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ABSTRACT. We show that any homomorphism from the homeomorphism group of a com-
pact2-manifold, with the compact-open topology, or equivalently, with the topology of
uniform convergence, into a separable topological group is automatically continuous.

1. INTRODUCTION

A number of results have surfaced in recent years that intimately connect topologies
on transformation groups with the underlying group structure. Of course, many classical
mathematical results, variously formulated asrigidity or reconstructionresults, can be
viewed in this way, namely as saying that ifG is the group of transformations of some
mathematical objectK, thenK can be completely recovered within its category fromG as
an abstract group, and hence any natural transformation group topology onG is also given
by the abstract groupG. Related to this are results saying that any automorphism ofG is
inner and hence given by a transformation ofK.

However, recently there have been indications that certain topological groups might not
only be determined by the underlying abstract group, but, in fact, that the topology is also
preserved under homomorphisms. Some indications of this come from the so calledsmall
index propertyfor separable, complete metric groups saying that a subgroup of index< 2ℵ0

is open. This implies that any homomorphism into the groupS∞ of all permutations ofN
is continuous, when the latter has been equipped with the topology of pointwise conver-
gence on the discrete setN. This follows from the fact that the topology ofS∞ is generated
by its open subgroups. The small index property has now been proved for a great number
of closed subgroups ofS∞ itself, perhaps the most general result is due to Hodges, Hod-
kinson, Lascar, and Shelah [HHLS93], but also holds for groups not themselves already a
closed subgroup ofS∞, e.g.,Homeo(S1) [RoSo05].

Nevertheless, these results put rather heavy restrictions on the target groups, namely,
that their topology has to be given by the open subgroups. This condition was discarded
with by Kechris and the author in [KeRo04], in which it was shown that for many closed
subgroups ofS∞ one has a completely general result ofautomatic continuity, namely,
that any homomorphism from one of these groups into a separable topological group is
continuous. This line of research was continued by Solecki and the author in [RoSo05] in
which this property was verified for many other groups includingHomeo(S1). Thus, one
could hope for this to be true for a general class of homeomorphism groups of manifolds,
and we shall provide the first step here by considering manifolds of dimension2.

Automatic continuity turns out to have connections with other dynamical properties of
groups and for example has provided the only known examples of discrete groups with the
so called fixed point on metric compacta property, i.e., discrete groups all of whose actions
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on compact metric spaces have a fixed point. We shall not develop any of these relations
here, but only refer the reader to [RoSo05] for more on this.

It is well-known and easy to see that for any compact metric space(X, d), its group of
homeomorphisms is a separable complete metric group when equipped with the topology
of uniform convergence, or equivalently, with the compact open topology. In fact, a com-
patible right-invariant metric onHomeo(X, d) is given byd∞(g, f) = supx∈X d(g(x), f(x)),
and a complete metric byd′∞(g, f) = d∞(g, f) + d∞(g−1, f−1). We denote byB(x, ε)
the open ball of radiusε aroundx and byB(x, ε) the corresponding closed ball.

If g ∈ Homeo(X, d), we denote bysupp◦(g) the open set{x ∈ X
∣∣ g(x) 6= x} and by

supp(g) its closure, which we call thesupportof g.
We intend to show here that in the case of compact2-manifolds, this group topology

is intrinsically given by the underlying discrete or abstract group, in the sense that any
homomorphismπ from this group into a separable group is continuous.

Theorem 1.1. LetM be a compact2-manifold andπ : Homeo(M) → H a homomor-
phism into a separable group. Thenπ is automatically continuous whenHomeo(M) is
equipped with the compact-open topology.

Let us first note the following fact, which follows easily from known results and helps
to clear up the situation.

Proposition 1.2. SupposeG is a topological group. Then the following conditions are
equivalent.

(1) Any homomorphismπ : G→ Homeo([0, 1]N) is continuous,
(2) any homomorphismπ : G→ H into a separable group is continuous.

Proof. As [0, 1]N is a compact metric space, its homeomorphism group is a (completely
metrisable) separable group in the compact-open topology, so (1) is a special case of (2).

For the other implication, suppose that (1) holds and letH be separable. LetN be
the closed normal subgroup ofH consisting of all elements that cannot be separated
from the identity by an open set and letH/N be the quotient topological group, which
is Hausdorff and separable, and, in particular, any non-empty open set covers the group
by countably many translates. However, it is an old result (see I.I. Guran [Gu81]) that
for Hausdorff groups this condition is equivalent to being topologically isomorphic to a
subgroup of a direct product of separable metric groups, or equivalently, second count-
able Hausdorff groups (by the Birkhoff-Kakutani metrisation Theorem). Also, a result of
Uspenskĭı [Us86] states that any separable metric group is topologically isomorphic to
a subgroup ofHomeo([0, 1]N), and we can therefore, seeH/N as a subgroup of some
power ofHomeo([0, 1]N). Thus, as a mapping into the Tikhonov product is continuous
if and only if the composition with each coordinate projection is continuous,π composed
with the quotient mapping is continuous, and hence by the choice ofN , alsoπ is continu-
ous. ¤

However, we shall not use this result in any way, but instead simplify matters by not
be working with arbitrary homomorphisms, but rather with arbitrary subsets of the group
satisfying a certain algebraic largeness condition. LetG be a group andW ⊆ G be a
symmetric set. We say thatW is countably syndeticif there are countably many left-
translates ofW whose union coverG. Moreover, ifG is a topological group, we say
thatG is Steinhausif for somek ≥ 1 and all symmetric, countably syndeticW ⊆ G,
Int(Wk) 6= ∅. It is not hard to prove (see, e.g., [RoSo05]) that Steinhaus groups satisfy
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the equivalent conditions of Proposition 1.2, and this is the condition that we will verify.
Note however the order of quantification; thek is universal for all symmetric, countably
syndeticW . Indeed, the groupHomeo+(S1) equipped with the trivial topologyτ =
{∅,Homeo+(S1)} satisfies the condition when we have reversed the quantifiers, but the
identity homomorphism into itself equipped with the compact-open topology is obviously
discontinuous.

It is instructive also to consider from which groups one can construct discontinuous
homeomorphisms. Of course, the first case that comes to mind is(R,+), on which one
can with the help of a Hamel basis, i.e., a basis forR as aQ-vector space, construct
discontinuous automorphisms, and, in fact, construct group isomorphisms betweenR and
R2. Also if G =

∏
n Fn, where theFn are finite non-trivial groups, satisfies automatic

continuity, then|Fn| → ∞. For otherwise, there is some infinite setA ⊆ N such that
Fn = Fm for all n,m ∈ A. Let U be a non-principal ultrafilter onA and setH = {g ∈
G

∣∣ {n ∈ A
∣∣ gn = 1} ∈ U}. ThenH is a non-open subgroup ofG of finite index and

henceG has a discontinuous homomorphism into a finite group.
We finish this introduction by mentioning a few of the most interesting questions con-

cerning automatic continuity.

Question 1.3.

(1) Is there a compact metrisable group satisfying automatic continuity, i.e., satisfying
the equivalent conditions of Proposition 1.2?

(2) What about a locally compact second countable group?
(3) Does the unitary group of separable infinite-dimensional Hilbert spaceU(`2) sat-

isfy automatic continuity?
(4) Is Theorem 1.1 true for an arbitrary compact manifoldM?
(5) What about compacttriangulablemanifolds?

Cases (1) and (2) would be a way of producing discrete groups acting faithfully on
separable metric spaces, but such that all of their actions have compact, respectively,σ-
compact orbits. This would be a strenthening in the separable case of the so calledBergman
or strong boundednessproperty of a group, saying that any isometric action on a (not
necessarily separable) metric space has bounded orbits. This property is known to hold for
a large class of groups, e.g.,S∞ [Be06], Homeo(Sn) [CaFrCo06], andU(`2) [RiRo]. I
conjecture that the profinite group

∏
n Alt(2n) should satisfy automatic continuity. The

proofs given by Saxl, Shelah, and Thomas in [SaShTh96, Th99] go a far way in order
to establish this and with a little extra work, one can make their proofs show also the
Bergman property for

∏
n Alt(2n). However, so far I have not been able to make it show

that
∏

n Alt(2n) is Steinhaus and thus that it satisfies automatic continuity.
Case (3) would, in conjunction with a result of Gromov and Milman [GrMi83], imply

thatU(`2) has the fixed point on metric compacta property as a discrete group.
As can be seen from the proof that will be given for Theorem 1.1, certain parts of the

proof transfer directly to higher dimensional triangulable manifolds. Unfortunately, this
is not the case throughout and one naturally wonders what happens for these. Geometric
topology in higher dimensions is well developed and some of the work done around the
annulus conjecture is certainly relevant here. However, the annulus conjecture by itself is
not enough and it is for this reason that we have been forced to use ad hoc constructions
based on Scḧonflies’ Theorem to get the exact lemmas we need.
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2. THE PROOF

2.1. Commutators. We shall first prove a general lemma about homeomorphisms ofRn.

Lemma 2.1. Suppose thatg ∈ Homeo(Rn) has compact support. Then there aref, h ∈
Homeo(Rn) with compact support such thatg = [f, h] = fhf−1h−1.

Proof. Fix some open ballU0 ⊆ Rn containing the support ofg and let(Um) be a sequence
of disjoint open balls such that for some distinctx0 andx1 in Rn, the sequences(Um)m≥0

and(U−m)m≥0 converge in the Vietoris topology tox0 andx1 respectively. We can now
find a shifth ∈ Homeo(Rn) with compact support, i.e., such thath[Um] = Um+1 and
define ourf by lettingf |Um = hmgh−m|Um for m ≥ 0 and settingf = id everywhere
else. We now see that form > 0,

hf−1h−1|Um = h(hm−1g−1h−m+1)h−1|Um = hmg−1h−m|Um,

and form ≤ 0,
hf−1h−1|Um = h idh−1|Um = id|Um,

while hf−1h−1 = id everywhere else. Therefore,f · hf−1h−1|Um = id|Um for m > 0,
f ·hf−1h−1|U0 = f |U0 = g|U0, f ·hf−1h−1|Um = id|Um form < 0, andfhf−1h−1 =
id everyhere else. This shows thatg = [f, h] = fhf−1h−1. ¤

We notice that in the proof above we usedf andh with slightly bigger support thang.
I believe it is an open problem whether this can be avoided and indeed it seems to be a
much harder problem. We can restate the problem as follows. Can every homeomorphism
of [0, 1]n that fixes the boundary pointwise be written as a commutator off andh that
also fix the boundary pointwise? What happens if we replace pointwise by setwise? Let
us mention that the first question has a positive answer in dimension1 as, for example, the
group of orientation preserving homeomorphisms of[0, 1] has a comeagre conjugacy class
[KuTr00]. The above result slightly strengthens a result of Mather [Ma71] saying that the
homology groups of the group of homeomorphismsRn with compact support vanish. One
can of course also extend the lemma to[0,∞[×Rn−1 and thus also improve the result of
Rybicki [Ry96].

2.2. Countably syndetic sets.We will now prove some properties of countably syndetic
sets in the homeomorphism groups of arbitrary manifolds. These results will allow us to
completely solve our problem for compact two-dimensional manifolds and provide tech-
niques for higher dimensions. So letM be a manifold of dimensionn and fix a compatible
complete metricd onM .

In the following we fix a countably syndetic symmetric subsetW ⊆ Homeo(M) and a
sequencekm ∈ Homeo(M) such that

⋃
m kmW = Homeo(M).

Lemma 2.2. For all distinct y1, . . . , yp ∈ M and ε > 0, there areε > δ > 0 and
zi ∈ B(yi, ε) such that ifg ∈ Homeo(M) has support contained inD =

⋃p
i=1B(zi, δ),

theng ∈W 16.

Proof. We notice that it is enough to findzi ∈ B(yi, ε) and open neighbourhoodsUi of zi

such that ifg ∈ Homeo(M) has support contained in
⋃

i Ui, theng ∈ W 16. We choose
some open neighbourhood ofyi, Ei ⊆ B(yi, ε), that is homeomorphic to]0, ε[n. We also
suppose that the setsEi are4ε-separated. We will also temporarily transport the standard
euclidian metric from]0, ε[n to each of the setsEi. As we will be working separately on
each ofEi, this will not cause a problem. Thus in the following, the notationB(x, β) will
refer to the balls in the transported euclidian metric, which we denote byd.
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Sublemma 2.3. For all ui ∈ Ei and γ > 0 such thatd(ui, ∂Ei) > 2γ, there are
γ > α > 0 and xi ∈ ∂B(ui, γ) such that ifg ∈ Homeo(M) has support contained
in A =

⋃p
i=1B(xi, α) ∩ B(ui, γ), then there is anh ∈ W 2 with support contained in⋃p

i=1B(ui, γ) such thatg|A = h|A.

Proof. Let u1, . . . , up be given. We fix for eachi ≤ p a sequence of distinct pointsxi
m ∈

∂B(ui, γ) converging to some pointxi
∞ ∈ ∂B(ui, γ) and choose a sequenceγ

2 > αm > 0
such thatB(xi

m, αm) ∩B(xi
l, αl) = ∅ for anym 6= l and alli ≤ p. Thus, asαm → 0, we

have that ifgm ∈ Homeo(M) has support only in

Am =
(
B(x1

m, αm) ∩B(u1, γ)
) ∪ . . . ∪ (

B(xp
m, αm) ∩B(up, γ)

)

for eachm ≥ 0, then there is a homeomorphismg ∈ Homeo(M), whose support is
contained inC = B(u1, γ) ∪ . . . ∪ B(up, γ), such thatg|Am = gm|Am. We claim
that for somem0 ≥ 0, if g ∈ Homeo(M) has support contained inAm0 , then there
is an elementh ∈ km0W , with support contained inC, such thatg|Am0 = h|Am0 .
Assume toward a contradiction that this is not the case. Then for everym we can find
somegm ∈ Homeo(M) with support contained inAm such that for allh ∈ kmW , if
supp(h) ⊆ C, thengm|Am 6= h|Am. But then lettingg ∈ Homeo(M) have support in
C and agree with eachgm onAm for eachm, we see that ifh ∈ kmW has support inC,
theng disagrees withh onAm. Therefore,g cannot belong to anykmW , contradicting
that these coverHomeo(M). Suppose thatm0 has been chosen as above and denotexi

m0

by xi,Am0 byA, andαm0 by α.
Then for anyg ∈ Homeo(M) with support contained inA, there is an elementh ∈W 2

with support contained inC such thatg|A = h|A for all i ≤ p. To see this, it is enough
to notice that we can findh0, h1 ∈ km0W , with supp(h0), supp(h1) ⊆ C, such that
g|A = h1|A andid|A = h0|A. But thenh−1

0 h1 ∈ (km0W )−1km0W = W−1W = W 2

andg|A = id g|A = h−1
0 h1|A. ¤

We will first apply Sublemma 2.3 to the situation whereui = yi andγ > 0 is sufficiently
small. We thus obtainγ > α > 0 andxi ∈ ∂B(yi, γ) such that ifg ∈ Homeo(M) has
support contained inA =

⋃p
i=1B(xi, α)∩B(yi, γ), then there is anh ∈W 2 with support

contained in
⋃p

i=1B(yi, γ) such thatg|A = h|A.
Now pick y′i ∈ B(xi, α) ∩ B(yi, γ) andγ′ > 0 such thatB(y′i, 2γ

′) ⊆ B(xi, α) ∩
B(yi, γ). We now apply Lemma 2.3 once again to this new situation, in order to obtain
γ′ > α′ > 0 andx′i ∈ ∂B(y′i, γ

′) such that ifg ∈ Homeo(M) has support contained
in A′ =

⋃p
i=1B(x′i, α

′) ∩ B(y′i, γ
′), then there is anh ∈ W 2 with support contained in⋃p

i=1B(y′i, γ
′) such thatg|A′ = h|A′.

Now clearly there is a homeomorphisma ∈ Homeo(M) whose support is contained in
A =

⋃p
i=1B(xi, α) ∩B(yi, γ) such thata[B(y′i, γ

′)] = B(x′i, α
′) and

a[B(y′i, γ
′) ∩B(x′i, α

′)] = B(y′i, γ
′) ∩B(x′i, α

′),

and hence we can also find such ana in W 2, except that its support may now be all of⋃p
i=1B(yi, γ).
We therefore have that ifg ∈ Homeo(M) has support contained inA′, thena−1ga

also has support contained inA′, and so there is anh ∈ W 2 with support contained in⋃p
i=1B(y′i, γ

′) such thata−1ga|A′ = h|A′. But theng|A′ = aha−1|A′, while

supp(aha−1) = a[supp(h)] ⊆ a[
p⋃

i=1

B(y′i, γ
′)] =

p⋃

i=1

B(x′i, α
′).
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We now notice thataha−1 ∈ W 6, and thus that ifg ∈ Homeo(M) has support con-
tained inA′ =

⋃p
i=1B(x′i, α

′) ∩ B(y′i, γ
′), then there is somef ∈ W 6 with support

contained in
⋃p

i=1B(x′i, α
′) such thatg|A′ = f |A′.

Now suppose finally thatg ∈ Homeo(M) is any homeomorphism having support con-
tained in

⋃p
i=1B(x′i, α

′) ∩ B(y′i, γ
′). Since the setsB(x′i, α

′) ∩ B(y′i, γ
′) are homeo-

morphic toRn, working separately on each of these sets and noticing thatg has com-
pact support, we can invoke Lemma 2.1 to writeg as a commutator[b, c] for someb, c ∈
Homeo(M) whose supports are contained in

⋃p
i=1B(x′i, α

′) ∩B(y′i, γ
′) ⊆ A′. Find now

h ∈ W 2 agreeing withb onA′ and with support contained in
⋃p

i=1B(y′i, γ
′), and, simi-

larly, find f ∈ W 6 agreeing withc onA′ and with support contained in
⋃p

i=1B(x′i, α
′).

Then the set of common support ofh andf is included inA′ on which they agree with
b andc respectively, and we have therefore that[h, f ] = hfh−1f−1 = bcb−1c−1 = g.
In other words,g ∈ W 16. We can therefore finish the proof by choosing somezi ∈
B(x′i, α

′) ∩B(y′i, γ
′) and lettingUi = B(x′i, α

′) ∩B(y′i, γ
′). ¤

2.3. Circular orders. In order to simplify notation, we will considercircular orderson
finite sets. Since we are really just interested in simplifying notation, let me just say what
a circular order is in terms of an example, namely,S1. For x, y, z distinct points onS1,
y is said to be betweenx andz, in symbolsB(x, y, z), if going counterclockwise around
S1 from x to y, one does not pass throughz. Thus a circular order is just a circular
betweeness relation. WhenB is a circular order on a finite setF, we denote for eachx ∈ F
its immediate successor and immediate predecessor, i.e., the first elements encountered by
going respectively counterclockwise and clockwise aroundF, by x+ andx−. So, e.g.,
(x+)− = x.

2.4. A quantitative annulus theorem. The proof of our result is tightly connected with
the methods of geometric topology related to the annulus theorem. However, the annulus
theorem in itself will not suffice in our case, as we need to do three successive operations.
We need firstly to operate along submanifolds with boundaries and secondly to control
certain constants in each step in order that the homeomorphisms corresponding to the op-
erations stay close to the identity. For the first operation, we to have some quatitative esti-
mates in the annulus theorem, which are easily obtained by varying the standard proof of
the annulus theorem in dimension2 based on Scḧonflies’ Theorem. The exact quantitative
estimates involved are not so important, only that they exist. For the sake of completeness
we include a full proof.

Fix three pointsv0, v1, v2 ∈ R2 such that fori 6= j, d(vi, vj) = 1, and denote by4
the2-cell consisting of the points lying within the triangle4v0v1v2. Suppose also that the
barycenter of4 lies at the origin, so that for allλ > 0, λ4 and4 are concentric triangles,
the former with side lengthsλ.

Lemma 2.4. Letφ : (1− 2η)4→ 4 be a homeomorphic embedding satisfying

sup
x∈(1−2η)4

d(x, φ(x)) <
η

100
,

whereη < 1
1000 . Then there is a homeomorphismψ : 4 → 4 that is the identity outside

of (1− η)4, with supx∈4 d(x, ψ(x)) < 100η, and such thatψ ◦ φ|(1−2η)4 = id.

Proof. Let ∂(1 − η)4 be the boundary of(1 − η)4 and pick a finite set of pointsF
containing(1 − η)v0, (1 − η)v1, (1 − η)v2 and lying in∂(1 − η)4, such that whenF is
equipped with the circular order obtained from going counterclockwise around∂(1−η)4,
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we haved(x, x+) ∈]20η, 21η[ for all x ∈ F. As4 is equilateral,d(x, y) > 20η for all
x 6= y in F.

Let nowC = φ[∂(1 − 2η)4] be the image of the boundary of(1 − 2η)4, soC is a
simple closed curve. Choose also for eachx ∈ F a point x̂ ∈ C such that the distance
d(x, x̂) is minimal. Sincesupx∈(1−2η)4 d(x, φ(x)) < η

100 and

η

3
< d(x, ∂(1− 2η)4) <

2η
3

for all x ∈ ∂(1− η)4, alsod(x, x̂) < η andd(C, ∂(1− η)4) > η
4 .

For allx ∈ F, denote byαx the straight (oriented) line segment fromx to x̂ and byβx

the straight line segment fromx to x+. We also letγ′x be the shortest path in∂(1− 2η)4
from φ−1(x̂) to φ−1(x̂+) and putγx = φ[γ′x].

By definition ofx̂, αx intersectsC exactly inx̂, intersects∂(1− η)4 in exactlyx, and
thereforeαx andγy intersect only ify = x− or y = x. Similarly, none of the pathsβx

andγy intersect as they lie in∂(1 − η)4 andC respectively. Therefore, for anyx ∈ F,
Cx = αx¦γx¦ᾱx+ ¦β̄x is a simple closed curve beginning and ending atx. Hereᾱ denotes the
reverse path ofα and¦ the concatenation of paths. By the Schönflies Theorem,R2 \Cx has
exactly two components, one unbounded and the otherUx bounded, homeomorphic with
R2 and with boundaryCx. Moreover, as the diameter ofCx is bounded by30η, Cx intersects
∂(1− η)4 in exactlyβx, and the diameter of∂(1− η)4 \ βx is 1− η > 30η, this means
that∂(1− η)4\βx lies in the unbounded component. Therefore, ifRx = Ux = Ux ∪Cx,
we have forx 6= y

Rx ∩Ry =




∅ if y 6= x+ andy 6= x−

αy if y = x+

αx if y = x−

We can now defineψ : 4 → 4 by letting ψ = φ−1 on φ[(1 − 2η)4], ψ = id on
4 \ (1 − η)4, and, moreover, along the boundaries ofRx constructψ as follows:ψ[αx]
is the straight line segment fromx to φ−1(x̂), ψ[γx] = γ′x, andψ[βx] = βx. Then

ψ[Cx] = ψ[αx ¦ γx ¦ ᾱx+ ¦ β̄x] = ψ[αx] ¦ ψ[γx] ¦ ψ[αx+ ] ¦ ψ[βx] = ψ[αx] ¦ γ′x ¦ ψ[αx+ ] ¦ βx

is the boundary of a regionKx homeomorphic to the unit diskD2 and hence, by Alexan-
der’s Lemma, the homeomorphismψ fromCx = αx¦γx¦ᾱx̂¦β̄x toψ[αx]¦γ′x¦ψ[αx+ ]¦βx ex-
tends to the regions that they bound, i.e., to a homeomorphism ofRx withKx. This finishes
the description ofψ and it therefore only remains to see thatsupx∈4 d(x, ψ(x)) < 100η.
Sinceψ = φ−1 on φ[(1 − 2η)4] andψ = id on4 \ (1 − η)4 it is enough to consider
whatψ does tox ∈ (1 − η)4 \ φ[(1 − 2η)4] ⊆ ⋃

x∈FRx. Now, ψ[Rx] = Kx for all
x ∈ F, and hence it is enough to show that no points inRx and inKx are more than100η
apart. Butdiam(Rx) < 30η anddiam(Kx) < 40η, whileRx ∩Kx 6= ∅, which gives the
desired result. This finishes the proof. ¤

2.5. Patching along a triangulation of a compact2-manifold. As Homeo(M) is a sep-
arable complete metric group it is not covered by countably many nowhere dense sets (this
is the Baire category theorem) and henceW must be dense in some non-empty open set,
wherebyW−1W = W 2 is dense in some neighbourhood of the identity inHomeo(M).
So fix someη1 > 0 such thatW 2 is dense in

(1) Vη1 = {g ∈ Homeo(M)
∣∣ d∞(g, id) < η1}.

It is a well-known fact, first proved rigorously by Tibor Radó [Ra24], that any compact
2-manifold can be triangulated. So from now on, we assume thatM is a fixed compact
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2-manifold and we pick a triangulation{T1, . . . , Tm} of M with corresponding home-
omorphismsχi : 4 → Ti. By further triangulating eachTi, we can suppose that the
diameter ofTi is less thanη1

10 for all i. Moreover, by first modifying theχi along each edge
of 4 and then extending to the interior of4 by Alexander’s Lemma, we can suppose that
the following holds. IfTi = χi[4] andTj = χj [4] have an edge in common, thenχi

andχj agree along this edge, i.e., ifχi(va) = χj(vα) andχi(vb) = χj(vβ), then for all
t ∈ [0, 1], χi(tva + (1− t)vb) = χj(tvα + (1− t)vβ).

Lemma 2.5. For all 0 < η < 1, if h ∈ Homeo(M) has support contained in
m⋃

i=1

χi[(1− η)4],

thenh ∈W 20.

Proof. Let yi = χi(~0) and chooseε > 0 such thatB(yi, ε) ⊆ χi[(1− η)4] for all i ≤ m.
By Lemma 2.2, we can find some0 < δ < ε andzi ∈ B(yi, ε) such that ifg ∈ Homeo(M)
has support contained in

⋃m
i=1B(zi, δ) theng ∈W 16.

AsW 2 is dense inVη1 , we can find anf ∈ W 2 such that for everyi ≤ m, f [χi[(1 −
η)4]] ⊆ B(zi, δ) and thus ifh is given as in the statement of the lemma,supp(fhf−1) =
f [supp(h)] ⊆ ⋃m

i=1B(zi, ε) and thusg = fhf−1 ∈W 16, whenceh ∈W 20. ¤

Lemma 2.6. Let δ, η > 0, η < 1
1000 be such that fori ≤ m andx, y ∈ 4,

d(x, y) < 100η → d(χi(x), χi(y)) < δ.

Then there is anα > 0 such that for allg ∈ Vα there isψ ∈ Vδ ∩W 20 whose support is
contained in

⋃m
i=1 χi[(1− η)4] and such that for alli ≤ m,

ψ ◦ g|χi[(1−2η)4] = id.

Proof. Fix δ andη as in the lemma. Then for any continuousφ : 4 → 4 such that
supx∈4 d(x, φ(x)) < 100η, we have for everyi ≤ m,

sup
y∈Ti

d(y, χi ◦ φ ◦ χ−1
i (y)) = sup

x∈4
d(χi(x), χi ◦ φ(x)) < δ.

Now pick someα > 0 such that forg ∈ Vα andi ≤ m, we have

g ◦ χi[(1− 2η)4] ⊆ χi[4] = Ti,

wherebyχ−1
i ◦ g ◦ χi : (1− 2η)4→ 4, and such that

sup
x∈(1−2η)4

d(x, χ−1
i ◦ g ◦ χi(x)) <

η

100
.

By Lemma 2.4 we can therefore find some homeomorphismψi : 4 → 4 that is the
identity outside of(1− η)4, that satisfies the estimatesupx∈4 d(x, ψi(x)) < 100η, and

ψi ◦ χ−1
i ◦ g ◦ χi|(1−2η)4 = id.

This implies that for eachi ≤ m, χi ◦ ψi ◦ χ−1
i : Ti → Ti is a homeomorphism that is the

identity outside ofχi[(1− η)4], supx∈Ti
d(x, χi ◦ ψi ◦ χ−1

i (x)) < δ, and

χi ◦ ψi ◦ χ−1
i ◦ g|χi[(1−2η)4] = id.

We can therefore defineψ =
⋃m

i=1 χi ◦ ψi ◦ χ−1
i ∈ Homeo(M) and notice thatψ ∈ Vδ

andψ ◦g|χi[(1−2η)4] = id for everyi ≤ m. We see thatψ has its support contained within
the set

⋃m
i=1 χi[(1− η)4] and thus, by Lemma 2.5,ψ belongs toW 20. ¤
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Fix some0 < τ < 1
100 . We now define the following set of points in4 (see figure 1):

For distincti, j = 0, 1, 2, we putwij = (1 − 10τ)vi + 10τvj , w+
ij = (1 − 9τ)vi + 9τvj ,

uij = (1− τ)wij andu+
ij = (1− τ)w+

ij . Sowij , w
+
ij ∈ ∂4, whileuij , u

+
ij ∈ ∂(1− τ)4.

¶
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¶
¶

¶
¶

¶
¶

¶
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¶
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¶
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¶
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S
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S
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S
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S
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S
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S
S

S
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S
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S
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S
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S
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S
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S
S

v1 • v0•

v2•

w+
12 •
w12 •

w+
02•

w02•

w+
01

•
w01

•
w+

10

•
w10

•

w+
21 • w+

20•
w21• w20•

u21
• u20

•
u+

21
• u+

20
•

u+
10• u10• u+

01•u01•

u+
02 •

u02 •
u+

12•
u12•

Figure 1

We also define a number of paths as follows (see figure 2):

• αij is the straight line segment fromuij towij .
• βij is the straight line segment fromwij tow+

ij .
• γij is the straight line segment fromu+

ij tow+
ij .

• ζij is the straight line segment fromuij to u+
ij .

• κij is the straight path fromwij towji.
• ωij is the straight path fromuij to uji.
• ξ0 is the shortest path in∂(1− τ)4 from u+

02 to u+
01.

• ξ1 is the shortest path in∂(1− τ)4 from u+
10 to u+

12.
• ξ2 is the shortest path in∂(1− τ)4 from u+

21 to u+
20.

• θ0 is the shortest path in∂4 fromw+
02 tow+

01.
• θ1 is the shortest path in∂4 fromw+

10 tow+
12.

• θ2 is the shortest path in∂4 fromw+
21 tow+

20.

We thus see that
Cij = κij ¦ αji ¦ ωji ¦ αij

is a simple closed curve bounding a closed regionRij = Rji ⊆ 4,

C+
ij = βij ¦ κij ¦ βji ¦ γji ¦ ζji ¦ ωji ¦ ζij ¦ γij

is a simple closed curve bounding a closed regionR+
ij = R+

ji ⊆ 4 that containsRij .
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Figure 2

Notice however that the preceding definitions depend on the choice ofτ , which is there-
fore also the case for the following lemma.

Lemma 2.7. If φ ∈ Homeo(M) has support contained in
⋃m

l=1

⋃
0≤i<j≤2 χl[R+

ij ], then
φ ∈W 20.

Proof. We notice that for distinctl, l′, χl[R+
ab] ∩ χl′ [R+

a′b′ ] 6= ∅ if and only if the triangles
Tl andTl′ have the edgeχl[vavb] = χl′ [va′vb′ ] in common. Moreover, in this case, the set
χl[R+

ab] ∪ χl′ [R+
a′b′ ] is homeomorphic to the unit diskD2 and is contained in an open set

homeomorphic toR2.
So letA1, . . . , A 3m

2
be an enumeration of all the closed setsχl[R+

ab] ∪ χl′ [R+
a′b′ ] with

χl[R+
ab] andχl′ [R+

a′b′ ] overlapping and letUi ⊆ M be an open set containingAi, home-
omorphic toR2. We can suppose that theUi are all pairwise disjoint. Moreover, as the
diameter of eachTj is at mostη1

10 , the diameter of eachAi is at mostη1
5 .

The proof is now very much the same as the proof of Lemma 2.5. Letyi ∈ Ai and
choose0 < ε < η1

5 such thatB(yi, ε) ⊆ Ui for all i ≤ m. By Lemma 2.2, we can find
some0 < δ < ε andzi ∈ B(yi, ε) such that ifg ∈ Homeo(M) has support contained in⋃m

i=1B(zi, δ) theng ∈W 16.
As W 2 is dense inVη1 , we can find anf ∈ W 2 such that for everyi ≤ 3m

2 , f [Ai] ⊆
B(zi, δ) and thus ifφ is given as in the statement of the lemma,

supp(fφf−1) = f [supp(φ)] ⊆
m⋃

i=1

B(zi, ε),

and thusg = fφf−1 ∈W 16, whenceφ ∈W 20. ¤
Lemma 2.8. There is aν > 0 such that ifg ∈ Vν andg is the identity on

⋃m
i=1 χi[(1− τ)4],

then there is aφ ∈W 20 such thatφ ◦ g is the identity on
m⋃

i=1

χi[(1− τ)4] ∪
m⋃

l=1

⋃

0≤i<j≤2

χl[Rij ].

Proof. Consider the closed setM0 = M \ Int(
⋃m

i=1 χi[(1− τ)4]) and the closed sub-
groupH = {g ∈ Homeo(M)

∣∣ g|Sm
i=1 χi[(1−τ)4] = id}. Assume thatTl andTl′ have an
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edge in common, i.e.,χl(va) = χl′(va′) andχl(vb) = χl′(vb′) for somea, a′, b, b′. Then
χl[Rab] ∪ χl′ [Ra′b′ ] ⊆ IntM0(χl[R+

ab] ∪ χl′ [R+
a′b′ ]). Therefore, we can find someν > 0,

not depending on the particular choice ofl, l′, a, a′, b, b′, such that for all such choices of
l, l′, a, a′, b, b′ andg ∈ Vν ∩H we have

g[χl[Rab] ∪ χl′ [Ra′b′ ]] ⊆ IntM0(χl[R+
ab] ∪ χl′ [R+

a′b′ ]).(2)

Fix someg ∈ Vν ∩H.
Assume now thatχl[4] andχk[4] have an edge in common. For concreteness we

can suppose that, e.g.,χl(v0) = χk(v1) andχl(v1) = χk(v2). As the covering map-
pingsχi were supposed to agree along their edges, this implies thatχl[β01] = χk[β12],
χl[κ01] = χk[κ12], andχl[β10] = χk[β21]. Also, asg ∈ H, g is the identity on the paths
χl[ζ01], χl[ω01], χl[ζ10], χk[ζ12], χk[ω12] andχk[ζ21].

By consequence,χl[ζ01] ¦ χl[γ01] ¦ χk[γ12] ¦ χk[ζ12] andχl[α01] ¦ χk[α12] are paths
from χl(u01) to χk(u12) only intersecting in their endpoints. Similarly,χl[ζ10] ¦ χl[γ10] ¦
χk[γ21] ¦χk[ζ21] andχl[α10] ¦χk[α21] are paths fromχl(u10) toχk(u21) only intersecting
in their endpoints. This shows that

K = χl[ζ01] ¦ χl[γ01] ¦ χk[γ12] ¦ χk[ζ12] ¦ χk[α12] ¦ χl[α01]

is a simple closed curve and thus, by the Schönflies Theorem, bounds a regionA homeo-
morphic to the unit diskD2. Similarly,

K′ = χl[ζ10] ¦ χl[γ10] ¦ χk[γ21] ¦ χk[ζ21] ¦ χk[α21] ¦ χl[α10]

is a simple closed curve and thus bounds a regionA′ homeomorphic to the unit diskD2.
Now, asχl[α01] ¦ χk[α12] ⊆ χl[R01] ∪ χk[R12], by condition 2 ong,

g[χl[α01] ¦ χk[α12]] ⊆ IntM0(χl[R+
01] ∪ χk[R+

12])

and hence intersectsχl[ζ01] ¦ χl[γ01] ¦ χk[γ12] ¦ χk[ζ12] only in their common endpoints.
Thus,

L = χl[ζ01] ¦ χl[γ01] ¦ χk[γ12] ¦ χk[ζ12] ¦ g[χk[α12]] ¦ g[χl[α01]]
is a simple closed curve bounding a regionB homeomorphic toD2. Similarly,

L′ = χl[ζ10] ¦ χl[γ10] ¦ χk[γ21] ¦ χk[ζ21] ¦ g[χk[α21]] ¦ g[χl[α10]]

bounds a regionB′ homeomorphic toD2.
We now have two decompositions ofχl[R+

01] ∪ χk[R+
12].

(1) A ∪ [
χl[R01] ∪ χk[R12]

] ∪A′.
(2) B ∪ g[χl[R01] ∪ χk[R12]] ∪B′.

HereA andχl[R01]∪χk[R12] overlap along the edgeχl[α01] ¦χk[α12], χl[R01]∪χk[R12]
andA′ overlap alongχl[α10] ¦ χk[α21], whileA ∩ A′ = ∅. Similarly,B andg[χl[R01] ∪
χk[R12]] overlap along the edgeg[χl[α01]]¦g[χk[α12]], g[χl[R01]∪χk[R12]] andB′ overlap
alongg[χl[α10]] ¦ g[χk[α21]], whileB ∩B′ = ∅.

We can now define a homeomorphismϕlk : χl[R+
01] ∪ χk[R+

12] → χl[R+
01] ∪ χk[R+

12],
by first settingϕlk = g−1 on g[χl[R01] ∪ χk[R12]], and then letϕlk sendB to A, while
fixing each point ofχl[ζ01] ¦χl[γ01] ¦χk[γ12] ¦χk[ζ12] and beg−1 ong[χl[α01] ¦χk[α12]].
Similarly forB′ andA′.

This can be done for all pairs ofχl andχk with a common edge, and we thus produce
homeomorphismsϕlk on all of the regions, similar toχl[R+

01]∪χk[R+
12], that fix each point

of the boundary curve

χl[ω10] ¦ χl[ζ10] ¦ χl[γ01] ¦ χk[γ12] ¦ χk[ζ12] ¦ χk[ω12] ¦ χk[ζ21] ¦ χk[γ21] ¦ χl[γ10] ¦ χl[ζ10].



12 CHRISTIAN ROSENDAL

Pasting all of theseϕlk together and extending to all ofM by settingφ = id else-
where, we obtain a homeomorphismφ ∈ Homeo(M) whose support is contained in⋃m

l=1

⋃
0≤i<j≤2 χl[R+

ij ], while being the inverse ofg on
⋃m

l=1

⋃
0≤i<j≤2 χl[Rij ]. By

Lemma 2.7,φ ∈W 20, which finishes the proof. ¤
We are now ready to finish the proof of Theorem 1.1 using the preceding sequence of

lemmas.

Proof. Let y1, . . . , yp ∈M be the vertices of the triangulation and choose for eachi ≤ p a
neighbourhoodUi of yi homeomorphic toR2. Find also0 < ε < η1 such thatB(yi, ε) ⊆
Ui for all i. By Lemma 2.2, there are0 < δ0 < ε, zi ∈ B(yi, ε), such that ifg ∈
Homeo(M) has support contained in

⋃p
i=1B(zi, δ0), theng ∈W 16. Asyi, zi ∈ Ui ' R2,

we can, asW 2 is dense inVη1 , find someh0 ∈ W 2 such thath0(yi) ∈ U ′i ⊆ B(zi, δ0),
whereU ′i is a neighbourhood ofzi homeomorphic toR2. Therefore, there is someg0 ∈
W 16 such thatg0h0(yi) = zi. This shows that iff ∈ Homeo(M) has support contained in
U = (g0h0)−1[

⋃p
i=1], then(g0h0)−1f(g0h0) has support contained in

⋃p
i=1B(zi, δ0) and

hence belongs toW 16. Sof belongs toW 52. We notice thatU is an open set containing
y1, . . . , yp.

Recall now the definition of the pathsαij , βij , etc. and also the fact that these paths all
depend on the choice of0 < τ < 1. For a fixed choice ofτ , we define the following simple
closed curves in4

Fτ
0 = β02 ¦ θ0 ¦ β01 ¦ α01 ¦ ζ01 ¦ ξ0 ¦ ζ02 ¦ α02,

Fτ
1 = β10 ¦ θ1 ¦ β12 ¦ α12 ¦ ζ12 ¦ ξ1 ¦ ζ10 ¦ α10,

Fτ
2 = β21 ¦ θ2 ¦ β20 ¦ α20 ¦ ζ20 ¦ ξ2 ¦ ζ21 ¦ α21.

(3)

Moreover, we letF τ
0 , F

τ
1 , F

τ
2 be the closed regions that they enclose. We notice thatF τ

i

converges in the Vietoris topology to{vi} whenτ → 0, and thus for someτ > 0, we have
for all i = 0, 1, 2 andl = 1, . . . ,m, χl[F τ

i ] ⊆ U . So fix thisτ and denoteF τ
i by Fi. We

notice that
4 = (1− τ)4∪

⋃

0≤i<j≤2

Rij ∪
⋃

i=0,1,2

Fi.

By consequence, iff ∈ Homeo(M) is the identity on
m⋃

i=1

χi[(1− τ)4] ∪
m⋃

l=1

⋃

0≤i<j≤2

χl[Rij ],

thenf has support contained in
⋃m

l=1

⋃
i=0,1,2 χl[Fi] ⊆ U , and hencef ∈W 52.

Find now aν > 0 as in the statement of Lemma 2.8. Then ifg ∈ Vν andg is the identity
on

⋃m
i=1 χi[(1− τ)4], then there is aφ ∈W 20 such thatφ ◦ g is the identity on

m⋃

i=1

χi[(1− τ)4] ∪
m⋃

l=1

⋃

0≤i<j≤2

χl[Rij ],

and hence belongs toW 52. But then alsog ∈W 72.
Fix δ < ν

2 and find anη > 0 satisfyingη < 1
1000 , η < ν

2 , and such that fori ≤ m and
x, y ∈ 4,

d(x, y) < 100η → d(χi(x), χi(y)) < δ.

By Lemma 2.6, we can find an0 < α < ν
2 such that for allh ∈ Vα there isψ ∈ Vδ ∩W 20

such that for alli ≤ m,
ψ ◦ h|χi[(1−2η)4] = id.
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In particular,ψ ◦ h ∈ VδVα ⊆ Vδ+α ⊆ Vν and is the identity on
⋃m

i=1 χi[(1− τ)4],
wherebyψ ◦ h ∈ W 72 andh ∈ W 92. This shows thatVα ⊆ W 92 and thusW 92 con-
tains an open neighbourhood of the identity inHomeo(M) and hence we have proved that
Homeo(M) is Steinhaus, which finishes the proof of the Theorem. ¤
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