, X2 be iid exponential with mean θ.

(a) Find the distribution of X̄ = (X1 +X2)/2.

(b) Find the distribution of X1, given X2/X1.

(c) Compare confidence intervals obtained from the distributions in (a) and (b).
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Chapter 3

Likelihood and Likelihood-based
Methods

3.1 Introduction

Likelihood is surely one of the most important concepts in statistical theory. We have seen
the role it plays in sufficiency, through the factorization theorem. But, more importantly,
the likelihood function establishes a preference among the possible parameter values given
data X = x. That is, a parameter values θ1 with larger likelihood is better than parameter
value θ2 with smaller likelihood, in the sense that the model Pθ1 provides a better fit to the
observed data than Pθ2 . This leads naturally to procedures for inference which select, as a
point estimator, the parameter value that makes the likelihood the largest, or rejects a null
hypothesis if the hypothesized value has likelihood too small. The likelihood function is also
of considerable importance in Bayesian analysis, as we’ll see later.

Estimators and hypothesis tests based on the likelihood function have some general desir-
able properties, in particular, there are widely applicable large-sample approximations of the
relevant sampling distributions. A main focus of this chapter is the mostly rigorous deriva-
tion of these important results. There is also a very brief introduction to some advanced
likelihood theory, including higher-order approximations and the use of pseudo-likelihoods,
namely, profile and marginal likelihoods, when nuisance parameters are present. A few re-
marks about computation relevant in likelihood-based contexts is given in Section 3.7. The
last section gives brief historical discussion of likelihood and a controversial result, due to
Birnbaum, on what is called the likelihood principle.

3.2 Likelihood function

Consider a class of probability models {Pθ : θ ∈ Θ}, defined on the measurable space (X,A),
absolutely continuous with respect to a dominating σ-finite measure µ. In this case, for
each θ, the Radon–Nikodym derivative (dPθ/dµ)(x) is the usual probability density function
for the observable X, written as pθ(x). For fixed θ, we know that pθ(x) characterizes the
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sampling distribution of X as well as that of any statistic T = T (X). But how do we
use/interpret pθ(x) as a function of θ for fixed x? This is a special function with its own
name—the likelihood function.

Definition 3.1. Given X = x, the likelihood function is L(θ) = pθ(x).

The intuition behind the choice of name is that a θ for which L(θ) is large is “more likely”
to be true value compared to a θ′ for which L(θ′) is small. The name “likelihood” was coined
by Fisher (1973):

What has now appeared is that the mathematical concept of probability is ... in-
adequate to express our mental confidence or indifference in making ... inferences,
and that the mathematical quantity which usually appears to be appropriate for
measuring our order of preference among different possible populations does not
in fact obey the laws of probability. To distinguish it from probability, I have
used the term “likelihood” to designate this quantity; since both words “likeli-
hood” and “probability” are loosely used in common speech to cover both kinds
of relationship.

Fisher’s point is that L(θ) is a measure of how plausible θ is, but that this measure of
plausibility is different from our usual understanding of probability; see Aldrich (1997) for
more on Fisher and likelihood. While we understand the probability (density) pθ(x), for fixed
θ, as a pre-experimental summary of our uncertainty about where X will fall, the likelihood
L(θ) = pθ(x), for fixed x, gives a post-experimental summary of how likely it is that model
Pθ produced the observed X = x. In other words, the likelihood function provides a ranking
of the possible parameter values—those θ with greater likelihood are better, in that they
fit the data better, than those θ with smaller likelihood. Therefore, only the shape of the
likelihood function is relevant, not the scale.

The likelihood function is useful across all approaches to statistics. We’ve already seen
some uses of the likelihood function. In particular, the factorization theorem states that the
(shape of the) likelihood function depends on the observed data X = x only through the
sufficient statistic. The next section discusses some standard and some not-so-standard uses
of the likelihood.

3.3 Likelihood-based methods and first-order theory

3.3.1 Maximum likelihood estimation

Probably the most familiar use of the likelihood function is maximum likelihood estimation.
Given a class of potential models Pθ indexed by Θ, a subset of Rd, we observe X = x and
we’d like to know which model is the most likely to have produced this x. This defines an
optimization problem, and the result, namely

θ̂ = arg max
θ∈Θ

L(θ), (3.1)
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is the maximum likelihood estimate (MLE) of θ. Naturally, Pθ̂ is then considered the most
likely model, that is, among the class {Pθ : θ ∈ Θ}, the model Pθ̂ provides the best fit to the

observed X = x. In terms of “ranking” intuition, θ̂ is ranked the highest.
When the likelihood function is smooth, the optimization problem can be posed as a

root-finding problem. That is, the MLE θ̂ can be viewed as a solution to the equation

∇`(θ) = 0, (3.2)

where ∇ denotes the gradient operator, ` = logL is the log-likelihood, and the right-hand
side is a d-vector of zeroes. Equation (3.2) is called the likelihood equation. Some remarks
about solving the likelihood equation are given in Section 3.7. Our focus here will be on
studying the theoretical large-sample properties of solutions θ̂ of the (3.2).

A first desirable large-sample property is consistency, which suggests that, if n is large,
then θ̂ = θ̂n will be close to θ with high Pθ-probability. More formally, we say that an
estimator θ̂n, not necessarily the MLE, is consistent if θ̂n → θ in Pθ-probability,1 i.e.,

lim
n→∞

Pθ{‖θ̂n − θ‖ > ε} = 0, ∀ ε > 0.

Here ‖ · ‖ is a suitable norm on the space Θ, e.g., the Euclidean norm. The definition can be
strengthened to require that θ̂n → θ with Pθ-probability 1, though this is harder to prove.

We will talk in more detail in Chapter 6 about some general kinds of consistency results,
which will contain consistency of the MLE as a special case. Suffice it say, under suitable
conditions, there exists a consistent sequence of solutions to the likelihood equation (3.2); if,
for example, that solution is unique, then a consistency result for the MLE obtains.

A more useful large-sample property is one that describes the limiting distribution. This
(i) gives an exact characterization of the rate of convergence, and (ii) allows for the construc-
tion of asymptotically exact statistical procedures. Though it is possible to get non-normal
limits, all “standard” problems that admit a limiting distribution have a normal limit. From
previous experience, we know that MLEs typically have an asymptotic normality property.
Here is one version of such a theorem, similar to Theorem 9.14 in Keener (2010), with con-
ditions given in C1–C4 below. Condition C3 is the most difficult to check, but it does hold
for regular exponential families; see Exercise 11. We focus on the one-dimensional case, but
the exact same theorem, with obvious modifications, holds for d-dimensional θ.

C1. The support of Pθ does not depend on θ.

C2. For each x in the support, fx(θ) := log pθ(x) is three times differentiable with respect
to θ in an interval (θ?− δ, θ? + δ); moreover, Eθ?|f ′X(θ?)| and Eθ?|f ′′X(θ?)| are finite and
there exists a function M(x) such that

sup
θ∈(θ?−δ,θ?+δ)

|f ′′′x (θ)| ≤M(x) and Eθ? [M(X)] <∞. (3.3)

1In this kind of notation, the subscript θ on Pθ is what indicates that θ is the true value.
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C3. Expectation with respect to Pθ? and differentiation at θ? can be interchanged, which
implies that the score function has mean zero and that the Fisher information exists
and can be evaluated using either of the two familiar formulas.

C4. The Fisher information at θ? is positive.

Theorem 3.1. Suppose X1, . . . , Xn are iid Pθ, where θ ∈ Θ ⊆ R. Assume C1–C4, and let
θ̂n be a consistent sequence of solutions to (3.2). Then, for any interior point θ?,

n1/2(θ̂n − θ?)→ N(0, I(θ?)−1), in distribution under Pθ? .

Proof. Let `n(θ) = n−1 logLn(θ) be scaled log-likelihood. Since θ? is an interior point,
there exists an open neighborhood A of θ? contained in Θ. From consistency of θ̂n, the
event {θ̂n ∈ A} has Pθ?-probability converging to 1. Therefore, it suffices [Exercise 7(c)] to
consider the behavior of θ̂n only when it is in A where the log-likelihood is well-behaved, in
particular, `′n(θ̂n) = 0. Next, take a second-order Taylor approximation of `′n(θ̂n) around θ?:

0 = `′n(θ?) + `′′n(θ?)(θ̂n − θ?) + 1
2
`′′′n (θ̃n)(θ̂n − θ?)2, for θ̂n near θ?,

where θ̃n is between θ̂n and θ?. After a bit of simple algebra, we get

n1/2(θ̂n − θ?) = − n1/2`′n(θ?)

`′′n(θ?) + 1
2
`′′′n (θ̃n)(θ̂n − θ?)

, for θ̂n near θ?.

So, it remains to show that the right-hand side above has the stated asymptotically normal
distribution. Let’s look at the numerator and denominator separately.

Numerator. The numerator can be written as

n1/2`′n(θ?) = n1/2 · 1

n

n∑
i=1

∂

∂θ
log pθ(Xi)

∣∣∣
θ=θ?

.

The summands are iid with mean zero and variance I(θ?), by our assumptions about in-
terchanging derivatives and integrals. Therefore, the standard Central Limit Theorem says
that n1/2`′n(θ?)→ N(0, I(θ?)) in distribution.

Denominator. The first term in the denominator converges in Pθ?-probability to −I(θ?)
by the usual law of large numbers. It remains to show that the second term in the denomi-
nator is negligible. For this, note that by (3.3),

|`′′′n (θ̃n)| ≤ 1

n

n∑
i=1

M(Xi), for θ̂n close to θ?.

The ordinary law of large numbers, again, says that the upper bound converges to Eθ? [M(X1)],
which is finite. Consequently, `′′′n (θ̃n) is bounded in probability, and since θ̂n − θ? → 0 in
Pθ?-probability by assumption, we may conclude that

(θ̂n − θ?)`′′′n (θ̃n)→ 0 in Pθ?-probability.
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It then follows from Slutsky’s Theorem [Exercise 7(b)] that

− n1/2`′n(θ?)

`′′n(θ?) + 1
2
(θ̂n − θ?)`′′′n (θ̃n)

→ N(0, I(θ?))

−I(θ?)
= N(0, I(θ?)−1), in distribution,

which is the desired result.

The take-away message here is that, under certain conditions, if n is large, then the
MLE θ̂ has sampling distribution close to N(θ, [nI(θ)]−1) under Pθ. To apply this result,
e.g., to construct an asymptotically approximate confidence interval, one needs to replace
I(θ) with a quantity that does not depend on the unknown parameter. Standard choices
are the expected Fisher information I(θ̂n) and the observed Fisher information −`′′n(θ̂n); see
Exercise 19 and Efron and Hinkley (1978). The latter is often preferred, for it has some
desirable “conditioning” properties.

With asymptotic normality of the MLE, it is possible to derive the asymptotic distribu-
tion of any smooth function of the MLE. This is the well-known delta theorem, which you’re
invited to prove in Exercise 8. The delta theorem is actually more general, showing how to
create new central limit theorems from existing ones; that is, the Delta Theorem is not spe-
cific to MLEs, etc. The delta theorem also offers an alternative—called variance stabilizing
transformations (see Exercise 10)—to the plug-in rules discussed above to eliminate θ from
the variance in the asymptotic normal approximation.

It is possible to drop the requirement that the likelihood be three times differentiable if
one assumes that the second derivative exists and has a certain Lipschitz property:

log pθ(x) is twice differentiable at θ?, and there exists a function gr(x, θ) such
that, for each interior point θ?,

sup
θ:|θ−θ?|≤r

∣∣∣ ∂2

∂θ2
log pθ(x)− ∂2

∂θ2
log pθ?(x)

∣∣∣ ≤ gr(x, θ
?), (3.4)

with limr→0 Eθ{gr(X, θ)} = 0 for each θ.

With this assumption, the same asymptotic normality result holds. See Exercise 12. Inter-
estingly, it is possible to get asymptotic normality under a much weaker condition, namely,
differentiable in quadratic mean, which assumes less than differentiability of θ 7→ pθ(x), but
the details are a bit more technical; see Chapter 6.

3.3.2 Likelihood ratio tests

For two competing hypotheses H0 and H1 about the parameter θ, the likelihood ratio is often
used to make a comparison. For example, for H0 : θ = θ0 versus H1 : θ = θ1, the likelihood
ratio is L(θ0)/L(θ1), and large (resp. small) values of this ratio indicate that the data x
favors H0 (resp. H1). A more difficult and somewhat more general problem is H0 : θ ∈ Θ0
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versus H1 : θ 6∈ Θ0, where Θ0 is a subset of Θ. In this case, one can define the likelihood
ratio as

Tn = Tn(X,Θ0) =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
. (3.5)

The interpretation of this likelihood ratio is the same as before, i.e., if the ratio is small,
then data lends little evidence to the null hypothesis. For practical purposes, we need to
know what it means for the ratio to be “small;” this means we need the null distribution of
Tn, i.e., the distribution of Tn under Pθ, when θ ∈ Θ0.

For Θ ⊆ Rd, consider the testing problem H0 : θ ∈ Θ0 versus H1 : θ 6∈ Θ0, where Θ0 is
a subset of Θ that specifies the values θ01, . . . , θ0m of θ1, . . . , θm, where m is a fixed integer
between 1 and d. The following result, known as Wilks’s Theorem, gives conditions under
which the null distribution of Wn = −2 log Tn is asymptotically of a convenient form.

Theorem 3.2. Suppose the conditions of Theorem 3.1 hold. Under the setup described in
the previous paragraph, Wn → ChiSq(m) in distribution, under Pθ with θ ∈ Θ0.

Proof. We focus here only on the case d = m = 1.2 That is, Θ0 = {θ0} is a singleton, and
we want to know the limiting distribution of Wn under Pθ0 . Clearly,

Wn = −2`n(θ0) + 2`n(θ̂n),

where θ̂n is the MLE and `n is the log-likelihood. By the assumed continuity of the log-
likelihood, do a two-term Taylor approximation of `n(θ0) around θ̂n:

`n(θ0) = `n(θ̂n) + `′n(θ̂n)(θ0 − θ̂n) +
`′′n(θ̃n)

2
(θ0 − θ̂n)2,

where θ̃n is between θ0 and θ̂n. Since `′n(θ̂n) = 0, we get

Wn = −`′′n(θ̃n)(θ0 − θ̂n)2 = −`
′′
n(θ̃n)

n
{n1/2(θ̂n − θ0)}2.

From Theorem 3.1, we have that n1/2(θ̂n − θ0) → N(0, I(θ0)−1) in distribution, as n → ∞.
Also, in the proof of that theorem, we showed that n−1`′′n(θ̃n) → −I(θ0) under Pθ0 for any
consistent θ̃n. Indeed, we can write

`′′n(θ̃n) = `′′n(θ0) + `′′n(θ̃n)− `′′n(θ0),

and we have that

|`′′n(θ̃n)− `′′n(θ0)| ≤ 1

n

n∑
i=1

∣∣∣ ∂2

∂θ2
log pθ(Xi)

∣∣
θ=θ̃n
− ∂2

∂θ2
log pθ(Xi)

∣∣
θ=θ0

∣∣∣.
2The proof of the general case is lengthy, so I won’t reproduce it here. See Section 17.2 in Keener (2010)

or Theorem 7.125 in Schervish (1995) for details. There are also some more general results with algebraic
conditions on the null parameter space Θ0 presented in Drton et al. (2009).
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Using Condition C2, the upper bound is bounded by n−1
∑n

i=1 M(Xi) · |θ̃n− θ0|, which goes

to zero in probability under Pθ0 since θ̃n is consistent. Therefore, `′′n(θ̃n) has the same limiting
behavior as `′′n(θ0). Finally, by Slutsky, we get

Wn → I(θ0)N(0, I(θ0)−1)2 ≡ N(0, 1)2 ≡ ChiSq(1).

Wilks’s theorem facilitates construction of an approximate size-α test of H0 when n is
large, i.e., by rejecting H0 iff Wn is more than χ2

m,1−α, the 100(1 − α) percentile of the
ChiSq(m) distribution. The advantage of Wilks’ theorem appears in cases where the exact
sampling distribution of Wn is intractable, so that an exact (analytical) size-α test is not
available. Monte Carlo can often be used to find a test (see Section 3.7), but Wilks’s
theorem gives a good answer and only requires use of a simple chi-square table. One can also
use the Wilks’s theorem result to obtain approximation confidence regions. Let Wn(θ0) =
−2 log Tn(X; θ0), where θ0 is a fixed generic value of the full d-dimensional parameter θ,
i.e., H0 : θ = θ0. Then an approximate 100(1 − α)% confidence region for θ is {θ0 :
Wn(θ0) ≤ χ2

m,1−α}. An interesting and often overlooked aspect of Wilks’s theorem is that
the asymptotic null distribution does not depend on the true values of those parameters
unspecified under the null. For example, in a gamma distribution problem with the goal of
testing if the shape is equal to some specified value, the null distribution of Wn does not
depend on the true value of the scale.

3.4 Cautions concerning the first-order theory

One might be tempted to conclude that the desirable properties of the likelihood-based meth-
ods presented in the previous section are universal, i.e., that maximum likelihood estimators
will “always work.” Moreover, based on the form of the asymptotic variance of the MLE
and its similarity to the Cramer–Rao lower bound in Chapter 2, it is tempting to conclude
that the MLE is asymptotically efficient.3 However, both of these conclusions are technically
false in general. Indeed, there are examples where

• the MLE is not unique (Exercise 14) or even does not exist (Exercise 15);

• the MLE “works” (in the sense of consistency), but the conditions of the theory are
not met so asymptotic normality fails (Exercise 16); and

• the MLE is not even consistent!

Non-uniqueness or non-existence of the MLE are roadblocks to practical implementation but,
for some reason, aren’t viewed as much of a concern from a theoretical point of view. The
case where the MLE works but is not asymptotically normal is also not really a problem,
provided that one recognizes the non-regular nature of the problem and makes the necessary

3More on efficiency in Chapter 6; a recommended read about this history of likelihood and these theoretical
developments is Stigler (2007).
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adjustments.4 The most concerning of these points is inconsistency of the MLE. Since
consistency is a rather weak property, inconsistency of the MLE means that its performance
is poor and can give very misleading results. The most famous example of inconsistency of
the MLE, due to Neyman and Scott (1948), is given next.

Example 3.1 (Neyman and Scott 1948). Let Xij be independent normal random variables,
Xij ∼ N(µi, σ

2), i = 1, . . . , n and j = 1, 2; the case of two j levels is the simplest, but the
result holds for any fixed number of levels. The point here is that Xi1 and Xi2 have the same
mean µi, but there are possibly n different means. The full parameter is θ = (µ1, . . . , µn, σ

2),
which is of dimension n+ 1. It is easy to check that the MLEs are given by

µ̂i = 1
2
(Xi1 +Xi2), i = 1, . . . , n

σ̂2 =
1

n

n∑
i=1

(Xi1 −Xi2)2.

A routine argument (Exercise 17) shows that, as n → ∞, σ̂2 → 1
2
σ2 6= σ2 in probability, so

that the MLE of σ2 is inconsistent!

The issue here that is causing inconsistency is that the dimension of the nuisance pa-
rameter, the means µ1, . . . , µn, is increasing with n. In general, when the dimension of the
parameter depends on n, consistency of the MLE will be a concern (see Exercise 20) so one
should be careful. Modification of the basic maximum likelihood approach can fix this, see
Section 3.6. More generally, these shortcomings of the standard MLE provide motivation for
the popular modifications, i.e., shrinkage, penalization, etc.

The fact that maximum likelihood is not necessarily a reliable strategy in general may
be surprising to hear. Lucian Le Cam, in a paper from 1960, wrote5

The author is firmly convinced that a recourse to maximum likelihood is justi-
fiable only when one is dealing with families of distributions that are extremely
regular. The cases in which ML estimates are readily obtainable and have been
proved to have good properties are extremely restricted.

and, later, in his 1986 book, wrote

The terms “likelihood” and “maximum likelihood” seem to have been introduced
by RA Fisher who seems also to be responsible for a great deal of the propaganda
on the merits of the maximum likelihood method... In view of Fisher’s vast
influence, it is perhaps not surprising that the presumed superiority of the method
is still for many an article of faith promoted with religious fervor. This state of
affairs remains, in spite of a long accumulation of evidence to the effect that
maximum likelihood estimates are often useless or grossly misleading.

4It turns out that, as far as I know, the theory for “non-regular” problems is not fully understood, i.e.,
it seems like there are sets of examples where the theory is known but no general results. This is related to
the ideas presented in Section 2.4.4.

5I got this quote from Section 11 in van der Vaart 2002, a recommended read.
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Le Cam’s criticisms of Fisher and likelihood-based methods are based on the following point:
when likelihood methods work, there are other methods which are just as good, and, when
likelihood methods fail, there are other methods that do work. In this light, Le Cam’s views
are not debatable. However, I think that likelihood is an important object and likelihood-
based methods can be useful, if used responsibly. The main point is that it’s dangerous to
just assume that the likelihood-based methods will work how you expect them to.

3.5 Alternatives to the first-order theory

3.5.1 Bootstrap

Bootstrap is designed to get a sampling distribution for an estimator, which can be used for
constructing tests and confidence regions, based on only a single data set. This is a very
popular tool, likely due to its simplicity. The first paper on bootstrap is Efron (1979) and
Chapter 29 in DasGupta (2008) is a nice summary of the literature up to that point. There
are now lots of sophisticated bootstrap techniques and results, but here I will give only the
simplest setup, to keep the concepts clear.

Recall that if we have an estimator θ̂n, this is based on just one data set. The sampling
distribution of θ̂n, which is relevant to the construction of confidence intervals and tests,
is based on lots of samples and lots of values of θ̂n, so obviously it is not available to
us. The asymptotic theory in the previous section are concerned with providing a simple
approximation of that unknown sampling distribution. Bootstrap, instead, tries to produce
an approximate sampling distribution numerically by resampling from the available data.

Let Pθ denote the distribution of an observable X. We observe iid copies X1, . . . , Xn

from Pθ, and produce an estimator θ̂n = θ̂(X1, . . . , Xn). To learn the sampling distribution
of θ̂n, we would need lots of copies of the sample (X1, . . . , Xn). The basic idea behind the
bootstrap is to sample, with replacement, from the one available data set. Write such a
resample as X?

i , i = 1, . . . , n; in this case, it is possible that there are ties because sampling
is with replacement. Based on (X?

1 , . . . , X
?
n), compute

θ̂?n = θ̂(X?
1 , . . . , X

?
n).

Repeat this process B times, yielding a bootstrap sample of B values of θ̂n, which I will write
as θ̂?n,1, . . . , θ̂

?
n,B. Then the claim is that the distribution of this bootstrap sample is a good

approximation of the actual sampling distribution of θ̂n. For example, we can get a crude
90% confidence interval for θ by taking the 5th and 95th percentiles of the bootstrap sample.

This is very easy to do, since the resampling can be done quickly with a computer. The
question is if it works. The basis for the claim that the bootstrap distribution is a good
approximation of the sampling distribution is an asymptotic one. Roughly, the claim is that
the bootstrap distribution and the sampling distribution merge as n → ∞. To understand
this at an intuitive level, recall the fundamental theorem of statistics, namely, that the
empirical distribution function converges uniformly almost surely to the true distribution
function. Then the resampling step is simply iid sampling from the empirical distribution.
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So, if the empirical distribution is close to the true distribution, then sampling from the
former should be equivalent to sampling from the latter, hence the claim. Interestingly,
some bootstrap methods, perhaps more sophisticated than what is presented here, have
“automatic” higher-order accuracy properties (e.g., DiCiccio and Romano 1995).

Despite the simplicity of bootstrap, and the wide range of applications where it works,
it is not a tool that works universally. That is, there are known cases where bootstrap fails,
so one cannot use it blindly. There are tools available for correcting bootstrap when it fails,
but these modifications are not intuitive. See the discussion in DasGupta (2008, Chap. 29)
and the references therein for more details on bootstrap.

3.5.2 Monte Carlo and plausibility functions

The focus on asymptotic theory is arguably driven by tradition—when statistics was first
being developed, there were no computers available, so only asymptotic analytical approx-
imations were possible. Technology has changed dramatically since then, so an interesting
question to ask is if we need asymptotic approximations anymore. That is, why not just
crunch everything out exactly using the readily available computing power? I am not sug-
gesting that asymptotic are not useful, but it is important to keep in mind what asymptotics
are really for, namely, to help simplify calculations that are too difficult to carry out exactly.

Martin (2015b) worked out an approach that is based on getting a Monte Carlo estimate
(see Section 3.7.2) of the distribution function of the likelihood ratio statistic; the challenge
is that Monte Carlo generally needs be run for lots of parameter values. It can be proved
that this approach, which defines a “plausibility function” provides exact inference, without
asymptotics. That is, the 95% “plausibility intervals” have coverage probability exactly
equal to 0.95. Then the question is, if one has the resources to carry out these computations
(which are not bad in simple problems), then why not do so and avoid any asymptotic
approximations? That paper shows some examples to demonstrate the efficiency of the
method, but there are theoretical and computational problems to be worked out. I should
also mention that, although the aforementioned paper doesn’t really say anything about this,
the approach presented there has some connections to the inferential model (IM) framework
(e.g., Martin and Liu 2013, 2015a,c). The point is that this approach defines an IM without
using a complete specification of the sampling model, which simplifies things a lot, but
apparently without sacrificing too much on efficiency; see Martin (2015a).

3.6 On advanced likelihood theory

3.6.1 Overview

One goal of advanced likelihood theory is to handle problems with nuisance parameters.
For example, suppose that θ splits into a pair of sub-vectors θ = (ψ, λ), where ψ is the
parameter of interest and λ is a nuisance parameter, i.e., a parameter that is unknown but
not of interest. We would like to make inference on ψ in the presence of unknown λ. This
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is a challenging problem because the likelihood is a function of both ψ and λ, and it is not
immediately clear how to get rid of λ. For example, if the model is sufficiently regular,
then θ̂ is asymptotically normal. One could proceed to make inference on ψ by grabbing ψ̂
from θ̂ and the corresponding block from the asymptotic covariance matrix. However, that
covariance matrix will generally depend on all of θ, so the question is if plugging in λ̂ into
that covariance matrix is a sufficient way to eliminate λ—I don’t think so.

A second goal of advanced likelihood theory is to get more accurate approximations than
what is obtained by asymptotic normality of the MLE or Wilks’s theorem. The basic tool
that drives the proofs of these two results is a two-term Taylor approximation of the log-
likelihood. If we take higher-order approximation, effectively handling the remainder terms
with more care, then we can often obtain sharper asymptotic approximations. This will
lead to more accurate tests and/or confidence regions. The details of these higher-order
approximations are beyond our scope, so I only give one example of this. Good/readable
references include Young and Smith (2005, Chap. 9) and Brazzale et al. (2007, Chap. 2); a
nice overview of this kind of advanced asymptotics is given in Reid (2003).

3.6.2 “Modified” likelihood

Write θ = (ψ, λ), where ψ is the parameter of interest and λ is an unknown nuisance
parameter. How to construct a likelihood for ψ alone? There are basically three possible
techniques; the first of which you would have seen tastes of in a first course on statistical
theory, in the context of likelihood ratio tests.

Profile likelihood

Suppose, for the moment, that ψ was known and only λ was unknown. In which case, we
could find the MLE for λ, given this known value of ψ, which we denote by λ̂ψ. This can be
done for any value of ψ, so we may write

Lp(ψ) = L(ψ, λ̂ψ),

called the profile likelihood of ψ. This function can, generally, be treated like a genuine
likelihood function. For example, Wilks’s theorem shows that −2 times the log profile
likelihood ratio is asymptotically chi-square under a given H0. Some non-asymptotic use of
the profile likelihood ratio is discussed in Martin (2015b). However, a word of caution is in
order: in the Neyman–Scott example above, the MLE σ̂2 is the “profile maximum likelihood
estimator” and is inconsistent!

Marginal and conditional likelihood

Much of the material in this section is taken from Section 2.4 in Boos and Stefanski (2013).
For data X, let (S, T ) be a one-to-one function of X; of course, the function is not allowed
to depend on the parameter θ = (ψ, λ). So, in terms of likelihoods, with some abuse of
notation, we can write pθ(X) = pθ(S, T ). Of course, the right-hand side, which is a joint
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density for T and S, can be factored into a product of a marginal density and a conditional
density. Suppose that either

pθ(T, S) = pθ(T | S)pψ(S) (3.6)

pθ(T, S) = pψ(T | S)pθ(S). (3.7)

We consider the two cases separately.

• In the former case, Equation (3.6), the marginal distribution of S depends only on the
interest parameter, so we can take as a “modified” or “pseudo” likelihood

Lm(ψ) = pψ(S).

This is called a marginal likelihood since it is based on the marginal distribution a
function S = S(X). Note, however, that this is not a real likelihood because some
information relevant to ψ, contained in the conditional part pθ(T | S), has been thrown
out; the hope, however, is that the elimination of the nuisance parameter λ through
marginalization will lead to advantages that outweigh the loss of information.

• In the latter case, Equation (3.7), the conditional distribution of T given S does not
depend on λ, so we can take as a modified or pseudo likelihood

Lc(ψ) = pψ(T | S).

Again, this is not a real likelihood since some information has been thrown out, but
the elimination of the nuisance parameter has value.

In the Neyman–Scott example, consider the transformation X = (Xij) to

Si = 2−1/2(Xi1 −Xi2) and Ti = 2−1/2(Xi1 +Xi2), i = 1, . . . , n.

Then the following properties are easy to check:

• the marginal distribution of S = (S1, . . . , Sn) does not depend on (µ1, . . . , µ2);

• S1, . . . , Sn are iid N(0, σ2);

• and S and T are independent.

Therefore, conditioning has no effect so the marginal/conditional likelihood for the interest
parameter σ2, based on S only, is

Lm(σ2) ∝ (σ2)−n/2e−
1

2σ2

∑n
i=1 S

2
i .

It is straightforward to check that the marginal/conditional maximum likelihood estimator
of σ2 is σ̃2 = (2/n)

∑n
i=1 S

2
i = 2σ̂2. Since σ̂2 → 1

2
σ2, it is clear that σ̃2 is consistent.

The obvious challenge in implementing a marginal or conditional likelihood approach
is finding the appropriate statistics (S, T ). Unfortunately, there really aren’t’ any general
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strategies for finding this, experience is the only guide. Probably the only semi-general
strategy that one can apply to obtain a conditional likelihood is the following, that applies
for certain exponential family models. Suppose that the density function for X is of the form

pθ(x) ∝ exp{〈ψ, T (x)〉+ 〈λ, S(x)〉 − A(ψ, λ)}.

Then it is pretty easy to see that the conditional distribution of T = T (X), given S = S(X),
will be of exponential family form and will not depend on the nuisance parameter λ. Boos
and Stefanski (2013), Section 2.4.6, give a really nice application of this strategy in the
context of logistic regression; see, also, Section 5 of Bølviken and Skovlund (1996).

3.6.3 Asymptotic expansions

The two primary technical tools are the Edgeworth and saddlepoint expansions. Both of these
are based on cumulant generating functions—log of the moment generating function. The
idea is to approximate the density pn(s) of the normalized sum Sn = (

∑n
i=1Xi−nµ)/

√
nσ2,

where X1, . . . , Xn are iid with mean µ and variance σ2. The central limit theorem says
pn(s) → ϕ(s), the standard normal density, as n → ∞. These expansions are designed to
get a more accurate approximation of pn(s) for finite n. We will not discuss the general
details here—see, e.g., DasGupta (2008)—just an application.

For a given sample, suppose the minimal sufficient statistic S for θ can be expressed as
(T,A), where T is the MLE and A is an ancillary statistic. Since A is ancillary, it is natural
to base inference on the sampling distribution of T , given A = a, where a is the observed
value of A. Despite this being a natural thing to do, it is generally not so easy to compute
this conditional distribution. The p? formula, based on the asymptotic expansions above,
provides a very good approximation to this conditional distribution.

Write the log-likelihood function as `(θ; t, a) and the observed Fisher information matrix
(Exercise 19) J(θ; t, a). The p? formula is then

p?θ(t | a) = c(θ, a)| det{J(t; t, a)}|1/2e`(θ;t,a)−`(t;t,a),

where c(θ, a) is a normalizing constant that does not depend on t. Then the claimed ap-
proximation result is, for any t, as n→∞,

pθ(t | a) = p?θ(t | a){1 +O(n−1)};

that is, the exact conditional density pθ(t | a) of T , given A = a, equals p?θ(t | a) modulo an
error that vanishes at the rate of n−1. This comes from a saddlepoint expansion which comes
with general approximation bounds. For some problems, including group transformation
problems, the p? formula is exact.

There are also very nice approximations of the distribution function of a statistic, e.g.,
the r? approximation explained in Reid (2003). This, unfortunately, is a bit too technical
for us to consider here. But there are other tricks to improve asymptotic approximations,
such as the Bartlett correction (Exercise 21), which are relatively easy to use.
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3.7 A bit about computation

3.7.1 Optimization

Newton’s method is a simple and powerful tool for doing optimization or, more precisely,
root finding. You should be familiar with this method from a calculus course. The idea is
based on the fact that, locally, any differentiable function can be suitably approximated by
a linear function. This linear function is then used to define a recursive procedure that will,
under suitable conditions, eventually find the desired solution.

Recall the likelihood equation (3.2). Then the MLE is a solution to this equation, i.e., a
root of the gradient of the log-likelihood function. Assume that the gradient ∇`(θ) is also
differentiable, and let D(θ) denote that matrix of derivatives, i.e., D(θ)ij = (∂2/∂θi∂θj)`(θ).
Assume D(θ) is non-singular for all θ. The idea behind Newton’s method is as follows. Pick
some guess , say θ(0) of the MLE θ̂. Now approximate ∇`(θ) by a linear function:

∇`(θ) = ∇`(θ(0)) +D(θ(0))(θ − θ(0)) + error.

Ignore the error, solve for θ, and call the solution θ(1):

θ(1) = θ(0) −D(θ(0))−1∇`(θ(0)).

If θ(0) is close to the solution of the likelihood equation, then so will θ(1) (draw a picture!).
The idea is to iterate this process until the solutions converge. So the method is to pick a
“reasonable” starting value θ(0) and, at iteration t ≥ 0 set

θ(t+1) = θ(t) −D(θ(t))−1∇`(θ(t)).

Then stop the algorithm when t is large and/or ‖θ(t+1) − θ(t)‖ is small.
There are lots of tools available for doing optimization, the Newton method described

above is just one simple approach. Fortunately, there are good implementations of these
methods already available in the standard software. For example, the routine optim in R is
a very powerful and simple-to-use tool for generic optimization. For problems that have a
certain form, specifically, problems that can be written in a “latent variable” form, there is
a very clever tool called the EM algorithm (e.g. Dempster et al. 1977) for maximizing the
likelihood. Section 9.6 in Keener (2010) gives some description of this method.

An interesting and unexpected result is that sometimes optimization can be used to do
integration. The technical result I’m referring to is the Laplace Approximation, and some
further comments on this will be made in Chapter 4 on Bayesian methods.

3.7.2 Monte Carlo integration

In hypothesis testing, suppose H0 : θ = θ0, i.e., the null gives a complete specification of
the parameter. In this case, it is straightforward to derive exact tests using Monte Carlo.
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That is, sample lots of data sets (X1, . . . , Xn)
iid∼ Pθ0 and, for each data set, compute the

corresponding Wn, or any other test statistic for that matter. A size-α test says

Reject H0 iff Wn > kα,

where kα depends on the null distribution of Wn. Now choose kα as the 100(1−α) percentile
from the Monte Carlo sample of Wn’s. This is easy to do; see Exercise 23.

The challenge is trying to do something similar when the null hypothesis leaves some
components of θ unspecified. In this case, it is not clear what distribution you should
sample from in the Monte Carlo step. For example, if θ = (θ1, θ2) and the null hypothesis
specifies the value θ1,0 of θ1, then what value of θ2 should be used to simulate? In general, the
null distribution of Wn in this case, at least for finite n, would depend on the particular value
of θ2, so this is an important question. In some cases, one can show that the distribution of
Wn does not depend on the unspecified parameter (see Exercise 24), but this can be difficult
to do. Martin (2015b) has some relevant comments on this.

3.8 Discussion

Likelihood, likelihood-based methods, and the desirable large-sample results presented above,
have been important to the development of statistical practice. It is an interesting question,
however, if the likelihood function is fundamental to statistics. We understand that, in
a certain sense, the likelihood function contains all the relevant information in the data
concerning the unknown parameter. But, the statistical methods describe above (e.g., the
likelihood ratio test) use information beyond what is contained in the likelihood function. In
particular, the sampling distribution of the relevant statistic is needed to choose the test’s
cutoff. That the results of a statistical procedure depend on things other than the observed
data is somewhat controversial.

To fully buy in to the claim that the likelihood contains all relevant information in data
about the parameter, one must be willing to say that any two data sets that produce the
same likelihood function (up to proportionality constant) should produce the same results
concerning the parameter of interest. Such a position has a name—the likelihood principle.
Those classical methods that depend on sampling distributions, including the likelihood ratio
tests discussed above, violate the likelihood principle. Besides the likelihood principle, there
are two other statistical principles that have taken hold:

• Sufficiency principle: Any two data sets that admit the same (minimal) sufficient
statistics should lead to the same conclusions about θ.

• Conditionality principle: If two different experiments are to be considered, and the
choice between the two is random, and the randomization does not depend on θ, then
conclusions about θ should be based only the experiment actually performed.

These two principles are difficult to argue with and, historically, this have been mostly
accepted as reasonable principles. (I am, of course, glossing over some non-trivial details so
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that I can paraphrase the main point.) There is a famous result of Birnbaum (1962), arguably
the most controversial in all of statistics, that says that statistical inference that follows
the sufficiency and conditionality principles must also follow the likelihood principle. This
suggests that those statistical methods based on sampling distributions (e.g., the likelihood
ratio tests), which violate the likelihood principle, must also violate either the sufficiency or
conditionality principles. To summarize: Birnbaum’s result implies that frequentist methods
are “illogical” in this specific sense.

Birnbaum’s result has had some significant effect, in particular, to the development and
acceptance of Bayesian methods. The fact is, the only known statistical approach which
satisfies the likelihood principle is the Bayesian approach (with a subjective prior). For
example, Jimmie Savage, in his discussion of Birnbaum’s paper, writes

I, myself, came to take ... Bayesian statistics ... seriously only through recognition
of the likelihood principle.

That is, if not for Birnbaum’s result on the likelihood principle, Savage never would have
taken the Bayesian approach seriously. So, in this way, Birnbaum’s result is indirectly
responsible for much of the developments in Bayesian statistics.

As you are reading this, you should be feeling a bit uncomfortable: those classical methods
taught in Stat 101 courses everywhere violate some logical principles!? There has always
been doubt about the validity of Birnbaum’s claim and, recently, it has been shown that
it is actually false! See Evans (2013) and Mayo (2014). Besides relieving statistics of the
constraints of Birnbaum’s claim, these developments open the door to some new ideas about
the foundations of statistics; see Martin and Liu (2014).

3.9 Exercises

1. Let X1, . . . , Xn be iid N(µ, σ2). Find the MLE of (µ, σ2).

2. Let X1, . . . , Xn
iid∼ Gamma(θ, 1), where the shape parameter θ > 0 is unknown.

(a) There is no closed-form expression for the MLE θ̂. Write R code to find the MLE
numerically; try to do it without using any built-in optimization routines.

(b) Simulate 1000 data sets (with θ = 7 and n = 10) and, for each, calculate the
MLE. Summarize your simulation with a histogram that describes the sampling
distribution of the MLE.

(c) Does your sampling distribution appear to be approximately normal?

3. Maximum likelihood estimators have a desirable invariance property. That is, if θ̂ is
the MLE of θ, and η = g(θ) is some transformation, then the MLE of η is η̂ = g(θ̂).
Explain the intuition behind this fact.

4. For iid data X1, . . . , Xn, let `n(θ) be the log-likelihood.
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(a) Use Jensen’s inequality and the law of large numbers to argue that, for any non-
zero a, `n(θ? + a)− `n(θ?) < 0 for all large n with Pθ?-probability 1.

(b) Use this to argue for consistency of a sequence of solutions of the likelihood
equation. [Hint: Fix ε > 0 and apply (a) with a = ε and a = −ε.]

5. Suppose that the density pθ of X satisfies the conditions of the factorization theorem
from Chapter 2. Use Theorem 2.3 to show that if the MLE θ̂ = θ̂(X) is unique and
sufficient, then it is also minimal sufficient.

6. Prove the following version of the Continuous Mapping Theorem:

Let X, {Xn : n ≥ 1} be random variables taking values in a metric space
(X, | · |), such as Rd. Let g be an everywhere continuous function that maps
X to another metric space X′. Show that if Xn → X in probability, then
g(Xn)→ g(X) in probability.

Remarks: (i) g does not need to be everywhere continuous, it is enough that X is
in the continuity set with probability 1, and (ii) the same result holds if you replace
convergence in probability with convergence in distribution or convergence with prob-
ability 1.

7. (a) Consider two sequences of random variables, Xn and Yn, such that Xn → X and
Yn → c, both in distribution, where X is a random variable and c is a constant.
Prove that (Xn, Yn) → (X, c) in distribution. [Hint: By definition, a sequence of
random variables Xn converges in distribution to X iff Ef(Xn) → Ef(X) for all
bounded and continuous functions f .]

(b) Use (a) and Continuous Mapping Theorem to prove Slutsky’s Theorem:

If An → a and Bn → b, both in probability, and Xn → X in distribution,
then An +BnXn → a+ bX in distribution.

[Hints: (i) Convergence in distribution and convergence in probability are equiv-
alent when the limit is a constant, and (ii) to apply part (a), think of (An, Bn) as
one sequence, with constant limit (a, b).]

(c) As a special case of Slutsky’s Theorem, show that if Yn → Y in distribution and
Bn is an event with P(Bn)→ 1, then YnIBn +ZnIBcn → Y for any sequence Zn of
random variables.

8. Prove the Delta Theorem:

For random variables Tn, assume that n1/2(Tn − θ) → N(0, v(θ)) in dis-
tribution, where v(θ) is the asymptotic variance. Let g(·) be a function
differentiable at θ, with g′(θ) 6= 0. Then n1/2{g(Tn) − g(θ)} → N(0, vg(θ)),
in distribution, where vg(θ) = [g′(θ)]2v(θ).
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9. The delta theorem in the previous exercise assumes that g′ exists and is non-zero at θ.
What happens when g′(θ) = 0?

Theorem. Assume g′(θ) = 0, g′′ is continuous, and g′′(θ) 6= 0. Then there
exists a sequence of constants cn and a function h(·) such that

cnh(θ)[g(θ̂n)− g(θ)]→ ChiSq(1) in distribution, n→∞.

(a) Prove the theorem and identify the particular cn and h(θ?). [Hint: Quadratic
Taylor approximation of g(θ̂n) at θ and continuous mapping theorem.]

(b) Give an example of an iid model, an estimator θ̂n, a true θ, and a function g such
that the chi-square approximation above is exact. [Hint: N(0, 1)2 = ChiSq(1).]

10. Let θ̂n be a sequence of estimators such that
√
n(θ̂n − θ)→ N(0, v(θ)) in distribution,

where v(θ) > 0 is the (asymptotic) variance function.

(a) A variance stabilizing transformation is a function g such that the asymptotic
variance of g(θ̂n) does not depend on θ. Use the delta theorem to find the condition
required for a function g to be variance stabilizing.

(b) Let λ be a fixed real number, and suppose that v(θ) = θ2(1−λ), θ > 0. Use the
sufficient condition you derived in Part (a) to show that

g(θ) =

{
(θλ − 1)/λ if λ 6= 0,

log θ if λ = 0,

is variance stabilizing. (This is the Box–Cox transformation.)

(c) Suppose that X1, . . . , Xn are iid with density pθ(x) = (1/θ)e−x/θ, x > 0, θ > 0.
The maximum likelihood estimator θ̂n is asymptotically normal, with variance
function v(θ) of the form in Part (b). Find the corresponding λ and g.

(d) In the context of Part (c), use the asymptotic distribution of g(θ̂n) to find an
asymptotically correct 100(1− α)% confidence interval for θ.

11. Consider an exponential family density pθ(x) = h(x)eη(θ)T (x)−A(θ). Under what condi-
tions can you find a function M(x) satisfying (3.3)?

12. Show that (3.4) implies existence of a function M(x) satisfying (3.3).

13. Let X1, . . . , Xn be iid exponential observations with unknown mean θ.

(a) Find the exact size-α likelihood ratio test of H0 : θ = θ0 versus H1 : θ 6= θ0.

(b) Find the approximate size-α test based on Wilks’s theorem.

(c) Plot the power functions of the two tests above and compare.
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14. Non-uniqueness of the MLE. Let X1, . . . , Xn be iid with density pθ(x) = 2e−|x−θ|,
x ∈ R, θ ∈ R. This is called a shifted Laplace (or double-exponential) distribution.

(a) Argue that the MLE of θ is not unique.

(b) To verify this, take θ = 0, simulate n = 10 observations from the Laplace distri-
bution, plot the likelihood, and identify the flat peak. [Hint: To simulate from
the standard Laplace distribution, simulate a standard exponential and then flip
a fair coin to decide if the sign should be positive or negative.]

15. Non-existence of MLE. Consider a mixture of two normal distributions, i.e.,

πN(µ1, σ
2
1) + (1− π)N(µ2, σ

2
2).

Suppose X1, . . . , Xn are iid from the above mixture. Argue that the MLE of θ =
(µ1, µ2, σ1, σ2, π) does not exist.6 [Hint: What happens to the likelihood, as a function
of σ1 if µ1 = X1, say?]

16. Let X1, . . . , Xn be iid Unif(0, θ).

(a) Show that the MLE is θ̂ = maxXi.

(b) Explain why the MLE cannot be asymptotically normal and why this is not a
counter-example to the theory presented in Section 3.3.

(c) Show that n(θ − θ̂) converges is distribution to Exp(θ).

17. Refer to Example 3.1, the Neyman–Scott problem.

(a) Derive the stated MLE σ̂2 for σ2.

(b) Show that σ̂2 is inconsistent.

18. Suppose X1, . . . , Xn are independent, with Xi ∼ N(θi, 1), i = 1, . . . , n. In vector
notation, we may write X ∼ Nn(θ, In), where X = (X1, . . . , Xn)> is the observable
and θ = (θ1, . . . , θn)> is the unknown mean vector.

(a) Use Exercise 3 to find the MLE of ψ = ‖θ‖2, the squared length of θ.

(b) Show that the MLE of ψ is biased.

(c) Does the bias above disappear as n→∞? Explain what’s going on.

19. For iid data, the asymptotic variance of the MLE θ̂ is [nI(θ)]−1 and, for constructing
confidence intervals, one needs an estimate of nI(θ). A reasonable choice is nI(θ̂), but

6Mixture models can be very difficult creatures, and often serve as good counterexamples for properties,
like existence of MLEs, that hold for “regular” problems. But despite difficulties, mixture models are actually
very useful in both theory and applications.
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Table 3.1: The data of Rubin (1981) on SAT coaching experiments.

School (i) Treatment Effect (Xi) Standard Error (σi)

1 28.39 14.9
2 7.94 10.2
3 −2.75 16.3
4 6.82 11.0
5 −0.64 9.4
6 0.63 11.4
7 18.01 10.4
8 12.16 17.6

there is something else that is often easier to get and works at least as good. For scalar
θ and log-likelihood `(θ), define the observed Fisher information J(θ) as

J(θ) = −∂
2`(θ)

∂θ2
.

There is a multi-parameter version as well, where J(θ) is the matrix of negative second
partial derivatives of the log-likelihood. The claim is that J(θ̂) is a good estimate of
nI(θ) compared to nI(θ̂). Suppose we have samples (X1, Y1), . . . , (Xn, Yn) iid from a
bivariate distribution with density pθ(x, y) = e−x/θ−θy, x, y > 0, θ > 0. In this case, θ̂,
nI(θ̂), and J(θ̂) can be found analytically. Use simulations to compare the sampling
distributions of [nI(θ̂)]1/2(θ̂ − θ) and [J(θ̂)]1/2(θ̂ − θ).

20. Suppose X1, . . . , Xn are independent, with Xi ∼ N(λ, σ2
i + ψ), where σ1, . . . , σn are

known, but θ = (ψ, λ) is unknown. Here ψ ≥ 0 is the parameter of interest and λ is a
nuisance parameter. For the data in Table 3.1, taken from the SAT coaching study in
Rubin (1981), find and plot the profile likelihood function for ψ.

21. Let X1, . . . , Xn
iid∼ N(µ, σ2) and consider testing H0 : µ = µ0 versus H1 : µ 6= µ0.

(a) Show that the likelihood ratio statistic W = W (µ0) can be expressed as W =
n log{1 + T 2/(n− 1)}, where T = n1/2(X̄ − µ0)/S is the usual t-statistic.

(b) Show that E(W ) = 1 + bn−1 + O(n−2), where b = 3/2. [Hint: Find (e.g., on
wikipedia) formulas for even moments of Student-t random variables.]

(c) Define Wb = W/(1 + bn−1); this is called the Bartlett corrected likelihood ratio
statistic. Compare, using simulations, the accuracy of the ChiSq(1) approxima-
tions for W and Wb for relatively small values of n; you may take µ = µ0 = 0 and
σ = 1.

22. One-step estimation is a method by which a consistent estimator is updated, via a
single iteration of Newton’s method in Section 3.7, to get an asymptotically efficient
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estimator. That is, let θ̂0 be a consistent estimator of θ, and define the one-step version:
θ̂1 = θ̂0 − D(θ̂0)−1∇`(θ̂0), where D(θ) is the matrix of second derivatives of `(θ). It
can be shown that θ̂1 is asymptotically efficient, like the MLE. As a simple example
of this, suppose X1, . . . , Xn are iid N(θ, 1). Take θ̂0 to be the sample median, which is
consistent but not asymptotically efficient. Find the one-step version θ̂1 and argue for
its efficiency.

23. In the setup of Exercise 2, consider testing H0 : θ = 1 versus H1 : θ 6= 1. Use Monte
Carlo to find the cutoff kα for the size-α likelihood ratio test. Take n = 10, α = 0.05,
and produce a Monte Carlo sample of size M = 5000. Compare your cutoff kα with
that based on the large-sample chi-square approximation.

24. Consider a general location-scale model, i.e., where X has density σ−1p(σ−1(x − µ)),
where µ ∈ R, σ ∈ R+, and p is a density on R. Given data X1, . . . , Xn iid from this
model, suppose the goal is to test H0 : σ = σ0 versus H1 : σ 6= σ0. Show/argue that
the (exact, not asymptotic) null distribution of the likelihood ratio statistic does not
depend on µ.

25. The mathematical formulation of Birnbaum’s theorem on the likelihood principle and
Evans’s clarification thereof involves equivalence relations. An equivalence relation ∼
on X is a binary relation that satisfies:

Reflexivity: x ∼ x for all x ∈ X.

Symmetry: If x ∼ y, then y ∼ x.

Transitivity: If x ∼ y and y ∼ z, then x ∼ z.

(a) One of the most common examples of equivalence relations in statistics is equality
of µ-measurable functions up to sets of µ-measure zero. That is, write f ∼ g if
f = g µ-almost everywhere. Prove that ∼ is an equivalence relation on the set of
all µ-measurable functions.

(b) Another example of equivalence relations appears in group theory. Consider a
group G of transformations g : X → X. Write x ∼ y if there exists g ∈ G such
that y = gx. Prove that ∼ is an equivalence relation on X.

(c) Let X be a set equipped with an equivalence relation ∼. Given x ∈ X, define the
equivalence class Ex = {y ∈ X : y ∼ x}, the set of all things equivalent to x. For
two x, y in show that Ex and Ey are either disjoint or exactly equal. That is, ∼
induces a partition {Ex : x ∈ X} of X into equivalence classes.
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Chapter 4

Bayesian Inference

4.1 Introduction

The classical frequentist approach to statistics is one that Stat 511 students are familiar with.
That is, for a given procedure—estimator, test, confidence interval, etc—the frequentist is
interested in the performance of that procedure in terms of repeated sampling. For example,
the quality of a test is measured by its power function, which is nothing but the limiting
proportion of times the test rejects the null hypothesis when sampling from a distribution
contained in the alternative hypothesis. This is fine, but it’s important to understand the
limitations of such considerations. In particular, the power function for a test provides no
comfort when a fixed set of data is available and you want to measure uncertainty about the
truthfulness of the null hypothesis. So, there is some reason to look for a different approach,
one that might allow you to report a sort of probability that the null hypothesis is true, given
the observed data. A Bayesian approach makes this possible, but we need to look at the
problem from a very different perspective.

By the time students reach Stat 511, they surely know something about the Bayesian
approach. For example, I’m sure everyone knows that, in the Bayesian context, the unknown
parameter is treated as a random variable, with a prior distribution, and Bayes’s theorem is
used to produce a posterior distribution. But it is natural to ask why the parameter, which
is some fixed but unknown quantity, should be treated as random. For example, it seems
foolish to assume that the mean income in Cook County is selected at random, right? This
is a subtle but important point. The justification for the Bayesian approach is based on the
following sort of “axiom:”

Uncertainties can only be described with probability.

This means that, for anything we don’t know—e.g., the parameter θ in a statistical problem—
the only logical way to describe our beliefs is with probability. This is what sets the Bayesian
approach apart from the classical approach. In the latter, θ is assumed fixed but unknown.
But what does it mean for θ to be “unknown?” Do we really know nothing about it, do we
not know how to summarize what knowledge we have, or are we uneasy using this knowledge?
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It seems unrealistic that we actually know nothing about θ. For example, if θ is the mean
income in Cook county, we know that θ is positive and less than $1 billion; we’d also believe
that θ ∈ ($40K, $60K) is more likely that θ ∈ ($200K, $220K). If, for each event concerning
θ, we assign some numerical score that represents our uncertainty, and those scores satisfy
certain consistency properties,1 then we have effectively assigned a probability distribution
on the parameter space. This is the thing called the prior distribution.

What is particular interesting about this argument is that there is no notion of repeated
sampling, etc, that we are used to seeing in a basic probability course. That is, this prior
distribution is simply a description of one’s own uncertainty, and need not have anything
to do with chance, per se. This is not as foreign as it might originally seem. For example,
suppose you and several friends have been invited to a party next saturday. When your friend
asks if you will attend, you might respond with something like “there’s a 50–50 chance that
I’ll go.” Although not on the scale of probabilities, this has such an interpretation. The
same thing goes for weather reports, e.g., “there’s a 30% chance of rain tomorrow.” Note
that these events are different from the kind of experiments that can be repeated over and
over, like rolling a die, and yet probabilities can be defined. Fortunately, these subjective
probabilities can be manipulated just like ordinary frequency-based probability.

So, in the statistics problem, we are uncertain about the parameter θ. We then describe
our uncertainty with (subjective) probabilities. That is, we assign probabilities to events
like {θ > 7}, {−0.33 ≤ θ < 0.98}, etc, which describes the prior distribution Π for θ. This
is effectively the same as assuming that the unknown parameter itself is a random variable
with a specified distribution. It is a common misconception to say that Bayesian analysis
assumes the parameter is a random variable. On the contrary, a Bayesian starts by assigning
probabilities to all things which are uncertain; that this happens to be equivalent to taking
θ to be a random variable is just a consequence.

Having some basic understanding of the logic behind the Bayesian approach, in the rest
of this chapter we will investigate some of the specifics of Bayesian analysis. Here we will not
get into any philosophical discussions about Bayesian versus non-Bayesian approaches, but
there have been such discussions for many years.2 Here I will describe first, the Bayes model
and how the prior is updated to a posterior distribution via Bayes theorem. Then we will
discuss how this posterior distribution is used for inference and give some examples. Next
I will attempt to describe several motivations for a Bayesian analysis. If one elects to use
a Bayesian analysis, then perhaps the most important question is how to choose the prior.
There are a number of now fairly standard methods, which I will briefly describe.

1The consistency properties are quite reasonable, e.g., if one event is a subset of another, then the former
cannot have a greater score than the latter, but constructing such a system of scoring from scratch is not so
easy; usually it’s done by assuming a particular probability model.

2Nowadays, most people understand that both Bayes and non-Bayes approaches have their advantages
and disadvantages, i.e., neither is clearly better than the other. So the discussion is more about making the
best use of the tools available in a given problem.
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4.2 Bayesian analysis

4.2.1 Basic setup of a Bayesian inference problem

Just as before, start with a sample (measurable) space (X,A) which is equipped with a
family of probability distributions P = {Pθ : θ ∈ Θ}. Suppose also that there exists a
σ-finite measure µ such that Pθ � µ for all θ, so that we have Radon–Nikodym derivatives
(densities) pθ(x) = (dPθ/dµ)(x) with respect to µ. The difference is that some probability
distribution Π on Θ is also available from somewhere. We call Π the prior distribution. To
help keep track of what’s random and what’s fixed, I will use the notation Θ for a random
variable distributed according to Π, and θ for the observed values. There shouldn’t be any
confusion in using the notation Θ for both the parameter space and the random variable
version of the parameter.

The Bayesian setup assumes the following hierarchical model:

Θ ∼ Π and X | (Θ = θ) ∼ pθ(x). (4.1)

The goal is to take the information from the observedX = x and update the prior information
about the “parameter” Θ. This is accomplished quite generally via Bayes’ theorem. But
before seeing the technical stuff, it helps to understand the reasoning behind this particular
choice. If uncertainty about θ is described by the (subjective) probability distribution Π,
then the uncertainty about θ after seeing data x should be described by the conditional
distribution Πx, the posterior distribution of Θ given X = x. We’ll discuss how this posterior
distribution is used for inference shortly.

4.2.2 Bayes’s theorem

We are all familiar with Bayes’s theorem from an introductory probability course. In simple
presentations, the theorem provides a formula for the probability P(A | B) in terms of the
opposite conditional probability P(B | A) and the marginal probabilities P(A) and P(B).
Here we give a very general measure-theoretic version of this result.

Theorem 4.1 (Bayes’s Theorem). Under the setup described above, let Πx denote the
conditional distribution of Θ given X = x. Then Πx � Π for PΠ-almost all x, where
PΠ =

∫
Pθ dΠ(θ) is the marginal distribution of X from model (4.1). Also, the Radon–

Nikodym derivative of Πx with respect to Π is

dΠx

dΠ
(θ) =

pθ(x)

pΠ(x)
,

for those x such that the marginal density pΠ(x) = (dPΠ/dµ)(x) is neither 0 nor ∞. Since
the set of all x such that pΠ(x) ∈ {0,∞} is a PΠ-null set, the Radon–Nikodym derivative can
be defined arbitrarily for such x.
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Proof. This proof comes from Schervish (1995, p. 16–17). Define

C0 = {x : pΠ(x) = 0} and C∞ = {x : pΠ(x) =∞}.

Since PΠ(A) =
∫
A
pΠ(x) dµ(x), it follows that

PΠ(C0) =

∫
C0

pΠ(x) dµ(x) = 0

PΠ(C∞) =

∫
C∞

pΠ(x) dµ(x) =

∫
C∞

∞ dµ(x).

The last integral will equal∞ if µ(C∞) > 0; but since the last quantity cannot equal∞ (it’s
a probability), it must be that µ(C∞) = 0 and, hence, PΠ(C∞) = 0. This proves the last
statement in the theorem about the denominator.

To prove the main claim, recall that the posterior Πx must satisfy

P(Θ ∈ B, X ∈ A) =

∫
A

Πx(B) dPΠ(x), all A, B measurable. (4.2)

Joint distributions are symmetric (i.e., “conditional times marginal” can go in both direc-
tions), so the left-hand side (LHS) of (4.2) can also be written as

LHS =

∫
B

∫
A

pθ(x) dµ(x) dΠ(θ) =

∫
A

[∫
B

pθ(x) dΠ(θ)
]
dµ(x),

where the second equality follows from Fubini’s theorem. Since we are forcing the left- and
right-hand sides to be equal, i.e., LHS = RHS, we must have that

RHS =

∫
A

[∫
B

pθ(x) dΠ(θ)
]
dµ(x).

But, RHS can also be written as

RHS =

∫
A

[
Πx(B)

∫
Θ

pθ(x) dΠ(θ)
]
dµ(x).

Since both expressions for RHS must be equal for all A and B, we must have

Πx(B)

∫
Θ

pθ(x) dΠ(θ) =

∫
B

pθ(x) dΠ(θ), for PΠ-almost all x.

Solving for Πx(B), we see that Πx � Π and the formula for the posterior density (Radon–
Nikodym derivative) follows too.

In the case where the prior Π has a density with respect to some measure ν, then we get
the more familiar form of the Bayes posterior update.
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Corollary 4.1. Suppose that Π� ν with Radon–Nikodym derivative π. Then the posterior
distribution Πx is also absolutely continuous with respect to ν, and its density, call it πx, is
given by

πx(θ) =
pθ(x)π(θ)

pΠ(x)
∝ pθ(x)π(θ).

Proof. Follows from the basic chain-rule property of the Radon–Nikodym derivatives; see
Exercise 1.

The take-away message is that given prior distribution Π and likelihood pθ(x) one can
construct a posterior distribution Πx and, in the case that Π has a density, the posterior also
has a density and it’s proportional to the prior density times the likelihood.

4.2.3 Inference

The posterior distribution is all that’s needed for inference on θ, that is, once the posterior is
available, we can use it to calculate all kinds of things. For example, a typical point estimate
for θ is the posterior mean or mode. The posterior mean is defined as

θ̂mean = E(Θ | X = x) =

∫
θ dΠx(θ),

and, in the case where Πx has a density πx, the posterior mode3 is defined as

θ̂mode = arg max
θ
πx(θ),

which is similar to the maximum likelihood estimate. There are more formal notions of
Bayes estimators (or, more generally, Bayes rules) which we’ll encounter a bit later.

For set estimation, a Bayesian uses what’s called a credible set. A 100(1− α)% credible
set is a set C ⊂ Θ such that Πx(C) = 1− α. There are a variety of ways to construct such
a set. For a real-valued parameter θ, such a set can be found as

C = {θ : θ is between the α/2 and 1− α/2 quantiles of Πx}.

Alternatively, and more generally, if the posterior Πx has a density πx, then a highest posterior
density region can be used. That is,

C = {θ : πx(θ) ≥ cα},

where cα is chosen such that Πx(C) = 1 − α. The key point here is that, unlike a frequen-
tist confidence interval, a credible interval does not necessarily have the property that the
coverage probability of C equals 1− α.

3Also called the MAP estimator, for “maximum a posteriori.”
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Hypothesis testing is similar. A hypothesis about θ defines a subset H of the parame-
ter space, and its prior probability is Π(H). According to Bayes’s theorem, the posterior
probability of H is

Πx(H) =

∫
H
pθ(x) dΠ(θ)

pΠ(x)
.

Then the Bayesian will “reject” H if this posterior probability is too small. One thing to
notice is that, in this setup, if the prior probability of H is zero, then so is the posterior
probability. Therefore, a Bayesian must do some different things when Π(H) = 0. These
different things are related to Bayes factors and model selection, but we will not discuss this
anymore here.

4.2.4 Marginalization

In our discussion of likelihood, we considered the problem where θ was a vector but only a
feature or a component of θ is of interest. For concreteness, suppose that θ = (ψ, λ), where
both ψ and λ are unknown but only ψ is of interest. In that case, some modification to
the usual likelihood function was required, e.g., a profile likelihood obtained by maximizing
the likelihood over λ, pointwise in ψ. Though this modification is conceptually simple, the
profile likelihood has some shortcomings, e.g., it does not have any built-in adjustment for
the uncertainty in λ.

In the Bayesian setting, marginalization is straightforward. From probability theory, you
know that, given a joint density p(x, y) for a random vector (X, Y ), the marginal density
for X can be obtained by integration, i.e., p(x) =

∫
p(x, y) dy. In our present context, the

posterior distribution for Θ = (Ψ,Λ) is a joint density, and the marginal posterior for Ψ can
be obtained by integrating the joint posterior density πx(ψ, λ) over λ: πx(ψ) =

∫
πx(ψ, λ) dλ.

This approach is arguably simpler than in the non-Bayesian setting where some modification
to the likelihood must be invented and then implemented. For the Bayesian, the rules of
probability say how to handle marginalization.

In many practical situations, it is not possible to do the required integration by hand,
so some kind of numerical method is needed. In some cases, numerical integration (e.g.,
via Riemann sums, trapezoid/Simpson’s rule, etc, or via the function integrate in R) can
be used for this purpose. Generally, the joint posterior itself is intractable so some kind of
simulations are needed for posterior inference. In this case, marginalization is particularly
simple. Suppose a sample {(Ψ(m),Λ(m)), m = 1, . . . ,M} from the posterior distribution
πx(ψ, λ) is available. Then a sample from the marginal posterior for Ψ is obtained by
ignoring the Λ portion of the posterior sample, i.e., construct a credible interval for ψ based
on Ψ(1), . . . ,Ψ(M).

An extreme version of the marginalization is that of prediction, i.e., where the quan-
tity of interest is Xn+1, the next observation. For the prediction problem, the Bayesian
will integrate the conditional density pθ(x) with respect to the posterior distribution of Θ,
given (X1, . . . , Xn), to get the so-called predictive distribution of Xn+1, given (X1, . . . , Xn).
Exercises 6 and 7 invite you to explore the prediction problem further.
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4.3 Some examples

Example 4.1. Suppose X1, . . . , Xn are iid N(θ, σ2) where σ is known. In addition, assume
that θ has a N(ω, τ 2) prior distribution for fixed ω and τ . In particular, prior beliefs suggest
that θ would be located somewhere near ω but being above or below ω is equally likely.
Since X̄ is a sufficient statistic, the posterior will depend on (X1, . . . , Xn) only through the
mean X̄ (why?). In this case, the posterior θ | (X̄ = x̄) is normal, with

mean =
nτ 2

σ2 + nτ 2
x̄+

σ2

σ2 + nτ 2
ω and var =

σ2τ 2

σ2 + nτ 2
.

Since the posterior has a closed-form expression, finding posterior moments, credible inter-
vals, or testing hypotheses is easy. For example, a point estimate for θ is θ̂ = mean, where
mean is as displayed above.

Example 4.2. Suppose X1, . . . , Xn is an independent sample from a Pois(θ) population.
Consider a Gamma(a, b) prior distribution for θ. Multiplying prior and likelihood gives

pθ(x)π(θ) = const× e−nθθnx̄θa−1e−θ/b = const× θnx̄+a−1e−(n+1/b)θ.

It is clear that, after normalization, the posterior density must be that of a Gamma(nx̄ +
a, [n + 1/b]−1) distribution. Again, the fact that the posterior has a closed-form expression
makes things easy. For example, suppose a = 5 and b = 2; furthermore, suppose in a
sample os size n = 10 the observed mean is x̄ = 7. Then the posterior distribution for θ is
Gamma(75, 0.095) and a 95% credible interval for θ is

qgamma(c(0.025, 0.975), shape=75, scale=0.095) = (5.60, 8.23).

An important observation is that, in the two previous examples, the posterior distribution
is within the same family as the prior. These are special cases of a more general concept
of conjugate priors. Specifically, a class of distributions makes up a conjugate class if, for
any prior Π in the class, the posterior distribution Πx is also a member of the class. In
all such problems, analysis of the posterior is straightforward—just like in the previous two
examples. But one may question how realistic is a conjugate prior when its only justification
is that it allows for simple calculations.

Next is an example with a non-standard model and a non-conjugate prior. This one illus-
trates a numerical method—Markov chain Monte Carlo, or MCMC—often used by Bayesians
to compute the posterior when there is no nice closed-form expression.

Example 4.3. Suppose X1, . . . , Xn are iid samples with density

pθ(x) =
1− cos(x− θ)

2π
, 0 ≤ x ≤ 2π,

where θ is an unknown parameter in [−π, π]. We take a Unif(−π, π) prior distribution for
Θ. This time, the posterior does not have a nice form, though its features can be found
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via numerical integration. In this case, we use Markov chain Monte Carlo, or MCMC, to
simulate from the posterior and estimate various quantities. We shall employ the Metropolis–
Hastings algorithm which uses a uniform random walk proposal distribution, with window
width a = 0.5; R code is given in Figure 4.1. A histogram of the 10000 samples from Πx are
shown in Figure 4.2(a), along with a plot of the true posterior density, and it is clear that
the sampling procedure is doing the right thing; panel (b) shows a trace plot to help assess
whether the Markov chain has “converged.”

Example 4.4. Let X1, . . . , Xn be iid N(µ, σ2), where both µ and σ2 are unknown. As a
prior, consider a “distribution” with density π(µ, σ2) ∝ 1/σ2. This kind of prior is called
improper because the integral over (µ, σ2) is not finite. The meaningfulness of such a prior is
questionable,4 but one can still formally apply Bayes theorem to get a posterior distribution.
While this might seem strange, the use of improper priors is quite standard; see Section 4.5.4.
Here the goal is simply to work out the marginal posterior distribution for µ.

First, the normal likelihood can be written as

L(µ, σ2) = (1/σ2)n/2e−D/σ
2

,

where D = 1
2
{(n− 1)s2 + n(µ− x̄)2}, where s2 = 1

n−1

∑n
i=1(xi − x̄)2. With prior π(µ, σ2) ∝

1/σ2, the posterior density satisfies

πx(µ, σ
2) ∝ (1/σ2)n/2+1e−D/σ

2

.

The right-hand side above is proportional to the density of a known distribution, namely,
the normal inverse gamma distribution,5 but this is not particularly important.

For the marginal posterior distribution of µ, we need to integrate out σ2 from the posterior
πx(µ, σ

2). The key here is that the right-hand side in the above display is, as a function σ2,
proportional to an inverse gamma density which has form

ba

Γ(a)

(1

x

)a+1

e−b/x.

Therefore, if we integrate over σ2 in the above display, then we get∫ ∞
0

(1/σ2)n/2+1e−D/σ
2

dσ2 =
Γ(n/2)

Dn/2
,

and the marginal posterior density must satisfy

πx(µ) ∝ Γ(n/2)

Dn/2
∝
( 1

(n− 1)s2 + n(µ− x̄)2

)n/2
.

The expression on the right-hand side above, as a function of µ, is proportional to a location-
scale transformation of Student-t density with n− 1 degrees of freedom; that is, given x, the
distribution of n1/2(µ− x̄)/s is t(n− 1).

4Probably the best way to interpret an improper prior is as a sort of weight attached to each parameter
point, in this case, (µ, σ2). For the prior in this example, those pairs (µ, σ2) with small σ2 are given more
prior weight.

5http://en.wikipedia.org/wiki/Normal-inverse-gamma_distribution
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mh <- function(x0, f, dprop, rprop, N, B) {

x <- matrix(NA, N + B, length(x0))

fx <- rep(NA, N + B)

x[1,] <- x0

fx[1] <- f(x0)

ct <- 0

for(i in 2:(N + B)) {

u <- rprop(x[i-1,])

fu <- f(u)

r <- log(fu) + log(dprop(x[i-1,], u)) - log(fx[i-1]) - log(dprop(u, x[i-1,]))

R <- min(exp(r), 1)

if(runif(1) <= R) {

ct <- ct + 1

x[i,] <- u

fx[i] <- fu

} else {

x[i,] <- x[i-1,]

fx[i] <- fx[i-1]

}

}

out <- list(x=x[-(1:B),], fx=fx[-(1:B)], rate=ct / (N + B))

return(out)

}

X <- c(3.91, 4.85, 2.28, 4.06, 3.70, 4.04, 5.46, 3.53, 2.28, 1.96, 2.53,

3.88, 2.22, 3.47, 4.82, 2.46, 2.99, 2.54, 0.52, 2.50)

lik <- function(theta) {

o <- drop(exp(apply(log(1 - cos(outer(X, theta, "-"))), 2, sum)))

ind <- (theta <= pi) & (theta >= -pi)

o <- o * ind

return(o)

}

a <- 0.5

dprop <- function(theta, theta0) dunif(theta, theta0 - a, theta0 + a)

rprop <- function(theta0) runif(1, theta0 - a, theta0 + a)

den <- integrate(lik, -pi, pi)$value

dpost <- function(theta) lik(theta) / den

x <- seq(-pi, pi, len=150); dpost.x <- dpost(x)

ylim <- c(0, 1.05 * max(dpost.x))

N <- 10000

B <- 5000

theta.mcmc <- mh(runif(1, -pi, pi), lik, dprop, rprop, N, B)

hist(theta.mcmc$x, freq=FALSE, col="gray", border="white", ylim=ylim, xlab=expression(theta), main="")

lines(x, dpost.x)

plot(theta.mcmc$x, type="l", col="gray", xlab="Iteration", ylab=expression(theta))

lines(1:N, cumsum(theta.mcmc$x) / (1:N))

print(quantile(theta.mcmc$x, c(0.05, 0.95)))

Figure 4.1: R codes for the Metropolis–Hastings algorithm in Example 4.3.
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Figure 4.2: Panel (a): Histogram of the Monte Carlo sample from the posterior Πx in
Example 4.3, with the true posterior density overlaid; Panel (b): trace plot of the Monte
Carlo sample, with running mean, suggesting that the Markov chain “mixed well.”

Last, it is also interesting to consider the benefits of a Bayesian approach based on the
classical criteria. Roughly speaking, if the prior is “reasonable,” then a Bayesian procedure
that uses this information will generally beat a non-Bayesian procedure that ignores it. This
is essentially a decision theory problem, but below is one simple illustration of the main idea.

Example 4.5. Suppose ω = 0, τ = 1, and σ = 1. In this case, the posterior mean of
θ is θ̂ = nX̄/(n + 1). Let’s see how this compares to the usual estimate X̄, the MLE. A
criterion by which these can be compared is the mean square error mse(θ; θ̂) := Eθ(θ̂ − θ)2

as a function of the true θ. It is easy to check that

mse(θ; X̄) =
1

n
and mse(θ; θ̂) =

θ2 + n

(n+ 1)2
.

It is easy to see that if the true θ is close to zero (the prior mean), then the Bayes estimate
is better; however, if the prior is way off and the true θ is far from zero, the Bayes rule can
be beaten badly by the MLE. The take away message is that, for suitably chosen priors,
Bayes procedures generally outperform non-Bayes procedures. The catch is that the needed
prior(s) depend on the true value of the unknown parameter.

4.4 Motivations for the Bayesian approach

4.4.1 Some miscellaneous motivations

• There are sets of rationality axioms and it has been shown that if one wants to be
“rational” then one must be Bayesian. Some description of these ideas can be found
in Ghosh et al. (2006). Utility theory is discussed in Keener (2010, Chap. 7.3).
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• There is one specific kind of “rationality” axioms, called coherence, that’s relatively
easy to understand. It comes from a sort of gambling perspective. The idea is that
a reasonable summary of uncertainty should be such that one is willing to make bets
based on it. For the sake of space, I won’t get into the details here, but the idea is
that, under some basic assumptions,6 unless the uncertainties you specify satisfy the
rules of probability, i.e., Kolmogorov’s axioms,7 I have a betting strategy that will
make you a sure loser. Of course, this indicates that your system of uncertainties is
flawed in some way—or incoherent. The message here is that, in a statistical point
of view, if you’re not a Bayesian, and you summarize your uncertainties about θ by
something other than a genuine probability, then there’s something wrong with your
uncertainty assessments. Thus, only the Bayesian approach is coherent. Chapter 1 in
Kadane (2011) gives a lovely description of this idea.

• In a Bayesian approach, it is easy to incorporate any known information about the
parameter into the analysis. For example, suppose it is known that the mean θ of a
normal population satisfies a ≤ θ ≤ b. Then the Bayesian approach can easily handle
this by choosing a prior supported on [a, b] reflecting this known information. The
classical (frequentist) approach cannot handle such information so gracefully.

• There are theorems in decision theory (called complete class theorems) which state
that, for a given inference problem, for any decision rule there is an (approximate)
Bayes rule which is as good or better.8 So, in other words, there is no real reason
to look outside the class of (approximate) Bayes procedures since, for any non-Bayes
procedure, there is a Bayes procedure that’s just as good.

4.4.2 Exchangeability and deFinetti’s theorem

In introductory courses we are used to seeing assumptions of “independent and indentically
distributed” data. But we also know that there are other types of dependence structures
that are often more realistic but not as easy to deal with. In this section we will discuss
the notion of exchangeable random variables, which includes iid as a special case, and a
remarkable consequence due to deFinetti and later built upon by others. This material
comes from Schervish, Chapter 1.

Definition 4.1. A finite set of random variables X1, . . . , Xn is exchangeable if all permu-
tations of (X1, . . . , Xn) have the same joint distribution. An infinite collection of random
variables is exchangeable if every finite subset is exchangeable.

6The one key assumption here is that you are equally willing to buy tickets from me or to sell similar
tickets to me. This may or may not be reasonable.

7One actually does not need Kolmogorov’s countable additivity; coherence theorems are available for
measures which are only finitely additive.

8For example, the sample mean X̄ is known to be a good estimate of a normal mean, and this corresponds
to the Bayesian posterior mean under an “improper” uniform prior on (−∞,∞), which can be viewed as a
limit of a sequence of “proper” priors.
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For example, supposeX1, . . . , X50 are exchangeable. Then allXi’s have the same marginal
distribution. Moreover, (X1, X2) and (X33, X44) have the same joint distribution, as do
(X2, X7, X5) and (X47, X21, X15). In fact, in Exercise 10 you are asked to prove that a set
X1, . . . , Xn are exchangeable if and only if all finite subsets of have the same joint distribu-
tion. It is also easy to see that iid random variables are exchangeable.9

It’s important to understand, intuitively, what exchangeability means. Exchangeability
implies nothing more than distributional symmetry. That is, if the order of the observations
is irrelevant, then the data is exchangeable. This is obviously a very weak assumption. The
assumption of iid data is quite strong and, moreover, there are some philosophical difficulties
in assuming the existence of a fixed but unknown parameter is such a context.10 It turns
out that exchangeability is almost as simple as iid, and leads to a very nice motivation for
Bayesian analysis. The next example gets us closer to the main theorem.

Example 4.6. Consider random variables X1, . . . , Xn which we model as “conditionally
iid.” That is, there is a random variable Θ such that X1, . . . , Xn are iid given the value θ of
Θ. More formally,

Θ ∼ Π and (X1, . . . , Xn) | (Θ = θ)
iid∼ pθ. (4.3)

Then (X1, . . . , Xn) are exchangeable; see Exercise 11.

This “conditionally iid” structure is exactly like what we encountered in the examples
in Section 4.3. That is, the Bayesian model implies an exchangeable model for the data
(marginally). The surprising fact is that the relationship goes the other way too—an infinite
collection of exchangeable random variables are conditionally iid (with respect to some prior
Π and density pθ). This is a version of deFinetti’s theorem for binary observables.

Theorem 4.2. A sequence Xn of binary random variables is exchangeable if and only if
there exists a random variable Θ, taking values in [0, 1], such that, given Θ = θ, the Xn’s
are iid Ber(θ). Furthermore, if the sequence is exchangeable, then the distribution of Θ is
unique and n−1

∑n
i=1Xi converges almost surely to Θ.

In other words, exchangeability implies that, for some probability measure Π on [0, 1],
the joint distribution of (X1, . . . , Xn) can be written as

P(X1 = x1, . . . , Xn = xn) =

∫
θt(x)(1− θ)n−t(x) dΠ(θ),

where t(x) =
∑n

i=1 xi. One may interpret this Π is a prior in a Bayesian sense, along with
the Bernoulli likelihood. However, Π is determined by the limit of the X sequence, which
is exactly our intuition in a coin-flipping problem: the parameter θ represents the limiting
proportion of heads in infinitely many flips. So the point is that a simple assumption of
exchangeability is enough to imply that the Bayesian/hierarchical model is in play.

9Joint distributions are products and multiplication is commutative.
10For example, in a coin flipping experiment, the parameter θ representing the probability the coin lands

on heads is usually thought of as the limiting proportion of heads in an infinite sequence of tosses. How can
such a parameter exist before the sequence of flips has been performed?
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There are more-general versions of the deFinetti theorem. While these are more mathe-
matically complicated, the intuition is the same as in Theorem 4.2. Here is one such result.

Theorem 4.3 (Hewitt–Savage). A sequence of random variables Xn in (X,A) is exchange-
able if and only if there exists a random probability measure P such that, given P = P,
X1, X2, . . . are iid with distribution P. Moreover, if the model is exchangeable, then P is
unique and determined by the limit Pn(A) := n−1

∑n
i=1 IA(Xi) → P(A) almost surely for

each A ∈ A.

Another way to view this “random probability measure” business is through a mixture.
Theorem 4.3 says that the sequence Xn is exchangeable if and only if there exists a proba-
bility measure Π on the set of all distributions on (X,A) and the marginal distribution of
(X1, . . . , Xn) is given by ∫ n∏

i=1

P(Xi ∈ Ai) dΠ(P),

a mixture of iid models. This is more general, but makes a connection to the notion of con-
ditionally iid random variables. This illustration also sheds light on the implications of this
theorem for Bayesians. Indeed, the theorem states that a simple assumption of exchange-
ability implies that there exists a hierarchical model like (4.1) which can be interpreted as a
prior and a likelihood to be updated via Bayes theorem. The one caveat, however, regarding
the interpretation of deFinetti’s theorem in a Bayesian context is that exchangeability does
not say what the prior and likelihood should be, only that there is such a pair.

An alternative view of de Finetti’s theorem as a motivation for a Bayesian approach,
communicated to me by Stephen Walker, and focusing on prediction, is as follows. Let
X1, X2, . . . be a sequence of independent observables, and suppose the goal is to predict the
next one based on what has already been observed. The analyst starts the process with two
things:

• A (guess of) the predictive distribution for X1, and

• a rule for updating the guess based on an observation.

It is important to mention that, at least not yet, the updating rule need not be the Bayesian
predictive updating discussed briefly in Section 4.2.4. When X1 = x1 is observed, the analyst
updates the initial guess based on the aforementioned rule to get a predictive distribution for
X2. Now X2 = x2 is observed and a predictive distribution for X3 is obtained. The process
can go on indefinitely but we will stop the process here and think about the structure. In
particular, does the predictive distribution of X3 depend on the order of the observations
(x1, x2)? In other words, would the predictive distribution of X3 be the same had we observed
(x2, x1) instead? This question can be answered only by knowing the analyst’s rule for
updating. However, if it happens that the order of the previous observations does not matter,
which is quite intuitive, given that the data source is independent, then it follows from
de Finetti’s theorem that the analyst’s updating rule must be the Bayesian rule discussed in
Section 4.2.4.
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4.5 Choice of priors

We have mentioned above several reasons to adopt a Bayesian approach. However, none of
these justifications says what prior to choose for a given problem—at best, the results say
simply that there is a “reasonable” prior. What can be done if one wants to be a Bayesian
but does not know what prior to choose? Here’s a few ideas.

4.5.1 Prior elicitation

Prior elicitation means having discussions with experts to encode their prior knowledge
about the problem at hand into a probability distribution. This is a challenging endeavor
for a number of reasons. First, this can be very time consuming. Second, even experts
(who often will have little to no knowledge of probability and statistics) can have a hard
time communicating their beliefs about the unknown parameter in a precise (and consistent)
enough way that a statistician can turn this into a prior distribution. So, suffice it to say,
this elicitation step is difficult to carry out and is rarely done to the fullest extent.

4.5.2 Convenient priors

As we saw in Section 4.3 there are some priors which are particularly convenient for the
model in question. Conjugate priors are one set of convenient priors. To expand on the
set of conjugate priors, one can consider mixtures of conjugate priors. The trouble is that
it can be difficult to trust the results of a Bayesian analysis that’s based on an unrealistic
assumption to start with. For years, this was the only kind of Bayesian analysis that could be
done since, otherwise, the computations were too difficult. Nowadays, with fast computers
and advanced algorithms, there is really no need to limit oneself to a set of “convenient”
priors. So conjugate priors, etc, are somewhat of a thing of the past.11

4.5.3 Many candidate priors and robust Bayes

An alternative to choosing a convenient prior is to consider a class of reasonable and relatively
convenient priors, to look at each candidate posterior individually, and to decide if the results
are sensitive to the choice of prior. Here is a nice example taken from Ghosh et al. (2006,
Sec. 3.6).

Example 4.7. Suppose X follows a Pois(θ) distribution. Suppose that it is believed that
the prior for θ is continuous with 50th and 75th percentiles 2 and 4, respectively. If these
are the only prior inputs, then the following are three candidates for Π:

1. Π1: Θ ∼ Exp(a) with a = log(2)/2.

2. Π2: log Θ ∼ N(log(2), (log(2)/0.67)2).

3. Π3: log Θ ∼ Cauchy(log 2, log 2).

11They do occasionally appear in higher levels of hierarchical priors...
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x 0 1 2 3 4 5 10 15 20 50
Π1 0.75 1.49 2.23 2.97 3.71 4.46 8.17 11.88 15.60 37.87
Π2 0.95 1.48 2.11 2.81 3.56 4.35 8.66 13.24 17.95 47.02
Π3 0.76 1.56 2.09 2.63 3.25 3.98 8.87 14.07 19.18 49.40

Table 4.1: Posterior means E(Θ | x) for various priors and x’s.

Under these choices of prior, the posterior mean can be calculated. Table 4.1 lists these
values for several different x’s. Here we see that when x is relatively small (i.e., x ≤ 10)
the choice of prior doesn’t matter much. However, when x is somewhat large, the posterior
means seem to vary a lot.

There are other related approaches which define a large class Γ of priors which are
somehow reasonable and attempt to derive upper and lower bounds on certain posterior
quantities of interest. We shall look at one such result that bounds the posterior mean ψ(θ)
over a class of symmetric unimodal priors. See Ghosh et al. (2006, Theorem 3.6) for details.

Theorem 4.4. Suppose data X has a density pθ, θ ∈ R, and consider a class Γ of symmetric
unimodal priors about θ0, i.e.,

Γ = {π : π is symmetric and unimodal about θ0}.

For a fixed real-valued function ψ, we have the bounds

sup
π∈Γ

Eπ(ψ(Θ) | x) = sup
r>0

∫ θ0+r

θ0−r ψ(θ)pθ(x) dθ∫ θ0+r

θ0−r pθ(x) dθ

inf
π∈Γ

Eπ(ψ(Θ) | x) = inf
r>0

∫ θ0+r

θ0−r ψ(θ)pθ(x) dθ∫ θ0+r

θ0−r pθ(x) dθ
.

4.5.4 Objective or non-informative priors

The main idea behind objective priors is to choose a prior that has minimal impact on the
posterior—in other words, objective priors allow the data to drive the analysis. There are
basically three approaches to objective Bayes:

• Define a “uniform distribution” with respect to the geometry of the parameter space,

• Minimize a suitable measure of information in the prior, and

• Choose a prior so that the resulting posterior inferences (e.g., credible intervals) have
some desirable frequentist properties.

Surprisingly, in single-parameter problems, one prior accomplishes all three.
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Definition 4.2. The Jeffreys prior for θ has density π(θ) ∝ (det{IX(θ)})1/2, where IX(·)
denotes the Fisher information matrix.

It is interesting that the Jeffreys prior is a uniform distribution on Θ if, instead of the usual
Euclidean geometry, one looks at the geometry induced by the Riemannian metric, which
is determined by the Fisher information; for details, see Ghosh and Ramamoorthi (2003).
When θ is a location parameter, the Fisher information is constant, and the geometry on
induced by the Fisher information is exactly the usual geometry; hence, the Jeffreys’ prior
for θ is, in this case, a usual uniform distribution, though it’s usually improper. Also, it
can be shown that the Jeffreys prior minimizes the asymptotic Kullback–Leibler divergence
between prior and posterior. There are also results on how Jeffreys prior produces posterior
credible sets with approximately the nominal frequentist coverage. Ghosh et al. (2006) gives
a clear description of all of these facts.

There are other notions of objective priors (e.g., invariant priors) but one thing these guys
often have in common is that they do not integrate to one—that is, they’re improper. For
example, in a location problem, both the Jeffreys and invariant priors are Lebesgue measure
on (−∞,∞), which is not a finite measure. More generally, the (left and right) invariant
Haar priors in group transformation problems are often improper. This raises a natural
question: can probability theory in general, and Bayes theorem in particular be extended
to the improper case? There are essentially two ways to deal with this: allow probabilities
to be infinite, or remove the countable additivity assumption. In both cases, many of the
known results on probability must be either scraped or re-proved. But, there are versions
of Bayes’ theorem which hold for improper of finitely additive probabilities. These are too
technical for us though.

4.6 Bayesian large-sample theory

4.6.1 Setup

Large-sample theory in the classical setting is helpful for deriving statistical procedures
in cases where exact sampling distributions are not available. Before computing power
was so readily available, this kind of asymptotic theory was the only hope for handling
non-trivial problems. In the Bayesian setting, there is a corresponding asymptotic theory.
Besides the obvious asymptotic approximation of posterior probabilities, which can simplify
computations in several ways, an important consequence of Theorem 4.6 is that, under
minimal conditions, the choice of the prior is irrelevant when the sample size is large. Since
the choice of prior is the only real obstacle to Bayesian analysis, this is a fundamentally
important result. Other weaker Bayesian convergence results (e.g., posterior consistency,
Exercise 19) are available, and we may discuss these things later on.

Another application of Bayesian asymptotic theory is as a tool for identifying “bad priors”
that should not be used. That is, if a particular prior does not admit desirable behavior of
the posterior as n→∞, then there is something wrong with that prior. This is particularly
helpful in Bayesian nonparametric problems, where it is not so easy to cook up a “good
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prior” based on intuition or experience. In fact, the primary motivation for the surge of work
recently in Bayesian asymptotic theory is to help identify good priors to use in challenging
nonparametric problems.

4.6.2 Laplace approximation

The Laplace approximation is a wonderfully simple, yet very powerful technique for approxi-
mating certain kinds of integrals; see Ghosh et al. (2006, Sec. 4.3). The approximation itself
has nothing to do with Bayesian analysis, but the kinds of integration problems it’s useful
for are frequently encountered in Bayesian statistics. It is also the basis for the popular BIC
(Bayesian Information Criterion) in model selection.

Consider an integral of the form

integral =

∫
q(θ)enh(θ) dθ,

where both q and h are smooth functions of a p-dimensional quantity θ; that is, the integral
above is taken over Rp. Here it is assumed that n is large or increasing to ∞. Let θ̂ be
the unique maximum of h. Then the Laplace approximation provides a way to calculate the
integral without integration—only optimization!

Theorem 4.5. Let h′ and h′′ denote derivatives of h and let det(·) stand for matrix deter-
minant. Then, as n→∞,∫

q(θ)enh(θ) dθ = q(θ̂)enh(θ̂)(2π)p/2n−p/2 det{−h′′(θ̂)}−1/2{1 +O(n−1)}.

Note that h′′(θ̂) is negative definite, by assumption, so −h′′(θ̂) is positive definite.

Proof. Here is a sketch for the case of p = 1. The first observation is that, if h has a unique
maximum at θ̂ and n is very large, then the primary contribution to the integral is in a small
interval around θ̂, say θ̂ ± a. Second, since this interval is small, and q(θ) is smooth, it is
reasonable to approximate q(θ) by the constant function q(θ̂) for θ ∈ (θ̂− a, θ̂+ a). Now the
idea is to use a Taylor approximation of h(θ) up to order two around θ = θ̂:

h(θ) = h(θ̂) + h′(θ̂)(θ − θ̂) + (1/2)h′′(θ̂)(θ − θ̂)2 + error.

Since h′(θ̂) = 0 by definition of θ̂, plugging this into the exponential term in the integral
(and ignoring the error terms) gives

integral ≈
∫ θ̂+a

θ̂−a
q(θ) exp{n[h(θ̂) + (1/2)h′′(θ̂)(θ − θ̂)2]} dθ

≈
∫ θ̂+a

θ̂−a
q(θ̂) exp{nh(θ̂)− (θ − θ̂)2/2σ2} dθ

= q(θ̂)enh(θ̂)

∫ θ̂+a

θ̂−a
e−(θ−θ̂)2/2σ2

dθ,
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where σ2 = [−nh′′(θ̂)]−1, small. The last integrand looks almost like a normal density
function, except that it’s missing (2πσ2)−1/2. Multiply and divide by this quantity to get

integral ≈ q(θ̂)enh(θ̂)(2π)1/2n−1/2[−h′′(θ̂)]−1/2,

which is what we were looking for.

One simple yet interesting application of the Laplace approximation is Stirling’s approx-
imation of n! (Exercise 16). The connection to the normal distribution in the above proof
sketch is the key to the main theorem on posterior normality, discussed next.

4.6.3 Bernstein–von Mises theorem

Let θ̂n be a consistent sequence of solutions to the likelihood equation, and let I(θ) de-
note the Fisher information. The Bernstein–von Mises theorem states that the posterior
distribution of n1/2(Θ − θ̂n) is approximately normal with mean zero and variance I(θ?)−1

in Pθ?-probability as n → ∞. The conditions required for such a result are essentially the
same as those used to show posterior normality of the MLE. In particular, in addition to
conditions C1–C4 from Chapter 3, assume the following:

C5. For any δ > 0, with Pθ?-probability 1, there exists ε > 0 such that

sup
θ:|θ−θ?|>δ

n−1{`n(θ)− `n(θ?)} ≤ −ε

for all sufficiently large n, where `n = logLn; and

C6. The prior density π(θ) is continuous and positive at θ?.

Condition C6 is easy to verify and holds for any reasonable prior. Condition C5, on the other
hand, is a bit more challenging, though it does hold for most examples; see Exercise 17. We
shall focus here on the one-dimensional Θ case, though a similar result holds for d-dimensional
Θ with obvious modifications.

Theorem 4.6. Assume Conditions C1–C6, and let θ̂n be a consistent sequence of solutions
to the likelihood equation. Write Zn = n1/2(Θ− θ̂n) and let π̃n(z) be the posterior density of
Zn, given X1, . . . , Xn. Then∫

|π̃n(z)− N(z | 0, I(θ?)−1)| dz → 0 with Pθ?-probability 1.

The message here is that, under suitable conditions, if the sample size is large, then
the posterior distribution for Θ will look approximately normal with mean θ̂n and variance
[nI(θ?)]−1. Under the same conditions, I(θ?) can be replaced by n−1 times the observed
Fisher information; see the Laplace approximation argument below. The kind of convergence
being discussed here is L1-convergence of the densities, which is stronger than the usual “in
distribution” convergence. That is, by Theorem 4.6, the expectation of any function of Θ
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can be approximated by that same expectation under the limiting normal. Besides as a tool
for approximate posterior inference, such results can be useful for developing computational
methods for simulating from the exact posterior.

Details of the proof are given in Ghosh et al. (2006, Sec. 4.1.2). Here I will give a sketch of
the proof based on the Laplace approximation. The idea is to approximate the log-likelihood
by a quadratic function via Taylor approximation; recall that we did a similar thing in the
proof of asymptotic normality of the MLE. Let Z = n1/2(Θ− θ̂) be the rescaled parameter
value. Then

Πn(−a < Z < a) = Πn(θ̂ − an−1/2 < Θ < θ̂ + an−1/2) =
num

den
.

Letting

q(θ) = π(θ) and h(θ) =
1

n
logLn(θ) =

1

n

n∑
i=1

log pθ(Xi),

then the denominator above can be approximated (via Laplace) by

den =

∫
Ln(θ)π(θ) dθ =

∫
π(θ)enh(θ) dθ ≈ Ln(θ̂)π(θ̂)(2π/nv)1/2,

where v = −h′′(θ̂) = −n−1
∑n

i=1(∂2/∂θ2) log pθ(Xi)
∣∣
θ=θ̂

is the observed Fisher information.
The numerator can be similarly approximated:

num =

∫ θ̂+an−1/2

θ̂−an−1/2

Ln(θ)π(θ) dθ ≈ Ln(θ̂)π(θ̂)n−1/2

∫ a

−a
e−vu

2/2 du.

Taking the ratio of num to den gives

Πn(−a < Z < a) =
num

den
≈
Ln(θ̂)π(θ̂)n−1/2

∫ a
−a e

−vu2/2 du

Ln(θ̂)π(θ̂)(2π/nv)1/2
=

∫ a

−a

√
v√

2π
e−vu

2/2 du,

and this latter expression is the probability that a normal random variable with mean zero
and variance v−1 is between −a and a, which was what we set out to show.

It is intuitively clear from the Bernstein–von Mises theorem that the posterior mean
ought to behave just like the consistent sequence of solutions θ̂n. The following result makes
this intuition rigorous.

Theorem 4.7. In addition to Conditions C1–C6 above, assume that the prior has a finite
mean. Then the posterior mean θ̃n = E(Θ | X) satisfies

n1/2(θ̃n − θ̂n)→ 0 and n1/2(θ̃n − θ?)→ N(0, I(θ?)−1).

Proof. See Ghosh and Ramamoorthi (2003, p. 39). Exercise 18 outlines the proof of a weaker
result using the Laplace approximation.
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4.7 Concluding remarks

4.7.1 Lots more details on Bayesian inference

Here, we do not attempt to get too deep into Bayesian methodology and philosophy. A
formal Bayesian inference course would take these points more seriously. The book by Berger
(1985) provides a nice sort of “philosophical” justification of Bayesian analysis, along with
many other things. The same can be said for Ghosh et al. (2006). Bayesian modeling and
methodology is challenging. A good place to start to learn about these things in the book
by Gelman et al. (2004), which is a fairly modern look at Bayesian analysis, from an applied
point of view. There are methodological challenges beyond the philosophical justification of
the Bayesian approach. One important example is in the case of hypothesis testing when
the null is a singleton (or some other set with Lebesgue measure zero). In this case, the
simple Bayesian hypothesis testing formulation breaks down and different ideas are needed.
Bayes factors are the typical choice in such cases, see Kass and Raftery (1995) and Ghosh
et al. (2006), but, interestingly, since these are not functions of the posterior distribution,
they are not really Bayesian. Anyway, the point is just that, although the ideas presented
here are rather simple, it is an oversimplification in general. Finally, I should mention that
computation is crucial to Bayesians because really nothing admits closed-form expressions.
Various forms of Monte Carlo, which is a method for numerical integration, are used, and
the best resource to learn about these things is the book Robert and Casella (2004). In these
notes, the goal is just to introduce some of the key ideas in the Bayesian framework. Some of
these points will be useful in our coverage of statistical decision theory that’s coming up. In
any case, all statisticians should be familiar with the basics of all the main ideas in statistics;
limiting oneself to just one perspective is just that, a limitation.

4.7.2 On Bayes and the likelihood principle

Recall the brief comments on the likelihood principle at the end of Chapter 3. The likelihood
principle is a philosophical position that the final inference should depend on data/model only
through the observed likelihood function. While this is a rather extreme position, Birnbaum
(1962) showed that the likelihood principle was implied by two quite reasonable principles.
Although this theorem has recently been refuted (e.g., Evans 2013; Martin and Liu 2014;
Mayo 2014), the fact remains that Birnbaum’s result helped to convince many statisticians
to seriously consider the Bayesian approach. The quick conclusion of Birnbaum’s theorem is
that the likelihood principle is desirable (because it is equivalent to other desirable proper-
ties, according to the theorem), and since the only the classical Bayesian approach (with a
“subjective prior,” see below) satisfies the likelihood principle, the only logical approach is
a Bayesian one. This attention given to Bayesian methods following Birnbaum’s discovery
might be considered as a catalyst for the theoretical, methodological, and computational
developments in the last 20–30 years.

Here I want to make two remarks about the likelihood principle and Bayesian analysis.
First, the claim that “the Bayesian approach obeys the likelihood principle” is incomplete.
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The claim is true if the prior is based off of some subjective considerations. However, the
standard approach now is to use default “non-informative” priors, such as Jeffreys prior,
which depends on the model itself. The use of Bayesian inference with such a default prior
does not satisfy the likelihood principle.12 Second, in some cases, that the Bayesian approach
satisfies the likelihood principle might be considered a disadvantage, or at least not intu-
itively appealing. One example is in the case of finite-population sampling and inference.
Good books on Bayesian and non-Bayesian approaches to this problem are Ghosh and Mee-
den (1997) and Hedayat and Sinha (1991), respectively.13 For such problems, considerable
effort is taken to design a good sampling scheme, so that the obtained sample is “represen-
tative” in some sense. However, the fact that the Bayesian posterior depends only on the
observed likelihood function means that the sampling design is irrelevant to inference. This
is somewhat counterintuitive and maybe even controversial.14 So, in this case, some might
say that obeying the likelihood principle is a disadvantage to the Bayesian approach, though
I don’t think it’s that simple.

4.7.3 On the “Bayesian” label

Statisticians often throw around the labels “Bayesian” and “non-Bayesian.” I personally do
not like this because I think (a) it is somewhat divisive, and (b) it can give a false indication
that some problems can be solved with Bayesian analysis while others cannot. We are all
working on the same problems, and we should be happy to consider different perspectives.
For that reason, though I consider myself knowledgeable about the Bayesian perspective, I
would not classify myself as a Bayesian, per se. In fact, I could be considered very much
non-Bayesian because I have questions concerning the meaningfulness of Bayesian posterior
probabilities, etc, in general, and I have done work to develop some new framework, different
from (but not orthogonal to) existing Bayesian ideas.

4.7.4 On “objectivity”

Remember, at the very beginning of the course, I mentioned that the statistics problem is
ill-posed, and there is no “right answer.” Every approach makes assumptions to be able to

12A simple example is in the case of binary data. The likelihood functions for binomial and negative
binomial models are proportional, so inference should not depend on the choice between these two models;
a frequentist inference, e.g., with a p-value, does depend on the model, hence does not satisfy the likelihood
principle. In a classical Bayesian approach with a subjective prior, the Bayesian posterior depends on
data/model only through the observed likelihood function and, therefore, does satisfy the likelihood principle.
However, the Jeffreys prior for the two models is different, so the corresponding Bayesian analysis would not
satisfy the likelihood principle.

13I have written a short note on this subject; go to www.math.uic.edu/~rgmartin/Teaching/Stat532/

532notes_bayes.pdf
14I can see both sides of the argument. On one hand, if inference doesn’t depend on the design, then it

suggests that a good design and bad design are equivalent, which is not reasonable. On the other hand, if
we have a “good” sample, then inference shouldn’t care how exactly that sample was obtained. To me, the
issue boils down to one of defining what it means for a sample to be “representative”...

94



proceed with a theory. In the Bayesian setting, there is an assumption about existence of a
prior distribution. In the frequentist setting, there is an assumption that the observed data is
one of those typical outcomes. So, no matter what, we cannot escape without making some
kind of assumptions. Be skeptical about arguments, statistical or otherwise, that claim to be
“objective.” The next subsection briefly describes some concerns about the use of objective
priors and, more generally, the use of probability for inference.

4.7.5 On the role of probability in statistical inference

Recall that the basic motivation for the Bayesian approach is that probability is the correct
way to summarize uncertainty. Is there any justification for probability being the correct
tool? For me, the justification is clear when a meaningful prior distribution for θ is available.
Then the statistical inference problem boils down to a probability calculation. However, the
typical scientific problem is one where little/nothing is known about θ, which means there is
no meaningful prior distribution available, or one is reluctant to use what little information
is available for fear of influencing the results.

In such cases, one can introduce a default non-informative prior for θ and carry out a
Bayesian analysis. This kind of Bayesian approach has been applied successfully in many
problems, but that doesn’t mean we can’t question its use. The main concern is as follows:
the prior distribution effectively establishes the scale on which the posterior probabilities are
interpreted. This point is clear if you think of the posterior as an updated prior based on the
observed data; another extreme way to understand this is that the prior and the posterior
have the same null sets. So, at least in finite samples, the prior plays a role in scaling the
numerical values of the posterior. When the prior itself has no meaningful scale, e.g., it’s
improper, then how can one assign any meaning to the corresponding posterior probabili-
ties? One can only assign meaning to the posterior probabilities (of certain subsets of Θ)
asymptotically, which is basically what the Bernstein–von Mises theorem says. So, when the
prior is non-informative, the posterior probabilities lack any meaningful interpretation, at
least for finite samples.

Another concern with probability is the complementation rule, i.e., P(Ac) = 1 − P(A).
Such a property makes perfect sense when the goal is to predict the outcome of some ex-
periment to be performed—X will be in exactly one of A or Ac. This is the context in
which probability was first developed, that is, when the goal is to predict the outcome of
some experiment when all the information about the experiment is available. However, I
would argue that this is very different from the statistical inference problem. The quantity
we are after is not a realization of some experiment, but rather a fixed quantity about which
we have limited information, in the form of a model and observed data. Why then should
probability be the right tool for summarizing our uncertainty? For example, I don’t think
the complementation rule is logical in the inference problem. In reality, θ is in exactly one
of A and Ac, but with the limited information in the data, it may not be reasonable to make
such a sharp conclusion that A is strongly supported and Ac is weakly supported, or vice
versa. In fact, it seems quite reasonable that data cannot strongly support either A or Ac,
in which case, the “probability” of these events should add to a number less than 1. No
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probability can satisfy this property, so maybe probability isn’t the correct tool. You might
ask if there is something else that can accommodate this, and the answer is YES, a belief
function. This is part of the motivation behind the inferential model (IM) framework; see
Martin and Liu (2013, 2015a,b,c) and Liu and Martin (2015).

4.8 Exercises

1. (a) Consider some generic σ-finite measures, µ, ν, and λ, all defined on the measurable
space (X,A). Suppose that µ � ν and ν � λ. Show that µ � λ and that the
Radon–Nikodym derivative of µ with respect to λ satisfies a chain rule, i.e.,

dµ

dλ
=
dµ

dν
· dν
dλ

(λ-almost everywhere).

(b) Use part (a) to prove Corollary 4.1.

2. Given θ ∈ (0, 1), suppose X ∼ Bin(n, θ).

(a) Show that the Beta(a, b) family is conjugate.

(b) Under a Beta(a, b) prior, find the posterior mean and variance. Give an interpre-
tation of what’s happening when n→∞.

(c) Consider the prior π(θ) = [θ(1 − θ)]−1 for θ ∈ (0, 1). Show that the prior is
improper but, as long as 0 < x < n, the posterior turns out to be proper.

3. Suppose X = (X1, . . . , Xn) are iid Unif(0, θ) and θ has a Unif(0, 1) prior.

(a) Find the posterior distribution of θ.

(b) Find the posterior mean.

(c) Find the posterior median.

(d) Find the posterior mode.

4. Consider the setting in Example 4.2. Design a simulation study to assess the coverage
probability of the 95% credible interval for θ for various choices of θ, sample size n,
and gamma hyperparameters (a, b).

5. Find the 95% marginal credible interval for µ based on the calculations in Example 4.4.
Prove that the frequentist coverage probability of the 95% credible interval is 0.95.

6. Problem 7.11 in Keener (2010, p. 126).

7. Problem 7.12 in Keener (2010, p. 126).

8. Consider the Poisson setup in Example 4.2.
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(a) Describe an approach to simulate from the predictive distribution. How do you use
this posterior sample to produce a 95% prediction interval for the next observation
Xn+1.

(b) Propose a non-Bayesian 95% prediction interval for Xn+1.

(c) Design a simulation study to assess the performance (coverage and length) of your
Bayesian and non-Bayesian prediction intervals. Try several values of θ, sample
size n, and prior hyperparameters (a, b).

9. Consider a model with density pθ(x) = h(x) exp{θx − A(θ)}, i.e., a simple one-
parameter exponential family. Let X1, . . . , Xn be iid from pθ.

(a) Consider a prior for θ, with density π(θ) = g(θ)eηθ−B(η). Show that this is conju-
gate, and write down the corresponding posterior density.

(b) Consider the special case where π(θ) ∝ eηθ−mA(θ) for fixed (η,m), and assume that
π(θ) vanishes on the boundary of the parameter space. (i) Show that the prior
mean of A′(Θ) is η/m; (ii) Show that the posterior mean for A′(Θ) is a weighted
average of the prior mean and the sample mean.

10. Prove that X1, . . . , Xn are exchangeable if and only if, for all k ≤ n, all k-tuples
(Xi1 , . . . , Xik) have the same joint distribution.

11. Prove that conditionally iid random variables, satisfying (4.3), are exchangeable. You
may assume existence of densities if that makes it easier.

12. Problem 7.14(b) in Keener (2010, p. 127). [Hint: Use “iterated covariance.”]

13. Suppose X|θ ∼ N(θ, 1) and the goal is to test H0 : θ ≤ θ0. Consider the class Γ of
symmetric and unimodal priors about θ0. Use Theorem 4.4 to get upper and lower
bounds on Πx(H0), the posterior probability of H0. [Hint: P-value will be involved.]

14. Let h be a one-to-one differentiable mapping and consider the reparametrization ξ =
h(θ). Let πθ and πξ are the Jeffreys priors for θ and ξ, respectively. Prove that

πθ(u) = πξ(h(u))|h′(u)|.

This property says that Jeffreys’ prior is invariant to smooth reparametrizations.

15. Monte Carlo integration is an important part of modern Bayesian analysis. The key
idea is to replace difficult integration with simulation and simple averaging. In other
words, if the goal is to evaluate E[h(X)] =

∫
h(x) dP(x) for a probability measure P,

then a Monte Carlo strategy is to simulate {Xt : t = 1, . . . , T} independent15 from P
and approximate E[h(X)] by T−1

∑T
t=1 h(Xt).

Suppose X ∼ Unif(0, 1). The goal is to use Monte Carlo integration to approximate
the moment-generating function MX(u) of X on the interval u ∈ (−2, 2).

15independence is not really necessary
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(a) Describe your algorithm and use Hoeffding’s inequality and the Borel–Cantelli
lemma (Chapter 1) to prove consistency of your Monte Carlo estimator. That is,
if M̂X(u) is your Monte Carlo estimator, then prove that M̂X(u)→ MX(u) with
probability 1 for each fixed u.

(b) Implement your method, draw a plot of your approximation with the true moment
generating function overlaid, and remark on the quality of the approximation.
[Hints: (i) 1000 Monte Carlo samples should be enough; (ii) you can use the same
Monte Carlo samples for each point u on the grid.]

16. Use the Laplace approximation to derive the Stirling’s formula:

n! ≈ nn+(1/2)e−n
√

2π, for large n.

[Hint: Use the gamma function: n! = Γ(n+ 1) =
∫∞

0
e−uun du.]

17. Check that N(θ, 1) satisfies Condition C5 in the Bernstein–von Mises setup.

18. (a) Write πn(θ) ∝ Ln(θ)π(θ), the posterior density of a real-valued parameter. For a
function g(θ), the posterior mean is defined as

E{g(Θ) | X} =

∫∞
−∞ g(θ)Ln(θ)π(θ) dθ∫∞
−∞ Ln(θ)π(θ) dθ

.

If g(θ) is sufficiently smooth, use Laplace approximation in both the numerator
and denominator to get a formula for E{g(Θ) | X} in terms of the MLE θ̂n.

(b) Let θ̃n =
∫
θπn(θ) dθ be the posterior mean based on iid data X1, . . . , Xn. Use

the Laplace approximation to prove that θ̃n is a consistent estimator of θ. [Hint:
Show that (θ̃n − θ?)2 → 0 in Pθ?-probability. First use Jensen’s inequality, then
take g(θ) = (θ − θ?)2 for the Laplace approximation.]

19. Write Πn for the posterior distribution based on an iid sample of size n; for simplicity,
suppose that the parameter is a scalar, but the ideas are much more general. The
posterior is said to be consistent at θ? if

Πn({θ : |θ − θ?| > ε})→ 0 in Pθ?-probability, for all ε > 0, as n→∞.

As an application, let X1, . . . , Xn be iid N(θ, 1), and consider a prior π(θ) ∝ 1, a
constant prior. Use Markov’s inequality and basic properties of the normal samples to
prove that the corresponding posterior is consistent at all θ? ∈ R.

20. For posterior consistency, etc, the prior Π must put sufficient mass near the true
parameter value, say, θ?. One way to ensure this is to assume that

Π({θ : K(pθ? , pθ) < ε}) > 0, ∀ ε > 0,

where K denotes the Kullback–Leibler divergence introduced in Notes I. The condition
above reads as “Π satisfies the Kullback–Leibler property at θ?.”
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(a) Let pθ be an exponential family. Find K(pθ? , pθ).

(b) Assuming regularity of pθ, argue that a prior Π satisfies the Kullback–Leibler
property at θ? if it has a positive density π in a neighborhood of θ?.
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Chapter 5

Statistical Decision Theory

5.1 Introduction

An important part of a statistical analysis is making decisions under uncertainty. In many
cases, there is a cost to making incorrect decisions and so it may be a good strategy to incor-
porate these costs into the statistical analysis and to seek the decision which will minimize
(in some sense) the expected cost. This is the focus of statistical decision theory.

Decision theory itself is part of the more general game theory setup that originated
with von Neumann and Morgenstern in the 1950s in an economics context. In the game
theory context, there are two (or more) players competing against one another and the
viewpoint is typically that a win by one player is a loss to the other. Since neither player
generally knows the strategy to be taken by the other, the goal for each player to pick a
strategy that guarantees he/she cannot to “too bad,” in some sense. The movie A Beautiful
Mind, inspired by the life of mathematician John F. Nash, highlights the development of his
“Nash equilibrium,” a result in game theory, now taught to undergraduates in economics.
In the statistical decision theory context, the players are the statistician and “Nature”—a
hypothetical character who knows the true value of the parameter.

Statistical decision theory setup starts with the familiar ingredients: there is a sample
space (X,A), a parameter space Θ, and a family of probability measures {Pθ : θ ∈ Θ} defined
on (X,A) indexed by Θ. In some cases, there may also be a prior Π on (Θ,B), where B is a
σ-algebra on Θ, but this is not always necessary. The two “new” ingredients are as follows:

• An action space A. When we think of the results of the statistical analysis as deter-
mining an action to be taken or a decision to be made by the decision-maker, then
there must be a set of all such actions.

• A (non-negative) loss function L(θ, a) defined on Θ × A. This function is meant to
encode the “costs” of making wrong decisions. In particular, L(θ, a) represents the
cost of taking action a when the parameter is θ.

Example 5.1 (Hypothesis testing). In a hypothesis testing problem, we may view the
parameter space as Θ = {0, 1}, where “0” means H0 is true and “1” means H1 is true. Then
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the action space is also A = {0, 1} with 0 and 1 corresponding to “accept H0” and “reject
H0,” respectively. Here a typical loss function is what’s called 0–1 loss, i.e.,

L(0, 0) = L(1, 1) = 0 and L(1, 0) = L(0, 1) = 1.

That is, correct decisions cost nothing but Type I and Type II errors both cost 1 unit. But
it is not always the case that Type I and Type II errors are equally costly—it is easy to
extend the loss function above to such cases.

Example 5.2 (Point estimation). Suppose the goal is to estimate ψ(θ), where θ is unknown
but ψ is a known real-valued function. Then A = ψ(Θ) is the image of Θ under ψ. The
typical loss function is squared-error loss, i.e.,

L(θ, a) =
(
a− ψ(θ)

)2
.

However, other loss functions like L(θ, a) = |ψ(θ)− a| can also be considered.

Now suppose that data X ∼ Pθ is observed. We would like to use the information X = x
to help choose an action in A to take. A choice of action in A based on data x is called a
decision rule.

Definition 5.1. A non-randomized decision rule δ is a function mapping X to A, and the
loss incurred by using δ(x) is simply given by L(θ, δ(x)). A randomized decision rule δ is
a mapping from X to the set of probability measures defined on A. In this case, the loss
incurred by using δ(x) is given by the expectation

L(θ, δ(x)) =

∫
A
L(θ, a) δ(x)(da).

A non-randomized decision rule δ is a special case of a randomized one, where δ(x) is viewed
as a point mass at the number δ(x) ∈ A.

We are familiar with the concept of randomized decision rules in the context of hypothesis
testing. In that setting, recall that in some (usually discrete) problems, it is not possible
to achieve a specified Type I error with a non-randomized test. So the idea is to flip a
coin with probability δ(x) ∈ [0, 1] to decide between accept and reject. For obvious reasons,
non-randomized decision rules are preferred over randomized ones. We shall show below
(Theorem 5.2) that for “nice” loss functions, we can safely ignore randomized decision rules.

With a given A, L and x, the goal of decision theory is to choose a decision rule δ to
minimize L(θ, δ(x)). But this typically cannot be done without the knowledge of θ. To make
life simpler, we shall seek decision rules which have good properties on average, as X ∼ Pθ.
In this direction, one defines the risk function

R(θ, δ) =

∫
X
L(θ, δ(x))Pθ(dx), (5.1)
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which is just the expected loss incurred by using decision rule δ. The goal of classical decision
theory is to find a decision rule δ that minimizes R(θ, δ) in some sense. The trouble is that
there is generally no single δ that minimizes R(θ, δ) for all θ. In such cases, one looks for
other ways to minimize risk which are weaker than uniformly. These include various ways
of removing θ from the risk making it just a function of δ (see Section 5.3) or by introducing
constraints on δ (see Section 5.4). In these cases, one can speak of a risk-minimizing decision
rule. As a first step, it helps to reduce the search to decision rules which are admissible,
which we discuss next in Section 5.2.

5.2 Admissibility

When searching for an “optimal” decision rule, it can be helpful to rule out some procedures
which are known to be suboptimal, thus reducing the size of the search space.

Definition 5.2. A decision rule δ is inadmissible if there exists another decision rule δ′ such
that R(θ, δ′) ≤ R(θ, δ) for all θ with strict inequality for some θ. We say that δ′ dominates
δ. If there is no such δ′, then δ is admissible.

Roughly speaking, only those admissible decision rules need to be considered. However,
not all admissible decision rules are reasonable. For example, if estimating θ under square-
error loss is the goal, the decision rule δ(x) ≡ θ0 is admissible since its the only decision rule
if zero risk at θ = θ0. But, clearly, the rule δ(x) ≡ θ0 which focuses only on one possible
value of θ will pay a huge price, in terms of risk, for θ 6= θ0.

It turns out that admissibility of a decision rule is closely related to properties of the loss
function. In particular, when the loss function L(θ, a) is convex in a, there are some nice
properties. Here is an important result.

Theorem 5.1 (Rao–Blackwell). Let X ∼ Pθ and T be a sufficient statistic. Let δ0 be a
non-randomized decision rule, taking values in a convex A ⊆ Rd, with Eθ‖δ0(X)‖ < ∞ for
all θ. If A is convex and L(θ, ·) is a convex function for each θ, then

δ1(x) = δ1(t) = E{δ0(X) | T = t}

satisfies R(θ, δ1) ≤ R(θ, δ0) for all θ.

Proof. From Jensen’s inequality,

L(θ, δ1(t)) ≤ E{L(θ, δ0(X)) | T = t} ∀ θ.

Now taking expectation of both sides (with respect to the distribution of T under X ∼ Pθ)
shows that R(θ, δ1) ≤ R(θ, δ0).

This theorem shows that, for a convex loss function, only decision rules that are func-
tions of sufficient statistics can be admissible.1 Furthermore, it shows how to improve on a
given decision rule—just “Rao–Blackwellize” it by taking a conditional expectation given a
sufficient statistic.

1But the rule δ1 in the theorem need not be admissible—it requires its own proof.
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Example 5.3. Suppose X1, . . . , Xn are independent N(θ, 1) random variables. The goal
is to estimate Φ(c − θ), the probability X1 ≤ c, for some fixed constant c, under square-
error loss. That is, L(θ, a) = {a − Φ(c − θ)}2. A straightforward estimator is δ0(x) =
n−1

∑n
i=1 I(−∞,c](xi). But this is not a function of the sufficient statistic T = X̄. Since

L(θ, ·) is convex (prove it!), the Rao–Blackwell theorem says we can improve δ0 by taking
its conditional expectation given T = t. That is,

E{δ0(X) | T = t} =
1

n

n∑
i=1

E{I(−∞,c](Xi) | T = t}

= P(X1 ≤ c | T = t) = Φ
( c− t√

(n− 1)/n

)
, (5.2)

where the last equality follows from the fact that X1 | (T = t) ∼ N(t, n−1
n

); see Exercise 5.
Therefore, δ0 is inadmissible and the right-hand side of (5.2) is one estimator that beats it.

It follows (almost) immediately from the Rao–Blackwell theorem that, in the case of a
convex loss function, one need not consider randomized decision rules.

Theorem 5.2. Suppose the loss function is convex. Then for any randomized decision rule
δ0, there exists a non-randomized rule δ1 which is no worse than δ0 in terms of risk.

Proof. A randomized decision rule δ0 defines a distribution on A in the sense that, given
X = x, an action is taken by sampling A ∼ δ0(x). One can express this randomized rule
as a non-randomized one, call it δ′0(X,U), that’s a function of X as well as an independent
random variable U whose distribution Q is free of θ. The idea is to write A = fx(U), for
some suitable data-dependent function fx. That is, U plays the role of the randomization
mechanism. But we know that T (X,U) = X is sufficient, so Rao–Blackwell tells us how to
improve δ0:

δ1(x) = E{δ′0(X,U) | X = x} =

∫
fx(u)Q(du) =

∫
A
a δ0(x)(da).

That is, the dominating non-randomized rule δ1(x) is the expectation under δ0(x).

This result explains why we almost never consider randomized estimators—in estimation
problems, the loss function (e.g., square-error) is almost always convex, so Theorem 5.2 says
there’s no need to consider randomized estimators.

Admissibility is an interesting property in the sense that one should only use admissi-
ble rules, but there are many admissible rules which are lousy. So admissibility alone is
not enough to justify the use of a decision rule—compare this to Type I error probability
control in a hypothesis testing problem, where one must also consider Type II error proba-
bilities. There are some other general admissibility properties (e.g., all proper Bayes rules
are admissible) which we will discuss below. Interestingly, there are some surprising results
which state that some “standard” procedures are, in some cases, inadmissible. The most
famous example of this is Stein’s paradox : if X ∼ Nd(θ, I) and d ≥ 3, then the maximum
likelihood/least-squares estimator θ̂ = X is in fact inadmissible.
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5.3 Minimizing a “global” measure of risk

Finding δ to minimize R(θ, δ) uniformly over θ is an impossible task. The trouble is that
there are ridiculous decision rules which do very well for certain values of θ but very bad for
others. If we introduce a global measure of risk—one that does not depend on a single value
of θ—then it’s a bit easier to find optimal decision rules. The two common ways to eliminate
θ from the risk are to integrate it out (average risk) or to maximize over θ (maximum risk),
and each of these has its own rich body of theory.

5.3.1 Minimizing average risk

The first way one might consider removing θ from the risk function R(θ, δ) is to aver-
age/integrate it out with respect to some probability distribution2 Π on Θ. This leads to
the notion of Bayes rules.

Definition 5.3. For a decision problem as above, suppose there is also a probability measure
Π on Θ. Then for a decision rule δ, the Bayes risk is

r(Π, δ) =

∫
R(θ, δ) Π(dθ), (5.3)

the average risk of δ with respect to Π. If there exists a δ = δΠ that minimizes r(Π, δ), then
δΠ is called the Bayes rule (with respect to Π).

In this context, the probability measure Π is not necessarily meant to describe one’s prior
knowledge about θ. Instead, a suitably chosen Π can help in the construction of (non-Bayes)
procedures with good properties. This is the big idea behind the modern work on shrinkage
estimation via penalties based on prior distributions.

To find Bayes rules, it is important to see that

r(Π, δ) =

∫
X

∫
Θ

L(θ, δ(x)) Πx(dθ)PΠ(dx),

where the inner integral,
∫

Θ
L(θ, δ(x)) Πx(dθ), is known as the posterior risk, and PΠ is the

marginal distribution of X. This is a consequence of Fubini’s theorem. It can be shown
that (in most cases) a minimizer of the posterior risk will also be the Bayes rule. This is
important because minimizing the posterior risk is often easy.

Example 5.4. Consider estimation of a real parameter θ under squared error loss. Then
the posterior risk is∫

Θ

(θ − δ(x))2 Πx(dθ) = E(θ2 | x)− 2δ(x)E(θ | x) + δ(x)2.

2When we talk about a prior probability distribution, there is nothing special about the total mass being
1. If the mass is some other finite number, then everything goes through just fine; if the mass is infinite,
however, then there’s problems to be concerned about.
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From this it is clear that (if all the expectations exist) the posterior risk is minimized by
taking δ(x) = E(θ | x). Similar arguments can be used to show that, if the loss is absolute
error, then the Bayes rule is a posterior median.

Example 5.5. Suppose X1, . . . , Xn are independent Ber(θ) observations. The goal is to
test H0 : θ ≤ 0.5 versus H1 : θ > 0.5 under 0–1 loss. For simplicity, assume n is even and
that T =

∑n
i=1 Xi. If the prior is Unif(0, 1), then the posterior is Beta(t + 1, n − t + 1).

The posterior risk, call it rt(H0), for choosing H0 is the posterior probability of H1, i.e.,
rt(H0) = Πt(H1). Likewise, the posterior risk of choosing H1 is the posterior probability of
H0, i.e., rt(H1) = Πt(H0) = 1 − rt(H0). The Bayes rule chooses H0 or H1 depending on
which of rt(H0) and rt(H1) is the smaller. That is, the Bayes rule rejects H0 if and only if
rt(H0) < 0.5. However, if t = n/2, then rt(H0) = rt(H1) = 0.5 and so it’s not clear which to
choose. Therefore, the Bayes rule is a randomized one, given by

δ(x) =


choose H0 if t(x) < n/2

choose H1 if t(x) > n/2

flip a fair coin to decide if t(x) = n/2.

The main results we will consider here are that, under certain conditions, Bayes rules
are admissible. Therefore, one cannot rule out being a Bayesian based on admissibility
constraints alone. What is even more interesting is that there are theorems which state that
essentially all admissible decision rules are Bayes; see Section 5.5.

Theorem 5.3. Suppose Θ is a subset of Rd such that every neighborhood of every point in Θ
intersects the interior of Θ. Let Π be a measure on Θ such that λ� Π, where λ is Lebesgue
measure. Suppose that R(θ, δ) is continuous in θ for each δ for which the risk is finite. If
the Bayes rule δΠ has finite risk, then it is admissible.

Proof. Suppose δΠ is not admissible. Then there is a δ1 such that R(θ, δ1) ≤ R(θ, δΠ) for all
θ with strict inequality for some, say for θ0. By continuity of the risk function, there is an
open neighborhood N of θ0, which intersects the interior of Θ, such that R(θ, δ1) < R(θ, δΠ)
for all θ ∈ N . Since Lebesgue measure is is dominated by Π and N is open, we must have
Π(N) > 0. This implies that r(Π, δ1) < r(Π, δΠ), which is a contradition. Therefore, δΠ is
admissible.

Example 5.6. Consider an exponential family distribution with natural parameter space
Θ containing an open set. For estimating g(θ) for some continuous function g, consider
square-error loss L(θ, a) = (a − g(θ))2. Since Θ is convex (Chapter 2), the neighborhood
condition is satisfied. Also, the risk function for any δ with finite variance will be continuous
in θ. Finally, if Π has a positive density π on Θ with respect to Lebesgue measure, then
Lebesgue� Π also holds. Therefore, the Bayes rule δΠ is admissible.

Theorem 5.4. Suppose A is convex and all Pθ are absolutely continuous with respect to each
other. If L(θ, ·) is strictly convex for each θ, then for any probability measure Π on Θ, the
Bayes rule δΠ is admissible.
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Proof. Suppose δΠ is not admissible. Then there exists δ0 such that R(θ, δ0) ≤ R(θ, δΠ) with
strict inequality for some θ. Define a new decision rule δ1(x) = 1

2
{δΠ(x) + δ0(x)}, which is

valid since A is convex. Then for all θ we have

R(θ, δ1) =

∫
X
L(θ, 1

2
{δΠ(x) + δ0(x)})Pθ(dx)

≤
∫
X

1
2
{L(θ, δΠ(x)) + L(θ, δ0(x))}Pθ(dx)

= 1
2
{R(θ, δΠ) +R(θ, δ0)}

≤ R(θ, δΠ).

The first inequality will be strict unless δΠ(X) = δ0(X) with Pθ-probability 1. However,
since the Pθ’s are absolutely continuous with respect to each other, it follows that the first
inequality is strict unless δΠ(X) = δ0(X) with Pθ-probability 1 for all θ. Hence the first
inequality above is strict unless δΠ(X) and δ0(X) have exactly the same distribution. Since
this would violate the supposition that δ1 dominates δΠ, it must be that the first inequality
above is strict for all θ. That is, R(θ, δ1) < R(θ, δΠ) for all θ. Averaging both sides over Π
leads to the conclusion that r(Π, δ1) < r(Π, δΠ), which violates the assumption that δΠ is
the Bayes rule. Therefore, δΠ must be admissible.

One can extend the definition of Bayes rules to cases where Π is a measure, not necessarily
a probability measure. In my opinion, the use of improper priors is more reasonable in this
case (compared to the purely Bayes case), because the goal here is simply to construct
decision rules with good risk properties.3

Definition 5.4. Let (dPθ/dµ)(x) = pθ(x). Let Π be a measure on Θ and suppose that, for
every x, there exists δ(x) such that∫

Θ

L(θ, δ(x))pθ(x) Π(dθ) = min
a∈A

∫
Θ

L(θ, a)pθ(x) Π(dθ).

Then δ = δΠ is called a generalized Bayes rule with respect to Π.

The difference between Definition 5.4 and Definition 5.3 is that the former does not require
Π to be a probability/finite measure. Things look a little different in this case because, if
the prior is improper, then the posterior might also be improper, which can make defining
the Bayes rule as a minimizer of posterior risk problematic.

For example, if X1, . . . , Xn are iid N(θ, 1) and Π is Lebesgue measure on (−∞,∞), then
δΠ(x) = x̄ is the corresponding generalized Bayes rule. But note that the admissibility result
in Theorem 5.3 does not generally hold for generalized Bayes rules. The additional condition
is that the risk function is Π-integrable.

Theorem 5.5. Suppose Θ is as in Theorem 5.3. Assume R(θ, δ) is continuous in θ for all δ.
Let Π be a measure that dominates Lebesgue measure, and δΠ the corresponding generalized
Bayes rule. If (x, θ) 7→ L(θ, δΠ(x))pθ(x) is µ× Π-integrable, then δΠ is admissible.

3If the goal is to get a rule with good properties, who really cares how the rule is constructed...?
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Proof. Use Fubini’s theorem and Definition 5.4.

Back to the normal example, consider again the generalized Bayes rule δΠ(x) = x̄ (with
respect to prior Π equal to Lebesgue measure) for estimating θ under square-error loss. The
risk function R(θ, δΠ) for δΠ(x) = x̄ is constant (equal to 1/n) and so is not integrable with
respect to Π = Lebesgue. Therefore, Theorem 5.5 is not enough to prove admissibility of
the maximum likelihood estimator.

An alternative approach is to consider a sequence {Πs : s ≥ 1} of proper or improper
priors, and the corresponding sequence of Bayes rules {δΠs : s ≥ 1}. The next theorem is
a powerful and general tool for proving admissibility. A similar result is given in Schervish
(1995, p. 158–159).

Theorem 5.6. Assume that each decision rule δ has a continuous risk function R(θ, δ).
Suppose there are finite measures {Πs : s ≥ 1} on Θ such that a generalized Bayes rule
δs = δΠs exists for all s, and lim infs Πs(B) > 0 for every open ball B ⊂ Θ. If δ is a decision
rule such that

lim
s→∞

{
r(Πs, δ)− r(Πs, δs)

}
= 0,

then δ is admissible.

Proof. See Keener (2010, p. 215).

To illustrate the use of this theorem, we will prove that, for X ∼ N(θ, 1), the maximum
likelihood estimator θ̂ = x is admissible under square-error loss. The more general n > 1
case follows from this by making a change of scale.

Example 5.7. Consider a sequence of measures Πs =
√
sN(0, s), s ≥ 1; these are finite

but not probability measures. Let δ(x) = x be the maximum likelihood estimator. The
generalized Bayes rules are given by δs(x) = sx/(s+ 1) and the Bayes risks are

r(Πs, δ) =
√
s and r(Πs, δs) = s3/2/(s+ 1).

The difference r(Πs, δ)− r(Πs, δs) = s1/2/(s+ 1) goes to zero as s→∞. The only thing left
to do is check that Πs(B) is bounded away from zero for all open intervals x±m. For this,
we have

Πs(x±m) =
1√
2π

∫ x+m

x−m
e−u

2/2s du,

and since the integrand is bounded by 1 for all s and converges to 1 as s→∞, the dominated
convergence theorem says that Πs(x ±m) → 2m(2π)−1/2 > 0. It follows from Theorem 5.6
that δ(x) = x is admissible.

Example 5.8. Let X ∼ Bin(n, θ), so that the MLE of θ is the sample mean δ(X) = X/n.
The goal is to show, using Theorem 5.6, that δ is admissible under squared-error loss. For
this, we need a sequence of proper priors {Πs : s ≥ 1} for θ. Since beta priors are conjugate
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for the binomial model, a reasonable starting point is to consider θ ∼ Beta(s−1, s−1). For
such a model, the Bayes rule is

E(θ | X) =
X + s−1

n+ 2s−1
.

It is clear that, as s→∞, the Bayes rule δΠs(X) converges to the sample mean δ(X) = X/n.
But the limit of the beta priors is not a proper prior for θ; in fact, the limit of the priors has
a density that is proportional to {θ(1− θ)}−1, which is improper.

The beta priors themselves do not satisfy the conditions of Theorem 5.6 (Exercise 7).
Fortunately, there is a simple modification of the beta prior that does work. Take Πs to have
density πs which is just the Beta(s−1, s−1) without the normalizing constant:

πs(θ) = {θ(1− θ)}1/s−1

or, in other words,

πs(θ) = λ(s)Beta(θ | s−1, s−1), where λ(s) =
Γ(s−1)2

Γ(2s−1)
.

Since Πs is just a rescaling of the beta prior from before, it is clear that the Bayes rule δΠs(X)
for the new prior is the same as for the beta prior above. Then the Bayes risk calculations
are relatively simple (Exercise 8). With the sequence of priors Πs, which are proper but not
probability measures, it follows from Theorem 5.6 that the sample mean δ(X) = X/n is an
admissible estimator of θ.

There are also some general theorems about the admissibility of the “standard estimators”
in exponential families that cover the result proved in Example 5.7. The conditions of such
theorems are rather technical so we won’t cover them here. See Schervish (1995), pages
160–161, for a detailed statement and proof of one such theorem.

Another important use of Bayes rules will be seen in the next section, where Bayes rules
with respect to certain “worst-case scenario” priors will produce minimax rules.

5.3.2 Minimizing maximum risk

In the previous section we measured the global performance of a decision rule by averaging
its risk function with respect to a probability measure Π on Θ. But this is not the only
way one can summarize a decision rule’s performance. Another criterion is to consider the
maximum of the risk function R(θ, δ) as θ ranges over Θ. This maximum risk represents
the worst the decision rule δ can do. Then the idea is to choose δ so that this worst-case
performance is as small as possible.

Definition 5.5. For a decision problem with risk function R(θ, δ), a minimax decision rule
δ0 satisfies

sup
θ
R(θ, δ0) ≤ sup

θ
R(θ, δ)

for all decision rules δ. The minimax rule protects against the worst-case scenario in the
sense that it MINImizes the MAXimum risk.
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The origin of this approach is in the game theory scenario where one is playing against an
opponent. The opponent’s goal is to maximize your own loss, so one approach to game play
would be to choose a strategy that minimizes the maximum loss, i.e., the minimax strategy.
But in a statistical decision problem, one might consider this strategy too conservative, or
pessimistic, since it does not consider how likely the value of θ at which the maximum occurs.
Nevertheless, minimax decision rules have a rich history.

Theorem 5.7. Let Π be a probability measure and δΠ the corresponding Bayes rule. If
r(Π, δΠ) = supθ R(θ, δΠ), then δΠ is minimax.

Proof. Let δ be some other procedure. Then supθ R(θ, δ) ≥ r(Π, δ) ≥ r(Π, δΠ). Since
r(Π, δΠ) = supθ R(θ, δΠ) by assumption, minimaxity follows.

Corollary 5.1. A Bayes rule δΠ with constant risk is minimax.

Proof. If the risk is constant, then the conditions of Theorem 5.7 hold trivially.

As one might guess, a prior Π for which the average risk equals the maximum risk is a
particular weird prior. That is, it must put all its mass on θ values where the risk of the
Bayes rule δΠ is large. These are the “worst-case scenario” priors mentioned at the end of
the previous section. Such a prior is called a least favorable prior and it satisfies

r(Π, δΠ) ≥ r(Π′, δΠ′) for all priors Π′.

To see this, let Π be a prior satisfying r(Π, δΠ) = supθ R(θ, δΠ). For another prior Π′ we have

r(Π′, δΠ′) ≤ r(Π′, δΠ) ≤ sup
θ
R(θ, δΠ) = r(Π, δΠ),

hence Π is least favorable. Practically, least favorable priors are not particularly useful.
However, this connection between least favorable priors and minimax estimators provides a
powerful technique for finding minimax estimators.

Example 5.9. Let X ∼ Bin(n, θ). The goal is to find a minimax estimator of θ under
square-error loss. Consider a conjugate Beta(α, β) prior. Then the posterior mean is

δ(X) = E(θ | X) = aX + b =
1

α + β + n
X +

α

α + β + n
.

The risk function for δ is

R(θ, δ) = Vθ{aX + b− θ}+ E2
θ{aX + b− θ} = Aθ2 +Bθ + C,

where A, B, and C depend on (α, β, n) and you’re invited to find the exact expressions in
Exercise 9. The risk function is constant iff A = B = 0, which holds iff α = β = 1

2

√
n.

Therefore, the Bayes rule with constant risk is

δ(x) =
x+ 1

2

√
n

n+
√
n
,

and so this guy is minimax according to Corollary 5.1.
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Figure 5.1: Plot of risk function in Example 5.10.

The next example sheds some light on the nature of a least favorable prior in the case of
a constrained parameter space.

Example 5.10. Let X ∼ N(θ, 1) where it is known that |θ| ≤ 1. It can be shown (Exer-
cise 12) that the MLE θ̂ = X is inadmissible in this case. Here we shall find a minimax
estimator δ of θ under square-error loss. Consider a probability measure Π that puts proba-
bility 0.5 on the endpoints of the interval [−1, 1]. That is, Π({−1}) = Π({1}) = 0.5. In this
case, the posterior distribution is determined by

Πx({1}) =
ϕ(x− 1)/2

ϕ(x− 1)/2 + ϕ(x+ 1)/2
=

ϕ(x− 1)

ϕ(x− 1) + ϕ(x+ 1)
,

where ϕ is the standard normal density function. Then the posterior mean is

δΠ(x) =
ϕ(x− 1)− ϕ(x+ 1)

ϕ(x− 1) + ϕ(x+ 1)
=
ex − e−x

ex + e−x
= tanh(x).

It can be shown that the risk function R(θ, δΠ) is symmetric and maximized at θ = ±1; see
Figure 5.1. In this case the maximum risk equals the average ofR(±1, δΠ) so, by Theorem 5.7,
δΠ is minimax.

In Exercise 10(b) you’re invited to show using direct arguments that, in a normal mean
problem, the sample mean is a minimax estimator under squared error loss. The multivariate
case with more general loss function is considered in Section 5.6. This argument rests on an
interesting result in convex analysis called Anderson’s lemma.

Minimax procedures are pessimistic in nature and, in the relatively simple problems
considered so far, it is not so difficult to find better procedures, e.g., maximum likelihood
estimators. However, if we move away from these “relatively simple” problems, maximum
likelihood may not work and we need some different criteria for constructing estimators, etc.
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In these problems, typically the parameter has dimension increasing at least as fast as the
sample size, and asymptotically minimax procedures provide a benchmark for comparison.
This notion of asymptotic minimaxity is covered in more detail in Chapter ??.

5.4 Minimizing risk under constraints

Earlier we saw that finding a δ that minimizes the risk R(θ, δ) uniformly over θ is impossible.
In Section 5.3 we saw two common strategies for introducing a global risk and finding optimal
decision rules. An alternative approach is to introduce a “reasonable” constraint on the set of
decision rules one is willing to consider. In this case, it can be possible to find a (constrained)
δ for which R(θ, δ) is minimized uniformly over θ.

5.4.1 Unbiasedness constraints

We are familiar with unbiasedness in the estimation context from Stat 411. However, un-
biasedness is a general condition for decision rules. That is, for a loss function L(θ, a), a
decision rule δ is unbiased if

Eθ{L(θ′, δ(X))} ≥ Eθ{L(θ, δ(X))}, ∀ θ′. (5.4)

In Exercise 13 you are invited to show that, if the goal is to estimate g(θ) under squared-
error loss, then the unbiasedness condition (5.4) is equivalent to the familiar definition, i.e.,
Eθ{δ(X)} = g(θ) for all θ. Though unbiasedness is more general (see Section 5.4.3), we shall
focus here on the estimation problem.

First is an interesting result that says we need not look at Bayes estimators in this
context, because (except in weird cases) they cannot be unbiased.

Theorem 5.8. No unbiased estimator δ(X) can be a Bayes estimator unless the prior Π
satisfies Π{θ : R(θ, δ) = 0} = 1.

Proof. Suppose δ is a Bayes rule (under square-error loss with respect to Π) and is unbiased.
Then we know

δ(X) = E{g(U) | X} and g(U) = E{δ(X) | U}.
Then depending on the order in which we condition, we get

E[g(U)δ(X)] =

{
E[g(U)E{δ(X) | U}] = E[g(U)2] conditioning on U

E[δ(X)E{g(U) | X}] = E[δ(X)2] conditioning on X.

Therefore, E[g(U)2] = E[δ(X)2] and, hence,

r(Π, δ) = E[δ(X)− g(U)]2 = E[δ(X)2]− 2E[g(U)δ(X)] + E[g(U)2] = 0.

But the Bayes risk also satisfies r(Π, δ) =
∫
R(θ, δ) dΠ(θ). Since R(θ, δ) ≥ 0 for all θ, the

only way the Π-integral can be zero is if Π assigns probability 1 to the set of θ where R(θ, δ)
vanishes. This proves the claim.
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So restricting to unbiased estimators necessarily rules out (reasonable) Bayes estimators.
But this doesn’t help to find the best estimator, nor does it even suggest that there is a “best”
estimator. Fortunately, there is a very powerful result—the Lehmann–Scheffe theorem—
which states that there is indeed a rule that uniformly minimizes risk and, moreover, gives
easily verifiable sufficient conditions to identify this best estimator.

Theorem 5.9 (Lehmann–Scheffe). Let X ∼ Pθ and suppose that T is a complete sufficient
statistic. Suppose the goal is to estimate g(θ) under convex loss, and that an unbiased
estimator exists. Then there exists an essentially unique unbiased estimator that is a function
of T and uniformly minimizes the risk.

Proof. See Keener (2010, p. 62).

There’s a few things worth mentioning about this important theorem. First, notice that
square-error loss is not important; all that really matters is that the loss function is convex.
Second, it does not guarantee that an unbiased estimator exists; there are examples where
no unbiased estimator exists (e.g., estimating 1/θ in a Bin(n, θ)). If there is an unbiased
estimator, then the Rao–Blackwell theorem shows how to improve it by conditioning on T .
It’s the fact that T is also complete which leads to the uniqueness. Indeed, if there are two
unbiased estimators which are functions of T , then their difference f(T ) = δ1(T ) − δ2(T )
satisfies Eθf(T ) = 0 for all θ. Completeness of T implies that f = 0 a.e., which implies δ1

and δ2 are actually (a.e.) the same.

5.4.2 Equivariance constraints

For a sample space X, let {Pθ : θ ∈ Θ} be a group transformation model with respect to
a group G of transformations g : X → X. That is, if X ∼ Pθ, then gX ∼ Pθ′ for some θ′

in Θ. This particular θ′ is determined by θ and the transformation g. In other words, the
transformations g also act on Θ, but possibly in a different way than they act on X. We
shall refer to this transformation on Θ determined by g as ḡ, and Ḡ the collection of all such
ḡ’s. It can be shown that Ḡ is also a group. To summarize, we have groups G and Ḡ acting
on X and Θ, respectively, which are related to the distribution Pθ in the following way:

X ∼ Pθ ⇐⇒ gX ∼ Pḡθ,

where ḡ ∈ Ḡ is determined by g ∈ G .
This is a special structure imposed on the distribution Pθ. We are familiar with the

special location and scale structures, where G and Ḡ are the same, but there are others; for
example, you saw the Weibull distribution as a group transformation model, and you wrote
down explicitly the ḡ for a given g.

In this section we will investigate the effect of such a structure in the statistical decision
problem. First we need to impose this structure on some of the other ingredients, such as
action space, loss function, and decision rules. We shall do this quickly here; see Schervish
(1995, Sec. 6.2.1) or Lehmann and Casella (1998, Sec. ??) for more details.
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• The loss function is called invariant (with respect to G or Ḡ ...) if, for each g ∈ G (or
each ḡ ∈ Ḡ ) and each a ∈ A, there exists a (unique) a′ ∈ A such that L(ḡθ, a′) = L(θ, a)
for all θ. In this case, the group also (in)directly acts on the action space A, i.e., a′ is
determined by a and g. Write a′ = g̃a. Then it can be shown that the collection G̃ of
transformations g̃ : A→ A also forms a group.

• A function h defined on X (or some other space like Θ or A equipped with a group
of transformations) is called invariant if h(gx) = h(x) for all x ∈ X and all g ∈ G .
Alternatively, a function f : X→ A is equivariant if f(gx) = g̃f(x).

• We shall focus on decision rules δ which are equivariant. The intuition is that our
decision rules should be consistent with the assumed structure. For example, in a
location parameter problem, a shift of the data by a constant should cause a shift of
our estimator of the location by the same amount.

A decision problem whose ingredients satisfy all these properties will generically be called
an invariant decision problem.

We shall view the insistence that the decision rule be equivariant as a constraint on the
possible decision rules, just like unbiasedness is a constraint. Then the question is if there
is an equivariant rule that uniformly minimizes the risk. The first result is a step in this
direction.

Theorem 5.10. In an invariant decision problem, the risk function R(θ, δ) of an equivariant
decision rule δ is an invariant function on Θ, i.e., constant on orbits of Ḡ .

The orbits referred to in Theorem 5.10 are the sets Oθ = {θ′ ∈ Θ : θ′ = ḡθ, ḡ ∈ Ḡ }. This
Oθ consists of all possibly images of θ under transformations ḡ ∈ Ḡ . Then an equivalent
definition of an invariant function is one that’s constant on orbits. An invariant function is
called maximal if the constant values are different on different orbits. Maximal invariants
are important, but we won’t discuss these further here.

An interesting special case is when the group Ḡ has only one orbit, in which case, the risk
function in Theorem 5.10 is everywhere a constant. Groups that have just a single orbit are
called transitive. One-dimensional location transformations correspond to transitive groups;
same for scale transformations. In this case, it is easy to compare risk functions of equivariant
decision rules.

The question is if there is an equivariant rule to minimize risk. There is a general result
along these lines. I will not give a precise statement.

Theorem 5.11. Consider an invariant decision problem. Under some assumptions, if the
formal Bayes rule with respect to the right invariant Haar prior on Ḡ exists, then it is the
minimum risk equivariant rule.

For a precise statement and proof of this theorem, see Schervish (1995), Theorem 6.59.
The major challenge in understanding this theorem is the definition of Haar measure.4 This
is perhaps too far beyond our scope, but we can look at a simple but important example,
namely, equivariant estimation of a location parameter.

4Technically, the Haar measure is obtained by equipping Ḡ , a locally compact topological group, with
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Example 5.11. Consider a location parameter problem, where the density of X1, . . . , Xn

under Pθ has the form pθ(x1, . . . , xn) = p0(x1 − θ, . . . , xn − θ), θ ∈ R. That is, Xi =
θ + Zi, where Z1, . . . , Zn have distribution P0. In this case, all the groups G , Ḡ , and G̃
are (isomorphic to) the group of real numbers under addition. For the real numbers under
addition, the (left and right) invariant measure is Lebesgue measure λ (why?). An invariant
loss function is of the form L(θ, a) = L(a − θ). Then the theorem says that the minimum
risk equivariant estimator δλ is the formal Bayes rule based on a formal Lebesgue measure
prior. That is, δλ(x) is the δ(x) that minimizes∫

Θ
L(δ(x)− θ)p0(x− θ1) dθ∫

Θ
p0(x− θ1) dθ

.

In the case where L(a−θ) = (a−θ)2, squared-error loss, we know that δλ is just the posterior
mean under the (formal) Lebesgue measure prior λ, i.e.,

δλ(x) =

∫
Θ
θp0(x− θ1) dθ∫

Θ
p0(x− θ1) dθ

.

This estimator—Pitman’s estimator, θ̂pit—is the minimum risk equivariant estimator. Note

that in the case where P0 = N(0, 1), Pitman’s estimator is θ̂pit(x) = x̄.

5.4.3 Type I error constraints

In a testing problem with 0–1 loss, it can be shown (Exercise 3) that the risk function is
the sum of the Type I and Type II error probabilities. It should be clear from our previous
knowledge of hypothesis tests that when we make Type I error probability small then the
Type II error probability increases, and vice versa, so it’s not clear how to strictly minimize
this risk. Therefore, the usual strategy is to fix the Type I error probability at some α ∈ (0, 1)
and try to find a test, satisfying this constraint, that minimizes Type II error probability (or
maximizes power). This is the idea behind most powerful tests.

Here we will focus on the simplest situation. Suppose X is a realization from one of two
models P0 and P1, both having densities p0 and p1 on X with respect to µ. Then the goal is
to test

H0 : X ∼ P0 versus H1 : X ∼ P1.

This is called the simple-versus-simple testing problem. In this case, a decision rule is a
function δ mapping X to [0, 1]. In a non-randomized problem, δ maps X to {0, 1}. The
important theorem along these lines is as follows.

a σ-algebra of measurable subsets. Then a measure can be defined as usual. There is also a very elegant
theory of integration in the context; see Eaton (1989). The left Haar measure λ is one that is invariant under
actions on Θ, λ(ḡB) = λ(B) for all measurable B ⊂ Ḡ ; the right Haar measure ρ is defined similarly. These
two measures are the same iff Ḡ is an Abelian group. For example, in location groups and scale groups, left
and right Haar measures are equal; in a location-scale group, they are not. Haar measures are generally not
finite, which explains why we use the adjective “formal” in the statement of Theorem 5.11.
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Theorem 5.12 (Neyman–Pearson). For fixed α ∈ (0, 1), the most powerful α-level test is is
given by

δ(x) =


0 if p1(x) < kαp0(x)

γ if p1(x) = kαp0(x)

1 if p1(x) > kαp0(x),

(5.5)

where γ and k(α) are uniquely determined by the constraint

α = P0

{p1(X)

p0(X)
> kα

}
+ γP1

{p1(X)

p0(X)
= kα

}
.

Proof. See my Stat 411 notes on hypothesis testing.

Note that the γ part of the theorem allows for randomized decision rules. That is, if
the particular X = x observed satisfies p1(x) = kαp0(x), then the rule says to flip a coin
with success probability γ and reject H0 iff the coin lands on heads. This randomization
mechanism is typically not needed in continuous data problems since the event that the
likelihood ratio exactly equals kα has probability 0. But we cannot rule out randomized test
at the outset because the 0–1 loss is not convex.

Here’s an alternative interpretation of the familiar Neyman–Pearson lemma. We could
index the tests δ in (5.5) by the particular α; write them as δα. Now take any other test
δ′ for this particular problem. It has some Type I error probability α′. Then the theorem
shows that δα′ dominates δ′ in terms of risk. Therefore, δ′ is inadmissible.

In the discussion above, we focused on the case of simple-versus-simple hypothesis testing.
Next are a few remarks related to some more general problems.

• If the alternative is one-sided (e.g., H1 : θ > θ0), then it is often the case that the
simple-versus-simple test coming from the Neyman–Pearson lemma is still the best
one. The point is that the Neyman–Pearson test will not actually depend on the value
θ1 in the simple alternative.

• When the alternative is two-sided, there is the well-known fact that there is generally
no uniformly most powerful test. To account for this, one can further focus on unbiased
tests that satisfy (5.4). In particular, in many cases, there is a uniformly most powerful
unbiased test; Lehmann and Romano (2005) for a careful treatment of uniformly most
powerful tests and the unbiasedness condition.

5.5 Complete class theorems

A class of decision rules is called a complete class, denoted by C, if for any δ1 6∈ C, there
exists a rule δ0 ∈ C such that R(θ, δ0) ≤ R(θ, δ1) for all θ with strict inequality for some θ.
In other words, no δ outside of C is admissible. Here’s a few interesting facts:

• If the loss function is convex, then the set of all decision rules which are functions of a
sufficient statistic forms a complete class.
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• If the loss function is convex, then the set of all non-randomized decision rules forms
a complete class.

• The set of tests of the form (5.5) (indexed by α) forms a complete class.

Although a complete class C contains all admissible decision rules, there may be many
rules in C which are inadmissible. Therefore, it would be interesting to identify the smallest
complete class. A complete class C is called minimal if there is no proper subset of C that
is complete. It can be shown (see Exercise 20) that a minimal complete class is exactly the
set of admissible decision rules.

The result we will focus on here is one which says that (limits of) Bayes rules form a
complete class or, in other words, for any decision rule δ, there is an “approximately Bayes”
rule δ? such that the risk of δ? is not everywhere greater than the risk of δ. One can give
this result a topological flavor—roughly, the proper prior Bayes rules form a dense subset of
all admissible rules.

Theorem 5.13. Estimators that satisfy the conditions of Theorem 5.6 form a complete class.

As a special case of this theorem, if the model is part of an exponential family and if δ is
a limit of Bayes rules, then there exists a subsequence {Πs′} such that Πs′ → Π and δ is the
Bayes rule δΠ corresponding to this limit. That is, the class of all generalized Bayes rules
forms a complete class in the exponential family case.

5.6 On minimax estimation of a normal mean

Here we are interested in minimax estimation of a normal mean vector θ, under loss func-
tion more general than squared error, based on a normal sample X ∼ Nd(θ,Σ), where the
covariance matrix Σ is known. The kind of loss function we shall consider are those of the
form L(θ, a) = W (a− θ), where W is a “bowl-shaped” function.

Definition 5.6. A function W : Rd → [0,∞] is bowl-shaped if {x : W (x) ≤ α} is convex
and symmetric about the origin for all α ≥ 0.

In the case d = 1, the function W (x) = x2 is bowl-shaped; so, the results to be developed
below will specialize to the case of estimating a scalar normal mean under regular squared
error loss. The d-dimensional analogue of squared error loss is L(θ, a) = ‖a − θ‖2, where
‖ · ‖ is the usual Euclidean norm on Rd. In Exercise 21 you’re invited to show that the
corresponding W (x) = ‖x‖2 is bowl-shaped. An important result related to bowl-shaped
functions is the following result, known as Anderson’s lemma.

Lemma 5.1. Let f be a Lebesgue density of Rd, with {x : f(x) ≥ α} convex and symmetric
about the origin for all α ≥ 0. If W is a bowl-shaped function, then∫

W (x− c)f(x) dx ≥
∫
W (x)f(x) dx ∀ c ∈ Rd.
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Proof. The proof of Anderson’s lemma uses a rather specialized result, called the Brunn–
Minkowski inequality. Keener (2010, Sec. 16.4) gives a proof of all this stuff.

The key point is that the function
∫
W (x − c)f(x) dx is minimized at c = 0. This fact

will be useful in our derivation of a minimax estimator for θ below. Before this, I’d like to
mention one application of Anderson’s lemma.

Example 5.12. Let X ∼ Nd(0,Σ), and let A be a convex set symmetric about the origin.
Then the density f of X and W (x) = 1 − IA(x) satisfy the conditions of Lemma 5.1 (see
Exercise 22). One example of a set A is a ball centered at the origin. Then it follows that

P(X ∈ A) ≥ P(X + c ∈ A) ∀ c ∈ Rd. (5.6)

In other words, the normal distribution with mean zero assigns the largest probability to the
convex symmetric set A. This is perhaps intuitively obvious, but the proof isn’t easy. Results
such as this have been used recently in applications of Bayesian methods in high-dimensional
normal mean problems (e.g., Bhattacharya et al. 2014; Castillo and van der Vaart 2012).

Below is the main result of this section, i.e., that δ(X) = X is minimax for estimating θ
under any loss function L(θ, a) = W (a− θ) with W bowl-shaped.

Theorem 5.14. Let X ∼ Nd(θ,Σ) where Σ is known. Then X is a minimax estimator of θ
under loss L(θ, a) = W (a− θ) for bowl-shaped W .

Proof. Consider a Bayes setup and take a prior Θ ∼ Πψ ≡ Nd(0, ψΣ) for a generic scale
ψ > 0. Then the posterior distribution of Θ, given X, is

Θ | X ∼ Nd
( ψ

ψ + 1
X,

ψ

ψ + 1
Σ
)
.

Write f(z) for the Nd(0, {ψ/(ψ + 1)}Σ) density. For any estimator δ(X), the posterior risk
is

E{W (Θ− δ(X)) | X = x} =

∫
W
(
z +

ψ

ψ + 1
x− δ(x)

)
f(z) dz.

Since W is bowl-shaped and f satisfies the convexity requirements, Anderson’s lemma says
that the posterior risk is minimized at δψ(x) = ψx/(ψ + 1); therefore, this δ(x) is the Bayes
rule. Under the Bayes model, the distribution of X is the same as that of Θ + Z, where
Z ∼ Nd(0,Σ) and Z independent of Θ. Then

Θ− δψ(X) = Θ− δψ(Θ + Z) =
Θ− ψZ
ψ + 1

(in distribution),

and the distribution of the right-hand side is the same as that of {ψ/(ψ+ 1)}1/2Z. Then the
corresponding Bayes risk is

r(Πψ, δψ) = EW (Θ− δψ(X)) = EW ({ψ/(ψ + 1)}1/2Z).
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For any estimator δ, we have supθ R(θ, δ) ≥ r(Πψ, δ) ≥ r(Πψ, δψ). This holds for all ψ, so it
also holds in the limit ψ →∞, which implies

sup
θ
R(θ, δ) ≥ lim

ψ→∞
EW

({ ψ

ψ + 1

}1/2

Z
)
.

Since ψ/(ψ + 1) → 1 as ψ → ∞, it follows from the monotone convergence theorem
that the lower bound above is EW (Z), which is exactly supθ R(θ, θ̂), where θ̂ = X. Since
supθ R(θ, δ) ≥ supθ R(θ, θ̂) for all δ, it follows that θ̂ = X is minimax.

5.7 Exercises

1. Suppose X1, . . . , Xn are independent Ber(θ) random variables. The goal is to estimate
θ under square-error loss.

(a) Calculate the risk for the maximum likelihood estimator θ̂mle = X̄.

(b) Find the posterior mean θ̂Bayes = E(Θ | X) under a Unif(0, 1) prior for θ and
calculate its risk function. [Hint: You’ve already found the formula for the pos-
terior mean in Homework 04—just use the fact that Unif(0, 1) is a special case of
Beta(a, b).]

(c) Compare the two risk functions.

2. Suppose X1, . . . , Xn are independent N(θ, 1) random variables.

(a) Find the risk function of the MLE X̄ (under square-error loss).

(b) Find the risk function for the Bayesian posterior mean under a N(0, 1) prior.

(c) Compare the two risk functions, e.g., where do they intersect?

3. Let X ∼ Pθ and consider testing H0 : θ ∈ Θ0 versus H1 : θ 6∈ Θ0. Find the risk function
for a non-randomized test δ based on the 0–1 loss. [Hint: It will involve Type I and
Type II error probabilities.]

4. Let X be a random variable with mean θ and variance σ2. For estimating θ under
square-error loss, consider the class δa,b(x) = ax+ b. Show that if

a > 1 or a < 0 or a = 1 and b 6= 0,

then δa,b is inadmissible.

5. Suppose X1, . . . , Xn are iid N(θ, 1). If T is the sample mean, show that the conditional
distribution of X1 given T = t is N(t, n−1

n
). [Hint: You can do this using Bayes theorem

or using properties of the multivariate normal distribution.]

6. Reconsider the problem in Exercise 2 and assume a N(0, 1) prior Π.
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(a) Find the Bayes risk of the MLE X̄.

(b) Find the Bayes risk of the Bayes rule.

(c) Which estimator has smaller Bayes risk?

7. Consider θ ∼ Πa = Beta(a, a), and let D ⊂ [0, 1] be an open interval that does
not contain 0 or 1. Show that Πa(D) → 0 as a → 0. Hint: Use the fact that
Γ(x) = Γ(x+ 1)/x.

8. Consider admissibility of the sample mean as discussed in Example 5.8.

(a) Show that the Bayes risk of the sample mean δ(X) = X/n with respect to Πs is

r(Πs, δ) =
1

4n

(
3− 1

2s−1 + 1

)
.

(b) Show that the Bayes risk of the posterior mean δΠs(X) = E(θ | X) with respect
to the prior Πs is

r(Πs, δΠs) =
( 1

2s−1 + 1

)2[3n

4
− n

4(2s−1 + 1
+

s−2

2s−1 + 1

]
.

(c) Show that {r(Πs, δ)− r(Πs, δΠs} → 0 as s→∞. Hint: You’ll probably need the
property of the gamma function from Exercise 7.

9. Consider the binomial problem in Example 5.9.

(a) Find expressions for A, B and C (involving α, β, and n).

(b) Show that A = B = 0 iff α = β = 1
2

√
n.

(c) Plot the risk function of the minimax rule and that of the maximum likelihood
estimate δ(x) = x/n for n ∈ {10, 25, 50, 100}. Compare the performance of the
two estimators in each case.

10. (a) Show that if a decision rule is admissible and has constant risk, then it’s minimax.

(b) Use part (a) and Example 5.7 to argue that, if X1, . . . , Xn are iid N(θ, 1), then
the sample mean X̄ is a minimax estimator of θ under square-error loss.

(c) Suppose X ∼ Bin(n, θ). Show that δ(x) = x/n is minimax for estimating θ under
the loss function

L(θ, a) =
(a− θ)2

θ(1− θ)
.

[Hint: Find a proper prior Π so that δ(x) is a Bayes rule, hence it is admissible.
For minimaxity, use part (a).]
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11. Minimax estimates are not unique. Indeed, show that if X ∼ Pois(θ), then every
estimator of θ is minimax under squared error loss. [Hint: To show that every esti-
mator δ has unbounded risk function R(θ, δ), demonstrate that there are priors Π and
corresponding Bayes rules δΠ with Bayes risk r(Π, δΠ) arbitrarily large.]

12. In Example 5.10, show that the the MLE δ(x) = x is inadmissible. [Hint: Find
another rule δ′(x) with risk everywhere no larger than that of δ(x) = x; the trick is to
incorporate the constraint—think about truncating δ(x).]

13. Consider the estimation problem with loss function L(θ, a) = (a − θ)2, square-error
loss. Show that, in this case, the unbiasedness condition (5.4) on an estimator δ(X) of
θ reduces to the familiar definition, i.e., Eθ{δ(X)} = θ for all θ.

14. Problem 4.6 in Keener (2010, p. 78). [Hint: δ + cU is an unbiased estimator for all c.]

15. Let X1, . . . , Xn be iid Pois(θ). Find the UMVU estimator of Pθ(X1 is even).

16. Prove that Pitman’s estimator θ̂pit is location equivariant.

17. For each location problem below, find Pitman’s estimator of θ.

(a) X1, . . . , Xn iid Unif(θ − 1, θ + 1).

(b) X1, . . . , Xn iid with density 1
2
e−|x−θ| for x ∈ R. There is no closed-form expression

for θ̂pit, but it can be found numerically. Write a computer program to do it, and
apply it to data (6.59, 4.56, 4.88, 6.73, 5.67, 4.26, 5.80).

18. Problem 10.2(a) and 10.3 in Keener (2010, p. 201).

19. Problem 10.8 in Keener (2010, p. 202).

20. Show that if C is a minimal complete class, then it is exactly the class of all admissible
decision rules.

21. Define W (x) = ‖x‖2 for x ∈ Rn. Show that W is bowl-shaped.

22. Verify the claims in Example 5.12 leading to (5.6).
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Chapter 6

More Asymptotic Theory

This chapter is still a work-in-progress. The part on M- and Z-estimators is in pretty good
shape but lots more work is needed on the asymptotic normality and optimality results; the
section on Bayesian posterior consistency and rates is in pretty good shape, but examples
and details about the Bernstein–von Mises theorem needs to be added.

6.1 Introduction

In Chapter 3 we discussed certain asymptotic distribution properties for the maximum like-
lihood estimator (MLE) and the likelihood ratio test. Also, in Chapter 4, we discussed a bit
about the asymptotic properties of Bayesian posterior distributions. In this chapter we want
to expand our horizon a bit to see some generalizations of the results so far. There are two
(related) general classes of estimators, called M- and Z-estimators, which contain the MLE
as a special case. In Section 6.2, we will discuss some general asymptotic properties, such as
consistency, convergence rates, and asymptotic normality, of M- and Z-estimators which, in
particular, will reveal some sufficient conditions for consistency of the MLE, a point which
was glossed over in Chapter 3. Then, in Section 6.3, we want to take a closer look at the
regularity conditions used in Chapter 3 (and again in Chapter 4). It turns out that these
can be replaced by some more mild conditions, at the expense of some additional conceptual
and technical difficulties. More importantly, we will see that those desirable properties that
the MLE possesses actually have nothing to do with the MLE. Specifically, these properties
are consequences of the “niceness” of the sampling model, and can be described outside the
context of a particular estimator. This makes the discussion of (asymptotically) optimal
estimators, etc possible. We will also revisit the Bayesian problem in Section 6.4 and discuss
what these new asymptotic considerations have to say concerning the behavior of the poste-
rior distribution. Finally, in Section 6.5, I will make some cautionary remarks on how much
emphasis should be given to these asymptotic results, based on their scientific/practical im-
portance. Much of the material in this chapter is taken from, or at least inspired by, the
relevant chapters in van der Vaart (1998). The work in this chapter will also highlight the
importance of empirical process results in the study of asymptotics.
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6.2 M- and Z-estimators

6.2.1 Definition and examples

Start with some notation, which is a bit different then that used previously. Let P be a
probability measure defined on the measurable space (X,A). If f is a measurable func-
tion on X, write Pf for

∫
f dP ; this is called deFinetti notation. Next, let X1, . . . , Xn be

an iid sample from some distribution P on X. Write Pn = n−1
∑n

i=1 δXi for the empirical
distribution. For a measurable function f on X, we write Pnf for the empirical average∫
f dPn = n−1

∑n
i=1 f(Xi). As we will see, interesting questions about asymptotic perfor-

mance of certain statistical procedures can be formulated in terms of questions about uniform
convergence of Pnf to Pf over sets of functions f .

Two popular ways to define estimators θ̂n = θ̂(X1, . . . , Xn) is by:

• Maximizing Mn(θ) = Pnmθ for some known functions mθ : X→ R;

• Solving Zn(θ) = 0, where Zn(θ) = Pnzθ for some known functions zθ : X→ R.

The former produces an estimator θ̂n called an M-estimator, and the latter gives an
estimator called a Z-estimator. Obviously, an M-estimator could be based on minimizing
Mn instead of maximizing. Also, if θ 7→ mθ are sufficiently smooth, then a M-estimator can
be re-expressed as a Z-estimator via differentiation. Here are a few examples.

• Maximum likelihood. A familiar example of M/Z-estimators is maximum likelihood.
In this case, we require that the underlying model P depend on a parameter θ in a
specified way, and we write P = Pθ to represent this dependence. Then we can take
mθ = log pθ, where pθ is the density of Pθ, and the corresponding M-estimator is the
MLE. Also, if θ 7→ pθ is smooth, then one could write zθ = (∂/∂θ) log pθ so that the
corresponding Z-estimator is the MLE.

• Least squares. Another familiar example of M/Z-estimation is least-squares. While this
is usually presented first for normal linear models (e.g., regression), where it actually
agrees with maximum likelihood, this procedure can be used in lots of applications
outside the class of normal linear models. Here we consider a non-linear least squares.
Write the mean of Y , given X = x, as E(Y | x) = fθ(x), where θ is some finite-
dimensional parameter and fθ is a fixed (possibly non-linear) function. An estimate
of θ can be obtained via least squares, which is an M-estimator, with mθ(x, y) =
−{y − fθ(x)}2. This M-estimation approach is standard in certain machine learning
applications. If θ 7→ fθ is sufficiently smooth, then the non-linear least squares can be
formulated as a Z-estimation method by taking derivatives.

• Quantiles. For simplicity, let’s look at the median. A median θ is a solution to the
equation Z(θ) := P (X > θ) − P (X < θ) = 0. Therefore, the sample median θ̂n can
be viewed as a Z-estimator of θ, with zθ(x) = 1x>θ − 1x<θ. Other quantiles besides
the median can be defined similarly as solutions to certain equations involving the
distribution function under P , and this representation is fundamental to developments
in quantile regression; see Koenker (2005).
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• Robust estimation of a location parameter. Both sample mean and sample median are
Z-estimators of a location parameter, based on zθ(x) = x− θ and zθ(x) = sign(x− θ),
respectively. More general versions of Z-estimators in this case have zθ(x) = g(x − θ)
for some function g. These kinds of estimators are popular in a “robust” estimation
context; one example is Huber’s estimator corresponding to

g(u) = gk(u) =


−k if u ≤ −k
u if |u| ≤ k

k if u ≥ k;

the motivation for this kind of function is that it controls the influence any extreme
observations, which leads to the robustness properties; see Huber (1981) for details.

One of the main benefits of M- and Z-estimation methods is that one does not need a full
model or likelihood to produce a good, or at least reasonable, estimator. This is particularly
important because, in some cases, a full model might not be available. Moreover, even if
a model is available, it may not be so easy to marginalize over nuisance parameters to get
at the actual parameter of interest. M- and Z-estimation techniques are frequently used by
folks in machine learning, primarily because they can avoid modeling, model assumptions,
and the bias that can be incurred when the posited model is wrong.

6.2.2 Consistency

Let’s focus on M-estimators for the moment. One should ask the question: why is maximizing
Mn a good idea for producing an estimator? Often, a law of large numbers will be applicable,
and we’ll have

Mn(θ)→M(θ) := Pmθ as n→∞, in P -probability, pointwise in θ.

So, we can think of maximizing Mn as approximately maximizing M . In fact, unless we
have a specific model in mind, i.e., P = Pθ, the interpretation of θ is as a maximizer of
some function M . More importantly, M-estimators have nice properties under general (and
relatively mild) conditions.

One point to be made is that the pointwise convergence Mn(θ)→M(θ) is not enough to
guarantee that the maximizer θ̂n of Mn converges to the maximizer θ? of M . See Exercise 1.
One needs to strengthen pointwise convergence to uniform convergence. That is, the sample
size n required for Mn(θ) to be within a specified distance of its target M(θ), in P -probability,
does not depend on θ. We will have more to say about uniform convergence following the
statement and proof of the main result of this subsection.

Theorem 6.1. Equip the parameter space Θ with a metric d. Let Mn be random functions
and M a fixed function such that

Mn →M uniformly in P -probability, as n→∞, (6.1)

123



and assume that the maximizer θ? of M is well-separated in the sense that

sup
θ:d(θ,θ?)≥ε

M(θ) < M(θ?), ∀ ε > 0. (6.2)

If θ̂n is a sequence such that Mn(θ̂n) ≥Mn(θ?)− oP (1), then θ̂n → θ? in P -probability.

Proof. First, we have that Mn(θ̂n) ≥ M(θ?) in P -probability. To see this, by the condition
on θ̂n, we know that Mn(θ̂n) ≥Mn(θ?)− oP (1). By the usual law of large numbers, we know
that Mn(θ?) ≥ M(θ?) − oP (1) so the claim follows since op(1) + oP (1) = oP (1). From this,
we immediately get

M(θ?)−M(θ̂n) ≤Mn(θ̂n)−M(θ̂n) + oP (1)

≤ sup
θ
|Mn(θ)−M(θ)|+ oP (1).

By uniform convergence, the supremum term is oP (1), so we can conclude that M(θ̂n) ≥
M(θ?) in P -probability. Now is the key step of the proof were we write the event d(θ̂n, θ

?) > ε
in terms of M . By the separation condition, we have that, for any ε > 0, there exists δ > 0,
which does not depend on data, such that

d(θ̂n, θ
?) > ε =⇒ M(θ̂n) < M(θ?)− δ.

To complete the proof, note that by Step 2, the P -probability of the right-most event in the
previous display vanishes as n→∞. Therefore,

P{d(θ̂n, θ
?) > ε} → 0, as n→∞ for any ε > 0,

so the M-estimator is consistent, i.e., θ̂n → θ? in P -probability.

Here are some remarks about the conditions of the theorem.

• van der Vaart (1998, p. 46) states that the uniform convergence condition (6.1) holds
whenever {mθ : θ ∈ Θ} is a Glivenko–Cantelli class. This is an important property in
the empirical process literature, but I do not want to discuss the details here. Fortu-
nately, there are some general and relatively simple sufficient conditions for this. In
particular, if Θ is compact, θ 7→ mθ(x) is continuous for each x, and θ 7→ |mθ(x)| is
bounded by a function (of x only) that is P -integrable. These are conditions under
which we have a “uniform law of large numbers,” which is just a law of large numbers
for iid random functions (with respect to a metric of uniform convergence). See Keener
(2010), Sec. 9.1, for some details.

• The separation condition (6.2) requires that the M function have a maximum that is
clearly identified in the sense that there are no θ values such that M(θ) is too close to
M(θ?). Since the M-estimator only cares about maximizing, if there are multiple θ’s
with nearly the same (large) M values then there is no hope for consistency.
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• We do not require that θ̂n is a strict maximizer of Mn, it suffices that it is only a “near
maximizer.” That is, we only need Mn(θ̂n) ≥ Mn(θ?) − oP (1), which would hold for
some local maximizers. Also, is clearly satisfied if θ̂n is the global maximizer.

Example 6.1. Consider a parametric model Pθ for θ a scalar. Let θ? denote the true
parameter value and write P = Pθ? . Suppose that Pθ admits a density pθ with respect to,
say, Lebesgue measure, and define mθ(x) = log{pθ(x)/pθ?(x)}. The expectation Pmθ is the
negative Kullback–Leibler divergence between P = Pθ? and Pθ, which is maximized uniquely
at θ = θ? provided that the model is identifiable, i.e., if θ 7→ Pθ is one-to-one or, in other
words, if pθ(x) = pθ?(x) for Lebesgue-almost all x implies θ = θ?.

To simplify things, consider an exponential family model with density

pθ(x) = h(x)eθT (x)−A(θ).

In this case, mθ simplifies to

mθ(x) = (θ − θ?)T (x)− {A(θ)− A(θ?)}.

If η is differentiable, then the expectation M(θ) also simplifies:

M(θ) = (θ − θ?)Ȧ(θ?)− {A(θ)− A(θ?)}.

Then, clearly Ṁ(θ?) = 0 so θ? is a critical point; moreover, by standard results on exponential
families and convex functions discussed previously, M(θ) is concave (see Exercise 3), so the
separation condition holds. Let X1, . . . , Xn be an iid sample, and Pn the corresponding
empirical measure. Then the empirical mean Mn(θ) = Pnmθ is given by

Mn(θ) = (θ − θ?)T̄n − {A(θ)− A(θ?)},

where T̄n = n−1
∑n

i=1 T (Xi). Then we have

|Mn(θ)−M(θ)| = |θ − θ?| |T̄n − Ȧ(θ?)|.

The uniform convergence clearly holds, by the ordinary LLN, if θ is restricted to a bounded
interval. So, consistency of the MLE follows from Theorem 6.1 if either θ is naturally
restricted to a compact set or if it can be shown that the MLE resides in a compact set with
probability approaching 1 as n→∞.

Example 6.2. Consider the non-linear least squares example above. That is, let P be the
joint distribution for (X, Y ) and write Y = fθ(X) + ε, where E(ε | X) = 0 and E(ε2) < ∞.
Using the mθ(x, y) = −{y − fθ(x)}2 function and law of iterated expectation, we have

Pmθ = · · · = −P (fθ − fθ?)2 + E(ε2), (6.3)

where θ? is the “true” parameter. Clearly Pmθ ≤ E(ε2) and equality holds if and only if
P (fθ − fθ?)2 = 0 if and only if fθ − fθ? = 0 P -almost surely. Therefore, if θ is identifiable,
then M(θ) ≡ Pmθ is uniquely maximized at θ = θ?. Consistency of the M-estimator follows
from the theorem if θ lives in a compact set and θ 7→ fθ is smooth.
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6.2.3 Rates of convergence

A subtle point in the consistency result above is that the parameter θ can be anything,
i.e., it does not have to be a scalar or a vector, even an infinite-dimensional object, like
a function, is covered by the theorem. In the next section we discuss the finest kind of
convergence result, namely, limit distributions, which precisely describe the rate at which
the convergence holds. A shortcoming of the analysis presented there is that it is focused
on scalar or vector parameters only. There must be a middle-ground where we can get some
idea about the speed of convergence in the consistency theorem in its most general form.
Here we will present some results on the rate of convergence in the consistency theorem.

Of course, to get a stronger form of convergence we need stronger conditions. Here I
will take an approach which is just slightly more sophisticated than one that assumes the
convergence rate result to prove the same convergence rate result. More precisely, I will
show that the convergence rate result is an easy consequence of another result, namely,
one that provides uniform control on the objective function away from the maximizer/root.
Taking this approach will highlight the importance of being able to derive the needed uniform
bounds, which will motivate serious students to delve into the empirical process theory.

Consider the M-estimation problem, i.e., where we seek to estimate the maximizer of
M(θ) = Pmθ by maximizing an empirical version Mn(θ) = Pnmθ.

Theorem 6.2. Let d(·, ·) be a metric defined on Θ, and let θ? be the maximizer of M(θ).
Suppose that for some positive sequence εn → 0 and some constant K > 0,

P
(

sup
θ:d(θ,θ?)>εn

{Mn(θ)−Mn(θ?)} ≥ −Kε2
n

)
→ 0, n→∞. (6.4)

If θ̂n is any “approximate maximizer” of Mn(θ), i.e., if Mn(θ̂n) ≥ Mn(θ?) − ηn for any
ηn ≤ Kε2

n, then d(θ̂n, θ
?) = oP (εn) as n→∞, i.e.,

P{d(θ̂n, θ
?) > εn} → 0, n→∞.

Proof. By definition of θ̂n, we have that Mn(θ̂n)−Mn(θ?) ≥ −ηn. So, the event {d(θ̂n, θ
?) >

εn} implies
sup

θ:d(θ,θ?)>εn

{Mn(θ)−Mn(θ?)} ≥ −ηn.

Since ηn ≤ Kε2
n, the implied event has vanishing probability by assumption and, therefore,

so does the original event, proving the claim.

The conclusion of the theorem is that θ̂n → θ? at rate εn as n→∞, in the sense that if
d(θ̂n, θ

?) is divided by εn, then the ratio still vanishes. There is nothing particularly special
about “ε2

n” in (6.4), some other non-negative function f(εn) would work, provided that f is
continuous and equals zero at 0. The proof above is similar to that of Theorem 2 in Wong
and Shen (1995), a classic paper, but most of their hard work goes into establishing the
sufficient condition (6.4). A slightly different result is proved in Theorem 5.52 of van der
Vaart (1998), and there he gives sufficient conditions in terms of the behavior of M outside

126



a neighborhood of θ? and (indirectly) in terms of the complexity of mθ and the space Θ.
The latter part is where the empirical process tools are needed. The reader is encouraged to
look at Theorem 5.52 in van der Vaart (1998), the proof, and the relevant discussion.

6.2.4 Asymptotic normality

Beyond consistency and convergence rates, a finer result is a kind of limit distribution, as
this gives a precise characterization of the rate of convergence. A familiar result of this
form is asymptotic normality of the MLE, which says that n1/2(θ̂n − θ?) is approximately
normal for n large. Besides giving a Op(n

−1/2) rate of convergence for θ̂n, it allows one to con-
struct asymptotically approximate confidence intervals, etc. There are analogous asymptotic
normality results for general M- and Z-estimators and, perhaps surprisingly, the conditions
given here are considerably weaker than those given for asymptotic normality of the MLE
in Chapter 3. We’ll have more to say about asymptotic normality of MLEs in Section 6.3.

To understand what’s going on with the asymptotic normality result, let’s start with some
informal calculations. Consider a Z-estimator θ̂n that (approximately) solves the equation
Zn(θ) = 0, where Zn(θ) = Pnzθ for suitable functions zθ; also, let Z(θ) = Pzθ, so that θ?

satisfies Z(θ?) = 0. To keep things simple, assume θ is a scalar. If θ̂n → θ?, then we may
consider a Taylor approximation of Zn(θ) in a neighborhood of θ?:

0 = Zn(θ̂n) = Zn(θ?) + Żn(θ?)(θ̂n − θ?) + 1
2
Z̈n(θ̃n)(θ̂n − θ?)2,

where θ̃n is a point between θ̂n and θ?. Rewrite this equation as

n1/2(θ̂n − θ?) =
−n1/2Zn(θ?)

Żn(θ?) + 1
2
Z̈n(θ̃n)(θ̂n − θ?)

.

Under suitable conditions, it is fairly easy to show that

• n1/2Zn(θ?)→ N(0, P z2
θ?) in distribution;

• Żn(θ?)→ P żθ? in probability; and

• Z̈n(θ̃n)→ 0 in probability.

The first two properties follow easily by CLT and LLN arguments, under suitable moment
conditions. Only the third property is tricky, as it involves a random function evaluated at
a random argument, but we dealt with this in Chapter 3. Given these three properties, by
Slutsky’s theorem, we get that

n1/2(θ̂n − θ?)→ N
(

0,
P z2

θ?

(P żθ?)2

)
, in distribution.

The more general p-dimensional parameter case is exactly the same, but the notation is more
complicated; see Equation (5.20) in van der Vaart (1998). The above argument implicitly
assumed that θ 7→ zθ(x) has two continuous derivatives for each x; such an assumption
often holds, but there are cases where they don’t. One can prove asymptotic normality
under much weaker conditions—the following theorem assumes less than one derivative of
θ 7→ zθ(x)! Again, for simplicity, I assume θ is a scalar here.
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Theorem 6.3. Let θ 7→ zθ(x) be a measurable function satisfying the Lipschitz condition

|zθ1(x)− zθ2(x)| ≤ ż(x)|θ1 − θ2|, for all θ1, θ2,

where ż satisfies P ż2 <∞. Suppose Pz2
θ? <∞ and Z(θ) = Pzθ is differentiable at a zero θ?,

with nonsingular derivative Vθ? = Ż(θ?). If θ̂n → θ? in P -probability and Zn(θ̂n) = op(n
−1/2),

then n1/2(θ̂n − θ?)→ N(0, V −2
θ? Pz

2
θ?) in distribution.

The asymptotic normality development in terms of Z-estimators is convenient because
of the parallels with the more familiar case of maximum likelihood estimators that solve a
likelihood equation. However, a result similar to that above also holds for M-estimators.

Theorem 6.4. For each θ in an open subset of Euclidean space, let x 7→ mθ(x) be measurable
and θ 7→ mθ(x) be differentiable at θ? for P -almost all x, with derivative ṁθ?(x). Suppose
that there exists a measurable function ṁ with Pṁ2 <∞ such that, for each θ1 and θ2,

|mθ1(x)−mθ2(x)| ≤ ṁ(x)‖θ1 − θ2‖.

Furthermore, assume that M(θ) = Pmθ admits a second-order Taylor approximation at the
point θ? of maximum, with non-singular second derivative matrix Vθ?. If θ̂n “approximately”
maximizes Mn(θ) = Pnmθ and θ̂n → θ? in P -probability, then

n1/2(θ̂n − θ?)→ Np(0, V
−1
θ? Pṁθ?ṁ

>
θ? V

−1
θ? ), in distribution.

Example 6.3. Consider the non-linear least squares regression problem from before. That
is Y = fθ(X) + ε and fθ is a known function depending on a finite-dimensional parameter
θ. Using the notation from before, we have

mθ(x, y) = −{y − fθ(x)}2 and M(θ) = −P (fθ − fθ?)2 − σ2,

where σ2 = E(ε2). For consistency, we could assume that Θ is a bounded subset and that
fθ is sufficiently smooth, so that {mθ : θ ∈ Θ} is G–C. In fact, the Lipschitz condition in
the theorem above is sufficient for Glivenko–Cantelli; see Example 19.7 in van der Vaart
(1998). The Lipschitz condition of the theorem holds, e.g., if ḟθ(x) is uniformly bounded,
in a neighborhood of θ?, by a square P -integrable function, say, f̄(x). Next we check that
M admits a second-order Taylor expansion. If θ 7→ fθ is sufficiently smooth near θ?, then
(fθ − fθ?)2 can be expanded as

(fθ − fθ?)2 = 1
2
(θ − θ?)>{2ḟθ? ḟ>θ?}(θ − θ?) + o(‖θ − θ?‖2).

The little-oh term above is a function of x, and if its expectation is still little-oh, e.g., if the
above little-oh is uniform in x, then

M(θ) = −σ2 − 1
2
(θ − θ?)>{2P ḟθ? ḟ>θ?}(θ − θ?).

Therefore, if Vθ? := 2P ḟθ? ḟ
>
θ? is non-singular, then the theorem holds.
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Let’s make some connection to the more-or-less standard conditions assumed for asymp-
totic normality of the MLE seen in Chapter 3. It is typical that to assume that zθ(x) =
(∂/∂θ) log pθ(x) has two continuous derivatives for all x to prove asymptotic normality, but
here we see that, almost everywhere differentiability and a Lipschitz condition is enough.
However, even the Lipschitz condition is stronger than necessary; see the discussion follow-
ing the proof of Theorem 5.21 in van der Vaart (1998), and also Example 5.24.1

Like in the case of consistency, the classes of functions {zθ : θ ∈ Θ} or {mθ : θ ∈ Θ} for
which the asymptotic normality result holds have a name—they are called Donsker classes.
Roughly, Donsker classes are collections of that admit a “uniform CLT.” A pointwise CLT
holds with a second moment condition, but a uniform CLT requires something stronger.

An interesting but mathematically difficult observation is based on the idea of a uniform
CLT. It will help to make an analogy to the LLN setup where things are simpler. If we had a
uniform LLN then we can conclude consistency of the corresponding M- or Z-estimator. For
asymptotic normality, however, we didn’t think this way. The question is: can asymptotic
normality of M- or Z-estimators be deduced by a kind of uniform CLT? The answer is
YES, but the challenge is in defining what is meant by “uniform CLT.” The details are
rather complicated, and you can find some of the basics in Chapters 18–19 in van der Vaart
(1998). Let me summarize the main idea. Consider a class of square P -integrable functions
{mθ : θ ∈ Θ}, and define the empirical process

Gnmθ = n1/2(Pnmθ − Pmθ), θ ∈ Θ.

If Θ is finite, then we can conclude that

{Gnmθ : θ ∈ Θ} → N|Θ|(0,Σ), in distribution,

for some covariance matrix Σ; this is just the usual multivariate CLT. If Θ is not finite,
then we can still reach the above conclusion for any finite subset. The asymptotic nor-
mality of these “finite-dimensional distributions” turns out to completely describe the limit
distribution, which is called a Gaussian process. So, in a certain sense, there is a uniform
CLT that says Gnmθ converges “uniformly” to a Gaussian limit. How does this translate to
asymptotic normality of the corresponding M-estimator θ̂n? Recall the delta theorem, which
says that continuous functions of an asymptotically normal quantity are also asymptotically
normal. It turns out that there is a more general “functional” delta theorem, which says
that if a process is asymptotically Gaussian, then any continuous functional of that process
is asymptotically normal. Then it remains to show that the “argmax” functional is continu-
ous to reach an asymptotic normality result for the M-estimator. This is what the “argmax
theorem” in Section 5.9 of van der Vaart (1998) is about.

1For problems with a likelihood, there is a really slick condition for very strong asymptotic normality
results called quadratic mean differentiability, which we’ll discuss later.
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6.3 More on asymptotic normality and optimality

6.3.1 Introduction

Chapters 6–9 in van der Vaart (1998), as well as Chapter 16 in Keener (2010), provide
some details about a deeper way of thinking about asymptotic theory. This deeper way of
thinking is due to Lucian Le Cam and were developed in the 1960s and 1970s, and were
later summarized in Le Cam (1986) and Le Cam and Yang (2000); van der Vaart (2002)
gives a nice review of Le Cam’s work. As far as I can understand, the key observation
is that asymptotic properties are really functions of the models in question and not really
about the choice of a particular sequence of tests, estimators, etc. That is, we should not
have to pick a particular test or estimator and then study its properties—its properties
should somehow be clear from some more general properties about the model itself. Le Cam
termed the models as statistical experiments, and proposed a framework by which one can
study the corresponding limit experiment which characterizes the asymptotic properties of
any convergence sequence of tests or estimators. This leads to some very clear description
of asymptotically efficiency and optimality.

A first step along the way is a relaxation of the usual regularity conditions or, more
precisely, an efficient statement of what actually is needed to get some interesting limit
results. This is called differentiability in quadratic mean, and is shown in Section 6.3.5 to be
sufficient for a kind of normal limit experiment, from which many of our familiar asymptotic
normality results can be derived.

6.3.2 Hodges’s provocative example

To do...

6.3.3 Differentiability in quadratic mean

Consider an iid sample X1, . . . , Xn of X-values random variables with statistical model {Pθ :
θ ∈ Θ}. Assume that there exists a dominating σ-finite measure µ on X and let pθ be the
density (Radon–Nikodym derivative) of Pθ with respect to µ. This is the standard setup
where µ is either counting or Lebesgue measure. For simplicity of notation, I’ll generally
assume here that θ a scalar.

It’s clear that if pθ is sufficiently smooth, then an asymptotic normality result should be
possible. For example, assuming three continuous derivatives of θ 7→ pθ, pointwise, and a
little more gets us what we need. The question is: do we need less? To start, let’s look
at a particular technical condition that will be central to much of the development in this
section of material. It’s a notion of functional differentiability. Typically we think of Taylor
approximations coming after a notion of differentiability; however, in more complicated
spaces, differentiation is usually defined through a type of Taylor approximation.
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Definition 6.1. The model Pθ is differentiable in quadratic mean (DQM) at θ if θ 7→ √pθ
is L2(µ)-differentiable at θ, i.e., there exists a function ˙̀

θ such that∫
X

[√
pθ+h −

√
pθ − 1

2
˙̀
θ
√
pθ h

]2
dµ = o(h2), h→ 0.

To motivate the subsequent development, note that DQM implies a sort of “local asymp-
totic normality” of the statistical model/statistical experiment. To understand better what
this ˙̀

θ function is, ignore the distinction between pointwise and L2 differentiability. Then
1
2

˙̀
θ
√
pθ should be the (regular) derivative of

√
pθ. Using ordinary calculus, we get that

∂

∂θ

√
pθ =

1

2

1
√
pθ
ṗθ =

1

2

ṗθ
pθ

√
pθ.

So, we must have ˙̀
θ = ṗθ/pθ, “in an L2 sense.” But this latter quantity is a familiar one,

i.e., ṗθ/pθ = (∂/∂θ) log pθ is just the score function. In other words, ˙̀
θ is just an “L2-score

function,” and it’s not surprising that this quantity (and its variance) will be crucial to the
asymptotic normality developments to be discussed below.

An immediate question is if there are any convenient sufficient conditions for DQM. From
the stated context, we are introducing DQM as a way to side-step those tedious regularity
conditions. So, naturally, those regularity conditions are sufficient for DQM. But we don’t
need quite that much. The following result is stated in Lemma 7.6 in van der Vaart (1998):

Let θ 7→
√
pθ(x) be continuously differentiable for each x, and suppose that θ 7→

Iθ :=
∫

(ṗθ/pθ)
2pθ dµ is well-defined and continuous. Then the model is DQM at

θ and ˙̀
θ = ṗθ/pθ.

Then the familiar exponential families are DQM under some mild integrability conditions,
with ˙̀

θ the usual score function; see Example 7.7 in van der Vaart (1998).
But there are some families that fail the usual regularity conditions but are still DQM.

Standard examples of trouble-maker distributions are those whose support depends on the
parameter. It turns out that DQM does not require common support for all θ, but something
more relaxed. In the definition of DQM, split the integral to the disjoint subsets {pθ = 0}
and {pθ > 0}. Then the sum of the two integrals must be o(h2), hence, each must be o(h2).
Focus only on the integral over {pθ = 0}. On this set, the integrand simplifies considerably,
leaving the condition ∫

{pθ=0}
pθ+h dµ = o(h2).

This is a necessary condition for DQM. The simplest example of parameter-dependent sup-
port is Unif(0, θ), and it’s easy to check that it doesn’t satisfy the necessary condition.
Indeed, if h > 0, then∫

{pθ=0}
pθ+h dµ =

∫ θ+h

θ

1

θ + h
dx =

h

θ + h
6= o(h2) =⇒ Unif(0, θ) not DQM!
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Next, recall that the score function having mean zero was an important idea in much
of the developments of the asymptotic theory in Chapter 3. Recall that this was arranged
by requiring that certain integration and differentiation could be interchanged, which might
be a strong assumption. It turns out, however, that the score function having mean zero
is a consequence of DQM. To prove this, we require a basic fact about the function space
L2(µ). In particular, fix g ∈ L2(µ) and take a sequence {ft : t ≥ 1} ⊂ L2(µ) such that
ft → f in L2(µ) as t → ∞; that is,

∫
(ft − f)2 dµ → 0 as t → ∞. Then the claim is

that
∫
fg dµ = limt→∞

∫
fng dµ. The proof is an easy consequence of the Cauchy–Schwartz

inequality: ∣∣∣∫ ftg dµ−
∫
fg dµ

∣∣∣ =
∣∣∣∫ (ft − f)g dµ

∣∣∣ ≤ ∫ |ft − f ||g| dµ
≤
(∫

(ft − f)2 dµ
)1/2(∫

g2 dµ
)1/2

→ 0.

This can immediately be generalized to show that, if ft → f and gt → g, both in L2(µ), then∫
ftgt dµ→

∫
fg dµ as t→∞. This result will be used to prove that Pθ ˙̀

θ = 0 under DQM.

Next we need some notation: write p = pθ, pt = pθ+ht−1/2 for a fixed h 6= 0, and ψ = ˙̀
θ for

the score function defined by DQM. From DQM we can conclude the following:

•
√
t(
√
pt −

√
p)→ f := 1

2
ψ
√
ph in L2(µ), as t→∞, and

• √pt →
√
p in L2(µ) as t→∞.

Then, using the interchange of limit with integral discussed above, we get

(Pθ ˙̀
θ)h =

∫
˙̀
θpθ h dµ = 2

∫
f
√
p dµ

=

∫
f
√
p dµ+

∫
f
√
p dµ

= lim
t→∞

[∫ √
t(
√
pt −

√
p)
√
pt dµ+

∫ √
t(
√
pt −

√
p)
√
p dµ

]
= lim

t→∞

∫ √
t(
√
pt −

√
p)(
√
pt +
√
p) dµ

= lim
t→∞

[√
t
{∫

pt dµ−
∫
p dµ

}]
= 0.

This holds for all h 6= 0, which implies Pθ ˙̀
θ = 0, i.e., score function has mean zero.

It turns out that DQM also implies that the variance of the score is finite, i.e., Iθ :=
Pθ ˙̀2

θ < ∞; see the proof of Theorem 7.2 in van der Vaart (1998). This is nothing but
the familiar Fisher information we saw in Chapter 2. Usually to properly define the Fisher
information we have to make assumptions about interchange of derivative and expectation,
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but here we can define it with only DQM.2 Before getting to the asymptotic normality stuff,
I want to discuss a version of the Cramer–Rao inequality under DQM.

Theorem 6.5. 3Suppose that the model is DQM at θ with score function ˙̀
θ and non-zero

Fisher information Iθ. Let T be a real-valued statistic whose variance Vθ exists and is bounded
in a neighborhood of θ. Then γθ := Pθ(T ) has derivative γ̇θ = Pθ(T ˙̀

θ) at θ, and Vθ ≥ γ̇2
θI
−1
θ .

The proof of the second claim follows from the first claim and the standard result that
the squared covariance is upper bounded by product of variances; we did this in Chapter 2.
So, it’s only the first that needs some attention. The result is true in general, but to simplify
things I’ll assume that the statistic T is bounded, i.e., |T | ≤M for some M > 0.

The key to the proof is the Cauchy–Schwartz inequality and a kind of chain rule for L2

derivatives. We need to show that

|γθ+h − γθ − Pθ(T ˙̀
θ)h| = o(h), h→ 0.

The quantity in the absolute values on the left-hand side is just a series of integrals involving
T , i.e., ∣∣∣∫ Tpθ+h dµ−

∫
Tpθ dµ−

∫
T ˙̀

θpθ dµ h
∣∣∣.

Collect all the integrals into one and move the absolute value to the inside. Then the quantity
above is no bigger than ∫

|T | |pθ+h − pθ − ˙̀
θpθ h| dµ.

Using the “difference of two squares” algebra trick, we can write this as∫
|T | |(√pθ+h −

√
pθ)(
√
pθ+h +

√
pθ)− 1

2
˙̀
θ
√
pθh(2

√
pθ)| dµ.

For small h, we have
√
pθ+h +

√
pθ ≈ 2

√
pθ, so the previous display is approximately∫

|T | |2√pθ| |
√
pθ+h −

√
pθ − 1

2
˙̀
θ
√
pθh| dµ.

To simplify the argument, assume that T is bounded, i.e., |T | ≤ M (µ-almost everywhere);
this is not essential to the result, just makes our lives easier here. Use this bound and the
Cauchy–Schwartz inequality to bound the previous display above by

M
{∫

4pθ dµ
}1/2{∫

(
√
pθ+h −

√
pθ − 1

2
˙̀
θ
√
pθh)2 dµ

}1/2

.

The first integral equals 4, but it doesn’t matter: the second integral is o(h2) by DQM, so
its square root must be o(h). This is what we wanted to show, so γθ is differentiable and its
derivative is γ̇θ = Pθ(T ˙̀

θ). From here, the Cramer–Rao inequality follows as usual.

2We cannot expect an alternative definition of Fisher information in terms of second derivatives because
DQM says nothing about even existence the of these second derivatives.

3Taken from Chapter 6.3 in David Pollard’s Asymptopia draft, available online.
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We can already see that some of those familiar results from earlier chapters follow from
DQM, which is weaker than those standard regularity conditions. The question about asymp-
totic normality comes next. Specifically, we want to study asymptotic normality in a more
general setting. For example, the classical approach is to deal with asymptotic normality
for individual estimators, but is it possible to get these results all from a more precise study
of properties of the model? The answer is YES and, in the iid case, DQM is a sufficient
condition for this kind of “asymptotic normality of the sequence of models.”

6.3.4 Contiguity

To do...

6.3.5 Local asymptotic normality

To do...

6.3.6 On asymptotic optimality

To do...

6.4 More Bayesian asymptotics

6.4.1 Consistency

Consider a Bayes model where X1, . . . , Xn are iid Pθ, given θ ∈ Θ, and the prior distribute
for θ is Π, a proper prior. If Ln(θ) is the likelihood function for θ based on data X1, . . . , Xn,
then the posterior distribution is a probability measure Πn that satisfies

Πn(A) ∝
∫
A

Ln(θ) Π(dθ), A ⊆ Θ.

Our notation Πn hides the dependence on the data X1, . . . , Xn, but it should be implicitly
understood that the measure is random. We discussed some Bayesian large-sample theory
in Section 4.6, but the focus there was on distributional approximations, in particular, a
Bernstein–von Mises theorem. While this is a desirable result, maybe the best possible, there
are some cases where no posterior normality can be possible. An example is in the case of
infinite-dimensional parameters. Here we will give some more basic posterior asymptotic
results that can applied across finite- and infinite-dimensional parameters alike. Our first
consideration is posterior consistency.

Definition 6.2. The posterior distribution Πn is consistent at θ? if Πn(U c) → 0 with Pθ?-
probability 1 for any neighborhood U of θ?.
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The intuition is that, if θ? is the true value of the parameter, then a consistent posterior
distribution will concentrate around θ? in the sense that, for large n, all the posterior mass
will reside on an arbitrarily small neighborhood of θ?.

Towards sufficient conditions for posterior consistency, we first want to rewrite the formula
for the posterior distribution in a slightly different way:

Πn(A) =
Nn(A)

Dn

=

∫
A
Rn(θ) Π(dθ)∫

Θ
Rn(θ) Π(dθ)

,

where Rn(θ) = Ln(θ)/Ln(θ?) is the likelihood ratio. Dividing by Ln(θ?) inside the integrand
has no effect because this term does not depend on θ. Then the idea is to show that, for
A = U c, the complement of a neighborhood of θ?, Nn(A) is not too large and Dn is not too
small, so that the ratio is small. As a first step, we get a lower bound on the denominator
Dn. For this we need an important condition on the prior Π.

Definition 6.3. The prior Π satisfies the KL condition at θ? if

Π({θ : K(θ?, θ) < ε}) > 0 ∀ ε > 0,

where K(θ?, θ) is the Kullback–Leibler divergence of Pθ from Pθ? .

Lemma 6.1. If Π satisfies the KL-condition at θ?, then, or sufficiently large n, Dn ≥ e−nc

for any c > 0 with Pθ?-probability 1.

Proof. The strategy is to show that lim infn→∞ e
ncDn = ∞ with Pθ?-probability 1. By

definition of Dn,

encDn =

∫
Θ

enc+logRn(θ) Π(dθ).

Let’s rewrite the log term as

logRn(θ) = −nKn(θ?, θ) = −nPn log{pθ?/pθ}.

We know that Kn(θ?, θ)→ K(θ?, θ), the Kullback–Leibler divergence, with Pθ?-probability 1
as n→∞ by the law of large numbers. For the given c, let B = {θ : K(θ?, θ) < c/2}. Then

encDn >

∫
B

enc−nKn(θ?,θ) Π(dθ).

For θ ∈ B, we have that Kn(θ?, θ) has a limit less than c/2. Take lim inf of both sides and
move the lim inf inside the integral (via Fatou’s lemma) to get

lim inf
n→∞

encDn >

∫
B

lim inf
n→∞

enc−nKn(θ?,θ) Π(dθ).

Of course, the integrand converges to ∞ and, since Π(B) > 0 by the KL-condition, we get
the desired result.
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The next step is to bound the numerator Nn. For this, there are a variety of conditions
that will suffice, but here I want to emphasize simplicity. So, I choose to keep a connection
with the M-estimation material in previous sections. As before, let d be a metric on Θ, so
that neighborhoods of θ? can be taken as balls {θ : d(θ, θ?) < r}. Specifically, we will assume
that, for the true θ?, i.e., minimizer of θ 7→ K(θ?, θ), the following. First, θ? is well-separated
in the sense that

inf
θ:d(θ,θ?)≥ε

K(θ?, θ) > 0, ∀ ε > 0. (6.5)

Second, assume that the log-likelihood ratios satisfies a uniform law of large numbers, i.e.,

Zn(θ?) := sup
θ
|Kn(θ?, θ)−K(θ?, θ)| → 0 with Pθ?-probability 1. (6.6)

Together, these two are sufficient conditions for consistency of the MLE, which can be viewed
as a minimizer of θ 7→ Kn(θ?, θ), but not a necessary.

Theorem 6.6. If the prior satisfies the KL-condition at θ? and the conditions (6.5) and
(6.6) hold, then the posterior is consistent at θ?.

Proof. Given any ε > 0, let A = {θ : d(θ, θ?) ≤ ε}c. Rewrite the numerator as

Nn(A) =

∫
A

e−nKn(θ?,θ) Π(dθ) =

∫
A

e−n{Kn(θ?,θ)−K(θ?,θ)+K(θ?,θ)}Π(dθ).

The integrand is clearly bounded by

enZn(θ?)e−nK(θ?,θ).

By (6.5), K(θ?, θ) is bounded below by zero uniformly in A, i.e., there exists δ = δ(ε, θ?) > 0
such that K(θ?, θ) ≥ δ for all θ ∈ A. Therefore, the integrand can be further bounded by

enZn(θ?)e−nδ.

By (6.6), Zn(θ?) < δ/2 for all large n with Pθ?-probability 1. Combine this with the lower
bound on Dn we get

Πn(A) ≤ enc−nδ/2 with Pθ?-probability 1 for all large n.

Since c is arbitrary, take c < δ/2 and let n→∞ to complete the proof.

Recall that posterior consistency means that, in the limit, the posterior puts all of its
mass in an arbitrarily small neighborhood of θ?. In other words, the posterior measure
is converging to a point-mass at θ?. Therefore, barring any mathematical irregularities,
one should expect that a reasonable summary of the posterior distribution would yield a
consistent point estimator. For example, the posterior mean

θ̃n :=

∫
θΠn(dθ),

is a consistent estimator in the sense that θ̃n → θ? as n → ∞ with Pθ?-probability 1 under
under the conditions of Theorem 6.6 plus a little more.

136



Corollary 6.1. Under the conditions of Theorem 6.6, if the prior mean exists, then the
posterior mean satisfies θ̃n → θ? as n→∞ with Pθ?-probability 1.

Proof. See Exercise 4.

An important point is that this makes minimal requirements on the prior Π, i.e., it only
needs to assign a sufficient amount of mass near θ?. The challenge is that θ? is unknown,
so one needs to put a sufficient amount of mass “everywhere.” In cases where θ? is finite-
dimensional, this can be accomplished by taking the prior to have a density (with respect
to Lebesgue measure, say) which is strictly positive and continuous. In infinite-dimensional
problems, the KL-condition is more difficult, but can be checked; see, e.g., Wu and Ghosal
(2008). The main point here is that one can get Bayesian posterior consistency under
basically the same conditions needed for MLE consistency.4

An interesting side point is that one could replace K and Kn in the above results with
something else that has the same properties as these. In other words, there is nothing
special about the use of likelihood in constructing a consistent posterior distribution. For
example, Let K(θ) = Pkθ be a function minimized at θ = θ?, and define the empirical version
Kn(θ) = Pnkθ. Provided that the properties (6.5) and (6.6) hold, then the pseudo-posterior
Π̃n defined as

Π̃n(A) ∝
∫
A

e−nKn(θ) Π(dθ)

would have the same consistency properties as the genuine Bayes posterior. Such a con-
struction would be particularly useful in problems where a Bayesian analysis is desired but
a full model/likelihood is not available. See Bissiri et al. (2013) for some general discussion
on this, and Syring and Martin (2015) for an application in medical statistics.

6.4.2 Convergence rates

After seeing the results in the previous subsection, it should be no surprise that we can
strengthen the posterior convergence results if we assume some stronger control on the log-
likelihood ratios. That is, if we assume what was needed for a M-estimator or, in this case,
MLE rate of convergence, then we can get the same rate for the posterior. Here we need to
first explain what we mean by posterior rate of convergence. Recall that d is a metric on Θ.

Definition 6.4. Let εn be a positive vanishing sequence. The posterior distribution Πn

converges to θ? at rate εn if, for some constant M > 0, Πn({θ : d(θ, θ?) > Mεn}) → 0 in
Pθ?-probability as n→∞.

Besides the more refined result on how quickly the posterior concentrates around θ?, a
small difference between this definition and that of consistency is that the mode of con-
vergence here is “in probability” rather than “with probability 1.” The stronger mode of
convergence can be obtained, at the expense of stronger assumptions.

4This is not precisely true, i.e., there are examples where one is consistent but the other is not. The point
is that we’ve made strong enough assumptions here that consistency of both would hold; in those examples
where one fails to be consistent, the assumptions here are violated.
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We saw in Chapter 4 that, in many examples, the posterior has an asymptotic normality
property, which implies that the convergence rate is εn = n−1/2. The conditions for this are
(roughly) the same as for asymptotic normality (see Section 6.4.3) where the rate is also
n−1/2, so there is some common ground here. The results to come are applicable in problems
where a posterior normality result is not possible, such as infinite-dimensional problems.

To start here, we modify the lower bound result for the denominator Dn. For this, we
need a slightly strengthen the Kullback–Leibler property. Let pθ be the density function for
Pθ, and define

V (θ?, θ) = Vθ?{log pθ(X)− log pθ?(X)};
this is like a “Kullback–Leibler variance,” since the Kullback–Leibler divergence K(θ?, θ)
equals Eθ?{log pθ(X)− log pθ?(X)}. Following Shen and Wasserman (2001), for t > 0, define

S(t) = {θ : max[K(θ?, θ), V (θ?, θ)] ≤ t} ⊂ Θ.

If the prior assigns a sufficient amount of mass on S(t) for sufficiently small t—both “suffi-
ciently”s depend on n—then we get a useful lower bound on the denominator Dn.

Lemma 6.2. For a positive sequence tn, let Sn = S(tn). Then

Pθ?{Dn ≤ 1
2
Π(Sn)e−2ntn} ≤ 2

ntn
.

Therefore, if ntn →∞, then

Dn ≥ 1
2
Π(Sn)e−2ntn with Pθ?-probability converging to 1.

Proof. The proof in Shen and Wasserman (2001) is based on some basic tools, e.g., stan-
dardization and Chebyshev’s inequality, and is very readable. A similar result is proved in
Lemma 8.1 in Ghosal et al. (2000).

As before, we opt to give a result which has a simple proof and is consistent with the
assumptions made for M-estimator (e.g., maximum likelihood estimator) rate of convergence.
The assumption here is basically the same as (6.4) in the M-estimator problem. In particular,
we assume that, for a positive sequence εn and a constant K > 0,

Theorem 6.7. Let rn → 0, and suppose that, for a constant K > 0 and all sn ≥ rn,

Pθ?
(

sup
θ:d(θ,θ?)>sn

{Kn(θ?)−Kn(θ)} ≥ −Ks2
n

)
→ 0, n→∞. (6.7)

Suppose tn is such that Π{S(tn)} & e−2ntn and define

ε = max(t1/2n , rn).

If nε2
n →∞, then for all sufficiently large J > 0,

Πn({θ : d(θ, θ?) > Jεn}) . e−(J2K/2)nε2n .

Proof. To do...

Examples...

138



6.4.3 Bernstein–von Mises theorem, revisited

Based on the LAN stuff...

6.5 Concluding remarks

To do...

6.6 Exercises

1. Two calculus/analysis problems.5

(a) Give an example of a sequence of functions fn(x) that converge pointwise to a
function f(x) but not uniformly.

(b) Show that if fn(x) → f(x) uniformly in a compact set of x, if fn have unique
maximizers xn, and if the unique maximizer x? of f is “well-separated” [i.e., no
point x away from x? has f(x) close to f(x?)], then xn → x?.

2. Fill in the missing details in (6.3).

3. Show that the function M in Example 6.1 is concave.

4. Prove Corollary 6.1. Hints?

5See, also, Problem 5.7 in van der Vaart (1998).
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Dvoretzky, A., Kiefer, J., and Wolfowitz, J. (1956). Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator. Ann. Math.
Statist., 27:642–669.

Eaton, M. L. (1989). Group Invariance Applications in Statistics. Institute of Mathematical
Statistics, Hayward, CA.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist., 7(1):1–26.

Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood
estimator: observed versus expected Fisher information. Biometrika, 65(3):457–487. With
comments by Ole Barndorff-Nielsen, A. T. James, G. K. Robinson and D. A. Sprott and
a reply by the authors.

Evans, M. (2013). What does the proof of Birnbaum’s theorem prove? Electron. J. Stat.,
7:2645–2655.

Fisher, R. A. (1973). Statistical Methods for Research Workers. Hafner Publishing Co., New
York. Fourteenth edition—revised and enlarged.

Fraser, D. A. S. (1968). The Structure of Inference. John Wiley & Sons Inc., New York.

Fraser, D. A. S. (2004). Ancillaries and conditional inference. Statist. Sci., 19(2):333–369.
With comments and a rejoinder by the author.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis.
Chapman & Hall/CRC, Boca Raton, FL, second edition.

Ghosal, S., Ghosh, J. K., and van der Vaart, A. W. (2000). Convergence rates of posterior
distributions. Ann. Statist., 28(2):500–531.

Ghosh, J. K., Delampady, M., and Samanta, T. (2006). An Introduction to Bayesian Anal-
ysis. Springer, New York.

Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. Springer-Verlag,
New York.

141



Ghosh, M. and Meeden, G. (1997). Bayesian Methods for Finite Population Sampling,
volume 79 of Monographs on Statistics and Applied Probability. Chapman & Hall, London.

Ghosh, M., Reid, N., and Fraser, D. A. S. (2010). Ancillary statistics: A review. Statist.
Sinica, 20:1309–1332.

Hannig, J. (2009). On generalized fiducial inference. Statist. Sinica, 19(2):491–544.

Hedayat, A. S. and Sinha, B. K. (1991). Design and Inference in Finite Population Sampling.
John Wiley & Sons Inc., New York.

Huber, P. J. (1981). Robust Statistics. John Wiley & Sons Inc., New York. Wiley Series in
Probability and Mathematical Statistics.

Jaynes, E. T. (2003). Probability Theory. Cambridge University Press, Cambridge.

Kadane, J. B. (2011). Principles of Uncertainty. Texts in Statistical Science Series. CRC
Press, Boca Raton, FL. http://uncertainty.stat.cmu.edu.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc., 90(430):773–
795.

Keener, R. W. (2010). Theoretical Statistics. Springer Texts in Statistics. Springer, New
York.

Koenker, R. (2005). Quantile Regression. Cambridge University Press, Cambridge.

Kullback, S. (1997). Information Theory and Statistics. Dover Publications, Inc., Mineola,
NY. Reprint of the second (1968) edition.

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer Series in
Statistics. Springer-Verlag, New York.

Le Cam, L. and Yang, G. L. (2000). Asymptotics in Statistics. Springer Series in Statistics.
Springer-Verlag, New York, second edition. Some basic concepts.

Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. Springer Texts in
Statistics. Springer-Verlag, New York, second edition.

Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses. Springer Texts in
Statistics. Springer, New York, third edition.

Liu, C. and Martin, R. (2015). Frameworks for prior-free posterior probabilistic inference.
WIREs Comput. Stat., 7(1):77–85.

Martin, R. (2015a). On generalized inferential models. Unpublished manuscript,
arXiv:1511.06733.

142



Martin, R. (2015b). Plausibility functions and exact frequentist inference. J. Amer. Statist.
Assoc., to appear, arXiv:1203.6665.

Martin, R. and Liu, C. (2013). Inferential models: A framework for prior-free posterior
probabilistic inference. J. Amer. Statist. Assoc., 108(501):301–313.

Martin, R. and Liu, C. (2014). Discussion: Foundations of statistical inference, revisited.
Statist. Sci., 29:247–251.

Martin, R. and Liu, C. (2015a). Conditional inferential models: Combining information for
prior-free probabilistic inference. J. R. Stat. Soc. Ser. B, 77(1):195–217.

Martin, R. and Liu, C. (2015b). Inferential Models: Reasoning with Uncertainty. Monographs
in Statistics and Applied Probability Series. Chapman & Hall/CRC Press.

Martin, R. and Liu, C. (2015c). Marginal inferential models: Prior-free probabilistic inference
on interest parameters. J. Amer. Statist. Assoc., to appear; arXiv:1306.3092.

Mayo, D. (2014). On the Birnbaum argument for the strong likelihood principle. Statist.
Sci., 29(2):227–239.

McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models. Monographs on Statistics
and Applied Probability. Chapman & Hall, London.

Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent
observations. Econometrica, 16:1–32.

Reid, N. (2003). Asymptotics and the theory of inference. Ann. Statist., 31(6):1695–1731.

Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer, New York,
2nd edition.

Rubin, D. B. (1981). Estimation in parallel randomized experiments. J. Educational Statist.,
6(4):377–401.

Schervish, M. J. (1995). Theory of Statistics. Springer-Verlag, New York.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Prince-
ton, N.J.

Shen, X. and Wasserman, L. (2001). Rates of convergence of posterior distributions. Ann.
Statist., 29(3):687–714.

Stigler, S. M. (2007). The epic story of maximum likelihood. Statist. Sci., 22(4):598–620.

Syring, N. and Martin, R. (2015). Likelihood-free Bayesian inference on the minimum clini-
cally important difference. unpublished manuscript, arXiv:1501.01840.

143



van der Vaart, A. (2002). The statistical work of Lucien Le Cam. Ann. Statist., 30(3):631–
682. Dedicated to the memory of Lucien Le Cam.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.

Wong, W. H. and Shen, X. (1995). Probability inequalities for likelihood ratios and conver-
gence rates of sieve MLEs. Ann. Statist., 23(2):339–362.

Wu, Y. and Ghosal, S. (2008). Kullback Leibler property of kernel mixture priors in Bayesian
density estimation. Electron. J. Stat., 2:298–331.

Young, G. A. and Smith, R. L. (2005). Essentials of Statistical Inference. Cambridge
University Press, Cambridge.

Zabell, S. L. (1992). R. A. Fisher and the fiducial argument. Statist. Sci., 7(3):369–387.

144


