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COMPLETE ANALYTIC EQUIVALENCE RELATIONS

ALAIN LOUVEAU AND CHRISTIAN ROSENDAL

Abstract. We prove that various concrete analytic equivalence relations aris-
ing in model theory or analysis are complete, i.e. maximum in the Borel re-
ducibility ordering. The proofs use some general results concerning the wider
class of analytic quasi-orders.

Introduction

This paper is part of the general theory of analytic equivalence relations, i.e.
structures (X, E), where X is a Polish space (or more generally a standard Borel
space, for the notions only depend on the Borel structure of X) and E is an equiv-
alence relation on X which is Σ1

1 (analytic) as a subset of X2. This theory is
organized by a quasi-order, ≤B, called Borel reducibility: If E and F with respec-
tive domains X and Y are Σ1

1 equivalence relations, a Borel reduction from E to
F is a Borel map f : X → Y which satisfies, for all x, y in X,

xEy ⇐⇒ f(x)Ff(y)

and E ≤B F if there exists a Borel reduction from E to F . The associated equiva-
lence relation ∼B, defined by

E ∼B F ⇐⇒ E ≤B F and F ≤B E,

is called Borel bi-reducibility.
The intuitive meaning of the order of Borel reducibility is the following: If we

view X as a set of mathematical objects, which we are interested in up to E-
equivalence, the classification problem for (X, E) consists of finding some (concrete,
or nicely definable) set I of invariants, together with some (concrete, or nicely de-
finable) assignment ϕ : X → I, which completely classifies elements in X up to
E-equivalence, i.e. satisfies xEy ⇐⇒ ϕ(x) = ϕ(y). As any solution to the classi-
fication problem for (Y, F ) gives, by composing with a Borel reduction from E to
F , a solution to the classification problem for (X, E), Borel reducibility intuitively
corresponds to a comparison of the complexity of classification problems — at least
when the sets are Polish and the equivalence relations are Σ1

1, which is very often
the case.

It is now well established that the ordering ≤B is extremely complicated (see
[1, 22]), and a good part of the recent developments of the theory has been to isolate
some (∼B-degrees of) specific equivalence relations which can be used as milestones
to get information about the complexity of various natural classification problems.
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It so happens that in most cases, these milestones are the ≤B-maximum elements
in various natural classes of Σ1

1 equivalence relations (a fact which is very useful to
get upper bounds to the complexity of natural problems).

The purpose of this paper is to study one of these milestones, namely the degree
consisting of all ≤B-maximum Σ1

1 equivalence relations. Elements in this ∼B-
degree, i.e. Σ1

1 equivalence relations which Borel reduce all other Σ1
1 equivalence

relations, will be called complete Σ1
1 equivalence relations (they are sometimes called

universal). Our main goal is to develop a “completeness” method for them, i.e. tools
for proving that a given pair (X, E) is complete, and then to apply these tools to
specific natural classification problems.

In order to make what we plan to do more precise, let us look first at a very
similar — but much simpler — situation, in dimension 1. The objects there are pairs
(X, A), where A is now a Σ1

1 subset of the Polish space X, and Borel reducibility
of A to B now corresponds to the existence of a Borel map f between the ambient
spaces with A = f−1(B). Again maximum elements are called complete Σ1

1 sets,
and their existence follows from the existence of universal Σ1

1 sets (which are clearly
necessarily complete).

In dimension 1, the ordering of Borel reducibility is not very interesting, for apart
from the trivial cases of {∅} and its dual class (consisting of all (X, X), X Polish),
all Borel sets fall in one degree. Moreover the determinacy of Σ1

1 games implies
that every Σ1

1 non-Borel set is complete. However, the so-called “completeness”
method, which goes back to the beginning of Descriptive Set Theory, has proved to
be very fruitful: in order to prove that a given Σ1

1 set is not Borel, one just Borel
reduces to it some other Σ1

1 set, already known to be complete. The method has
the advantage of being cumulative, even if one very often uses as test sets a few
very specific complete sets, which are combinatorially easy to deal with, like the set
NWF of ill-founded countable trees, or the set NWO of non-well-ordered linear
orderings. Of course, one must first establish the completeness of these test sets,
which is classically done by deriving it from a representation, or “normal form”,
result for Σ1

1 sets.
In this paper, we will follow the same patterns, but in dimension 2, and for Σ1

1

equivalence relations (and, as we will see shortly below, for the larger class of Σ1
1

quasi-orders).
As in dimension 1, the existence of complete objects follows easily from the

existence of universal ones. Although the reducibility ordering is now very compli-
cated, so that in particular there are lots of non-Borel but also non-complete Σ1

1

equivalence relations, one can still start a completeness method, by first defining a
“combinatorially simple” object, then proving a representation result which ensures
its completeness, and in a third step using it to prove the completeness of various
natural classification problems in Logic and Analysis.

This is the program we will follow, with one important change: For reasons
which are not totally clear to us, but might be intrinsic, the preceding program is
easier to develop for the class of Σ1

1 quasi-orders (or partial pre-orders, i.e. binary
relations which are reflexive and transitive, but not necessarily symmetric). By
symmetrization, we will recover all desired results for the class of Σ1

1 equivalence
relations, which is our main concern. So in some sense we are performing an even
broader task. However, from a different viewpoint, this can be viewed as a serious
limitation to our method, for the “combinatorial simplicity” is lost in the process
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of symmetrizing. In particular, we do not know how to prove that a given Σ1
1

equivalence relation is complete, unless it naturally comes with a Σ1
1 quasi-order

which we can prove to be complete.
The paper is organized as follows: In section 1, we collect some facts about the

reducibility order ≤B , including the existence of ≤B-maximum elements for various
classes. We also very briefly describe the milestones among Σ1

1 equivalence relations
that will be useful in the paper.

In section 2, we define our basic complete Σ1
1 quasi-order, ≤max, and prove

a representation result which implies its completeness. We also use it to briefly
discuss the case of Borel quasi-orders and Borel equivalence relations.

The last three sections contain applications of our completeness method to vari-
ous classification problems in Model Theory (section 3), in Analysis (section 4) and
to Polish groups and monoids (section 5).

For example, we prove in section 3 that bi-embeddability between countable par-
tial orders, and bi-embeddability between countable combinatorial trees, are com-
plete Σ1

1 equivalence relations. In section 4, we prove the same result for continuous
bi-embeddability between compact metrizable spaces, isometric bi-embeddability
between Polish metric spaces, and linear isometric bi-embeddability between sepa-
rable Banach spaces. Finally we see in section 5 that there is a Polish semigroup
(in fact a monoid) acting on a Polish space inducing a complete Σ1

1 quasi-order.
The main results in this paper were announced in a Note aux Comptes Rendus

de l’Académie des Sciences, [21].

1. The Borel reducibility ordering

We first define the order ≤B in a very general form.

Definition 1.1. Let A1 and A2 be two binary relations on Polish spaces X1 and
X2, respectively.

A map f from X1 to X2 is a reduction of A1 to A2 if for all x, y in X1,

(x, y) ∈ A1 ⇐⇒ (f(x), f(y)) ∈ A2.

We say that A1 is Borel reducible to A2, or A2 Borel reduces A1, in symbols
A1 ≤B A2, if there is a Borel reduction f from A1 to A2. If moreover the reduction
f can be found one-to-one, we say that A1 Borel embeds into A2 (A1 �B A2).

Finally, we denote by ∼B the associated equivalence relation of Borel bireduci-
bility, defined by

A1 ∼B A2 ⇐⇒ A1 ≤B A2 ∧ A2 ≤B A1.

As we said in the Introduction, Borel reducibility has been studied mainly in
the context of Σ1

1 equivalence relations. There, because of the reflexivity condition,
the domain of the relation is important, and Polish spaces are often replaced by
standard Borel spaces — a harmless change, as a standard Borel space is just a
Polish space of which only the Borel structure is considered — and sometimes are
replaced by arbitrary subsets of Polish spaces. We will not consider this second
generalization here. Another possible generalization would be to consider more
general structures with Polish domain, and relations and functions of arbitrary
arity.

First, let us note some simple features of ≤B. It is clearly reflexive and transi-
tive, i.e. a quasi-order. Also, the Borelness condition imposed on the reductions
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implies that for most descriptive classes Γ, and in particular for the class Σ1
1 we are

interested in, binary relations in Γ are downward closed under ≤B, or equivalently
relations in Γ can only reduce relations in Γ. But there are also other limitations,
of a more algebraic type, due to the special “square” form of the reductions: The
properties of reflexivity, antireflexivity, symmetry and transitivity are all preserved
downwards by reductions. So quasi-orders can only reduce quasi-orders, and equiv-
alence relations can only reduce equivalence relations.

One can push these remarks a bit further. Let R be a quasi-ordering. Denote
by Rˇits dual (or reverse) ordering, i.e. xRˇy in the case yRx. Let ≡R = R∩Rˇ
be the associated equivalence relation, and let <R = (R \ ≡R) be the associated
strict order. Then if R1 and R2 are quasi-orders and f is a reduction of R1 to R2,
f also reduces R1̌ to R2̌, ≡R1 to ≡R2 , and <R1 to <R2 . This explains why we will
be able to get results about Σ1

1 equivalence relations from similar results about Σ1
1

quasi-orders.
Another nice feature of ≤B is that the particular ambient Polish space X is

irrelevant in the general theory, as any two uncountable Polish spaces are Borel
isomorphic, and hence any ∼B-degree has members in any given uncountable Polish
space X0.

Definition 1.2. Let C be a class of binary relations on Polish spaces. A relation
A is C-complete, or complete in C, if A ∈ C and A Borel reduces all elements of C,
i.e. has maximum ≤B-degree among elements of C.

When the class C is clear from the context, we will just say that A is complete.
Most classes C that we will consider are downward closed under ≤B , so that this
abuse of terminology is harmless. E.g. a Σ1

1 equivalence relation can only be
complete among Σ1

1 equivalence relations.

Proposition 1.3. The following classes admit complete elements:
- Σ1

1 binary relations,
- Σ1

1 reflexive (resp. irreflexive) relations,
- Σ1

1 symmetric (resp. symmetric reflexive, symmetric irreflexive) relations,
- Σ1

1 quasi-orders,
- Σ1

1 equivalence relations.

Proof. We use the existence of universal sets. Let W0 ⊆ (2ω)3 be a Σ1
1 set universal

for Σ1
1 subsets of 2ω × 2ω. Define W1 on 2ω × 2ω by

(α1, α2)W1(β1, β2) ↔ α1 = β1 ∧ (α1, α2, β2) ∈ W0.

W1 is a Σ1
1 binary relation on 2ω × 2ω. To check that it is complete, it is enough

to Borel reduce to it any binary relation A on 2ω, by the remark above. But if α is
a W0-code of A, the map β �→ (α, β) reduces A to W1.

The other cases are very similar. If ∆ is equality on 2ω × 2ω, then W1 ∪ ∆
is complete for reflexive Σ1

1 relations, W1 \ ∆ for irreflexive ones, and W1 ∩ W1̌,
(W1∩W1̌)∪∆ and (W1∩W1̌)\∆ are complete for symmetric, symmetric reflexive,
and symmetric irreflexive Σ1

1 relations, respectively.
The quasi-order W2 generated by W1 is also complete for Σ1

1 quasi-orders. First
it is easily Σ1

1 (as Σ1
1 is closed under projections). Also, If R is any Σ1

1 quasi-order
on 2ω, with W0 -code α, one still has

β1Rβ2 ↔ (α, β1)W2(α, β2),
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so that W2 is indeed “universal” for Σ1
1 quasi-orders, and the map β �→ (α, β) again

reduces R to W2. The case of equivalence relations is similar, working now with
the equivalence relation W3 generated by W1. �

This very easy proof used only closure of Σ1
1 under Borel preimages, countable

unions and projections, and hence works as well for many descriptive classes Γ, e.g.
Σ1

n. It can also be adapted to the class Kσ (which is closed under countable unions
and projections, but not Borel preimages).

Proposition 1.4. The classes of Kσ quasi-orders and Kσ equivalence relations
(on compact Polish spaces) admit complete elements.

Proof. Starting from a Kσ subset of 2ω × (2ω × 2ω) universal for Kσ subsets of
2ω × 2ω, we get as before a Kσ quasi-order on 2ω × 2ω which is “universal” for Kσ

quasi-orders on 2ω. So it is enough to check that any Kσ quasi-order (X, R), with
X compact Polish, is Borel bi-reducible with one on 2ω. But there is a continuous
onto map π : 2ω → X, with Borel selection s : X → 2ω. Then R′ = (π ⊗ π)−1(R)
is a Kσ quasi-order on 2ω, and π and s witness that R ∼B R′. The proof is similar
for Kσ equivalence relations. �

For classes with different closure properties, other techniques have to be used. In
[11], Hjorth proves the existence of a complete (in fact “universal”) Π1

1 equivalence
relation, using the norm and boundedness properties of this class. His proof extends
to Π1

1 quasi-orders as well. In the next section, we will see a different approach for
compact quasi-orders, which also extends to closed quasi-orders (on Polish spaces)
with some more work; see Louveau [19]. This other approach works also for Kσ

and Σ1
1 quasi-orders, and will be instrumental for the results of section 2.

In the opposite direction, there are classes with no complete element. H. Fried-
mann proved this first for the class of Borel equivalence relations (see [29] and [17]),
and it extends easily to Borel quasi-orders. The class of Π0

2 quasi-orders has no
complete element (Louveau [18]) (but equality on 2ω is complete for Π0

2 equivalence
relations). Also, the class of Σ1

1 strict orders has no complete element (Louveau
[20]).

Proposition 1.5. Let E be a Σ1
1 equivalence relation on the Polish space X. Then

E is complete if and only if E = ≡R, for some complete Σ1
1 quasi-order R on X.

Proof. Suppose first that R is a complete Σ1
1 quasi-order on X. If F is a Σ1

1

equivalence relation on the Polish space Y , F is in particular a quasi-order, hence
Borel reduces to R. But then F = ≡F Borel reduces to ≡R. This proves that ≡R

is a complete Σ1
1 equivalence relation.

Conversely, suppose E is complete, and let R0 be a complete Σ1
1 quasi-order, on

say 2ω, by Proposition 1.3. Then let f : 2ω → X be a Borel map reducing ≡R0 to
E. Set

xRy ↔ xEy ∨ ∃α ∈ 2ω ∃β ∈ 2ω(xEf(α) ∧ yEf(β) ∧ αR0β).

We claim that R works. It is clearly Σ1
1, with E ⊆ R. Let

X0 = {x ∈ X ∃α x = f(α)}
and X1 = X \ X0. Note that for x, y ∈ X0 with xR \ Ey and any α and β with
xEf(α) and yEf(β), one must have αR0β, for f reduces ≡R0 to E. Also points
in X0 and X1 are R-unrelated, and R|X1 = E|X1 . This easily implies that R is
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indeed a quasi-order, that ≡R = E, and that f is a reduction of R0 to R, so that
R is complete. �

In the applications, we will only use the “if” part, proving first that certain
Σ1

1 quasi-orders are complete, and derive that the associated equivalence relation
is complete too. But the “only if” part indicates that complete Σ1

1 equivalence
relations are always of this form (although the quasi-ordering might not be as
“natural” as the equivalence relation). This is some indication that the limitations
of our method might be intrinsic.

To end this introductory section, let us briefly discuss some of the milestones
discovered in the theory of Σ1

1 equivalence relations that will be useful later to
put the results of sections 3 and 4 in perspective. References can be found in
Becker-Kechris [2], Hjorth [12] and Kechris [13, 14, 15].

Given a Polish group G and a Borel action a of G on some Polish space X, the
orbit equivalence relation EX

G is defined, on X, by

xEX
G y ↔ ∃g ∈ G a(g, x) = y.

Call such an EX
G a G-equivalence relation (it is always Σ1

1). Then the class of all
G-equivalence relations admits a complete element (see Becker-Kechris [2]), usually
denoted by E∞

G , which we call the G-complete equivalence relation. Here are some
examples:

(i) (2ω, =) is G-complete for all compact groups G, and also for all Π0
1 (and even

Π0
2) equivalence relations.
(ii) The relation E0 on 2ω, defined by

αE0β ↔ {n : α(n) �= β(n)} is finite,

is Z-complete.
(iii) E∞

F2
, where F2 is the free group with 2 generators, is complete for the class

of all G-equivalences, G a Polish locally compact group.
(iv) Graph isomorphism (i.e. isomorphism between countable graphs with do-

main N) is S∞-complete, where S∞ is the symmetric group (of permutations of
N).

(v) If G0 is either the group of homeomorphisms of the Hilbert cube, or the group
of isometries of the Urysohn space (see section 3), E∞

G0
is complete for the class

of all Σ1
1 equivalence relations which are G-equivalence relations for some Polish

group G.
(vi) Not every Σ1

1 equivalence relation is Borel reducible to a G-equivalence
relation for some Polish group G. The simplest counterexample is E1, defined on
(2ω)ω by

(αn)E1(βn) ↔ {n : αn �= βn} is finite.
(vii) From the previous discussion, we also have complete equivalence relations

EΣ1
1

and EKσ
in the classes of Σ1

1 and Kσ equivalence relations, respectively.
(viii) The relation Ecntble is defined on R

ω by

(αn)Ecntble(βn) ↔ {αn : n ∈ ω} = {βn : n ∈ ω}.
The order ≤B , between these milestones, is given by:
a) (ω, =) <B (2ω, =) <B E0 <B E1 <B EKσ

<B EΣ1
1
,

b) E0 <B E∞
F2

<B EKσ
,

c) E∞
F2

<B Ecntble <B E∞
S∞ <B E∞

G0
<B EΣ1

1
,
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d) the pairs (E1, E
∞
G0

) and (Ecntble, EKσ
) are ≤B-incomparable.

One should add that this picture does not reflect at all the complexity of ≤B . For
example, the interval [E0,E∞

F2
] is already immensely complicated. Also, there are

Σ1
1 equivalence relations “on the side”, even at the (ω, =) level, i.e. Σ1

1 equivalence
relations having ℵ1 classes but no perfect set of inequivalent elements. For more
details, we refer the reader to the above-mentioned books.

2. The basic example ≤max

Our aim is to define a “combinatorially simple” complete Σ1
1 quasi-order. But

let us first discuss two simpler cases, the compact and Kσ quasi-orders.
Suppose first that R is a compact quasi-order, on some compact Polish space X.

To each x ∈ X, we can associate the compact set Rx = {y ∈ X : yRx}, and clearly

xRy ↔ Rx ⊆ Ry.

So the map x �→ Rx from X into the space K(X) of compact subsets of X is a
reduction of R to ⊆. As a consequence, we get:

Proposition 2.1. (P(ω),⊆) is a complete compact quasi-order.

Proof. Given (X, R) as above, choose an open basis (Un)n∈ω of X, and set f(x) =
{n : Un ∩ Rx �= ∅}. By the previous discussion, f is a reduction of R to ⊆, and
f is Borel (this is the point that does not work for Π0

1 quasi-orders. It is still true
that (P(ω),⊆) is complete for them, but some work has to be done). �

If we want to do the same thing for a Kσ quasi-order R, there is a problem. The
reduction map x �→ Rx is still Borel (in the codes), but inclusion between Kσ sets
is Π1

1 in the codes, but not Kσ (not even Σ1
1). The idea is to replace inclusion by

a stronger relation, taking advantage of the transitivity of R.
Let ≤Kσ

be the quasi-order on P(ω)ω defined by

(An) ≤Kσ
(Bn) ↔ ∃n∀m Am ⊆ Bm+n.

Proposition 2.2. ≤Kσ
is complete for Kσ quasi-orders (on compact Polish spaces).

Proof. Let R be a Kσ quasi-order on the compact Polish space X. Write R =⋃
n Rn, where the sets Rn are compact, increasing, and satisfy R0 = ∆, the diagonal

of X, and for all n Rn ◦ Rn ⊆ Rn+1, where Rn ◦ Rn = {(x, z) : ∃y (x, y) ∈
Rn ∧ (y, z) ∈ Rn}. This is easy to get from an arbitrary sequence of compact sets
with union R, as the operation ◦ preserves compactness. Now fix an open basis (Un)
for X, and define f : x ∈ X �→ (An

x) ∈ P(ω)ω, by setting An
x = {m : Um ∩Rn

x �= ∅}.
Clearly f is Borel, so we have to check that it reduces R to ≤Kσ

. If f(x) ≤Kσ
f(y),

then in particular Rx ⊆ Ry and xRy. Conversely if xRy, then for some n xRny.
But then for m ≥ n, z ∈ Rm

x implies z ∈ Rm+1
y . So for all m Rm

x ⊆ Rm+n+1
y , hence

n + 1 witnesses that f(x) ≤Kσ
f(y). �

By Proposition 1.5, the associated equivalence relation ≡Kσ
is complete among

Kσ equivalence relations. Another very similar Kσ equivalence relation was already
known to be complete (see Kechris [13]).

For the general case of Σ1
1 quasi-orders, our plan is similar. Inclusion between

Σ1
1 sets is now Π1

2 in the codes, so we must replace it by a stronger quasi-order,
again taking advantage of transitivity. And, as we did above, we will change it
slightly to get a more combinatorial object.
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First we need some notations and terminology.
Given a set X, X<ω denotes the set of finite sequences from X. If s ∈ X<ω, |s|

is its length (its domain), and s ⊆ t means s is a restriction of t. If X = ω, we also
define s ≤ t by |s| = |t| and ∀i < |s| s(i) ≤ t(i). Similarly s + t, for s and t of the
same length, is defined by pointwise addition. We view elements in (X × Y )<ω as
pairs in X<ω × Y <ω of the same length.

A (set-theoretical) tree on X is a subset of X<ω closed under restrictions. If
T is a tree on X × ω, we say that T is normal if whenever (u, s) ∈ T and s ≤ t,
(u, t) ∈ T , too. For s ∈ ω<ω, set

T (s) = {u ∈ X<ω : |u| = |s| ∧ (u, s) ∈ T}.
So T is normal if s ≤ t implies T (s) ⊆ T (t).

A map f : ω<ω → ω<ω is Lipschitz if f preserves both length and extension.
This is equivalent to saying that there is a map f∗ : ω<ω × ω → ω such that f
is obtained by the recursion f(∅) = ∅ and f(s�n) = f(s)�f∗(s, n). It is also the
same as saying that f corresponds to a strategy of Player II in the usual type of
games on ω, where the two players alternate playing integers.

Definition 2.3. We let T be the space of normal trees on 2 × ω. Topologized as
a subset of 2(2 ×ω)<ω

, it is Polish. We then define ≤max on T by

S ≤max T ↔ ∃f : ω<ω → ω<ω ∀s ∈ ω<ω S(s) ⊆ T (f(s)).

(Going back to the discussion above, if we view a tree T as coding the Σ1
1 subset

of 2ω,
p([T ]) = {α : ∃β ∈ ωω ∀n (α|n, β|n) ∈ T},

then S ≤max T is a strong way of saying that p([S]) ⊆ p([T ]).)

≤max is clearly a Σ1
1 quasi-order on T . In order to show it is complete, we first

prove a normal form result for Σ1
1 quasi-orders on 2ω.

Theorem 2.4. Let R be a Σ1
1 quasi-order on 2ω. Then there exists a tree S on

2 × 2 × ω satisfying:
(i) R = p([S]), i.e. αRβ ↔ ∃γ ∈ ωω ∀n (α|n, β|n, γ|n) ∈ S.
(ii) S is normal, i.e. (u, v, s) ∈ S and s ≤ t imply (u, v, t) ∈ S.
(iii) If u ∈ 2<ω and s ∈ ω<ω are of the same length, (u, u, s) ∈ S.
(iv) If (u, v, s) ∈ S and (v, w, t) ∈ S, then (u, w, s + t) ∈ S.

Proof. Start with any tree T0 on 2 × 2 × ω with R = p([T0]). As is well known, if
we set

T1 = {(u, v, t) : ∃s ≤ t (u, v, s) ∈ T0},
T1 is normal, and we still have R = p([T1]). Also, if we let T2 = T1 ∪ {(u, u, s) :
|u| = |s|}, T2 now satisfies (i), (ii) and (iii) (it satisfies (i) because R is reflexive).

Finally we define S by (∅, ∅, ∅) ∈ S, and for all k, n ∈ ω, u, v ∈ 2k, s ∈ ωk and
i, j ∈ 2,

(u�i, v�j, n�s) ∈ S

⇐⇒ ∃u0, u1, ..., un ∈ 2k (u0 = u ∧ un = v ∧ ∀l < n (ul, ul+1, s) ∈ T2)
(2.1)

(so if n = 0, (u�i, v�j, 0�s) ∈ S if and only if u = v).
We claim that S works. Clearly it is a tree. To check (i), note first that if (x, y, α)

is a branch through T2, then (x, y, 1�α) is a branch through S. So R ⊆ p([S]).
Conversely, suppose (x, y, n�α) is a branch through S. If n = 0, x = y, and
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(x, y) ∈ R. If n > 0, we get, for each k, sequences (uk
i )i≤n in 2k, with uk

0 = x|k,
uk

n = y|k, and for i < n, (uk
i , uk

i+1, α|k) ∈ T2. By compactness of 2ω, we can find a
subsequence (kl) and for i ≤ n elements zi ∈ 2ω such that ukl

i → zi as l → ∞. But
then we get that for i < n, (zi, zi+1, α) is a branch through T2, hence ziRzi+1. As
z0 = x and zn = y, we get by transitivity xRy, as desired.

To check (ii), let (u, v, s) ∈ S and t ≥ s. The case of (∅, ∅, ∅) is trivial. So
suppose u = u′�i, v = v′�j, s = n�s′ and t = m�t′, with n ≤ m and s′ ≤ t′. As
T2 is normal, we also have (u, v, n�t′) ∈ S, with the same witnesses (ui)i≤n. Also,
using property (iii) of T2, we can first repeat m − n times the witness u0 to get
witnesses for (u, v, m�t′) ∈ S, as desired.

(iii) follows from (ii) and the immediate remark that if |u| = |s| and s(0) = 0,
(u, u, s) ∈ S.

Finally, to check (iv), let u = u′�i, v = v′�j, w = w′�k, s = n�s′ and t = m�t′

satisfy (u, v, s) ∈ S and (v, w, t) ∈ S. By (ii), we also have

(u, v, n�(s′ + t′)) ∈ S and (v, w, m�(s′ + t′)) ∈ S,

as witnessed by say (ui)i≤n and (vj)j≤m, respectively. But then (ui) �
i<n(vj)j≤m is

a witness that (u, w, (n + m)�(s′ + t′)) ∈ S, as desired. �

As a consequence, we get:

Theorem 2.5. The quasi-order ≤max is a complete Σ1
1 quasi-order.

Proof. We only need to Borel reduce to ≤max any Σ1
1 quasi-order R on 2ω. Then

let S be the tree associated to R by Theorem 2.4, and define f : 2ω → T by

f(x) = Sx = {(u, s) ∈ (2 × ω)<ω : (u, x||u|, s) ∈ S}.

Indeed the tree Sx is normal, as S is. And f is Borel, in fact continuous. We
check that it is a reduction. Suppose first that Sx ≤max Sy, as witnessed by the
Lipschitz map ϕ : ω<ω → ω<ω. If 0k is the sequence of length k with constant
value 0, the sequences ϕ(0k), k ∈ ω, extend each other, hence build α ∈ ωω. By
property (iii), for all k, (x|k, 0k) ∈ Sx, hence (x|k, ϕ(0k)) ∈ Sy. So (x, y, α) is a
branch through S and by (i) xRy.

Conversely, suppose xRy, and let α be such that (x, y, α) is a branch through S.
Define ϕ : ω<ω → ω<ω by ϕ(s) = s + α||s|. The map ϕ is clearly Lipschitz. Also, if
s ∈ 2k, and u is such that (u, s) ∈ Sx, we get (u, x|k, s) ∈ S, and (x|k, y|k, α|k) ∈ S;
hence by property (iv) of S, (u, y|k, ϕ(s)) ∈ S and (u, ϕ(s)) ∈ Sy . So ϕ witnesses
Sx ≤max Sy, as desired. �

Remark 2.6. 1. In the previous proof, we only used a weak consequence of the
fact that Sx ≤max Sy in one direction, and proved a strong form of it in the other
direction. So this leaves room for proving that many variants of ≤max are also
complete. The simplest to define is probably ≤∗

max, defined on T by

S ≤∗
max T ↔ ∃α ∈ ωω ∀(u, s) ∈ S (u, s + α||s|) ∈ T,

which is also more in the spirit of the Kσ case. But our goal is to get a complete
Σ1

1 quasi-order which is easy to reduce to other quasi-orders, and in this respect,
≤max seems more useful in practice.

2. Some of the features of ≤max may look superfluous, like e.g. insisting that
we consider only normal trees (of course its natural extension to arbitrary trees is
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complete, too). But note that because the trees are normal, Lipschitz witnesses to
S ≤max T can always be chosen one-to-one, a fact we will use later on.

Also, one can view the trees T as labelings of the basic tree ω<ω by finite subsets
of a countable set (associating to s ∈ ω<ω the labeling T (s)), and naturally extend
≤max to more general labelings, by finite or even infinite subsets of say ω, and again
obtain complete Σ1

1 quasi-orders. But again, we will later use the specific labeling
given by the elements of T .

3. The ordering ≤max also admits a game-theoretic interpretation. For S, T in
T , consider the game G(S, T ) where two players alternate playing integers, Player
I building a sequence α and Player II a sequence β, and where Player II wins the
run if for all n, S(α|n) ⊆ T (β|n). Then clearly S ≤max T if and only if Player II
has a winning strategy in G(S, T ).

Now G(S, T ) is open, uniformly in S, T . So by the usual analysis of open games,
we get that ¬(S ≤max T ) is equivalent to the existence of an ordinal ξ < ℵ1 such
that Player I has a winning strategy in the following game Gξ(S, T ): Alternately
Player I plays integers and strictly decreasing ordinals below ξ and Player II answers
with integers. The game finishes when the ordinal 0 is reached, the players having
produced finite sequences s and t, and Player II wins if for i ≤ |s|, S(s|i) ⊆ T (t|i).

Moreover the least ξ for which Player I has a winning strategy in Gξ(S, T )
provides a Π1

1-norm on the complement of ≤max.
It follows that if we define S ≤ξ

max T if Player II has a winning strategy in
Gξ(S, T ), we get an ω1-sequence of Borel quasi-orders which is ≤B-cofinal in the
Borel quasi-orders. For if R is a Borel quasi-order, any Borel reduction f of R to
≤max must, by a boundedness argument, also reduce R to some ≤ξ

max. This line of
research is pursued in a forthcoming paper by the second author (Rosendal [26]).

3. Model-theoretic examples

3.1. Embeddability in model theory. Given two structures A and B in the
same language L, we say that A embeds into B, in symbols A � B, if there is a
one-to-one map f which realizes an isomorphism between A and the substructure
B|Im(f).

Below, we will consider only countable structures in a countable language, and
will assume that the domain of the structures we consider is always N (so we
exclude finite structures). The set XL of L-structures with domain N is naturally
topologized as a compact zero-dimensional Polish space, and when restricted to XL,
� becomes a Σ1

1 quasi-order, and the associated equivalence ≡ of bi-embeddability
becomes a Σ1

1 equivalence relation.
If C is a class of countable L-structures, denote by �C and ≡C the restrictions

of � and ≡ to the set XL ∩ C. When C is the set of models of a first-order theory,
or of some Lω1ω-sentence, XL ∩ C is Borel in XL, and �C and ≡C are Σ1

1 and fall
under our study.

Historically, the first case considered was �LO, where LO is the class of countable
linear orders. Fräıssé [6] conjectured that �LO is a well-quasi-order (wqo), i.e. a
quasi-ordering with no infinite antichains and no infinite descending chains (or, to
rephrase it in a way closer to this paper, a quasi-ordering which (Borel) reduces
neither (ω, =) nor (ω,≥)). Fräıssé’s conjecture was proved by Laver [16], who
proved in fact that �LO is a better-quasi-ordering (bqo), a technical strengthening
of wqo due to Nash-Williams and instrumental in the proof. We will not get into
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bqo theory here (the reader may consult the nice introduction by Simpson in [23]),
but just want to stress that Laver’s result implies that �LO is extremely far from
complete. ≡LO is also very far from complete, as it has ℵ1 classes, but does not
Borel reduce equality on 2ω. These two facts should be contrasted to the situation
of the equivalence ∼=LO of isomorphism between countable linear orders: By a result
of Friedman and Stanley (see Hjorth [12]), it is S∞-complete.

There have been other similar bqo results. For example, Nash-Williams [24]
proves that �TO is bqo, where TO is the class of countable tree-orderings (partial
orders in which the set of predecessors of a point is finite and totally ordered).

There is another notion of “tree”, which we call here a combinatorial tree (to
distinguish it from the set-theoretic notion of section 2, and the tree-orderings
above). A combinatorial tree is a graph on some set X (a symmetric antireflexive
binary relation) which is connected and acyclic. A rooted combinatorial tree is a
combinatorial tree together with a distinguished vertex called its root.

There are obvious relations between these different notions of “trees”: If (X,≤) is
a tree-ordering with a least element x0, one gets a combinatorial tree by connecting
x to y if one is the predecessor of the other in ≤. Conversely, if (X, G, x0) is a
rooted combinatorial tree, one can define a tree-ordering on X with least element
x0 by saying that x ≤ y if the necessarily unique path from x0 to y contains x.
Moreover, any set-theoretical subtree T of ω<ω comes with a natural tree-ordering
(extension), and a natural rooted combinatorial treeing, given by ∅ and immediate
extension. Up to isomorphism, we get in this way all countable tree-orderings with
least element and all countable (rooted) combinatorial trees.

However, the notions of embedding for these structures are very different, as
exemplified by Nash-Williams’ result above and the following result:

Theorem 3.1. Let CT (respectively RCT ) be the class of countable combinatorial
trees (resp rooted ones). Then �CT and �RCT are complete Σ1

1 quasi-orders, and
hence ≡CT and ≡RCT are complete Σ1

1 equivalence relations.

Proof. We will define a Borel reduction T �→ GT of ≤max to �CT and �RCT

(simultaneously). First, fix some one-to-one enumeration θ of 2<ω such that |s| ≤
|t| implies θ(s) ≤ θ(t) (so θ(∅) = 0), e.g. by using the lexicographic ordering. We
now describe the combinatorial tree GT , for T ∈ T . Its domain is not N, but it is
easy to find a Borel in T bijection between its domain and N to get the reduction
we want.

First, we “double” the set ω<ω, i.e. add, for each s ∈ ω<ω \ {∅}, another vertex
s∗, and put an edge between s∗ and s, and between s∗ and the predecessor s− of
s. This defines a graph G0 (not depending on T ), which is clearly a combinatorial
tree. Then for each pair (u, s) ∈ T , we add vertices (u, s, x), where x is either 0k or
02θ(u)+2�1�0k, for k ∈ ω. Also, we link each (u, s, x) to (u, s, x′), where x′ is the
predecessor of x (as a sequence), and link (u, s, ∅) to s. This completely describes
GT , which is obviously a combinatorial tree. Let us make easy observations about
it. First, one can compute the valence vT (the number of neighbors) of vertices
in GT : elements in ω<ω have valence ω, elements (u, s, 02θ(u)+2), for (u, s) ∈ T ,
have valence 3, and all other vertices have valence 2. Next consider the distance dT

between vertices (the length of the unique path joining them). Then (because of
the doubling) the distance between vertices in ω<ω is even. The distance between
a vertex (u, s, 20θ(u)+2) and points in ω<ω is odd, and at least 2θ(u) + 3 (obtained
at s).
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We now check that

S ≤max T → (GS, ∅) � (GT , ∅)
and

GS � GT → S ≤max T,

which will finish the proof.
First, suppose S ≤max T . Then, by the remark following Theorem 2.5, there is

a one-to-one Lipschitz map f from ω<ω into ω<ω with s(s) ⊆ T (f(s)) for s ∈ ω<ω.
Define an embedding of GS into GT as follows. Send s ∈ ω<ω to f(s) (so in
particular roots are preserved), and s∗ to f(s)∗. This defines an embedding of G0

into itself. Next if (u, s) ∈ S, we have (u, f(s)) ∈ T , hence we can send (u, s, x) to
(u, f(s), x). Clearly this map witnesses (GS, ∅) � (GT , ∅).

Suppose now GS � GT , via some embedding g. Then we must have vT (g(y)) ≥
vS(y) and dT (g(y), g(z)) = dS(y, z) for all vertices y, z in the domain of GS . By the
remarks above, it implies that g must send elements in ω<ω to elements in ω<ω,
i.e. defines a map f : ω<ω → ω<ω. We claim that f is a witness to S ≤max T .

First we show f(∅) = ∅. Consider x = (∅, ∅, 02). It is a vertex in GS (S is
infinite, hence non-empty) of valence 3, and dS-distance 3 from ∅. So it must be
sent to some vertex of valence at least 3 in GT , with dT -distance 3 from f(∅). But
by the remarks above, there is only one possible such vertex, namely (∅, ∅, 02), as
points in ω<ω are at even distance of f(∅) and the other vertices of valence 3 are
at a bigger distance. This implies in particular that f(∅) = ∅.

Next we show that f is Lipschitz, by induction on the length of s. The first
step was done above. As s�n is within distance 2 from s in GS, f(s�n) must be
within distance 2 of f(s) in GT ; it cannot be f(s)− which is f(s−) by the induction
hypothesis. So it is f(s)�k for some k, and f is Lipschitz.

Finally suppose (u, s) ∈ S, towards showing (u, f(s)) ∈ T . Consider the vertex
x = (u, s, 02θ(u)+2) in GS. It must be sent by g to some vertex y in GT of valence
at least 3 and at distance 2θ(u) + 3 of f(s). Again points in ω<ω are forbidden by
parity, so y = (v, t, 02θ(v)+2) for some (v, t) ∈ T . But as the path in GS joining
s to x does not contain s−, the path in GT joining f(s) to y does not contain
f(s−) = f(s)−, and t must extend f(s). But if it extends it strictly, we get |v| > |u|
and θ(v) > θ(u), so that the distance is too big. So t = f(s) and θ(v) = θ(u), hence
v = u and finally (u, f(s)) ∈ T , as desired. �

The use of points of valence ω was clearly crucial in the previous proof, and one
can ask whether there is a variant of the construction that would only use locally
finite combinatorial trees, i.e. trees on which the valence is finite. The next result
shows the answer is negative:

Proposition 3.2. Let LFCT be the class of locally finite combinatorial trees, and
let RLFCT be the class of rooted ones. Then:

(a) �RLFCT is complete for compact quasi-orders.
(b) �LFCT is complete for Kσ quasi-orders.

Proof. (a) First enumerate in a one-to-one way all isomorphism types of finite
rooted trees, and let t(H, x) be the number of the isomorphism type of the finite
tree H with root x. Then associate to the locally finite rooted tree (G, x) the set

AG,x = {t(H, x) : H a finite subtree of G ∧ x ∈ H}.
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This is clearly a Borel assignment, and we claim that it reduces �RLFCT to (P(ω),
⊆). If f is an embedding of (G1, x1) into (G2, x2) and n ∈ AG1,x1 , there is a
finite subtree H of G1 with x1 ∈ H and n = t(H, x1). But then f(H) is a finite
subtree of G2 with x2 ∈ f(H), and n = t(f(H), x2) ∈ AG2,x2 . Conversely, suppose
AG1,x1 ⊆ AG2,x2 . Let Gn

1 = {x ∈ G1 : dG1(x1, x) ≤ n}. By local finiteness, Gn
1

is finite and t(Gn
1 , x1) is in AG1,x1 , hence also in AG2,x2 . So for each n there is an

embedding from (Gn
1 , x1) into (G2, x2). But there are only finitely many possible

such embeddings, and by König’s lemma there is an embedding of (G1, x1) into
(G2, x2).

We now prove the converse. For A ⊆ ω, define a (rooted, locally finite) combi-
natorial tree GA as follows. Its domain is DA = ω × {0} ∪ A× {1}, its root (0, 0)
and its edges link (i, 0) to (i + 1, 0) for i ∈ ω and (i, 0) to (i, 1) for i ∈ A. Then
trivially

A ⊆ B ↔ (GA, (0, 0)) � (GB, (0, 0)).
As in GA the valence is always ≤ 3, and the vertices of valence 3 are the (i, 0)’s,
i ∈ A. This finishes the proof of (a).

(b) First we show that �LFCT is Borel reducible to ≤Kσ
. For this, associate

with each locally finite combinatorial tree G with domain N and with each integer
n the set

An
G = {t(H, k) : H is a finite subtree of G ∧ k ∈ H ∧ dG(0, k) ≤ n}.

We claim that G �→ (An
G)n∈ω is the (clearly Borel) reduction we want.

First suppose f : N → N embeds G1 into G2, and let p = dG2(0, f(0)). Let
m ∈ An

G1
, towards showing that m ∈ An+p

G2
. Now m = t(H, k) for some finite subtree

H of G1 and some k ∈ H with dG1(0, k) ≤ n. So m = t(f(H), f(k)) and f(H) is a
finite subtree of G2, f(k) ∈ f(H) and dG2(0, f(k)) ≤ dG2(f(0), f(k)) + p ≤ n + p,
as desired.

Conversely, suppose p is such that for all n, An
G1

⊆ An+p
G2

. In particular (with the
notations of part (a)) A0

G1
= AG1,0 is contained in Ap

G2
, which is the finite union

of the AG2,k’s for k ∈ Gp
2. But then the proof in (a) works as well to show that G1

embeds in G2 (with 0 sent to some k ∈ Gp
2).

It remains to find a Borel reduction of ≤Kσ
to �LFCT . For A = (An) a sequence

of subsets of ω, define a locally finite combinatorial tree G(A) as follows: With
the notations of part (a), its domain consists of {0} × Dω\{0}, on which we copy
Gω\{0} and the union of the {n + 1} × DAn , on which we copy GAn ; and we also
link (n + 1, 0, 0) to (0, n + 1, 0) for n ∈ ω.

Suppose now A ≤Kσ
B, so that for some p, An ⊆ Bn+p for all n. Then let f

send (0, n, i) to (0, n + p, i), and (n + 1, x) for x in DAn to (n + p + 1, x). Easily f
embeds GA into GB.

Conversely, suppose f embeds GA into GB. In GA and GB, all points have
valence at most 4, and the points of valence 4 are the (0, n + 1, 0)’s, for n ∈
ω. So in particular for some p, f((0, 1, 0)) = (0, p + 1, 0), and then necessarily
f((0, n+1, 0)) = (0, p+n+1, 0) for all n (one cannot go backwards from (0, p+1, 0),
as there are not enough points of valence 4 in that direction). But then for each n,
f must embed the copy of (GAn , (0, 0)) into the copy of (GBn+p , (0, 0)), and hence
An ⊆ Bn+p, as desired. �

We now come back to orderings. We have seen a case, the class of countable
tree-orderings, for which embeddability is very simple. Here is an opposite result.
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Theorem 3.3. Let PO be the class of countable partial orders. Then �PO is a
complete Σ1

1 quasi-order, and hence ≡PO is a complete Σ1
1 equivalence relation.

Proof. We will Borel reduce �CT to �PO. This is enough by Theorem 3.1.
For each combinatorial tree G on N, we define a partial order ≤G as follows: Its

domain is N ∪ G∗, where G∗ = {{n, m} : (n, m) ∈ G} is the set of edges of G.
Also, we set

x ≤G y ↔ (x = y) ∨ (x ∈ N ∧ y ∈ G∗ ∧ x ∈ y).

Clearly each ≤G is a partial order (there is no transitivity to be checked), and it
is easy to transform it into a partial order on N, in a Borel way in G. So it remains
to check that it gives a reduction.

First if f is an embedding of G1 into G2, f extends to G∗
1 by sending {n, m} to

{f(n), f(m)}, and this gives an embedding of ≤G1 into ≤G2 .
Conversely, if f is an embedding of ≤G1 into ≤G2 , as any n ∈ N is ≤G1-below

at least some edge, f must send N to N, and similarly f must send G∗
1 to G∗

2.
As each edge {{n, m} in G∗

1 is above n and m and nothing else, we must have
f({n, m}) = {f(n), f(m)}. This implies that nG1m → f(n)G2f(m), but also that
adjacent edges in G1 must go to adjacent edges in G2, so that finite paths are
preserved, and hence distance, too. In particular if n and m are not G1 -related,
their images cannot be G2-related, and f defines an embedding of G1 into G2. �

Remark 3.4. 1. The partial orders above are very close to being lattices. Indeed if
we add a maximum element and a minimum element to them, they become lattices.
As the proof of Theorem 3.3 goes (essentially) unchanged, we get as a corollary of
the proof that embeddability between countable lattices (viewed as partial orders),
and embeddability between countable lattices (viewed as lattices) are complete Σ1

1

quasi-orders.
2. Theorem 3.3 is one manifestation of a nice “reflection” phenomenon:
The quasi-ordering ≤B should be considered (at least we hope) as one of the

“natural” quasi-orderings occurring in mathematics. As it was defined in section
1, it is not of the correct type to fall within our scope, and be compared (using
≤B !) to other quasi-orderings. But its restrictions to many classes are (usually only
“in the codes”) of the correct type. This is what happens in Theorem 3.3: The
restriction of ≤B to quasi-orders with countable domain (and discrete topology)
clearly corresponds to �PO. Also, Theorem 3.3 says that this restriction of ≤B is
already complete for Σ1

1 quasi-orderings.
We do not know if a similar phenomenon holds at other levels. For example,

≤B restricted to Σ1
1 quasi-orders is Σ1

3 (in the codes of Σ1
1 quasi-orders). Is it a

complete Σ1
3 quasi-order?

The only known result in this direction is the following result of Adams and
Kechris [1]): Consider the restriction of ≤B to Borel equivalence relations with
countable classes (i.e. below E∞

F2
). In the codes, it is a Σ1

2 quasi-ordering, and as
proved in [1], as a set, it is complete Σ1

2. But it is not known if it is a complete Σ1
2

quasi-order, or even if it Borel reduces ≤max. Adams-Kechris prove in [1] that it
Borel reduces inclusion between Borel sets, hence also any Borel quasi-order.

We end this section with some open problems.
The results of this section give examples of classes C of countable structures such

that bi-embeddability ≡C and isomorphism ∼=C are extremely far apart. If C is the
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class of countable linear orders, ≡C has only ℵ1 classes, whereas ∼=C is S∞-complete.
Also, if C is the class of countable partial orders, ∼=C is S∞-complete, whereas ≡C is
a complete Σ1

1 equivalence relation. The natural question here is whether one can
increase these gaps:

Question 1: Is there an Lω1ω-elementary class C with ∼=C S∞-complete but ≡C
with countably many classes?

Question 2: Is there an Lω1ω-elementary class C with ≡C a complete Σ1
1 equiva-

lence relation but ∼=C not S∞-complete?
In the same vein, here is another natural question:
Question 3: Is there an Lω1ω-elementary class C with ≡C a complete Σ1

1 equiva-
lence relation but �C not a complete Σ1

1 quasi-order?
A negative answer to this last question would reinforce our heuristic view that

the limitations to the method developed in this paper are indeed intrinsic (and a
positive answer would need a different method).

3.2. Homomorphism in model theory. Here we will concentrate on a notion
of model theory somewhat complementary to that of embeddability, namely homo-
morphism.

We will model a graph G on a set D as a symmetric irreflexive relation and
say that h : D → E is a homomorphism between graphs G on D and H on E
if for all x, y ∈ D, xGy → h(x)Hh(y). We write G � H in case there is such a
homomorphism. The notion of homomorphism between graphs turns out to be very
useful in combinatorics. For suppose that G � H and c is a vertex colouring of H;
then c ◦ h is a vertex colouring of G and the chromatic number of G will therefore
be less than that of H.

It is known that � when restricted to the class of finite graphs is a very com-
plicated relation, in fact any countable partial order embeds into it, as shown by
Z. Hedrlin (see [25]). Here we intend to extend this result to the class of count-
ably infinite graphs by showing that the relation restricted to the Polish space of
countably infinite graphs is a complete analytic quasi-order.

Theorem 3.5. The quasi-order of homomorphism between countable graphs is Σ1
1

complete.

Proof. Let π : 2<ω ↪→ ω \ 4 be an enumeration such that |u| < |v| → π(u) < π(v).
Define for each (u, s) ∈ (2 × ω)<ω a graph Cu,s = (Vu,s, Eu,s) by
Vu,s = {s = au,s

0 , au,s
1 , . . . , au,s

π(u), b
u,s
1 , . . . , bu,s

2π(u)} and
au,s
0 Eu,sa

u,s
1 Eu,s . . . Eu,sa

u,s
π(u)Eu,sb

u,s
1 and bu,s

i Eu,sb
u,s
j , ∀i �= j.

So Cu,s contains a complete graph on 2π(u) points and therefore if Cu,s � Cv,t,
then π(u) ≤ π(v). Furthermore if such a homomorphism sends s = au,s

0 to t = av,t
0 ,

then π(u) = π(v), i.e. u = v.
For any s ∈ ω<ω let Ks = (Vs, Es) be a distinct copy of K|s|+1 (the complete

graph on |s| + 1 vertices) with one of the vertices being s. Finally for T ∈ T let
GT = (VT , ET ) be defined by

VT =
⋃

s∈ω<ω Vs ∪
⋃

(u,s)∈T Vu,s and
ET consists of the edges in Es for s ∈ ω<ω, in Eu,s for (u, s) ∈ T and sET s�n

for all s ∈ ω<ω and n < ω.
For two vertices x, y in a connected graph H put dH(x, y) = n iff n is minimal

such that ∃x = x0, x1, . . . , xn = y x0Hx1H . . . Hxn. We note that for α ∈ ωω

and n < m we have dGT
(α|n, α|m) = m − n and in fact α|n, α|n+1, . . . , α|m is the
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unique shortest path from α|n to α|m in GT . Also note that a homomorphism is
necessarily distance decreasing.

Claim: If h : GS � GT for S, T ∈ T , then there are some α ∈ ωω and k ≥ 0 such
that ∀∞n h(0n) = α|k+n.

Since s ∈ ω<ω is a vertex in a complete subgraph of GS on |s| + 1 vertices, so
is h(s). So h(s) can either be a vertex in some Kt or be bu,t

i for some t and u

(whenever |s| ≥ 2). Suppose that h(s) = bu,t
i for |s| ≥ 2 and (u, t) ∈ T . Then as

sES(s�0)ES(s�02)ES . . . is a path in GS of vertices belonging to complete sub-
graphs of increasing cardinality, so must h(s), h(s�0), h(s�02), . . .. But the valence
of au,t

π(u) is 2, so h(s�0n) �= au,t
π(u), ∀n and therefore h(s�0n) ∈ {bu,t

1 , . . . , bu,t
2π(u)} for

all n. But this is impossible since the bu,t
i only belong to complete subgraphs of

bounded cardinality 2π(u).
So h(s) ∈ Kp(s) for all s with |s| ≥ 2 and p(s) ∈ ω<ω such that |p(s)| ≥ |s|. So

then dGT
(∅, h(s)) ≥ |s| for |s| ≥ 2.

Put k = infn dGT
(∅, h(0n)) − n ≥ 0. Then as dGT

(0n, 0m) = m − n for n < m
and h is distance decreasing, we have that dGT

(h(0n), h(0m)) ≤ m − n. Therefore
∃m0 ∀n ≥ m0 dGT

(∅, h(0n)) = n+k and ∀m > n ≥ m0 dGT
(h(0n), h(0m)) = m−n.

Note that a path from Ks to Kt (s �= t) in GT necessarily passes through s and
t, so take n0 ≥ m0 such that h(0n0) = t0 for some t0 with |t0| ≥ n0 and n1 > n0

such that h(0n1) = t1, |t1| ≥ n1. Then dGT
(t0, t1) = n1 − n0 and dGT

(∅, h(0n))
is strictly increasing for n0 ≤ n ≤ n1, so t1 = t�0 w for some w of length equal to
n1 − n0. But t1||t0|, t1||t0|+1, . . . , t1 is the unique shortest path from t0 to t1, which
h(0n0), . . . , h(0n1) has to follow, so h(0n0+n) = t1||t0|+n.

This shows that h(0n0) ⊆ h(0n0+1) ⊆ . . . and that therefore α =
⋃

n h(0n0+n)
will do. This proves the claim.

Now choose m0 large enough so that ∀n ≥ m0 h(0n) = α|k+n and so that
∀n ≥ m0 ∀u ∈ 2n π(u) > k + n + 2. Suppose u ∈ 2n, n ≥ m0 and (u, 0n) ∈ S.
Then there is a vertex x in GS of distance π(u) + 1 from 0n which belongs to a
complete subgraph on 2π(u) vertices. So there is a corresponding vertex y in GT

of distance less than π(u) + 1 from α|k+n = h(0n) which belongs to a complete
subgraph of GT on 2π(u) vertices. This y cannot belong to some Kt, for otherwise
|t|+1 ≥ 2π(u) and |t| ≤ k +n+π(u)+1, i.e. π(u) ≤ k +n+2, which is impossible.
So this y has to be some bv,t

i , with π(u) ≤ π(v), i.e. |u| ≤ |v|. But for such v

dGT
(α|k+n, bv,t

i ) ≤ π(u) + 1 iff π(v) ≤ π(u). So π(u) = π(v) and v = u. But then
|t| = n and α|k+n = t, i.e. k = 0 and (u, t) = (u, α|n) ∈ T .

This shows that for (u, 0n) ∈ S with n ≥ m0 we have (u, α|n) ∈ T . But on the
image of a canonical reduction of some Σ1

1 quasi-order to ≤max this is enough to
insure that S ≤max T as is seen from the proof of the maximality of ≤max.

On the other hand if S ≤max T , then it is easily seen that GS is in fact isomorphic
to an induced subgraph of GT , so in particular GS � GT . This shows ≤max reduces
to the relation of homomorphism and finishes the proof. �

Remark 3.6. Let us just mention that by a trivial variation of the proofs of Propo-
sition 3.2 (b) and Theorem 3.5 one can show that the relation of homomorphism
between countable locally finite connected graphs is Borel bi-reducible with Kσ.
Note also that the above proof of course produces connected graphs, as is easily
seen.
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4. Embeddability in analysis

In this section, we consider various “embeddability” notions that occur in anal-
ysis, i.e. that are defined between separable structures (as opposed to countable
structures), like Polish metric spaces, compact metrizable spaces and separable
Banach spaces.

4.1. Isometric embeddability. A Polish metric space (X, d) is a metric space in
which the distance d is complete, and the induced topology is Polish (which just
means separable here). The distance is very often understood.

A map f : (X, dX) → (Y, dY ) is an isometric embedding if it preserves the dis-
tances. It is an isometry between X and Y if moreover it is onto Y . This naturally
leads to the notions of isometric embeddability �i, isometric bi-embeddability ≡i

and isometry ∼=i, defined respectively by
X �i Y ↔ ∃f : X → Y, f is an isometric embedding,
X ≡i Y ↔ X �i Y ∧ Y �i X,
X ∼=i Y ↔ ∃f : X → Y, f is an isometry.
Recall also that a Polish metric space X is homogeneous if any point of X can be

sent to any other point by an isometry of X, and ultrahomogeneous if any isometry
between two finite subsets of X can be extended to an isometry of X. Also, X is
Heine-Borel if any closed bounded subset of X is compact (so that in particular X
is locally compact).

The complexity of ∼=i, for various classes of Polish metric spaces, has been studied
in a very detailed way in a series of papers by Clemens, Gao and Kechris [4, 8, 5].
Our aim here is to study the complexity of the quasi-ordering �i and the equivalence
relation ≡i for these classes of Polish metric spaces.

First, we have to put these objects into our frame. This is done in [8]: There
is a �i-maximum space U among Polish metric spaces, called the Urysohn space.
It is characterized, up to isometry, by this maximality property and the fact that
it is ultrahomogeneous. So, up to isometry, we can view any Polish metric space
as a (necessarily closed) subspace of U . And if we equip F (U), the set of closed
subspaces of U , with the Effros Borel structure (and any Polish topology that gives
it), the relations �i, ≡i and ∼=i become Σ1

1 on F (U).
As we did in section 3, if C is a class of Polish metric spaces, we use a subscript

C to indicate the restrictions of �i, ≡i and ∼=i to C ∩ F (U).
Our first result is an immediate consequence of Theorem 3.1.

Proposition 4.1. �i is a complete Σ1
1 quasi-order, and ≡i is a complete Σ1

1 equiv-
alence relation. In fact the same is true of �i

D and ≡i
D, where D is the class of

discrete Polish metric spaces — and hence also for any intermediate class, like dim0
Polish metric spaces or locally compact Polish metric spaces.

Proof. Any countable combinatorial tree can be turned into a discrete Polish metric
space by using the geodesic distance, and tree-embeddings then correspond exactly
to isometric embeddings. So Theorem 3.1 gives the result. (To be less sloppy one
should go, in a Borel way, from the trees to F (U). But this is easy, e.g. by first
embedding into U , as some space X, the tree ω<ω with its geodesic distance, and
then redefine in a Borel way the reduction in Theorem 3.1 as taking values in F (X),
hence in F (U).) �
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This result should be contrasted with the results of Gao and Kechris concerning
∼=i for the same classes: The complexity varies from E∞

S∞
for discrete Polish metric

spaces, to E∞
G0

for the class of all Polish metric spaces. For some intermediate
classes, like locally compact Polish spaces, the exact complexity is not known.

In [8], Gao and Kechris also study isometry for the subclasses UM of ultrametric
Polish spaces, HUM of homogeneous ultrametric Polish spaces and UHUM of
ultrahomogeneous ultrametric Polish spaces. They prove that ∼=i

UM is Borel bi-
reducible with E∞

S∞
, and ∼=i

HUM and ∼=i
UHUM are Borel bi-reducible with Ecntble

(see the end of section 1 for the definitions).
Here we have:

Proposition 4.2. (a) �i
UM is a complete Σ1

1 quasi-order, and hence ≡i
UM is a

complete Σ1
1 equivalence relation.

(b) �i
HUM and �i

UHUM are Borel bi-reducible with the ordering ⊆cntble, defined
on R

ω by
(xn) ⊆cntble (yn) ↔ {xn : n ∈ ω} ⊆ {yn : n ∈ ω}.

So ≡i
HUM and ≡i

UHUM are bi-reducible with Ecntble, but in fact for homogeneous
ultrametric spaces, isometric bi-embeddability and isometry coincide.

Proof. (a) If (G, x0) is a rooted countable combinatorial tree, its body [G, x0] is the
set of infinite paths through G starting at x0. We turn it into an ultrametric Polish
space by defining the distance between distinct paths (x0, x1, ...) and (x0, y1, ...) as
2−i, where i is least with xi �= yi. It is easy to check that if the trees (G1, x1) and
(G2, x2) are pruned (every point has valence at least 2), embeddings from (G1, x1)
into (G2, x2) correspond exactly to isometric embeddings of their bodies.

But then note that in the proof of Theorem 3.1 we only used pruned trees, and
working a bit to get the bodies as subspaces of U (by e.g. embedding first the
“universal” body ωω), we get (a).

(b) The following argument is similar to the one in [8]. First recall that given
a countable subset A of R

+, there is a Polish ultrametric space UA which is ultra-
homogeneous, has distances in A ∪ {0}, and isometrically embeds all ultrametric
Polish spaces with distances in A ∪ {0}. So if θ is a homeomorphism between R

and (0, 1) and we set A∗ = {1 + θ(r) : r ∈ A} for A a countable subset of R, then
the map A �→ UA∗ gives a Borel reduction of ⊆cntble to �UHUM (and even to its
restriction to discrete spaces in UHUM).

For the other direction, we have to reduce �i
HUM to ⊆cntble. So suppose (X, d)

is a homogeneous ultrametric Polish space. Then its set of distances d[X2] is
countable, and for each r ∈ R

+, the relation d(x, y) < r defines on X an equivalence
relation Er. Fix x ∈ X, and set, for n ≥ 2

AX
n = {r ∈ R

+ : {y : d(x, y) ≤ r} consists of at least n Er-equivalence classes}.
Note that by homogeneity, this does not depend on the choice of x. The sets

AX
n are decreasing in n, and AX

2 = d[X2] \ {0} is countable. Our reduction is
X �→ AX =

⋃
n(n + θ[AX

n ]). It is easy to see it can be enumerated in a Borel in
X way, and trivially if X �i Y , AX ⊆ AY . Conversely suppose AX ⊆ AY , and
let D = {xn : n ∈ ω} be a countable dense subset of X. It is enough to build an
isometric embedding f of D into Y , for it can then be extended isometrically to all
of X. We build f by induction on n. First send x0 to some y0 ∈ Y . Now suppose f
has been defined on {x0, ..., xn}, with f(xi) = yi. Let r = inf{dX(xn+1, xi), i ≤ n},
Dr = {xi : i ≤ n ∧ dX(xn+1, xi) = r}, and let k ≥ 1 be the number of Er-classes
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met by Dr inside {x : dX(xn+1, x) ≤ r}. As xn+1 is Er -inequivalent to all elements
of Dr, r ∈ AX

k+1, hence r ∈ AY
k+1. But this means that picking some i with xi in

Dr, there must be in Y an EY
r -class inside {y : dY (yi, y) ≤ r} not met by f(Dr),

hence some point yn+1 with dY (yn+1, y) = r for y ∈ f(Dr). Set f(xn+1) = yn+1.
Defined in this way, f preserves distances on Dr ∪ {xn+1} by construction, and on
all of {x0, ..., xn+1} by the properties of ultrametrics. This finishes the proof.

For the last remark, note that the same proof, using now a back-and-forth ar-
gument, shows that for X, Y in HUM , X ≡i Y is equivalent to X ∼=i Y and to
AX = AY . �

In [8], Gao and Kechris also consider the classes C of connected locally compact
Polish metric spaces, HB of Heine-Borel Polish metric spaces, and CHB of con-
nected Heine-Borel Polish metric spaces. [8] contains a proof of Hjorth’s result that
isometry restricted to any of these classes is Borel-bireducible with E∞

F2
(Hjorth

proves in fact a stronger result, for the class of so-called pseudo-connected locally
compact Polish metric spaces that contains both C and HB; see [8]).

We do not know a good upper bound for the complexity of �i
C . The next result

provides a lower bound, and solves the problem for HB and CHB.

Theorem 4.3. The quasi-orders �i
HB and �i

CHB are Borel bi-reducible with ≤Kσ
,

and hence ≡i
HB and ≡i

CHB are Borel bi-reducible with ≡Kσ
.

Proof. The lower bound is easy, and follows from Proposition 3.2: Given a locally
finite combinatorial tree G, build XG by replacing every edge in G by a copy of
[0, 1], and extending the geodesic distance in the natural way. The resulting space
is clearly connected and Heine-Borel, and easily G �→ XG gives a Borel reduction
of �LFCT to �i

CHB.
To get the upper bound, we must find a Borel reduction of �i

HB to some Kσ

quasi-order. This is done as follows.
We work with the Urysohn space U . First, for each sequence 
x = (xi)i<n in

Un, let its configuration c(
x) be the n × n matrix with coefficients d(xi, xj). Let
D = {(n, 
m) : n ∈ ω, 
m ∈ ωn}. If 
K = (Kn)n∈ω is a sequence of compact subsets
of U and (n, 
m) ∈ D, set

Cn,�m( 
K) = {c(
x�
0 
x�

1 ...�
xn−1) : ∀i < n 
xi ∈ Kmi
i }.

It is a compact subset of R
l(�m)×l(�m), where l(
m) =

∑
i<n mi.

We first prove:

Lemma 4.4. Suppose 
K and 
L are increasing sequences of compact subsets of U ,
with unions X and Y , respectively. Then the following are equivalent:

(a) There is an isometric embedding f from X into Y with f(Kn) ⊆ Ln for all
n ∈ ω.

(b) For all (n, 
m) ∈ D, Cn,�m( 
K) ⊆ Cn,�m(
L).

Proof. (a) implies (b) is obvious, as f preserves configurations. For (b) implies (a),
fix a countable set X0 = {xn : n ∈ ω} such that X0 ∩ Kn is dense in Kn for each
n. For N ∈ ω, reenumerate (xi)i<N by first enumerating the points in K0, then
in K1 \ K0, and so on. This gives some (n, 
m) ∈ D and some 
z0, . . . , 
zn−1 with

zi ∈ Kmi , such that the concatenation of the zi’s reenumerate (xi)i<N . Then c(
z) is
in Cn,�m( 
K), hence in Cn,�m(
L), and by reenumerating again, this means that there
is an isometric embedding fN of (xi)i<N into Y satisfying xi ∈ Kp → f(xi) ∈ Lp
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for all p and i < N . By compactness of the Lp’s, one can find a subsequence of
N ’s such that for all i, fN (xi) converges to some yi ∈ Lp(i), where p(i) is least
with xi ∈ Kp(i). This defines an isometric embedding of X0 to Y which can by
continuity be extended to all of X, and satisfies f(Kn) ⊆ Ln for all n ∈ ω. �

Using this, we now finish the proof of Theorem 4.3. Fix some x0 ∈ U . For each
Heine-Borel subspace X of U and n ∈ ω, let Kn(X) = {x ∈ X : d(x0, x) ≤ n}, and

K(X) = (Kn(X))n∈ω. This is an increasing sequence of compact sets, with union
X.

Now let
D′ = {(p, q, 
m) : q ≤ p ∧ (p − q, 
m) ∈ D},

and define, for (p, q, 
m) ∈ D′,

C ′
p,q,�m(X) = Cp−q,�m(T q 
K(X)),

where T q( 
K(i)) = 
K(i + q).
This defines a Borel map f from the (Polish) space HB to the compact Polish

space
Z =

∏

(p,q,�m)∈D′

K(R)l(�m)×l(�m),

equipped with the product of the Hausdorff topologies on the factors.
On Z, define a Kσ quasi-order ≤Z by

(C1
i )i∈D′ ≤Z (C2

i )i∈D′ ⇐⇒ ∃n ∀(p, q, 
m) ∈ D′ C1
p,q,�m ⊆ C2

p+n,q+n,�m.

To finish the proof, we show that f reduces �i
HB to ≤Z . First, if n witnesses that

(C ′
i(X))i∈D′ ≤Z (C ′

i(Y ))i∈D′ , we get in particular, for q = 0, that for any (p, 
m)
in D, Cp,�m( 
K(X)) ⊆ Cp,�m(Tn 
K(Y )), and by Lemma 4.4, X isometrically embeds
into Y .

Conversely, if g is an isometric embedding of X into Y , pick x1 in X, and n0, n1

such that d(x0, x1) ≤ n0 and d(x0, g(x1)) ≤ n1. Then for x in Kp(X), we get g(x)
in Kp+n0+n1(Y ), and by lemma 4 again, n0 + n1 witnesses that f(X) ≤Z f(Y ), as
desired. �

The preceding proof is an elaboration on the proof (see Gromov [10]) that isom-
etry for compact Polish metric spaces is tame, i.e. Borel reducible to equality on
2ω. Analogous proofs show that �i restricted to compact Polish metric spaces, and
�i restricted to homogeneous locally compact spaces, are Borel bi-reducible with
(P(ω),⊆).

4.2. Continuous embeddability. In this subsection, we consider compact metriz-
able topological spaces, which we view, up to homeomorphism, as elements of the
space K(I) of compact subsets of the Hilbert cube I = [0, 1]ω, with its Hausdorff
topology. Taking as morphisms the one-to-one continuous maps, we get the Σ1

1 re-
lations of continuous embeddability �c, continuous bi-embeddability ≡c and home-
omorphism ∼=c on K(I). As before, we indicate by a subscript C the restrictions of
these relations to a subclass C of compact metrizable spaces.

The exact complexity of ∼=c is not known. Camerlo and Gao [3] prove it is at
least E∞

S∞
, and Hjorth [12] proves it is strictly above it. On the other end, an easy

argument (see the next subsection) shows it is at most ∼=i (≡B E∞
G0

).
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When restricted to 0-dimensional spaces (i.e. K(2ω)), it becomes Borel bi-
reducible with E∞

S∞
[3]. Using Cantor’s analysis of countable compact sets, one

easily shows that �c
K([0,1]) is a pre-well-ordering of type ω1 + 2.

For higher dimensions, one gets:

Theorem 4.5. The quasi-order �c
K([0,1]2) is a complete Σ1

1 quasi-order, hence a
fortiori �c, too. So, ≡c

K([0,1]2) and ≡c are complete Σ1
1 equivalence relations.

Proof. First, consider the Borel reduction f of ≤max to �RCT of Theorem 3.1, that
we now view as taking values in the rooted set-theoretical subtrees of (ω<ω, ∅). Let
X be the image of f . We will use the following properties of X: The elements
of X are pruned trees (all vertices have valence at least 2) and have 2ℵ0 infinite
branches, and on X, �CT and �RCT coincide. Our plan is to define a Borel map
g : P(ω<ω) → K([0, 1]2) which on X reduces �CT to �c. Composing the reductions
f and g then gives the result.

For A, B ∈ [0, 1]2, m(A, B) denotes the middle point of the segment AB. Given
a triangle (A, B, C), we define sequences (An)n≤ω, (Bn)n<ω, (A′

n)n<ω, (A′′
n)n<ω and

compact sets (Kn)n<ω,all depending on (A, B, C), as follows:
(i) Aω = m(A, C), A0 = m(B, Aω), An+1 = m(An, Aω).
(ii) B0 = m(B, C), Bn+1 = m(An, C).
(iii) A′

n = m(A, An), A′′
n = m(A′

n, A′
n+1).

(iv) Kn = AAn ∪ AnA′′
n ∪ A′′

nA.
(So, except for the common origin A, the sets Kn are disjoint triangles which
accumulate on the segment AAω.)

Then define inductively, for s ∈ ω<ω, triangles (As, Bs, Cs) by
A∅ = (0, 1), B∅ = (0, 0), C = C∅ = (1, 0), and
As�n = An(As, Bs, C), Bs�n = Bn(As, Bs, C), Cs�n = Cs = C.
Also let A′

s�n = A′
n(As, Bs, C), A′′

s�n = A′′
n(As, Bs, C), and set K∅ = ∅ and

Ks�n = Kn(As, Bs, C).
Finally, for T ⊆ ω<ω, set g(T ) = KT =

⋃
s∈T Ks. This is clearly a Borel map,

and we claim it works.
Note first that for T ∈ X, the set KT consists of the union of the segments

AsAs�n, AsA
′′
s�n, A′′

s�nAs�n for s�n ∈ T , of the point C, and of the segments
AsC for s ∈ T with valence ω in T . This is because this last set is compact
containing all Ks for s ∈ T . If s ∈ T has infinite valence, one can pick for each
n with s�n ∈ T an infinite branch αn through T starting by s�n, and the paths
Pn =

⋃
k≥|s| Aαn|kAαn|k+1 in KT accumulate to AsC.

We now check that g is a reduction. First suppose that h : S → T is a rooted
embedding, with S, T in X. We then send C to C, As to Ah(s), A′′

s to A′′
h(s)

for s ∈ S, and the other points in KS accordingly, by linear interpolation on the
corresponding segments — the only point to note here is that if s has valence ω in
S, so has h(s) in T . This clearly defines a continuous embedding of KS into KT .

Conversely, suppose h : KS → KT is a continuous embedding. A path in
K is a continuous one-to-one map p : [0, 1] → K. It starts at A if p(0) = A.
Two paths p1 and p2 starting at A are essentially disjoint if for some r ∈ (0, 1],
p1((0, r)) and p2((0, r)) are disjoint. Given A ∈ K, let vK(A) be the supremum
of the cardinals of all families of pairwise essentially disjoint paths in K starting
at A. One immediately gets that under a continuous embedding, valence can only
increase.
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Now for S ∈ X, one checks that for s ∈ S, vKS
(As) = 2.vS(s) (with the con-

vention 2.ω = ℵ0). Also vKS
(C) = 2ℵ0 , as branches through S naturally give

continuous paths starting at C, which are essentially disjoint if the branches are
distinct. Finally all other points in KS have valence 2.

From this, we get that h(C) = C, and hence for s ∈ S, h(As) = Ak(s) for some
map k : ω<ω → ω<ω. We finally check that k is a tree-embedding. So let s and
s�n be consecutive vertices in S, and consider the circuit Ks�n in KS . It must
be sent by h to some circuit L containing Ah(s) and Ah(s�n) but not C, and easily
there are no such circuits in KT unless h(s) and h(s�n) are consecutive vertices in
T , as desired. �

4.3. Separable Banach spaces. We now consider the case of separable Banach
spaces. Any such space is linearly isometric to a closed subspace of C([0, 1]) equipped
with the sup norm, so we can consider the Borel subset B of the standard Borel
space of closed subsets of C([0, 1]) consisting of all closed linear subspaces of C([0, 1]),
as our basic space of separable Banach spaces (equipped with some Polish topology
giving its Borel structure).

Taking as morphisms the linear isometric embeddings, i.e. the linear norm-
preserving maps, we can define on B linear isometric embeddability �li, linear
isometric bi-embeddability ≡li and linear isometry ∼=li, by

X �li Y ⇐⇒ ∃f : X → Y (f is linear and norm-preserving),

X ≡li Y : ⇐⇒ X �li Y and Y �li X

and

X ∼=li Y ⇐⇒ ∃f : X → Y (f is linear, norm-preserving and onto).

They are Σ1
1 relations on B.

The exact complexity of the equivalence relation ∼=li is not known. But two
classical results in Banach space theory give upper and lower bounds. First, by
Banach-Stone, one has that for K, L compact metrizable spaces,

K ∼=c L ↔ (C(K), ‖ ‖∞) ∼=li (C(L), ‖ ‖∞),

and this gives a Borel reduction of ∼=c to ∼=li. Also, by a theorem of Mazur, any
isometry between Banach spaces X and Y sending 0 to 0 is linear, hence on B the
relations ∼=i and ∼=li coincide (up to the codings, for one should first isometrically
embed C([0, 1]) into U). So we get ∼=c≤B

∼=li≤B
∼=i (so that ∼=c≤B

∼=i too, as stated
in section 4.2). It is not known if any of these inequalities is strict.

Now consider the ordering �li. It is not true anymore that an isometric embed-
ding from a Banach space X into a Banach space Y sending 0 to 0 is necessarily
linear. However, Godefroy and Kalton have very recently proved in [9] that for
separable Banach spaces, �li still coincides with �i. So the following result can
also be viewed as computing the complexity of �i

B and ≡i
B. This result is one of

a sequence of results about the complexity of various comparison notions in the
theory of separable Banach spaces which are due to the second author and have
appeared elsewhere [27]. Most of them need a good deal of Banach space theory,
and we will not discuss them here. But we could not end this paper without giving
the reduction of �CT to �li, which was obtained by Rosendal prior to all results in
this paper, and indeed was the main motivation for both developing a completeness
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method in dimension 2, and also for replacing equivalence relations by quasi-orders
in this development.

Theorem 4.6. The ordering �CT is Borel reducible to �li, and even to its restric-
tion to the Banach spaces isomorphic to c0. In particular, �li is a complete Σ1

1

quasi-order, and ≡li a complete Σ1
1 equivalence relation.

Proof. Let c0 be the usual Banach space of sequences of reals converging to 0 at
infinity, with the sup-norm ‖ ‖∞. We denote by (en)n∈N the usual basis of c0, and
will write interchangeably elements of c0 as (αn)n∈N or

∑
n αnen.

Given a combinatorial tree G with domain N and geodesic distance dG, we define
a new norm ‖ ‖G on c0 by

‖(αn)‖G = sup{|αi| +
|α|j

1 + dG(i, j)
: i, j ∈ N, i �= j}.

It is easy to check that ‖ ‖G is indeed a norm, and that for any (αn) ∈ c0 one
has

‖(αn)‖∞ ≤ ‖(αn)‖G ≤ 3
2
‖(αn)‖∞,

so that ‖ ‖G is an equivalent norm on c0.
Moreover, by suitably embedding isometrically (c0, ‖ ‖G) into C([0, 1]), one can

easily make the map G �→ (c0, ‖ ‖G) Borel. So the proof will be finished if we
can prove that this map is a reduction of �CT to �li, i.e. that for G1, G2 two
combinatorial trees, one has

G1 � G2 ⇐⇒ (c0, ‖ ‖G1) �li (c0, ‖ ‖G2).

One direction is easy: If f : N → N is an embedding of G1 into G2, f must
preserve the geodesic distances. So, if we define g : c0 → c0 by g(

∑
n αnen) =∑

n αnef(n), we get the linear isometric embedding we wanted.
For the other direction, fix a linear isometric embedding

g : (c0, ‖ ‖G1) → (c0, ‖ ‖G2).

Claim. For every p ∈ N, there are i ∈ N and ε ∈ {−1, 1} such that g(ep) = εei.

Granting this claim, the end of the proof is easy: Write g(p) = εpef(p), with
f : N → N. By computing norms, we get for p �= q

‖εpep + εqeq‖G1 = ‖ef(p) + ef(q)‖G2

and ‖εpep + εqeq‖G1 = 1 +
1

1 + dG1(p, q)
,

whereas ‖ef(p) + ef(q)‖G2 = 2 if f(p) = f(q),

and ‖ef(p) + ef(q)‖G2 = 1 +
1

1 + dG2(f(p), f(q))
otherwise.

From these equalities, we get f(p) �= f(q) and dG1(p, q) = dG2(f(p), f(q)), so that
f embeds G1 into G2, as desired.

So it remains to prove the above claim. For p ∈ N, set g(ep) =
∑

i αp
i ei. As

‖ep‖G1 = 1, we have 2
3 ≤ ‖g(ep)‖∞ ≤ 1.

If ‖g(ep)‖∞ = 1, we are done, for it implies that for some i, |αp
i | = 1, and as

‖g(ep)‖G2 = 1 too, necessarily αp
j = 0 for j �= i.

So, arguing by contradiction, suppose there is some p with ‖g(ep)‖∞ = 1 − a,
for some a with 0 < a ≤ 1

3 .
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Consider, for q �= p, the vector ep + a
3eq. Its G1-norm is 1 + a

3 . 1
1+dG1 (p,q) > 1.

Now notice that the supremum, in the definition of the G-norms, is always attained.
Applying this to the G2-norm of g(ep+a

3eq), we get that there are i and j (depending
on q) with

‖g(ep +
a

3
eq)‖G2 =

∣∣∣αp
i +

a

3
αq

i

∣∣∣ +
∣∣∣αp

j +
a

3
αq

j

∣∣∣ .
1

1 + dG2(i, j)
> 1.

From this inequality, majorizing |αq
i | and

∣∣αq
j

∣∣ by 1, minorizing dG2(i, j) by 1, and
majorizing either |αp

i | or
∣∣αp

j

∣∣ by 1− a, we get |αp
i | > 1

2 and
∣∣αp

j

∣∣ > a. This implies
in particular that when q varies over N − {p}, the set of corresponding pairs (i, j)
is finite.

It also implies that |αp
i | > a

3 |αq
i | and

∣∣αp
j

∣∣ > a
3

∣∣αq
j

∣∣. So we get

1 +
a

3
.

1
1 + dG1(p, q)

= Aq + Bq,

with

Aq = |αp
i | +

∣∣αp
j

∣∣ .
1

1 + dG2(i, j)
(which depends on q only via (i, j)) and

Bq = ε.
a

3
. |αq

i | + ε′.
a

3
.

1
1 + dG2(i, j)

.
∣∣αq

j

∣∣ ,

where ε is the sign of αp
i α

q
i and ε′ the sign of αp

jα
q
j .

Note also that Aq ≤ ‖g(ep)‖G2 = 1, hence Bq > 0.
Now by the remark above, we can find q1 �= q2 in N − {p} with the same i, j, ε

and ε′, and say dG1(p, q1) ≤ dG1(p, q2). In particular Aq1 = Aq2 = A (say). But
then consider the vector x = ep + a

3eq1 + a
3eq2 . Its G1-norm is A + Bq1 , whereas we

have, by the same computation as before,

‖g(x)‖G2 ≥
∣∣∣αp

i +
a

3
αq1

i +
a

3
αq2

i

∣∣∣ +
1

1 + dG2(i, j)
.
∣∣∣αp

j +
a

3
αq1

j +
a

3
αq2

j

∣∣∣

= A + Bq1 + Bq2 ,

a contradiction which proves the claim and the theorem. �

Remark 4.7. The construction in the previous proof also gives that for combinatorial
trees G1, G2,

G1
∼= G2 ↔ (c0, ‖ ‖G1) ∼=li (c0, ‖ ‖G2),

hence gives an alternative proof of E∞
S∞

≤B
∼=li, which is very different from the

proof based on Mazur’s theorem, and gives the reduction to spaces isomorphic to
c0.

In Banach space theory, there is of course another set of natural Σ1
1 quasi-

orders and equivalence relations, associated to linear isomorphisms instead of linear
isometries. Very few things are known about the complexity of these relations. It
is not known in particular if isomorphism, or isomorphic bi-embeddability, between
separable Banach spaces are complete Σ1

1 equivalence relations. The best known
result in this direction is due to Rosendal [27]: The relation E1 Borel reduces to
isomorphism, so that this last relation (unlike isometry) is not Borel reducible to
any G-equivalence, G some Polish group.
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5. Quasi-orders induced by groups

In this section we will look at some quasi-order relations induced by the actions of
monoids and groups. Suppose that G is a Polish group acting in a Borel manner on
a standard Borel space X. Then the induced orbit equivalence relation is analytic,
but cannot be analytic complete, as even E1 cannot reduce to it. Now if instead
G was not a group but only a monoid (i.e. a semigroup with an identity), then
the corresponding relation on X, defined by xRG

Xy ↔ ∃g ∈ G g.x = y, is only a
quasi-order though still analytic.

Theorem 5.1. There is a Polish monoid G acting continuously on a Polish space
X, such that RG

X is a complete Σ1
1 quasi-order.

Proof. Let G = S∞ × P(ω × ω) be equipped with the following product:

(x, A).(y, B) = (x.y, A ∪ (x × x)[B]),

where
(n, m) ∈ (x × x)[B] ↔ (x−1(n), x−1(m)) ∈ B.

It is easily checked that this is indeed an associative product and that the element
(1S∞ , ∅) is a both-sided identity. Furthermore the product is continuous, so the
monoid is Polish.

We let G act on P(ω × ω) by (x, A).B = A ∪ (x × x)[B] and note that it is
indeed associative and also clearly continuous. Moreover (1S∞ , ∅).A = A for any
A ⊂ ω × ω. So this is a continuous action of the Polish monoid G on the space
P(ω × ω), whereby RG

P(ω×ω) is Σ1
1.

We will now reduce �CT to RG
X . For T ∈ T we let T ′ = {(2n, 2m) | (n, m) ∈ T}.

Then as combinatorial trees are connected and without cycles one has for T, S ∈ T
T � S ⇔ ∃x ∈ S∞ nT ′m → x(n)S′x(m).

We now show that for T, S ∈ T , we have

T � S ⇔ ∃g ∈ G g.T ′ = S′.

So suppose T � S and take x ∈ S∞ such that nT ′m → x(n)S′x(m); then
(x, S′).T ′ = S′. Conversely if (x, A).T ′ = A ∪ (x × x)[T ′] = S′, then obviously
(x × x)[T ′] ⊂ S′, so nT ′m → x(n)S′x(m) and T � S. �

We will now turn to some relations induced by the translation and conjugation
actions of a group on itself. For G a Polish group we denote by F (G) and Sg(G)
the standard Borel spaces of the closed subsets, respectively Polish (and therefore
closed) subgroups, of G with the Effros Borel structure. G acts on these sets by
pointwise translation and conjugation, and the sets are naturally ordered by a
potentially closed relation, namely that of set inclusion. But one set can also be
included in another up to a translation or up to a conjugation, which are easily
seen to be quasi-orders. So for K, L ∈ F (G) let K ⊆G,t L ⇔ ∃g ∈ G g.K ⊆ L and
K ⊆G,c L ⇔ ∃g ∈ G g.K.g−1 ⊆ L. We write ⊆G,t

F (G) etc. to indicate the space on
which the relation is defined.

Note that if G is a closed subgroup of H Polish, then the inclusion mapping from
F (G) to F (H) is a reduction of ⊆G,t

F (G) to ⊆H,t
F (H).

Also if G is a topological factor-group of H, i.e. there is a continuous homomor-
phism of H surjectively onto G, then ⊆G,t

F (G) ≤B ⊆H,t
F (H) and ⊆G,c

Sg(G) ≤B ⊆H,c
Sg(H).

This is easily checked noting first that in this case the factor mapping will in fact
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be open (see [2], page 6) and that therefore the function taking the inverse image
by the factor map will be Borel from F (G) to F (H).

Note also that if G is countable, then F (G) = P(G).

Proposition 5.2. The quasi-orders ⊆F2,c
Sg(F2)

and ⊆Z
2,t

P(Z2) are Kσ complete.

Proof. For (An) ∈ P(ω)ω let

f((An)) = {(m, n) | n ∈ Am} ∪ Z × {−1}.

Then as Z × {−1} is the only bi-infinite line in f((An)), if

(m, n) + Z × {−1} ⊆ f((An)),

then n = 0. So it is easily seen that f is a reduction of ≤Kσ
to ⊆Z

2,t
P(Z2). On the

other hand, since Z
2 is countable, it is easily seen that the relation ⊆Z

2,t
P(Z2) is indeed

Kσ.
For the other relation, we will use a construction by S. Gao in [7] to reduce

⊆F2,t
[F2]ω

to ⊆F2,c
Sg(F2)

. Note that this will suffice to show that ⊆F2,c
Sg(F2)

reduces ≤Kσ
.

Z
2 is a topological factor-group of F2, so the above reduction of ≤Kσ

to ⊆Z
2,t

P(Z2)

composed with the canonical reduction of ⊆Z
2,t

P(Z2) to ⊆F2,t
P(F2)

will be a reduction of

≤Kσ
to ⊆F2,t

[F2]ω
.

So let F3 be the free group generated by a, b, c and let F2 be the subgroup gen-
erated by a, b. For an infinite subset A of F2 we let K(A) = 〈xcx−1 | x ∈ A〉 which
is a subgroup of F3. Then A �→ K(A) is Borel from [F2]ω to Sg(F3). Furthermore
if A, B ∈ [F2]ω and f ∈ F2 is such that f.A ⊆ B, then clearly f.K(A).f−1 ⊆ K(B).
Conversely it follows from the proof of lemma 2 in [7] that if g.K(A).g−1 ⊆ K(B)
for some g ∈ F3, then there is an f ∈ F2 with f.A ⊆ B. So this shows ⊆F2,t

[F2]ω

to reduce to ⊆F3,c
Sg(F3)

. But it is noted by Thomas and Velickovic in [30] that F3

embeds as a malnormal subgroup G0 in F2 (N is a malnormal subgroup of H iff
h.N.h−1∩N = {1} for all h ∈ H\N). So in particular for M, N ∈ Sg(F3) = Sg(G0)
there is a g ∈ F3 with g.N.g−1 ⊆ M iff there is an h ∈ F2 with h.N.h−1 ⊆ M .
So this shows the inclusion mapping from F3 = G0 to F2 to be a reduction from
⊆F3,c

Sg(F3)
to ⊆F2,c

Sg(F2)
.

Again as F2 is countable and Sg(F2) is compact, ⊆F2,c
Sg(F2)

is Kσ. �

We note that what is really shown here is that ⊆Z,t
P(Z2) is Kσ complete, where

Z is seen as the subgroup Z × {0} of Z
2. This is also more or less clear from the

definition of ≤Kσ
. On the other hand ⊆Z,t

P(Z) is far from being Kσ complete, because

the induced equivalence relation turns out to be hyperfinite, and hence ⊆Z,t
P(Z) must

be rather simple.

Proposition 5.3. The quasi-orders ⊆S∞,t
F (S∞) and ⊆S∞,c

F (S∞) are Σ1
1 complete.

Proof. Define for T ∈ T a closed subset of S∞ by x ∈ BT ↔ x(0)T ′x(1), where T ′

is defined as in the proof of Theorem 5.1. Clearly T �→ BT is Borel. So suppose
that T, S ∈ T with T � S; then there is an x ∈ S∞ such that nT ′m → x(n)S′x(m).
So if y ∈ BT , then x.y ∈ BS , whereby x.BT ⊆ BS .
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On the other hand if for some x ∈ S∞, x.BT ⊆ BS and nT ′m, then for some y ∈
S∞ with y(0) = n and y(1) = m, y ∈ BT so x.y ∈ BS and therefore x.y(0)S′x.y(1).
Thus x(n)S′x(m), which is enough to guarantee that T � S. This shows �CT

reduces to ⊆S∞,t
F (S∞), which finishes the proof of the first part of the proposition.

For the second part, for n �= m define xn
m ∈ S∞ by xn

m(k) = k for k �= n, m and
xn

m(n) = m, xn
m(m) = n. Then for T ∈ T let AT = {xn

m | nT ′m} ∪ {1S∞}, which
is a countable closed subset of S∞. We claim that for T, S ∈ T we have T � S iff
∃y ∈ S∞ y.AT .y−1. To see this it is enough to note that y.xn

m.y−1 = x
y(n)
y(m), because

then
y.AT .y−1 = {xy(n)

y(m) | nT ′m} ∪ {1S∞} ⊆ AS

iff nT ′m → y(n)S′y(m). Again this shows �CT to reduce to ⊆S∞,c
F (S∞), which finishes

the proof. �

Apart from being a somewhat natural generalization of the orbit equivalence
relation of a Polish group acting on its subsets by translation and conjugation, the
quasi-orders above could hopefully prove useful in the classification of the relation
of embeddability between groups. In the case of isomorphism, it is known by results
of Thomas and Velickovic [30] that isomorphism between finitely generated groups
is a complete essentially countable equivalence relation, and it would be natural to
conjecture that embedding between finitely generated groups would be Kσ complete
as a quasi-order.
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Marie Curie - Paris 6, Bôıte 186, 4 Place Jussieu, 75252 Paris Cedex 05, France

Current address: Mathematics 253-37, Caltech, Pasadena, California 91125
E-mail address: rosendal@ccr.jussieu.fr

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1967835
http://www.ams.org/mathscinet-getitem?mr=1967835
http://www.ams.org/mathscinet-getitem?mr=0279005
http://www.ams.org/mathscinet-getitem?mr=0279005
http://www.ams.org/mathscinet-getitem?mr=1327979
http://www.ams.org/mathscinet-getitem?mr=1327979
http://www.ams.org/mathscinet-getitem?mr=1011175
http://www.ams.org/mathscinet-getitem?mr=1011175
http://www.ams.org/mathscinet-getitem?mr=1873805
http://www.ams.org/mathscinet-getitem?mr=1873805
http://www.ams.org/mathscinet-getitem?mr=1169042
http://www.ams.org/mathscinet-getitem?mr=1169042
http://www.ams.org/mathscinet-getitem?mr=0786122
http://www.ams.org/mathscinet-getitem?mr=0786122
http://www.ams.org/mathscinet-getitem?mr=0175814
http://www.ams.org/mathscinet-getitem?mr=0175814
http://www.ams.org/mathscinet-getitem?mr=1684628
http://www.ams.org/mathscinet-getitem?mr=1684628
http://www.ams.org/mathscinet-getitem?mr=0786122
http://www.ams.org/mathscinet-getitem?mr=0786122
http://www.ams.org/mathscinet-getitem?mr=0835254
http://www.ams.org/mathscinet-getitem?mr=0835254
http://www.ams.org/mathscinet-getitem?mr=1700491
http://www.ams.org/mathscinet-getitem?mr=1700491

	Introduction
	1. The Borel reducibility ordering
	2. The basic example max
	3. Model-theoretic examples
	3.1. Embeddability in model theory
	3.2. Homomorphism in model theory

	4. Embeddability in analysis
	4.1. Isometric embeddability
	4.2. Continuous embeddability
	4.3. Separable Banach spaces

	5. Quasi-orders induced by groups
	References

