AUTOMATIC CONTINUITY IN HOMEOMORPHISM GROUPS OF COMPACT
2-MANIFOLDS

CHRISTIAN ROSENDAL

ABSTRACT. We show that any homomorphism from the homeomorphism group of a com-
pact2-manifold, with the compact-open topology, or equivalently, with the topology of
uniform convergence, into a separable topological group is automatically continuous.

1. INTRODUCTION

A number of results have surfaced in recent years that intimately connect topologies
on transformation groups with the underlying group structure. Of course, many classical
mathematical results, variously formulated ragidity or reconstructionresults, can be
viewed in this way, namely as saying thatGfis the group of transformations of some
mathematical objedk’, thenK can be completely recovered within its category frGras
an abstract group, and hence any natural transformation group topold@gysaso given
by the abstract grou@. Related to this are results saying that any automorphisé isf
inner and hence given by a transformationfaf

However, recently there have been indications that certain topological groups might not
only be determined by the underlying abstract group, but, in fact, that the topology is also
preserved under homomorphisms. Some indications of this come from the sosrali#d
index propertyfor separable, complete metric groups saying that a subgroup of in@&x
is open. This implies that any homomorphism into the gr8upof all permutations oN
is continuous, when the latter has been equipped with the topology of pointwise conver-
gence on the discrete 8t This follows from the fact that the topology 6f,, is generated
by its open subgroups. The small index property has now been proved for a great number
of closed subgroups &, itself, perhaps the most general result is due to Hodges, Hod-
kinson, Lascar, and Shelah [HHLS93], but also holds for groups not themselves already a
closed subgroup @, €.9.,Homeo(S') [RoS005].

Nevertheless, these results put rather heavy restrictions on the target groups, namely,
that their topology has to be given by the open subgroups. This condition was discarded
with by Kechris and the author in [KeRo04], in which it was shown that for many closed
subgroups ofS., one has a completely general resultaaftomatic continuity namely,
that any homomorphism from one of these groups into a separable topological group is
continuous. This line of research was continued by Solecki and the author in [RoS005] in
which this property was verified for many other groups includiigneo(S*). Thus, one
could hope for this to be true for a general class of homeomorphism groups of manifolds,
and we shall provide the first step here by considering manifolds of dimefsion

Automatic continuity turns out to have connections with other dynamical properties of
groups and for example has provided the only known examples of discrete groups with the
so called fixed point on metric compacta property, i.e., discrete groups all of whose actions
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on compact metric spaces have a fixed point. We shall not develop any of these relations
here, but only refer the reader to [RoS005] for more on this.

It is well-known and easy to see that for any compact metric spdce), its group of
homeomorphisms is a separable complete metric group when equipped with the topology
of uniform convergence, or equivalently, with the compact open topology. In fact, a com-
patible right-invariant metric oHomeo (X, d) is given byd (g, f) = sup,cx d(g(x), f(z)),
and a complete metric by, (g, f) = doo(g, f) + doo(97 %, f~1). We denote byB(z, €)
the open ball of radius aroundz and byB(z, ) the corresponding closed ball.

If g € Homeo(X,d), we denote byupp®(g) the open sefz € X | g(z) # =} and by
supp(g) its closure, which we call theupportof g.

We intend to show here that in the case of compartanifolds, this group topology
is intrinsically given by the underlying discrete or abstract group, in the sense that any
homomorphismr from this group into a separable group is continuous.

Theorem 1.1. Let M be a compac®-manifold andr : Homeo(M) — H a homomor-
phism into a separable group. Thenis automatically continuous whefomeo(M ) is
equipped with the compact-open topology.

Let us first note the following fact, which follows easily from known results and helps
to clear up the situation.

Proposition 1.2. Suppos&= is a topological group. Then the following conditions are
equivalent.

(1) Any homomorphism : G — Homeo([0, 1]V) is continuous,

(2) any homomorphism : G — H into a separable group is continuous.

Proof. As [0, 1] is a compact metric space, its homeomorphism group is a (completely

metrisable) separable group in the compact-open topology, so (1) is a special case of (2).
For the other implication, suppose that (1) holds andHebe separable. LeN be

the closed normal subgroup @&f consisting of all elements that cannot be separated

from the identity by an open set and I8t/ N be the quotient topological group, which

is Hausdorff and separable, and, in particular, any non-empty open set covers the group

by countably many translates. However, it is an old result (see I.I. Guran [Gu81]) that

for Hausdorff groups this condition is equivalent to being topologically isomorphic to a

subgroup of a direct product of separable metric groups, or equivalently, second count-

able Hausdorff groups (by the Birkhoff-Kakutani metrisation Theorem). Also, a result of

Uspenski [Us86] states that any separable metric group is topologically isomorphic to

a subgroup offomeo([0, 1]), and we can therefore, sé&/N as a subgroup of some

power of Homeo([0, 1]V). Thus, as a mapping into the Tikhonov product is continuous

if and only if the composition with each coordinate projection is continususmmposed

with the quotient mapping is continuous, and hence by the choidé elsor is continu-

ous. O

However, we shall not use this result in any way, but instead simplify matters by not
be working with arbitrary homomorphisms, but rather with arbitrary subsets of the group
satisfying a certain algebraic largeness condition. Gébe a group andV C G be a
symmetric set. We say th&V’ is countably syndetidf there are countably many left-
translates ol whose union cove(z. Moreover, if G is a topological group, we say
that G is Steinhaudf for somek > 1 and all symmetric, countably syndefi¢’ C G,
Int(WX) # (. It is not hard to prove (see, e.g., [RoS005]) that Steinhaus groups satisfy
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the equivalent conditions of Proposition 1.2, and this is the condition that we will verify.
Note however the order of quantification; thas universal for all symmetric, countably
syndeticW. Indeed, the grougilomeo (S') equipped with the trivial topology =
{0, Homeo, (S*)} satisfies the condition when we have reversed the quantifiers, but the
identity homomorphism into itself equipped with the compact-open topology is obviously
discontinuous.

It is instructive also to consider from which groups one can construct discontinuous
homeomorphisms. Of course, the first case that comes to mifil is), on which one
can with the help of a Hamel basis, i.e., a basisltoas aQ-vector space, construct
discontinuous automorphisms, and, in fact, construct group isomorphisms béveseh
R2. Also if G = L, F, where theF,, are finite non-trivial groups, satisfies automatic
continuity, then|F,,| — oo. For otherwise, there is some infinite sétC N such that
F, = F,, foralln,m € A. Letl be a non-principal ultrafilter orl and setH = {g €
G | {neA \ gn = 1} € U}. ThenH is a non-open subgroup 6f of finite index and
henceG has a discontinuous homomorphism into a finite group.

We finish this introduction by mentioning a few of the most interesting questions con-
cerning automatic continuity.

Question 1.3.

(1) Isthere a compact metrisable group satisfying automatic continuity, i.e., satisfying
the equivalent conditions of Proposition 1.27?

(2) What about a locally compact second countable group?

(3) Does the unitary group of separable infinite-dimensional Hilbert sgagg) sat-
isfy automatic continuity?

(4) Is Theorem 1.1 true for an arbitrary compact manifalf?

(5) What about compadtiangulablemanifolds?

Cases (1) and (2) would be a way of producing discrete groups acting faithfully on
separable metric spaces, but such that all of their actions have compact, respectively,
compact orbits. This would be a strenthening in the separable case of the s®eatjathn
or strong boundednegsroperty of a group, saying that any isometric action on a (not
necessarily separable) metric space has bounded orbits. This property is known to hold for
a large class of groups, e.@, [Be06], Homeo(S™) [CaFrCo06], andJ (¢>) [RiR0]. |
conjecture that the profinite grodqd,, Alt(2") should satisfy automatic continuity. The
proofs given by Saxl, Shelah, and Thomas in [SaShTh96, Th99] go a far way in order
to establish this and with a little extra work, one can make their proofs show also the
Bergman property fof [, Alt(2"). However, so far | have not been able to make it show
that] [, Alt(2") is Steinhaus and thus that it satisfies automatic continuity.

Case (3) would, in conjunction with a result of Gromov and Milman [GrMi83], imply
thatU (¢3) has the fixed point on metric compacta property as a discrete group.

As can be seen from the proof that will be given for Theorem 1.1, certain parts of the
proof transfer directly to higher dimensional triangulable manifolds. Unfortunately, this
is not the case throughout and one naturally wonders what happens for these. Geometric
topology in higher dimensions is well developed and some of the work done around the
annulus conjecture is certainly relevant here. However, the annulus conjecture by itself is
not enough and it is for this reason that we have been forced to use ad hoc constructions
based on Sdinflies’ Theorem to get the exact lemmas we need.
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2. THE PROOF
2.1. Commutators. We shall first prove a general lemma about homeomorphisriRé of

Lemma 2.1. Suppose thay € Homeo(R"™) has compact support. Then there gigh
Homeo(R™) with compact support such that= [f, h] = fhf~th~1L.

Proof. Fix some open balll; C R™ containing the support gfand let(U,,,) be a sequence
of disjoint open balls such that for some distingtandzx; in R™, the sequence@m)mzo
and (U _,,,)m>0 converge in the Vietoris topology ta, andz; respectively. We can now
find a shifth € Homeo(R™) with compact support, i.e., such tha/,,] = U,,+1 and
define ourf by letting f|U,,, = h™gh~™|U,, for m > 0 and settingf = id everywhere
else. We now see that far > 0,

hf—lh—1|Um — h(hm—lg—lh—m+1>h—1|Um _ hmg_lh_m|Um,
and form < 0,
hf~'h YU, = hid WU, = id|U,y,,
while hf~'h=1 = id everywhere else. Thereforg, hf~h=t|U,, = id|U,, for m > 0,
f'hfilhil‘U() = f|U() = g|U(), f'hfilhil‘Um = 1d|Um form < 0, andfhf71h71 =
id everyhere else. This shows that [f, h] = fhf~th~1L. O

We notice that in the proof above we usgandh with slightly bigger support than.
| believe it is an open problem whether this can be avoided and indeed it seems to be a
much harder problem. We can restate the problem as follows. Can every homeomorphism
of [0, 1]™ that fixes the boundary pointwise be written as a commutatgt afid  that
also fix the boundary pointwise? What happens if we replace pointwise by setwise? Let
us mention that the first question has a positive answer in dimemhsienfor example, the
group of orientation preserving homeomorphism&of] has a comeagre conjugacy class
[KuTr00]. The above result slightly strengthens a result of Mather [Ma71] saying that the
homology groups of the group of homeomorphisRiswith compact support vanish. One
can of course also extend the lemmdoo[xR"~! and thus also improve the result of
Rybicki [Ry96].

2.2. Countably syndetic sets.We will now prove some properties of countably syndetic
sets in the homeomorphism groups of arbitrary manifolds. These results will allow us to
completely solve our problem for compact two-dimensional manifolds and provide tech-
nigues for higher dimensions. So let be a manifold of dimension and fix a compatible
complete metriel on M.

In the following we fix a countably syndetic symmetric subgétC Homeo(M) and a
sequence,, € Homeo(A/) such thatJ,, k., W = Homeo(M).

Lemma 2.2. For all distinct y1,...,y, € M ande > 0, there aree > ¢ > 0 and
z; € B(yi,€) such that ify € Homeo(M) has support contained i = (J!_, B(z;,9),
theng € W16,

Proof. We notice that it is enough to find € B(y;, ¢) and open neighbourhoods of z;
such that ify € Homeo(M ) has support contained (0, U;, theng € W'6. We choose
some open neighbourhood gf E; C B(y;, €), that is homeomorphic t}), ¢[". We also
suppose that the sefs arede-separated. We will also temporarily transport the standard
euclidian metric fromo0, €[ to each of the set&’;. As we will be working separately on
each ofE;, this will not cause a problem. Thus in the following, the notati$ix, 3) will
refer to the balls in the transported euclidian metric, which we denote by
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Sublemma 2.3. For all u; € E; and~v > 0 such thatd(u,;,0F;) > 2+, there are

v > a > 0andz; € dB(u;,y) such that ifg € Homeo(M) has support contained

in A = (J_, B(x;,a) N B(u;,), then there is ark € W? with support contained in
o B(u7,’y) such thatg| A = h|A.

Proof. Letu,...,u, be given. We fix for each < p a sequence of distinct point$, €
0B (u;,7) converging to some point,, € dB(u;,~) and choose a sequenge> a, > 0
such thatB(z?,, ) N B(z}, ;) = 0 for anym # [ and alli < p. Thus, asv,, — 0, we
have that ifg,,, € Homeo(M) has support only in

Am = (B, am) N B(u1, 7)) U... U (B(a,, o) 0 Bup, 7))

for eachm > 0, then there is a homeomorphisgne Homeo(M ), whose support is
contained inC = B(ui,7y) U ... U B(u,,7), such thaty|A,, = gm|Am. We claim
that for somemy > 0, if g € Homeo(M) has support contained iA,,,, then there
is an element, € k,,,W, with support contained i, such thatg|A,,, = h|A.,,.
Assume toward a contradiction that this is not the case. Then for exeme can find
someg,, € Homeo(M) with support contained ind,,, such that for allh € k,,W, if
supp(h) C C, theng,,|A,, # h|A,,. But then lettingg € Homeo(M) have support in
C and agree with eacty,, on A,,, for eachm, we see that it € k,,,JW has support irC,
theng disagrees witth on A,,,. Therefore,g cannot belong to any,, W, contradicting
that these covelomeo(M). Suppose thaty, has been chosen as above and denfjte
by z;, A, by A, anda,,, by a.

Then for anyg € Homeo(M ) with support contained ir, there is an elemertt € 17?2
with support contained i@’ such thaty|A = h|A for all i < p. To see this, it is enough
to notice that we can findg, hy € k,,, W, with supp(hg),supp(hi) C C, such that
glA = hi|A andid|A = ho|A. Butthenhy'hy € (kpgW) kW = WIW = W2
andg|A = id g|A = hg *hy|A. O

We will first apply Sublemma 2.3 to the situation whete= y; andy > 0 is sufficiently
small. We thus obtaiy > o > 0 andz; € dB(y;,y) such that ifg € Homeo(M) has
support contained il = | J_, B(x;, )N B(y;,7), then there is ah € W2 with support
contained nU” B(yi,7) such thay|A = h|A.

Now picky, € B(z;,a) N B(y;,v) andy’ > 0 such thatB(y;,2y") C B(z;,a) N
B(yi,’y). We now apply Lemma 2.3 once again to this new situation, in order to obtain
v > ad > 0 andz; € 9B(y.,~') such that ifg € Homeo(M) has support contained
in A" = J_, B(z},a') N B(y,,v'), then there is ah € W2 with support contained in

0 E(yl, "y such thay|A’ = h|A'.

Now cIearIy there is a homeomorphisme Homeo(M ) whose support is contained in

A =U"_, B(z;,a) N B(y;, ) such that[B(y,~)] = B(z},a’) and

a[B(y;,~') N B(x},a)] = B(y;,»") N B(a;, o),

and hence we can also find suchain W2, except that its support may now be all of

i1 B(yi,7)-
We therefore have that i € Homeo(M) has support contained if’, thena~!ga

also has support contained itf, and so there is ah € W? with support contained in
P B(yi,7) such thatz~'ga|A’ = h|A’. Buttheng|A’ = aha™'|A’, while

supp(aha™") = alsupp(h)] a[_U B(yi, 7)) = |J B, o).
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We now notice thattha=! € W9, and thus that ify € Homeo(M) has support con-
tained inA’ = (J!_, B(z},a’) N B(y},7’), then there is som¢ € WS with support
contained il J!_, B(z}, o) such thay|A4’ = f|A’.

Now suppose finally thaj € Homeo(M) is any homeomorphism having support con-
tained in{J!_, B(z},a’) N B(y,,7'). Since the set8(z},o’) N B(y,,~') are homeo-
morphic toR"™, working separately on each of these sets and noticinggthets com-
pact support, we can invoke Lemma 2.1 to wijtas a commutatap, ] for someb, ¢ €
Homeo(M) whose supports are contained iff_, B(z}, ") N B(y;,~') € A’. Find now
h € W? agreeing withh on A’ and with support contained i}_, B(y.,~’), and, simi-
larly, find f € W6 agreeing withc on A’ and with support contained i)}_, B(z}, o).
Then the set of common support bfand f is included inA’ on which they agree with
b andc respectively, and we have therefore thiatf] = hfh=1f~1 = beb~lc™! = g.
In other words,g € W16, We can therefore finish the proof by choosing somes
B(z},a’) N B(y},~") and lettingU; = B(«}, o) N B(y}, ). O

2.3. Circular orders. In order to simplify notation, we will considagircular orderson

finite sets. Since we are really just interested in simplifying notation, let me just say what

a circular order is in terms of an example, namély, Forx,y, z distinct points onS?,

y is said to be between andz, in symbolsB(z, y, z), if going counterclockwise around

S1 from z to y, one does not pass through Thus a circular order is just a circular
betweeness relation. Whéhis a circular order on a finite s&t we denote for each € F

its immediate successor and immediate predecessor, i.e., the first elements encountered by
going respectively counterclockwise and clockwise aroBEnthy z+ andz~. So, e.g.,

(z7)” = .

2.4. A quantitative annulus theorem. The proof of our result is tightly connected with

the methods of geometric topology related to the annulus theorem. However, the annulus
theorem in itself will not suffice in our case, as we need to do three successive operations.
We need firstly to operate along submanifolds with boundaries and secondly to control
certain constants in each step in order that the homeomorphisms corresponding to the op-
erations stay close to the identity. For the first operation, we to have some quatitative esti-
mates in the annulus theorem, which are easily obtained by varying the standard proof of
the annulus theorem in dimensidibased on Sdmnflies’ Theorem. The exact quantitative
estimates involved are not so important, only that they exist. For the sake of completeness
we include a full proof.

Fix three pointsyg, vy, v, € R? such that fori # 7, d(v;,v;) = 1, and denote by\
the2-cell consisting of the points lying within the trianglevyv, vo. Suppose also that the
barycenter ofA lies at the origin, so that for al > 0, A\A andA are concentric triangles,
the former with side lengths.

Lemma 2.4. Leto : (1 — 2n)A — A be a homeomorphic embedding satisfying

n
su dlz,o(z)) < —,
16(1—1;71)A ( ¢( )) 100
wheren < 1g5;. Then there is a homeomorphism A — A that is the identity outside
of (1 —n)A, withsup,¢ A d(x,9(x)) < 1007, and such that) o ¢|_gy) A = id.

Proof. Let 9(1 — n)A be the boundary ofl — n)A and pick a finite set of point®
containing(1 — n)vg, (1 — n)vy, (1 — n)ve and lying ind(1 — n)A, such that wheif is
equipped with the circular order obtained from going counterclockwise ar@(ind ) A,
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we haved(z,z") €]20n,21n[ for all z € F. As A is equilaterald(z,y) > 20n for all
x#yinT.

Let nowC = ¢[9(1 — 2n)A] be the image of the boundary 6f — 2n)A, soC' is a
simple closed curve. Choose also for eack F a pointz € C such that the distance
d(z, &) is minimal. Sincesup, ¢ (1_s,) d(7, ¢(7)) < 15 and
g <d(z,0(1 —2n)A) < %77
forallz € (1 — n)A, alsod(x, ) < nandd(C,d(1 —n)A) > 7.

For allz € IF, denote by, the straight (oriented) line segment franto & and byg,,
the straight line segment fromto = . We also lety,, be the shortest path (1 — 21)A
from ¢ (#) to ¢! (=) and puty, = ¢[3;).

By definition of Z, a, intersects”' exactly inz, intersect$)(1 — n)A in exactlyz, and
thereforew,, and-, intersect only ify = 2~ ory = z. Similarly, none of the paths,
and~, intersect as they lie i#(1 — n)A andC respectively. Therefore, for any € T,
Co = QuuwYzeiy+ o3, is @ Simple closed curve beginning and ending.aflerea denotes the
reverse path oft and. the concatenation of paths. By the 8oflies TheoremR?\ C, has
exactly two components, one unbounded and the dthdsounded, homeomorphic with
R? and with boundarg,.. Moreover, as the diameter 6f is bounded by0n, C,. intersects
d(1 —n)A in exactly3,, and the diameter @f(1 — n)A \ B, is 1 —n > 30n, this means
thatd(1 —n)A \ 3, lies in the unbounded component. Therefordjf= U, = U, UC,,
we have forr # y

0 if y# 2T andy # z~
R,NR,=1¢ oy if y=at
Qy ify=a"

We can now define) : A — A by lettingy = ¢~ on ¢[(1 — 2n)A], » = id on
A\ (1 —n)A, and, moreover, along the boundariesiyf constructy as follows: ¢[a, ]
is the straight line segment fromto ¢ (%), 1[v.] = ., andy[3.] = B.. Then

Y[Co] = Yo e Y o Qg « Ba] = Y]] e ya] e Plag+ ] Y[Be] = Plag] V; cYlag+] B,
is the boundary of a regiol, homeomorphic to the unit disk? and hence, by Alexan-
der's Lemma, the homeomorphishfrom C, = a,; vy 0z« B 10 Y[ ] oyl st [ty+ ]+ B, €X-
tends to the regions that they bound, i.e., to a homeomorphigty with K. This finishes
the description of) and it therefore only remains to see thap, . o d(z, ¥ (z)) < 100n.
Sincey = ¢~ ong[(1 — 2n)A] andy = id on A\ (1 — n)A it is enough to consider
what does tox € (1 —n)A\ ¢[(1 —2n)A] € U,er Re- Now, ¢[R,] = K, for all
x € F, and hence it is enough to show that no point&jnand in K, are more than00n
apart. Butdiam(R,) < 30n anddiam(K ) < 407, while R, N K, # (), which gives the
desired result. This finishes the proof. O

2.5. Patching along a triangulation of a compact2-manifold. As Homeo(M ) is a sep-

arable complete metric group it is not covered by countably many nowhere dense sets (this
is the Baire category theorem) and hefZemust be dense in some non-empty open set,
wherebyW ~'W = W? is dense in some neighbourhood of the identityimmeo (M ).

So fix somey; > 0 such that?? is dense in

(N Vi, = {g € Homeo(M) | dos(g,id) < m1}.

It is a well-known fact, first proved rigorously by Tibor RafRa24], that any compact
2-manifold can be triangulated. So from now on, we assumeMhas a fixed compact
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2-manifold and we pick a triangulatiof(Zy, . .., T,,} of M with corresponding home-
omorphismsy; : A — T;. By further triangulating eacfi;, we can suppose that the
diameter off; is less thar{’; for all i. Moreover, by first modifying thg; along each edge
of A and then extending to the interior 6f by Alexander's Lemma, we can suppose that
the following holds. IfT; = x;[A] andT; = x;[A] have an edge in common, thgn
andy; agree along this edge, i.e.,)f(vq) = x;(va) andx;(vs) = x;(vg), then for all

t €[0,1], x;(tvg + (1 — t)vp) = xj(tva + (1 —t)vg).

Lemma 2.5. Forall 0 < n < 1, if h € Homeo(M ) has support contained in
Uil =mal,
i=1

thenh € W29,

Proof. Lety; = x:(0) and choose > 0 such thatB(y;, €) C x;[(1 — n)A] forall i < m.
By Lemma 2.2, we can find sonfe< § < e andz; € B(y;, €) such thatify € Homeo(M)
has support contained [}, B(z;, ) theng € W6,

As W? is dense in;,,, we can find ary € W2 such that for every < m, f[x;[(1 —
n)A]] € B(z;,6) and thus ifh is given as in the statement of the lemmapp(fhf~') =
flsupp(h)] € Ui~, B(zi,€) and thugy = fhf~ € W6, whenceh € W2°. O

Lemma 2.6. Letd,n > 0,71 < 1355 be such that foi < m andz,y € A,

d(z,y) < 100n — d(x:(z), xi(y)) <.
Then there is amv > 0 such that for allg € V, there isy» € Vs N W?2° whose support is
contained inJ;~, x;[(1 — n)A] and such that for alf < m,
b oglyia-2ma) = id.
Proof. Fix 6 andn as in the lemma. Then for any continuogis: A — A such that
sup,eca d(z, ¢(z)) < 100n, we have for every < m,

sup d(y, x; 0 ¢ o x; ' (y)) = sup d(xi(z), x; 0 p(z)) < 6.
yeT; zEA

Now pick somex > 0 such that fory € V,, andi < m, we have

goxil(L —2n)A] C xi[A] =T,
wherebyy; ' o gox; : (1—2n)A — A, and such that

_ n
sup  d(z,x; Logoy(z)) < —.
z€(1-2n)A ( ( )) 100
By Lemma 2.4 we can therefore find some homeomorphism A — A that is the

identity outside of 1 — n)A, that satisfies the estimatep,, . » d(z,;(x)) < 100n, and

Yiox; ogoxila-ana = id,
This implies that for each < m, x; o ¢; o le : T; — T; is a homeomorphism that is the
identity outside ofy;[(1 — n)A], sup,er, d(z, xi 0 ¥; 0 x; '(z)) < 6, and

Xi 0 ;0 Xi_l O glx;[(1—2n)A] = id.

We can therefore defing = (J;" | xi o ¢; o x; ' € Homeo(M) and notice that) € Vj;
andy o gly,1—2n 4] = id for everyi < m. We see that has its support contained within
the selJ;~, x:[(1 — n)A] and thus, by Lemma 2.3 belongs toi?/ 2. O
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Fix somel < 7 < ﬁ. We now define the following set of points i (see figure 1):
For distincti, j = 0, 1, 2, we putw;; = (1 — 107)v; + 107v;, w;'j = (1-97)v; + 97vj,

i = (1 — T)w;, andu;; =(1- T)w;; Sow;j, w;; € oA, while u,»j,u;; € ol —-1)A.

(%]
+ +
Waoy Waq
w21 w20
U;rl U;ro
U21 U20

Vo

Wip W10 Wo1 Woy

Figure 1

We also define a number of paths as follows (see figure 2):

e «y; is the straight line segment from; to w;;.

Bi; is the straight line segment from;; to wj;

75 is the straight line segment fronj; to w’.

(i; is the straight line segment from); to u;;

ki; 1S the straight path fromw;; to w;.

wj; is the straight path from,; to u;;.

&o is the shortest path ifl(1 — 7)A from ug, to ug; .
& is the shortest path ifi(1 — 7)A from u, to uf,.
& is the shortest path ifl(1 — 7)A from ug; to ug,.
0o is the shortest path ilA from wd, to wg; .

6, is the shortest path iA from wi;, to wy.

0 is the shortest path iA from w3, to w,.

We thus see that
Cij = Kij o« Qg » Wjj o Q5
is a simple closed curve bounding a closed regign= R;; C A,
C;; = Bij . '%ij . Bji . 77‘1' . Zji . wji . Cij . ’Yij

is a simple closed curve bounding a closed reg‘?dp: Rji C A that containgR;;.
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U12

U10

U1
K10

Figure 2

Notice however that the preceding definitions depend on the choicendfich is there-
fore also the case for the following lemma.

Lemma 2.7. If ¢ € Homeo(M) has support contained )i, Uy<; <o Xl[Rjj], then
¢ e W2,

Proof. We notice that for distinat, I/, x;[R},] N xi[R/,,] # 0 if and only if the triangles
T, andT}, have the edge;[v,v5] = X [VaTr] in common. Moreover, in this case, the set
xi[R5) U xw (R}, ] is homeomorphic to the unit disk? and is contained in an open set
homeomorphic t&R2.

So letA,, ..., Asn be an enumeration of all the closed setf?,,] U xu [R,;,] with
xi[R},] andx, [R},,] overlapping and let/; C M be an open set containing;, home-
omorphic toR?. We can suppose that tlig are all pairwise disjoint. Moreover, as the
diameter of eaclf; is at most’f—gj, the diameter of eacH; is at most%.

The proof is now very much the same as the proof of Lemma 2.5.yL et A; and
choosed < e < ‘I such thatB(y;,¢) C U; for all i < m. By Lemma 2.2, we can find
somel < ¢ < e andz; € B(y;, ¢) such that ifg € Homeo(M) has support contained in
UL, B(z,0) theng € W16,

As W? is dense inV,,,, we can find arf € W? such that for every < 22, f[A;] C
B(z;,9) and thus ifp is given as in the statement of the lemma,

m

supp(féf ") = flsupp(¢)] € | B(zi ),
=1

and thusy = fof~! € W1, whencep € W20, O

Lemma 2.8. Thereis av > 0 suchthatify € V, andg is the identity on J;" | x;[(1 — 7)A],
then there is @ € W20 such thatp o g is the identity on

Uxilt-navly U alkyg)
i=1 1=1 0<i<j<2

Proof. Consider the closed sét, = M \ Int(|J;", x:[(1 — 7)A]) and the closed sub-
groupH = {g € Homeo(M) \ glum , xil(1—m)a) = id}. Assume thatl; and7;, have an
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edge in common, i.ex;(ve) = X (ver) andx;(vy) = x1 (vy) for somea, a’, b, b’. Then
Xi[Rap) U xvr [Rarv] € Intagy (xa[R,) U x[RE,,]). Therefore, we can find some> 0,
not depending on the particular choicelof , a, a’, b, V', such that for all such choices of
LI a,a’,b,b’ andg € V,, N H we have

@) glxi[Ras] U xur [Rar]] € I, xa[ R U xr [R50 ])-

Fix someg € V, N H.

Assume now thaf;[A] and xx[A] have an edge in common. For concreteness we
can suppose that, e.g¢;(vo) = xx(v1) andx;(vi) = xx(v2). As the covering map-
pings x; were supposed to agree along their edges, this impliesyfids:] = xx[012],
Xi[ko1] = xk[r12], andx;[Bio] = xk[B21]- Also, asg € H, g is the identity on the paths
xt[Co1]s xt[wor], xi[Cro]s Xk [Cr2], xk[wi2] @andxk[Car]-

By consequencex;[Co1] « xi[vo1] « Xk[V12] « Xk[C12] @ndxi[ao1] - xk[a12] are paths
from x;(uo1) t0 xx(u12) only intersecting in their endpoints. Similarly;[¢10] « x:[Y10]
Xk[T21]+ Xk (1] @ndy;[a1o] - xx[@21] are paths fromy; (u10) to x4« (uz21) only intersecting
in their endpoints. This shows that

K=x [401] = X1 [’701] * Xk [712] . Xk[Zu} . Xk[Oélz] = X1 [501]

is a simple closed curve and thus, by the &dlies Theorem, bounds a regighhomeo-
morphic to the unit diskD2. Similarly,

K" = xil¢10] « xalv10] « x&[V21] « X0 [Con] « Xk [ct21] « xa[@n0]

is a simple closed curve and thus bounds a regibhomeomorphic to the unit disk?.
Now, asx;[ao1] « xk[@12] € xi[Ro1] U xx[Ri2], by condition 2 ory,

glxilaor] « xr[@2]] € Intag, (xa[Rgy] U xk[RT5))

and hence intersecig[Co1] « xi[701]  X&[TV12] « X&[(12] Only in their common endpoints.
Thus,

L = xa[Cor] « xa[v01] « Xk [F12] « X&[Ci2) » glxh[12]] « glxa[@ou]]
is a simple closed curve bounding a regiBrnomeomorphic td)?2. Similarly,

L' = xi[¢io] « xalv10] « Xk [Fa1) « X&[C21] » glxr[aa1]] - glxi[@io]]

bounds a regio®’ homeomorphic td?.
We now have two decompositions of[Rj; ] U xx[Ri5].
(1) AU [xi[Ro1] U xk[Ri2]] U A
(2) BUglxu[Roi] U xk[Ri2]] U B'.
Here A andy;[Ro1] U xx[R12] overlap along the edge [ao1] - xx[@12], Xi[Ro1] U xk[R12]
and A’ overlap alongy;[a10] « xx[@21], while A N A’ = (). Similarly, B andg[x;[Ro1] U
Xk [R12]] overlap along the edggix: [cvo1 ]9 [xk[@12]], g[xi[Ro1]Uxk[R12]] and B overlap
alongg[xi[aio0]]  g[xk[@21]], while BN B = 0.
We can now define a homeomorphism : x:[R{;] U xx[R5) — xi[RE) U xx [R5,
by first settingpy, = g~ on g[x:[Ro1] U xx[Ri12]], and then letp;, sendB to A, while

fixing each point of:[Go1]  X1[von] - Xk [T1a) X (1] @nd beg ™ on glxifao] - xi[aa]):
Similarly for B’ and A’.

This can be done for all pairs gfi andy;, with a common edge, and we thus produce
homeomorphismg;, on all of the regions, similar tg;[Rd, ] Uxx[R}5], that fix each point
of the boundary curve

xilwio] « xt[C10] « Xa[v01] « Xk [F1a] « Xk [Cra] « Xklwi2] « xk[C21] « Xk [v21] « xa[T10] - Xa[Cio)-
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Pasting all of thesep;;, together and extending to all d¥f/ by setting¢ = id else-
where, we obtain a homeomorphisth € Homeo(M) whose support is contained in
Uy Uo<icj<2 xalRi5), while being the inverse of on U~ Ug<; <o xi[Rij]. BY
Lemma 2.7 € W2°, which finishes the proof. O

We are now ready to finish the proof of Theorem 1.1 using the preceding sequence of
lemmas.

Proof. Lety,...,y, € M be the vertices of the triangulation and choose for gachp a
neighbourhood/; of y; homeomorphic t&®?. Find also) < e < n; such thatB(y;, ) C
U; for all i. By Lemma 2.2, there aré < &y < ¢, z; € B(y;,€), such that ifg €
Homeo(M) has support contained iif}_, B(zi,d), theng € W16, Asy,, z; € U; ~ R?,
we can, adV? is dense inV;,,, find someh, € W2 such thath(y;) € U/ C B(zi,d),
whereU! is a neighbourhood of; homeomorphic t&R?. Therefore, there is somg €
W16 such thayoho(y;) = z;. This shows that iff € Homeo(M ) has support contained in
U = (goho){U"—,], then(goho) ! f(g0ho) has support contained if?_, B(z;, o) and
hence belongs t&16. So f belongs toll7°2. We notice thal/ is an open set containing
Yi,-- 5 Yp-

Recall now the definition of the patlas;, 5;;, etc. and also the fact that these paths alll
depend on the choice 6f< 7 < 1. For a fixed choice of, we define the following simple
closed curves i\

F§ = Boz 00« By « o1« Co1 « Eg » oz » o2,
3 FI =P1ob1Brg 012+ Ci2+ & + (g - a0,

F3 =1 402 By« Oog (20 + € + g » 1.
Moreover, we letF], F, F] be the closed regions that they enclose. We noticeffiat
converges in the Vietoris topology {@; } whenr — 0, and thus for some > 0, we have
foralli =0,1,2andl = 1,...,m, x;[F]] C U. So fix thist and denot&] by F;. We
notice that

0<i<j<2 i=0,1,2

By consequence, if € Homeo(M) is the identity on

m m
Uxla-navl U xlRyl,
i=1 I=1 0<i<j<2
then f has support contained )", U,_, ., x:[Fi] € U, and hencef € W2,
Find now av > 0 as in the statement of Lemma 2.8. Then i V,, andg is the identity
on{U;~, x:[(1 — 7)A], then there is @ € W?2° such thatp o g is the identity on

Uxla-naol U xlRyl,
i=1 =1 0<i<j<2
and hence belongs 10752, But then alsgy € W2,
Fix § < 5 and find ar > 0 satisfyingn < ﬁ, n < 5, and such that for < m and
T,y € A,
d(z,y) <1007 — d(x:(2), xi(y)) <.
By Lemma 2.6, we can find ah< « < 4 such that for alk € V, there isy) € Vz N W20
such that for ali < m,

Yo hly[(1-2n)a] = id.
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In particular,y) o h € V5V, C V5o, C V, and is the identity orU?;l xi[(1 —71)A],
wherebyy o h € W72 andh € W92, This shows that/, € W?? and thusiw®? con-
tains an open neighbourhood of the identityHiomeo (M) and hence we have proved that
Homeo(M) is Steinhaus, which finishes the proof of the Theorem. O
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