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ABSTRACT. We survey various aspects of the problem of automatic continuity of homo-
morphisms between Polish groups.
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1. INTRODUCTION

The questions that we consider here come out of the work on a very old question of
Cauchy, namely,

Problem 1.1 (A.L. Cauchy). What are the functions π : R→ R that satisfy the functional
equation

π(x+ y) = π(x) + π(y)?

In modern terminology, this is of course just asking for a characterisation of endomor-
phisms of the additive group R. The motivation of Cauchy was to know whether the only
such functions are given by π(x) = rx for some fixed r ∈ R, or, what is equivalent, if all
such π are continuous.

We shall be interested in a more general question which extends the consideration to
general Polish groups, i.e., separable topological groups whose topology can be given by
a complete metric. Though many of the results mentioned are not really specific to this
case, we shall nevertheless stick to this setting as it encompasses what we feel are the most

Date: November 2008.
2000 Mathematics Subject Classification. 03E15.
Key words and phrases. Haar null sets, universally measurable homomorphisms, automatic continuity, ample

generics, small index property.
The author was partially supported by NSF grant DMS 0556368.

This article is based on a lecture series given at the 10th International Atelier of Set Theory at CIRM, Luminy,
France. The author is grateful to the organisers A. Louveau and B. Velickovic for giving him the opportunity to
organise his thoughts on this topic and to A. Kechris for encouragement in the preparation of this paper.

1



2 CHRISTIAN ROSENDAL

important examples, and since we do not want to get bogged down in excessively detailed
hypotheses.

The most general form of the question considered is simply:

When is a homomorphism π : G → H between Polish groups continu-
ous?

Since this question is admittedly extremely vague, we shall specify some more concrete
subproblems that we treat individually. Though some of the techniques will be similar for
several of the problems, they are also very diverse and therefore deserve separate attention.
Moreover, the topics touched on here represent the author’s personal selection and should
therefore not be considered complete in any way, but it does represent a good spectrum of
the work on these problems. However, we have mostly avoided results that require specific
analysis of individual groups or heavy handed combinatorial proofs and instead focused
on more general techniques. Also, we shall say nothing about automatic continuity in the
context of Banach algebras. This is a huge area in itself and differs a lot from our topic
here, as it mixes the multiplicative and linear structure of algebras. For more information
on this, one can consult the massive volume of H.G. Dales [6].

Another important topic, that is completely left out here, is that of applications of au-
tomatic continuity. While this is certainly of vital importance to motivate our study, we
leave it for the reader to follow up on the references. Let us just mention that many of the
individual results presented here are motivated by various specific questions concerning
the algebraic structure of topological groups, phenomena of rigidity in ergodic theory, ge-
ometry and model theory and also by applications to the dynamics of large Polish groups.
Moreover, we feel that the topic has an intrinsic interest as a framework for studying the
tight connections between algebraic and topological structure of Polish groups.

Before delving deeper into the theory, let us note that the general form of Cauchy’s
question is actually non-trivial by exhibiting some discontinuous homomorphisms between
Polish groups. As will be shown later, in any such example at least a certain amount of
AC is necessary, so in order to find examples one will have to consider in which way to
get choice to bear on the groups in question. We essentially have five different examples,
though some of these might also be considered to belong to the same category. These will
also indicate the limitations of possible positive results in later sections.

Example 1.2. Discontinuous functionals φ on a separable infinite-dimensional Banach
space X .

To construct such φ, choose a basis {xi}i∈I ofX as an R-vector space such that {xi}i∈I
is dense in X and define

φ
(∑
i∈I

aixi
)

= ai0

for some fixed i0 ∈ I . By density, we can find jn ∈ I \ {i0} such that xjn → xi0 . Then φ
is discontinuous since

φ(xi0) = 1, while φ(xjn) = 0.

Example 1.3. An isomorphism of say (R,+) and (R2,+).

This can be constructed using a Hamel basis. I.e., if A and B are bases for R and R2

as Q-vector spaces, then |A| = 2ℵ0 = |B| and thus R and R2 are isomorphic as Q-vector
spaces. Since the Q-vector space structure encompasses the group structure, R and R2 are
isomorphic as groups. But not topologically.
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Before stating the next example, let us note that if G is a Polish group, any open sub-
group H ≤ G is also closed. For if H is open, so are all its cosets gH , and so the
complement ∼H is a union of open cosets and hence open too. Also, if H ≤ G is a
closed subgroup of countable index, then H is open. For by Baire’s Theorem, H cannot
be meagre and hence, by Pettis’ Theorem (see Lemma 2.1 below),

1 ∈ Int (H−1H) = Int H.

So, as H is homogeneous, H is open.
Let also S∞ be the infinite symmetric group, i.e., the group of all permutations of N (not

just finitely supported), where the topology has as subbasis the sets of the form

{g ∈ S∞
∣∣ g(n) = m}

for all n,m ∈ N. S∞ is a Polish group.
Now, if H ≤ G is a non-open/closed subgroup of countable index, then we can define

a discontinuous homomorphism

π : G→ S∞,

as follows. First, since the set G/H of left cosets is countable, we can see S∞ as the group
Sym(G/H) of all permutations of G/H . Now set π(f) = Lf ∈ Sym(G/H), where

Lf (gH) = fgH.

But, Lf (1H) = 1H if and only if f ∈ H , and hence

π−1({α ∈ Sym(G/H)
∣∣ α(1H) = 1H}) = H,

which is not open. So π is discontinuous.
Therefore, in order to produce discontinuous homomorphisms on a Polish group, it

suffices to find non-open subgroups of countable index. We shall now see some examples
of these.

Example 1.4. Non-open subgroups of finite index in infinite powers of finite groups.

To see how this is done, let F be any finite group 6= {1} and consider the infinite power
FN. Fix a non-principal ultrafilter U on N and define a subgroup H ≤ FN of index |F | by

H = {(fn)n∈N
∣∣ Un fn = 1}.

Since, U is non-principal, H is dense in FN and thus fails being open. So the mapping
π : FN → Sym(FN/H) is discontinuous. For example, a non-principal ultrafilter is itself
a non-open subgroup of finite index in the Cantor group (Z2)N.

Example 1.5 (S. Thomas [28], R.R. Kallman [13]). Some matrix groups, e.g., SO3(R),
embed discontinuously into S∞.

Example 1.6. Infinite compact Polish abelian groups have non-open subgroups of count-
able index.

This follows from the fact that infinite abelian groups have subgroups of countably
infinite index. And, of course, if H is compact and K ≤ H has countably infinite index,
then K cannot be open, since otherwise the covering of H by left cosets of K would have
no finite subcovering.
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2. MEASURABLE HOMOMORPHISMS

To further specify our main problem, we begin by considering what happens when
placing restrictions on the type of homomorphisms.

If π : G→ H is a homomorphism between Polish groups that is definable
or is assumed to have various regularity properties, is π continuous?

We recall that if A is a subset of a Polish space X ,

• A has the Baire property if it differs from a Borel set by a meagre set,
• A is universally measurable if for any Borel probability measure µ onX ,A differs

from a Borel set by a set of µ-measure zero.

In the second case, there is unfortunately no reason to believe that we can use the same
Borel set for all measures. This fact is the root of much evil.

Similarly, a map π : X → Y between Polish spaces is

• Baire measurable if π−1(V ) has the Baire property for every open V ⊆ Y ,
• universally measurable if π−1(V ) universally measurable for every open V ⊆ Y .

2.1. The case of category. For Baire measurable homomorphisms, the question is simple
and was fully solved in a single stroke by B.J. Pettis [19].

Lemma 2.1 (Pettis’ Theorem [19]). Suppose G is a Polish group and A,B ⊆ G are
subsets. Let U(A) and U(B) be the largest open subsets of G in which A, resp. B, are
comeagre. Then

U(A) · U(B) ⊆ AB.

Proof. We note that if x ∈ U(A)U(B), then the open set V = xU(B)−1 ∩ U(A) =
U(xB−1) ∩ U(A) is non-empty and so xB−1 and A are comeagre in V . It follows that
xB−1 ∩A 6= ∅, whereby x ∈ AB. �

Theorem 2.2. Any Baire measurable homomorphism π : G → H between Polish groups
is continuous.

Proof. It is enough to prove that π is continuous at 1, i.e., that for any open V 3 1 in
H , π−1(V ) is a neigbourhood of 1 in G. So suppose 1 ∈ V ⊆ H is given and find an
open set W ∈ 1 such that WW−1 ⊆ V . Then π−1(W ) is non-meagre, as it covers G
by countably many left translates, and also has the Baire property. Thus, U(π−1(W )) is
non-empty open, and hence by Pettis’ Theorem

1G ∈ U(π−1(W ))U(π−1(W ))−1 ⊆ π−1(W )π−1(W )−1 ⊆ π−1(V ),

whereby 1 ∈ Int(π−1(V )). �

In particular, this applies to Borel measurable homomorphisms, which thereby are all
continuous. On another note, by results of R.M. Solovay [27] and S. Shelah [25], it is
known to be consistent with ZF that all sets of reals are Baire measurable, which implies
that all subsets of Polish groups are Baire measurable. Therefore, by Pettis’ Theorem, it is
consistent with ZF that all homomorphisms between Polish groups are continuous. Thus,
in order to produce discontinuous homomorphisms the axiom of choice must intervene in
some fashion, e.g., via the existence of ultrafilters, Hamel bases, etc.



AUTOMATIC CONTINUITY OF GROUP HOMOMORPHISMS 5

2.2. The case of measure. Around the beginning of the 20th century, Fréchet, Sierpiński
and Steinhaus, among others, worked on Cauchy’s problem and on finding additional as-
sumptions that would imply that a solution be continuous. Steinhaus eventually proved that
any Lebesgue measurable solution is continuous and with the advent of abstract harmonic
analysis in the 1930’s, this was extended by Weil to all locally compact Polish groups.

Theorem 2.3 (A. Weil). Suppose G is a locally compact Polish group with (left) Haar
measure λ. Then for any λ-measurable set of positive measure, A ⊆ G, we have that

AA−1

is a neighbourhood of 1.

Proof. By inner and outer regularity there are a compact setK and an open set U such that
K ⊆ A ⊆ U and λ(U) < 2λ(K). Now pick some open neighbourhood V of 1 such that
V K ⊆ U . Then if g ∈ V , gK is a subset of U of measure λ(K) and so K ∩ gK 6= ∅,
whereby g ∈ KK−1 ⊆ AA−1. So V ⊆ AA−1. �

By a trivial adaptation of the proof of Theorem 2.2, we get:

Corollary 2.4. Any universally measurable homomorphism from a locally compact Polish
group G into a Polish group H is continuous.

Unfortunately, locally compact groups is about as far as this argument goes. For a
simple argument due to Weil shows that locally Polish groups are the only that carry non-
zero, (quasi-)invariant, σ-finite Borel measures. To see this, notice that if G is a Polish
group with such a measure λ, then by inner regularity and σ-finiteness there is a Kσ-
subset M ⊆ G such that λ(G \M) = 0. Therefore, if g is any element of G, we have
λ(gM) > 0 and so gM ∩M 6= ∅, whereby g ∈ MM−1. Thus, G = MM−1 is a Kσ

Polish group and hence, by Baire’s category Theorem, a locally compact group.
Therefore, in order to deal with universally measurable sets in arbitrary Polish groups,

one will need different tools. One approach, that now seems to be universally favoured,
is due to J.P.R. Christensen [3, 4, 5], who noticed that though one cannot hope for an
invariant measure, at least one can find an invariant notion of null set. Apart from its uses
in automatic continuity, Christensen’s definition and results have proved extremely useful
in the literature on dynamical systems (see, e.g.,W. Ott and J.A. Yorke [30]), where it used
as a measure of smallness in various infinite-dimensional function spaces.

Definition 2.5 (J.P.R. Christensen). Let G be a Polish group and A ⊆ G a universally
measurable subset. We say that A is Haar null if there is a Borel probability measure µ on
G such that for all g, h ∈ G,

µ(gAh) = 0.
Also, A is left Haar null if for all g ∈ G,

µ(gA) = 0,

and similarly for right Haar null.

Note that being Haar null is, in general, much stronger than being simultaneously left
and right Haar null. Also, A is left Haar null if and only if A−1 is right Haar null. For if µ
witnesses that A is left Haar null, define ν by

ν(B) = µ(B−1).

Then for any g ∈ G,

ν(A−1g) = µ((A−1g)−1) = µ(g−1A) = 0.



6 CHRISTIAN ROSENDAL

So ν witnesses that A−1 is right Haar null.
Fortunately, in locally compact groups, Haar null sets coincide with sets of Haar mea-

sure zero.

Lemma 2.6. SupposeG is a locally compact Polish group with left and right Haar measure
λ and ρ. Then the following are equivalent for a universally measurable subset A ⊆ G.

(1) A is Haar null,
(2) A is left Haar null,
(3) λ(A) = 0,
(4) ρ(A) = 0.

Let us recall that for a measure µ and a property P , we write ∀µx P (x) to denote that
the set {x

∣∣ P (x)} has full µ-measure.

Proof. Suppose A is left Haar null as witnessed by µ. Then, as

∀ρx µ(x−1A) = 0,

we have by Fubini’s Theorem

ρ× µ
(
{(x, y) ∈ G2

∣∣ xy ∈ A}) = 0,

and so, by Fubini again,
∀µy ρ(Ay−1) = 0.

By right invariance of ρ, it follows that ρ(A) = 0, and, as ρ ∼ λ, we conclude λ(A) = 0.
On the other hand, if λ(A) = 0, then for all g ∈ G, λ(gA) = 0 and so, as ρ ∼ λ, also

ρ(gA) = 0. By right invariance of ρ, we thus have ρ(gAf) = 0 for all g, f ∈ G, so A is
Haar null. �

So the question that immediately poses itself is which type of Haar null set to work
with, Haar null or left Haar null. Of course in locally compact or Abelian groups, the two
notions are the same, so only in the context of more complicated groups does this problem
appear. As we shall see below, the class of Haar null sets is in general more well behaved
than the class of left Haar null sets, as the former forms a σ-ideal, while the latter fails, in
general, even to be closed under finite unions. Of course, for the applications to automatic
continuity, the main issue is rather whether we have an analogue of Weil’s Theorem:

Problem 2.7. If A is universally measurable, but not (left) Haar null, does

AA−1 or A−1A

contain a neighbourhood of 1?

We shall present partial answers to this problem due to Christensen, Solecki and the
author. Our first result is a slight variation of a result by Christensen from [3].

Theorem 2.8 (à la J.P.R. Christensen). Suppose G is a Polish group and A ⊆ G is a
universally measurable subset which is not right Haar null. Then for any neighbourhood
W of 1 there are finitely many h1, . . . , hn ∈W such that

h1AA
−1h−1

1 ∪ . . . ∪ hnAA−1h−1
n

is a neighbourhood of the identity.
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Proof. Suppose that the conclusion fails for A, i.e., for all h1, . . . , hn ∈W and any neigh-
bourhood V 3 1, there is some

g ∈ V \
(
h−1

1 AA−1h1 ∪ . . . ∪ h−1
n AA−1hn

)
.

Then we can inductively choose g0, g1, g2, . . . → 1 in W such that for all i0 < i1 < i2 <
. . . and n,

(a) the infinite product gi0gi1gi2 · · · converges fast,
(b) gin /∈ (gi0 · · · gin−1)−1AA−1(gi0 · · · gin−1).

Using (a), we can define a continuous map φ : 2N → G by

φ(α) = g
α(0)
0 g

α(1)
1 g

α(2)
2 · · · ,

where g0 = 1 and g1 = g.
Now let λ be Haar measure on the Cantor group (Z2)ω = 2N and notice that, as A is

not right Haar null, there is some f ∈ G such that

λ(φ−1(Af)) = φ∗λ(Af) > 0.

So by Weil’s Theorem,
φ−1(Af)φ−1(Af)−1

contains a neighbourhood of the identity 0ω in 2N. In particular, there are two elements α
and β differing in exactly one coordinate, say α(n) = 1 and β(n) = 0, such that

φ(α) = hgnk, φ(β) = hk ∈ Af,
where h = gi0gi1 · · · gil , i0 < i1 < . . . < il < n, and k ∈ G. It follows that

hgnh
−1 = hgnk · k−1h−1 ∈ Aff−1A−1 = AA−1

and so
gn ∈ h−1AA−1h = (gi0gi1 · · · gil)−1AA−1(gi0gi1 · · · gil),

contradicting the choice of gn. �

Corollary 2.9 (J.P.R. Christensen). Suppose π : G → H is a universally measurable ho-
momorphism from a Polish group G to a Polish group H , where H admits a 2-sided in-
variant metric compatible with its topology. Then π is continuous.

This happens when, for example, H is Abelian, compact or a countable direct product
of discrete groups.

Proof. As always, it is enough to prove that π is continuous at 1. So suppose that V 3 1 is
any neighbourhood of 1 inH and find a smaller conjugacy invariant neighbourhood U 3 1
such that UU−1 ⊆ V . Now, π−1(U) covers G by countably many right translates, so it
fails to be right Haar null. Therefore, by Christensen’s Theorem, there are h1, . . . , hn ∈ G
such that

n⋃
i=1

hiπ
−1(U)π−1(U)−1h−1

i

contains a neighbourhood W of 1 in G. It follows that for g ∈W , there is i such that

π(g) ∈ π(hi)UU−1π(hi)−1

= π(hi)Uπ(hi)−1 · π(hi)U−1π(hi)−1

= UU−1

⊆ V.
Thus, π(W ) ⊆ V , showing continuity at 1. �
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Corollary 2.10. Suppose π : G→ H is a universally measurable homomorphism from an
Abelian Polish group G to a Polish group H . Then π is continuous.

Proof. For, π(G) is an abelian subgroup of H and hence π : G → π(G) is a universally
measurable homomorphism into an Abelian Polish group and thus continuous. �

Obviously, the classes of left Haar null and Haar null sets are hereditary, i..e, closed
under taking universally measurable subsets. What is less obvious is that the class of Haar
null sets actually form a σ-ideal.

Theorem 2.11 (J.P.R. Christensen). The class of Haar null sets is a σ-ideal.

Before we prove this, let us recall how to convolve two measures µ and ν on a Polish
group G: The convolution µ ∗ ν is the ν-average of right-sided translates of µ, or equiva-
lently, the µ-average of left-sided translates of ν, i.e.,

µ ∗ ν(B) =
∫
µ(By−1)dν(y)

=
∫
ν(x−1B)dµ(x)

=
∫ ∫

χB(xy)dµ(x)dν(y)

= µ× ν({(x, y) ∈ G2
∣∣ xy ∈ B}).

For example, µ ∗ δx = µ( · x−1).

Proof. Suppose A,B ⊆ G are Haar null sets in a Polish group G as witnessed by proba-
bility measures µ and ν respectively. Then for all g, f ∈ G

µ ∗ ν(gAf) =
∫
µ(gAfh−1)dν(h) = 0

and
µ ∗ ν(gBf) =

∫
ν(h−1gBf)dµ(h) = 0.

So µ ∗ ν witnesses that both A and B are Haar null, and hence also witnesses that A ∪ B
is Haar null. For the case of infinite unions, one has to consider infinite convolutions of
measures. �

Much of the recent work on left Haar null sets in general Polish groups is due to S.
Solecki, whose approach to automatic continuity can be summarised as follows:

• There are more left Haar null sets than Haar null sets, so not being left Haar null is
stronger information than not being Haar null. Therefore, replace Haar null with
left Haar null.

• Determine the extent of the class of Polish groups in which the left Haar null sets
form a reasonable class.

In [26] Solecki isolated the Polish groups that seem particularly amenable to an analysis
via left Haar null sets. These are defined in analogy with Christensen’s proof that Haar null
sets form a σ-ideal.

Definition 2.12 (S. Solecki). A Polish group G is amenable at 1 if for any sequence µn of
Borel probability measures on G with 1 ∈ supp µn, there are Borel probability measures
νn and ν such that

(1) νn � µn,
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(2) if K ⊆ G is compact,

lim
n
ν ∗ νn(K) = ν(K).

Examples of groups that are amenable at 1 include
(1) Abelian Polish groups,
(2) locally compact Polish groups,
(3) countable direct products of locally compact Polish groups such that all but finitely

many factors are amenable.
Moreover, the class of amenable at 1 groups is closed under taking closed subgroups and
quotients by closed normal subgroups. So being amenable at 1 is a weakening of being
amenable.

Theorem 2.13 (S. Solecki [26]). Suppose G is amenable at 1. Then
(1) the left Haar null sets form a σ-ideal,
(2) if A ⊆ G is universally measurable and not left Haar null, then A−1A contains a

neighbourhood of 1.

Proof. (1) We show that if An is left Haar null for every n, then so is
⋃
nAn. So find a

sequence µk of probability measures such that for every n there are infinitely many k such
that for every f ,

µk(fAn) = 0.

Also, by translating the measures on the left, we can suppose that 1 ∈ supp µk. Let
νk � µk and ν be given as in the definition of amenable at 1. Then for all compact
K ⊆ An,

ν(gK) = lim
k
ν ∗ νk(gK)

= lim inf
k

ν ∗ νk(gK)

= lim inf
k

∫
νk(h−1gK)dν(h)

≤ lim inf
k

∫
νk(h−1gAn)dν(h)

=0,

where the last equality follows from νk � µk. So by inner regularity, we see that ν
witnesses that An is left Haar null for all n simultaneously, and so

⋃
nAn is left Haar null

too.
(2) Suppose G is amenable at 1 and A ⊆ G is universally measurable but not left Haar

null. We shall show that 1 ∈ Int(A−1A). So suppose towards a contradiction that this
fails and pick a sequence gn /∈ A−1A such that gn → 1. We can then define probability
measures µk on G with 1 ∈ supp µk by setting

µk =
∞∑
i=k

2−i+k−1δgi
.

Let νk � µk and ν be given as in the definition of amenability at 1. As νk � µk, νk is
some infinite convex combination

νk =
∞∑
i=k

ai,kδgi
.
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And for compact K ⊆ G,

ν(K) = lim
k
ν ∗ νk(K) = lim

k

∞∑
i=k

ai,kν(Kg−1
i ).

We claim that ν witnesses that A is left Haar null. For if not, there is some h such that
ν(hA) > 0. So pick some compact, respectively open, K ⊆ A ⊆ U such that

ν(hU \ hK) <
1
2
ν(hA).

Then for sufficiently large k,
∞∑
i=k

ai,kν(hKg−1
i ) >

1
2
ν(hA)

and hence for such k, there is some ik ≥ k such that

ν(hKg−1
ik

) >
1
2
ν(hA).

But, as g−1
ik
→ 1, we have for large k

hKg−1
ik
⊆ hU

and so, using
ν(hKg−1

ik
) + ν(hA) > ν(hU),

we have
hKg−1

ik
∩ hA 6= ∅.

It follows that
gik ∈ A−1K ⊆ A−1A,

which is a contradiction. �

For good measure, let us mention the main conclusion.

Corollary 2.14. If G is a Polish group, amenable at 1, then any universally measurable
homomorphism π : G→ H into a Polish group is continuous.

On the other hand, Solecki also identified a class of groups in which the class of left
Haar null sets seems to be much less useful and certainly does not behave as wanted; these
groups are at the extreme opposite of being amenable. Recall that the canonical examples
of non-amenable locally compact groups are those containing a (closed) discrete copy of
F2, i.e., the free non-Abelian group on 2 generators.

Definition 2.15 (S. Solecki). A Polish group G has a free subgroup at 1 if it has a non-
discrete free subgroup all of whose finitely generated subgroups are discrete.

For example, (F2)ω , or any group containing it as a closed subgroup, has a free subgroup
at 1.

Theorem 2.16 (S. Solecki [26]). Suppose G is a Polish group with a free subgroup at 1.
Then there is a Borel set B ⊆ G which is left Haar null, but

G = B ∪Bf

for some f ∈ G.
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This points to a fundamental asymmetry in these groups that shows that being left and
right Haar null are very different properties in general, though, of course, if A = A−1,
then A is left Haar null if and only if A is right Haar null.

To obtain counter-examples to the conclusion of Weil’s Theorem in these groups, one
needs a bit more. Obviously, if G is locally compact, then, letting U be a relatively com-
pact neighbourhood of 1, any non-empty open set V covers U by finitely many 2-sided
translates

gV h.

But does this characterise local compactness?

Definition 2.17 (S. Solecki). A Polish group G is strongly non-locally compact if for any
open U 3 1, there is an open V 3 1 such that U cannot be covered by finitely many 2-sided
translates of V .

Theorem 2.18 (S. Solecki [26]). Suppose G is strongly non-locally compact and has a
free subgroup at 1. Then there is a Borel set A ⊆ G which is not left Haar null, but

1 /∈ Int A−1A.

So does this mean that we can produce discontinuous homomorphisms via left Haar
null sets? Well, not really. For since A is not left Haar null, it does not have a continuum
of disjoint right translates. So, as A−1A is analytic, it must be somewhere comeagre and
so A−1AA−1A contains a neighbourhood of 1. Rather, Theorems 2.16 and 2.18 point to
a fundamental asymmetry in groups having a free subgroup at 1. The sets constructed in
these results are very far from being symmetric and therefore one would like to have a
symmetric example in Theorem 2.18. However, it remains unknown whether such sets can
exist. So Christensen’s question

Is every universally measurable homomorphism between Polish groups
continuous?

is very much still open. However, one could hope to make piecemeal progress on this by
attacking more concrete questions. One way of doing this is by considering other types of
range groups than those with 2-sided invariant metrics.

Theorem 2.19 (C. Rosendal [22]). Let A be a universally measurable, symmetric subset
of a Polish group G containing 1 and covering G by a countable number of left translates.
Then for some n ≥ 1,

An

is a neighborhood of 1.

This result falls short of solving Christensen’s problem, since in general the n could
depend on A. If, on the the hand, one could make n independent of A, then this would
imply a positive solution to Christensen’s problem. Nevertheless, we can still conclude a
weaker result.

Theorem 2.20 (C. Rosendal [22]). Any universally measurable subgroup of a Polish group
is either open or has continuum index. In particular, any universally measurable homo-
morphism from a Polish group into S∞ is continuous.

The following questions could hopefully lead to fruitful considerations.
(1) Is there an n such that whenever G is a Polish group and A ⊆ G a universally

measurable, symmetric subset containing 1, which is not left Haar null, we have

1 ∈ Int An?
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(2) What if, moreover, A covers G by a countable number of left translates?
We recall that a positive answer to (1) or (2) would also imply a positive solution to Chris-
tensen’s question. Despite the results of Solecki, the case n = 2 still seems to be open.

3. DUDLEY’S THEOREM

We shall now completely discard any measurability assumptions on the homomor-
phisms and instead restrict the classes of groups considered. We begin by placing re-
strictions on the target group.

Are there Polish groups H such that all homomorphisms from any other
Polish group into it is continuous?

One of the simplest and most powerful theorems in this direction is due to the probabilist
R.M. Dudley [8]. His result has since been rediscovered a number of times in varying
degrees of generality and complications, but the original result and proof does not seem to
have been superseded in its utmost simplicity.

Definition 3.1. A norm on a group G is a function ‖·‖ : G→ N such that

• ‖gf‖ ≤ ‖g‖+ ‖f‖,
• ‖1G‖ = 0,
• ‖g‖ = ‖g−1‖,
• ‖gn‖ ≥ max{n, ‖g‖} for all g 6= 1G.

The class of normed groups is fairly restricted and points in the direction of discrete
groups. In fact as we shall see, no continuous Polish group can be normed.

• The class of normed groups is closed under direct sums and free products.
• contains the free non-Abelian groups,
• and the free Abelian groups.

For example, the additive group of integers 〈Z,+〉 is normed, where the norm ‖ · ‖ on Z is
just the absolute value function | · |.

Theorem 3.2 (R.M. Dudley [8]). Any homomorphism from a Polish groupG into a normed
group H equipped with the discrete topology is continuous.

Proof. Let us just prove the case ofH = Z. So supposeG is a Polish group and π : G→ Z
is a homomorphism. If π fails to be continuous, then we can find gi ∈ G converging very
fast to 1G, and such that, on the other hand, the absolute value |π(gi)| grows equally fast.

Using these, we can find integers km ≥ 1 and, through a limiting process, yi ∈ G
satisfying

(1) km < |π(gm+1)|,
(2) ym = gmy

km
m+1,

(3) km = m+
∑m
i=1 |π(gi)|.

Here it is important to notice that, as π is assumed discontinuous, there is no way of directly
controlling |π(yi)|, only yi itself. On the other hand, as the gi are chosen explicitly, this
also controls π(gi). Now, if π(ym+1) = 0, then

|π(ym)| = |π(gmykm
m+1)| = |π(gm)| > km−1.

And if π(ym+1) 6= 0, then

|π(ym)| = |π(gmykm
m+1)| ≥ km · |π(ym+1)| − |π(gm)| ≥ km − |π(gm)| > km−1.
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It follows that for all m

|π(y1)| = |π(g1y
k1
2 )|

≥ |π(yk12 )| − |π(g1)|
≥ |π(y2)| − |π(g1)|
= . . .

≥ |π(ym+1)| −
m∑
i=1

|π(gi)|

> km − (km −m)
= m.

So the absolute value of π(y1) is infinite, which is impossible. �

Corollary 3.3. The free group Fc on a continuum of generators cannot be equipped with
a Polish group topology.

Notice however that Fc is often found as a Kσ subgroup of larger Polish groups.
Also, as a function f : X → Dω , where X is a Polish space and D is a countable

discrete set, is continuous if and only if the compositions with the coordinate projections
Pn : Dω → D are all continuous, we have:

Corollary 3.4. Any homomorphism π from a Polish group into (F2)ω is continuous.

Another corollary of Dudley’s result is that any homomorphism from, e.g., Zω into Z is
continuous and thus only depends on a finite number of coordinates.

4. SUBGROUPS OF SMALL INDEX

In Dudley’s Theorem, the automatic continuity relies heavily on very specific algebraic
features of the target group; namely, that it is constructed from normed groups, i.e., essen-
tially free groups or free abelian groups. We shall now look at a property related to the
topological structure of S∞. We begin by recalling a basic result.

Proposition 4.1. A Polish groupG is topologically isomorphic to a closed subgroup of S∞
if and only if G has a neighbourhood basis at 1 consisting of (necessarily open) subgroups
of countable index.

This includes , for example, automorphism groups, Aut(M), of countable first order
structuresM and, by a result of D. van Dantzig, any totally disconnected, locally compact,
second countable group.

Definition 4.2. A Polish group G is said to have the small index property if any subgroup
H ≤ G of countable index is open.

We should note that one often requires this to hold for any subgroup of index < 2ℵ0 .
But in the context of this paper, we shall stick to the weaker condition.

Proposition 4.3. Suppose G is a Polish group with the small index property. Then any
homomorphism

π : G→ S∞

is continuous. In particular, if G acts on a countable set, it does so continuously.

The following result seems to be the first pointing in this direction.
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Theorem 4.4 (S.W. Semmes [24], J.D. Dixon, P.M. Neumann and S. Thomas [7]). S∞
has the small index property.

This is just the first in a long list of automorphism groups of highly homogeneous count-
able first order structures that are also know to have this property. Moreover, S. Thomas
[28] has classified the countable products

∏
n∈N Fn of finite, simple, non-abelian groups

Fn, that have this property. More curiously, by a result of Solecki and the author [23],
Homeo+(R) has the small index property. So, as it is connected, it simply has no proper
subgroups of countable index and hence cannot act non-trivially on a countable set.

We shall now turn our attention to subgroups of even smaller index, namely, finite index
subgroups.

Definition 4.5. A compact Hausdorff group G is profinite if it has a neighbourhood basis
at 1 consisting of open subgroups of finite index.

The Polish profinite groups are easy to recognise. For having a neighbourhood basis
at the identity consisting of open subgroups, they embed into S∞. Thus, the Polish profi-
nite groups are exactly the compact subgroups of S∞. These are alternatively the closed
subgroups of countable products

∏∞
i=1 Fi, where the Fi are finite.

Since the neighbourhood basis at 1 in a profinite group is given by subgroups of finite
index, the following three conditions on a Polish group G are easily seen to be equivalent:

• Every subgroup of finite index is open,
• any homomorphism π : G→ F into a finite group F is continuous,
• any homomorphism π : G→ H into a profinite group is continuous.

A first result in this direction is due to J.-P. Serre sometime in the 1960’s. His result
deals with pro-p groups, i.e., profinite groups G such that for all open normal subgroups
N E G, the quotient G/N is a (discrete) p-group.

Theorem 4.6 (J.-P. Serre). Any finite index subgroup of a pro-p group is open.

However, it remained open for a long time how much this result generalises. Very re-
cently, N. Nikolov and D. Segal [17, 18] extended this to all topologically finitely generated
profinite groups. We shall now give a brief introduction to a part of their proof.

First, a topological groupG is topologically n-generated if it has a dense subgroup with
n generators, or, equivalently, if there is a homomorphism

π : Fn → G

with dense image 〈π(Fn)〉 = G.
Notice that if F is a finite group, then FN is locally finite, i.e., any finitely generated

subgroup is finite. For if f1, . . . , fn ∈ FN, then, as F is finite, we can find a partition

N = A1 ∪ . . . ∪Ak

such that each fi is constant on every piece Aj . It follows that 〈f1, . . . , fn〉 embeds into
F k and hence is finite. This argument also works if the orders |Fn| are bounded. So to
get infinite examples of topologically finitely generated, profinite, Polish groups, one has
to consider subgroups of products ∏

n∈N
Fn,

where |Fn| is unbounded.
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Now suppose G is an (abstract) group and w(x1, . . . , xk) is a group word. The verbal
subgroup determined by w is simply the subgroup generated by all evaluations of w in G,
i.e.,

w(G) = 〈w(g1, . . . , gk)
∣∣ gi ∈ G〉.

Note that w(G) is a normal subgroup of G, since its generating sets is conjugacy invariant:

h · w(g1, . . . , gk) · h−1 = w(hg1h
−1, . . . , hgkh

−1).

The main part of Nikolov and Segal’s paper concerns the proof of the following result,
which is proved using methods of finite group theory.

Theorem 4.7 (N. Nikolov and D. Segal [17, 18]). Suppose w(x1, . . . , xk) is a group word
such that

[Fn : w(Fn)] <∞.
Then there is a positive integer r such that whenever G is a topologically n-generated
profinite group, any element of w(G) can be written as a product of r elements of the form

w(g1, . . . , gk), gi ∈ G.

An equivalent way of stating the conclusion of this theorem is to say that w(G) is a
compact subgroup ofG. This follows from the simple fact that, given the conclusion,w(G)
is a continuous image of G. For the converse implication, note that if w(G) is compact,
write A = {w(g1, . . . , gk), w(g1, . . . , gk)−1

∣∣ gi ∈ G}. Then, as w(G) =
⋃
n∈N A

n,
where An is compact, by the Baire Category Theorem, some An must have non-empty
interior. But w(G) =

⋃
g∈A<ω gAn, so by compactness there are g1, . . . , gk ∈ A<ω such

that w(G) = g1A
n ∪ . . . ∪ gkAn. Therefore, if l is large enough such that gi ∈ Al for all

i, we have w(G) = Al+n.

Lemma 4.8. Suppose H is a finite group and n ≥ 1. Then there is a group word
w(x1, . . . , xk) such that [Fn : w(Fn)] <∞ and w(H) = {1}.

Proof. To see this, let Θ be the finite set of all homomorphisms ϑ : Fn → H and let

K =
⋂
ϑ∈Θ

ker ϑ.

Then K, being the intersection of finitely many finite index subgroups, has finite index in
Fn and so is finitely generated by some

w1(a1, . . . , an), . . . , wm(a1, . . . , an) ∈ Fn
where the ai are the free generators of Fn. Now, for any f1, . . . , fn and i, we have
wi(f1, . . . , fn) ∈ K. For otherwise there would be some homomorphism ϑ : Fn → H
such that

ϑ(wi(f1, . . . , fn)) 6= 1.
Letting ρ : Fn → H be defined by ρ(ai) = ϑ(fi), we see that also

ρ(wi(a1, . . . , an)) = ϑ(wi(f1, . . . , fn)) 6= 1,

contradicting that wi(a1, . . . , an) ∈ K ⊆ ker ρ. So wi(Fn) ⊆ K for all i.
Now let y1, . . . , ym be disjoint n-tuples of variables and set

w(y1, . . . , ym) = w1(y1) · · ·wm(ym).

Then w(Fn) = K and hence [Fn : w(Fn)] <∞.
It remains to see that w(H) = {1}. But, if h1, . . . , hn ∈ H , define ϑ : Fn → H by

ϑ(ai) = hi.
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Then
wi(h1, . . . , hn) = ϑ(wi(a1, . . . , an)) = 1,

and so w(H) = {1}. �

We can now deduce the main theorem of Nikolov and Segal.

Theorem 4.9 (Nikolov and Segal [17, 18]). If G is a topologically n-generated profinite
group, then any finite index subgroup of G is open.

Proof. By Poincaré’s Lemma, it is enough to show that any finite index normal subgroup
N ≤ G is open. Now, by the preceding lemma applied to the finite group H = G/N , we
find a group word w(x1, . . . , xk) such that

[Fn : w(Fn)] <∞
and w(G/N) = {1}, i.e., w(G) ≤ N .

Recall that by Theorem 4.7, w(G) is a closed subgroup of the profinite group G and
hence the intersection of all finite index, open, normal subgroups M ≤ G containing
w(G). Since G is topologically n-generated and such an M is open, G/M is topologically
n-generated, and, being discrete, it is outright n-generated. Also, as w(G) ≤ M , the
quotient G/M is the epimorphic image of Fn/w(Fn). So the indices [G : M ] are bounded
by [Fn : w(Fn)] and hence the intersection w(G) of the M also has index bounded by
[Fn : w(Fn)].

So w(G) is a closed subgroup of finite index and hence open. Since w(G) ≤ N ≤ G,
N is open too. �

To produce examples of uncountable, topologically finitely generated, profinite groups,
one can take, for example, a sequence (Fn) of finite groups having elements fn ∈ Fn
whose orders |fn| tend to infinity. Let now f = (fn)n∈N ∈

∏
n∈N Fn. Clearly, f has in-

finite order and so the compact group 〈f〉 is infinite and therefore uncountable. Moreover,
〈f〉 is topologically generated by a single element, i.e., 〈f〉 is monothetic and so, in par-
ticular, Abelian. However, any infinite Abelian group has a denumerable, i.e., countably
infinite, quotient and we can therefore find a normal subgroup H ≤ 〈f〉 of denumerable
index. Since 〈f〉 is compact and the covering by cosets of H has no finite subcovering, H
cannot be open.

Example 4.10. There are monothetic profinite Polish groups having non-open subgroups
of countable index, but all of whose subgroups of finite index are open.

Such groups have discontinuous embeddings into S∞, but any homomorphism into a
profinite group is continuous.

5. AMPLE GENERICS

The final question we are considering will be the least restrictive of all, namely,
Are there conditions on a Polish group G that ensure that every homo-
morphism

π : G→ H

from G into a Polish group H is continuous?
It turns out that the exact condition on H that it be Polish is somewhat inessential.

Rather, the right condition on H is that its topology should not be too large. To see this,
we need a couple of definitions:
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Definition 5.1. A subset A of a group G is said to be (left) σ-syndetic if there are gn ∈ G
such that G =

⋃
n∈N gnA, i.e., A covers G by countably many left translates.

Also, a topological group G is said to be ℵ0-bounded if any non-empty open subset
V ⊆ G is σ-syndetic.

Using a classical characterisation due to I.I. Guran [9] of the ℵ0-bounded groups as
those that are embeddable into a direct product of second countable groups and a result of
V.V. Uspenskiı̆ [29] on the universality of Homeo([0, 1]N), we have the following equiva-
lence:

Proposition 5.2. [20] Suppose G is a Polish group. Then the following conditions are
equivalent.

(1) Any homomorphism π : G→ Homeo([0, 1]N) is continuous,
(2) any homomorphism π : G→ H into a separable group is continuous,
(3) any homomorphism π : G→ H into a second countable group is continuous,
(4) any homomorphism π : G→ H into an ℵ0-bounded group is continuous.

In order to find Polish groups G that satisfy the above version of automatic continuity,
one is of course tempted to simplify the problem by getting rid of the quantification over all
Polish groups H . Superficially, this problem seems to be solved by condition (1) of Propo-
sition above, but that condition is really not more helpful, as Homeo([0, 1]N) is universal
for all Polish groups.

So are there any other conditions on a Polish group assuring that homomorphisms from
G into separable groups are always continuous? Well, here is one:

Definition 5.3. [23] A Polish groupG is said to be Steinhaus if there is an integer constant
k ≥ 1 such that whenever A ⊆ G is a symmetric, i.e., A = A−1, σ-syndetic subset
containing 1, we have

1 ∈ Int Ak.
We say in this case that G is Steinhaus with exponent k.

Notice that if π : G → H is any homomorphism into a separable group, then for any
symmetric neighbourhood V ⊆ H of 1, the inverse image π−1(V ) is σ-syndetic. So by
the standard proof of Steinhaus and Weil’s theorem on automatic continuity, we have

Proposition 5.4. [23] If G is a Steinhaus, Polish group, then any homomorphism π : G→
H into a separable group is continuous.

The main problem then becomes to identity non-discrete, Steinhaus, Polish groups.
Though we shall present some examples of Polish transformation groups that can be proved
to be Steinhaus by brute force, we will be more interested in the finer techniques that
were first considered in a seminal paper by W. Hodges, I. Hodkinson, D. Lascar and S.
Shelah [11], namely ample generics. A version of ample generics in [11] was introduced
in the course of a proof to the effect that automorphism groups of ω-stable, ω-categorical
structures have the small index property and only made sense for automorphism group,
being tied up with the permutation group structure of these. However, the concept was
further developed A.S. Kechris and the author in [14], where the reference to permutation
groups was dispensed with and their methods were extended. The results presented here
are improvements of results from [14], which again are inspired by the results of [11].

Suppose G is a Polish group acting continuously on a Polish space X . Then for any
positive integer n, we can define the diagonal action G y Xn by

g · (x1, . . . , xn) = (g · x1, . . . , g · xn).
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Definition 5.5. [14] Suppose G is a Polish group acting continuously on a Polish space
X . We say that the action has ample generics if for every n ≥ 1 there is a comeagre orbit
in Xn under the diagonal action of G.

We shall refer to elements (x1, . . . , xn) of the comeagre orbit of dimension n as gener-
ics.

Easy examples of such actions are, for example, the natural actions of S∞ on X =
2N×...×N by simultaneous permutation of the coordinates:

(g · x)(n1, . . . , nk) = x(g−1(n1), . . . , g−1(nk)).

For more interesting examples, consider a Polish group G acting on itself by conjugation.
Then the diagonal action is given by

g · (h1, . . . , hn) = (gh1g
−1, . . . , ghng

−1).

If this action has ample generics, we simply say that G has ample generics itself.
At this time, the only groups known to have ample generics are closed subgroups of

S∞, i.e., automorphism groups of countable structures. It is well known that any closed
subgroup of S∞ is topologically isomorphic to the automorphism group of a countable
ultrahomogenous structureM. And, by Fraı̈ssé’s theory, any countable ultrahomogeneous
structure can be seen as the Fraı̈ssé limit of its age, i.e., as being built up from the class of
its finitely generated substructures, Age(M), by a generic process of amalgamation. Using
the correspondence between ages of ultrahomogeneous structures and their automophism
groups, we have the following examples of Polish groups with ample generics:

• S∞,
• Aut(N<N) (see [14]),
• Aut(R), whereR is the random graph (E. Hrushovski [12], Hodges et al. [11]).
• Homeo(2N, λ), where λ is Haar measure on Cantor space (see [14]),
• Isom(UQ) (Solecki [26]), where UQ is the Urysohn metric space with rational

distances.
In these specific examples, the main tool behind the proof of them having ample generics
is that they all satisfy the following property:

Definition 5.6. [14] A Polish group G is approximately compact if there is an increasing
sequence of compact subgroups

C0 ≤ C1 ≤ C2 ≤ . . . ≤ G

such that
⋃
n Cn is dense in G.

To see what this means in the context of automorphism groups, suppose that M is
a countable ultrahomogenous structure and that Aut(M) is approximately compact, as
witnessed by some approximating sequence C0 ≤ C1 ≤ . . . ≤ Aut(M). Then if
f1, . . . , fn ∈ Aut(M) and A ⊆M is a finite subset, we can find some k and g1, . . . , gn ∈
Ck such that

gi|A = fi|A
for every i. But 〈g1, . . . , gn〉 ≤ Ck and, as Ck is compact, so is the discrete set Ck ·A, i.e.,
Ck · A is finite. So Ck · A ⊆ M is a finite subset ofM containing A and invariant under
g1, . . . , gn. It follows that the fi can be approximated arbitrarily well by elements setwise
fixing a finite set containing A. Under additional assumptions, one can prove the converse
of this implication leading to:
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Proposition 5.7. [14] LetM be a locally finite (i.e., any finitely generated substructure is
finite), countable, ultrahomogenous structure. Then Aut(M) is approximately compact if
and only if for any finite substructure A ⊆ M and all partial automorphisms φ1, . . . , φn
of A, there is a larger finite substructure B,

A ⊆ B ⊆M
and full automorphisms ψ1, . . . , ψn of B extending φ1, . . . , φn respectively.

Any structureM satisfying the conditions of the above proposition is said to have the
Hrushovski property (Hrushovski [12] originally proved the conclusion of the proposition
for the structure R). The deepest results in this direction are probably due to B. Herwig
and D. Lascar [10], who proved a very general result to the effect that the Fraı̈ssé limits of a
large class of relational structures have the Hrushovski property. Solecki [26] subsequently
used this to prove that also UQ has the Hrushovski property.

We shall now present some of the main implications of the existence of ample generics.

Lemma 5.8 (The extension lemma [14] ). LetG y X be a Polish group action with ample
generics and suppose A,B ⊆ X are arbitrary subsets such that

• A is non-meagre,
• B is nowhere meagre.

Then, if x = (x1, . . . , xn) ∈ Xn is generic and V 3 1 is open, there are g ∈ V , y ∈ A
and z ∈ B such that (x1, . . . , xn, y) and (x1, . . . , xn, z) are generic, while

g · (x1, . . . , xn, y) = (x1, . . . , xn, z).

Notice that the last condition implies that g ∈ Gxi
for i ≤ n.

Proof. Let O ⊆ Xn+1 be the comeagre orbit of dimension n + 1. Then, by Kuratowski-
Ulam,

∀∗u ∈ Xn ∀∗y ∈ X (u, y) ∈ O.
Also, for any u ∈ Xn and g ∈ G,

∀∗y ∈ X (u, y) ∈ O ⇒ ∀∗y ∈ X (g · u, g · y) ∈ O
⇒ ∀∗z ∈ X (g · u, z) ∈ O.

So
D = {u ∈ Xn

∣∣ ∀∗y ∈ X (u, y) ∈ O}
is comeagre andG-invariant. Thus,D contains the comeagre orbit inXn and hence x ∈ D.
It follows that

(∗) ∀∗y ∈ X (x1, . . . , xn, y) ∈ O.
So, asA is non-meagre, we can find y ∈ A such that (x1, . . . , xn, y) ∈ O. Notice now that

Gx · y = {z ∈ X
∣∣ (x1, . . . , xn, z) ∈ O},

which is comeagre in X by (∗).
Now, since (Gx∩V ) ·y coversGx ·y by countably many translates, the set (Gx∩V ) ·y

is somewhere comeagre in X and hence intersects B. So letting z ∈ B ∩ (Gx ∩ V ) · y, we
can find g ∈ Gx ∩ V , such that

g · y = z,

whereby
g · (x, y) = (x, z).

�
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Lemma 5.9 (Fundamental lemma for ample generics [14]). Suppose G y X is a Polish
group action with ample generics and that An, Bn ⊆ X are respectively non-meagre and
nowhere meagre. Then there is a continuous map

α ∈ 2N 7→ hα ∈ G
such that if α|n = β|n but α(n) = 0 and β(n) = 1, then

hα ·An ∩ hβ ·Bn 6= ∅.

Proof. Using the extension lemma, we define by induction on the length of s ∈ 2<N \{∅},
points xs ∈ X and group elements fs ∈ G such that for all s,

(1) (xs|1, xs|2, . . . , xs) is generic,
(2) xs0 ∈ A|s| and xs1 ∈ B|s|,
(3) for all α ∈ 2N, the infinite product fα|1fα|2fα|3 . . . converges,
(4) fs0 = 1,
(5) fs1 · (xs|1, xs|2, . . . , xs, xs1) = (xs|1, xs|2, . . . , xs, xs0).

Set hα = fα|1fα|2fα|3 . . .. And notice also that by (5), if t < s, then fs · xt = xt. It
follows that for all α, β ∈ 2N, if α|n = β|n = s, α(n) = 0 and β(n) = 1, then

hα · xα|n+1 = fα|1fα|2fα|3 . . . · xα|n+1

= fα|1fα|2fα|3 . . . fα|n+1 · xα|n+1

= fs|1fs|2 . . . fsfs0 · xs0
= fs|1fs|2 . . . fs · xs0
= fs|1fs|2 . . . fsfs1 · xs1
= fβ|1fβ|2 . . . fβ|nfβ|n+1 · xβ|n+1

= fβ|1fβ|2 . . . · xβ|n+1

= hβ · xβ|n+1.

Since xα|n+1 ∈ An and xβ|n+1 ∈ Bn, we have

hα ·An ∩ hβ ·Bn 6= ∅.
�

Though we do not have any interesting applications of this lemma in the context of
general actions with ample generics, when applied to Polish groups with ample generics,
the consequences are quite intriguing.

Theorem 5.10. [14] Let G be a Polish group with ample generics and {kiAifi}i∈N a
covering of G, where ki, fi ∈ G and Ai ⊆ G are arbitrary subsets of G. Then there is an
i such that

A−1
i AiA

−1
i A−1

i AiA
−1
i AiAiA

−1
i Ai

is a neighbourhood of 1.

Proof. By leaving out all terms kiAifi, such thatAi is meagre, and reenumerating, we can
suppose that

(1) for every i there are infinitely many n such that

kiAifi = knAnkn,

(2)
⋃
i kiAifi is comeagre,

(3) each f−1
i Aifi is non-meagre.
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Notice also that if there is some n such that

A−1
n AnAnA

−1
n An

is somewhere comeagre, then by Pettis’ Theorem we would be done. So assume towards a
contradiction that this fails. Then

Bn = G \ (fnA−1
n AnAnA

−1
n Anf

−1
n )

is nowhere meagre. So by our previous lemma there is a continuous mapping

α ∈ 2N 7→ hα ∈ G
so that if α|n = β|n but α(n) = 0 and β(n) = 1, then

hαf
−1
n Anfnh

−1
α ∩ hβBnh−1

β 6= ∅,

i.e.,
hαf

−1
n Anfnh

−1
α 6⊆ hβfnA−1

n AnAnA
−1
n Anf

−1
n h−1

β .

Now, the mapping
(g, α) ∈ G× 2N 7→ g−1hα ∈ G

is continuous and open, and therefore inverse images of comeagre sets are comeagre. So,
as
⋃
i∈N kiAifi is comeagre in G, we have by the Kuratowski-Ulam Theorem that

∀∗g ∈ G ∀∗α ∈ 2N g−1hα ∈
⋃
i∈N

kiAifi.

So pick some g ∈ G with

∀∗α ∈ 2N g−1hα ∈
⋃
i∈N

kiAifi,

and find some i such that
{α ∈ 2N ∣∣ g−1hα ∈ kiAifi}

is dense in some basic open set

Nt = {α ∈ 2N ∣∣ t v α}.
Let now n > |t| be such that kiAifi = knAnfn and find α, β ∈ Nt such that

hα, hβ ∈ gknAnfn
and α|n = β|n while α(n) = 0 and β(n) = 1. Then, if hα = gknafn and hβ = gknbfn,
where a, b ∈ An, we have

h−1
β hαf

−1
n Anfnh

−1
α hβ = f−1

n b−1aAna
−1bf−1

n

⊆ fnA−1
n AnAnA

−1
n Anf

−1
n .

But this clearly contradicts

hαf
−1
n Anfnh

−1
α 6⊆ hβfnA−1

n AnAnA
−1
n Anf

−1
n h−1

β .

�

Corollary 5.11. [14] If G is a Polish group with ample generics, then G is Steinhaus with
exponent 10. In particular, any homomorphism π : G→ H from G into a Polish group H
is continuous.

Corollary 5.12. [14] Suppose G has ample generics. If {kiHifi}i∈N is a covering of G
by two-sided translates of subgroups, then some Hi is open.
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Theorem 5.13. [14] Suppose G is a Polish group with ample generics and A ⊆ G is a
symmetric subset containing 1. Then eitherA admits a continuum of disjoint left translates
in G or A12 is a neighbourhood of 1.

Proof. Suppose A does not admit a continuum of disjoint left translates. Note first that if
A2 is meagre, then the binary relation R on G given by

xRy ⇔ x−1y ∈ A2

is meagre too, since the mapping (x, y) ∈ G2 7→ x−1y ∈ G is surjective, continuous and
open. But, by Mycielski’s Theorem on independent sets for category, if R is meagre, then
there is a Cantor set C ⊆ G such that for distinct x, y ∈ C, (x, y) /∈ R, i.e., xA∩ yA = ∅,
contradicting the assumption on A. So A2 must be non-meagre.

We claim that A6 must be somewhere comeagre. For if not, let An = A2 and set
Bn = G \ A6, which then is nowhere meagre. Applying the fundamental lemma for
ample generics to this pair, we find an injective mapping α ∈ 2N 7→ hα ∈ G such that if
α|n = β|n but α(n) = 0 and β(n) = 1, then

hαAnh
−1
α ∩ hβBnh−1

β 6= ∅.

It follows that for distinct α, β ∈ 2N, we have

h−1
β hαA

2h−1
α hβ ∩G \A6 6= ∅,

and so, as A2 is symmetric, h−1
β hα /∈ A2, whereby hαA ∩ hβA = ∅, again contradicting

the assumption on A.
Thus, A6 is somewhere comeagre and therefore, by Pettis’ Theorem, Lemma 2.1, A12

is a neighbourhood of 1. �

We notice that the above result gives rise to a notion of smallness, namely admitting a
continuum of disjoint translates, in Polish groups, which is not closed under unions and
hence does not correspond to an ideal.

Of course, ample generics is not something you are likely to find in many groups, and,
in fact, most bigger Polish transformation groups even have meagre conjugacy classes. To
see this, we can state a fairly general condition that implies that all conjugacy classes in a
non-discrete Polish group are meagre. Namely,

Proposition 5.14 (C. Rosendal [21]). Suppose G 6= {1} is Polish such that for all infinite
S ⊆ N and all open V 3 1, the set

A(S, V ) = {g ∈ G
∣∣ ∃n ∈ S gn ∈ V }

is dense in G. Then all conjugacy classes in G are meagre.

Proof. Let V0 ⊇ V1 ⊇ . . . 3 1 be a neighbourhood basis at the identity and note that for
every infinite S ⊆ N

C(S) = {g ∈ G
∣∣ ∃(sn) ⊆ S gsn → 1}

= {g ∈ G
∣∣ ∀k ∃s ∈ S \ [1, k] gs ∈ Vk}

=
⋂
k

A(S, Vk).

Then C(S) is comeagre and conjugacy invariant. So if O ⊆ G were some comeagre
conjugacy class, we would have

O ⊆
⋂
S⊆N
infinite

C(S).
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But then if g ∈ O, any sequence gni , ni < ni+1, would have a subsequence converging to
1, and so g = 1 and O = {1}. This contradicts that O is comeagre in G 6= {1}. �

Examples of groups that satisfy this condition are, for example,
• Aut([0, 1], λ),
• Iso(U),
• U(`2),

(see [21] and the references therein).
On another note, the following problems concerning comeagre conjugacy classes are

still open:
(1) Find a Polish group with ample generics not embedding into S∞,
(2) can a locally compact Polish group have a comeagre conjugacy class or even ample

generics?,
(3) what about a compact metric group with a dense set of non-meagre conjugacy

classes?
Here, by an observation by K.H. Hofmann, if there is a (non-trivial) locally compact

Polish group with a comeagre conjugacy class, there there is one which is isomorphic to a
closed subgroup of S∞, which also would give a positive answer to (3). In connection with
this, let us mention that E. Akin, E. Glasner and B. Weiss [1] have constructed a locally
compact Polish group with a dense conjugacy class. Also, the author has constructed an
example of an uncountable profinite group with a non-meagre conjugacy class.

Luckily, there are other techniques available for proving automatic continuity. For ex-
ample, the techniques of J.D. Dixon, P.M. Neumann and S. Thomas [7] readily adapts to a
more general context. The basic notion that is being used here and elsewhere (going back
to at least R.D. Anderson [2]) is that of a moiety. To illustrate this, a moiety in N is just
an infinite-coinfinite subset and a moiety in a 2-dimensional manifold is a proper closed
subset homeomorphic to the unit disk D ⊆ R2, etc. I.e., moieties are small subsets that
resemble the whole space.

Using moieties, one can analyse a number of concrete transformation groups of various
structures.

Theorem 5.15 (C. Rosendal & S. Solecki [23]). The following groups are Steinhaus

Homeo(2N),Homeo(2N)N,Aut(Q, <),Homeo(R)

with exponents 28, 108, 52, and 194 respectively.

Also, using methods of geometric topology of dimension 2, we have

Theorem 5.16 (C. Rosendal [20]). Suppose M is a compact 2-manifold, then Homeo(M)
is Steinhaus.

One would expect this result to generalise to higher dimensions at least for triangulable
manifolds. However, the geometric topology in higher dimensions becomes significantly
more complicated and thus the following conjecture remains open.

Conjecture 5.17. Let M be a compact triangulable manifold. Then Homeo(M) is Stein-
haus and hence satisfies automatic continuity.

Lately, J. Kittrell and T. Tsankov have applied similar techniques elsewhere:

Theorem 5.18 (J. Kittrell & T. Tsankov [15]). Let E be a countable Borel equivalence
relation on a Polish space preserving a E-ergodic Borel probability measure. Then the full
group [E] is Steinhaus.
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