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Abstract. We give an intrinsic characterisation of the separable re-
flexive Banach spaces that embed into separable reflexive spaces with
an unconditional basis all of whose normalised block sequences with the
same growth rate are equivalent. This uses methods of E. Odell and T.
Schlumprecht.

1. The shift property

We consider in this paper a property of Schauder bases that has come up

on several occasions since the first construction of a truly non-classical Ba-

nach space by B. S. Tsirelson in 1974 [11]. It is a weakening of the property

of perfect homogeneity, which replaces the condition

all normalised block bases are equivalent

with the weaker

all normalised block bases with the same growth rate are equiv-

alent,

and is satisfied by bases constructed along the lines of the Tsirelson basis,

including the standard bases for the Tsirelson space and its dual.

To motivate our study and in order to fix ideas, in the following result

we sum up a number of conditions that have been studied at various oc-

casions in the literature and that can all be seen to be reformulations of

the aforementioned property. Though I know of no single reference for the

proof of the equivalence, parts of it are implicit in J. Lindenstrauss and L.

Tzafriri’s paper [7] and the paper by P. G. Casazza, W. B. Johnson and

L. Tzafriri [2]. Moreover, any idea needed for the proof can be found in,

e.g., the book by F. Albiac and N. J. Kalton [1] (see Lemma 9.4.1, Theorem

9.4.2. and Problem 9.1) and the statement should probably be considered

folklore knowledge.
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Theorem 1.1. Let (en)∞n=1 be a normalised unconditional Schauder basis

for a Banach space X. Then the following conditions are equivalent.

(1) Any block subspace is complemented.

(2) Any block subspace [xn]∞n=1 is complemented by a projection P such

that

Pz =
∞∑

n=1

x∗n(z)xn,

where x∗n ∈ X∗ satisfy supp x∗n ⊆ supp xn.

(3) If (xn)∞n=1 and (yn)∞n=1 are normalised block sequences of (en)∞n=1 with

x1 < y1 < x2 < y2 < . . . ,

then (xn)∞n=1 ∼ (yn)∞n=1.

(4) If (xn)∞n=1 is a normalised block basis, then (xn)∞n=1 ∼ (xn+1)∞n=1.

(5) If (xi)
∞
i=1 and (yi)

∞
i=1 are normalised block sequences such that

max(supp xi ∪ supp yi) < min(supp xi+1 ∪ supp yi+1)

for all i, then (xi)
∞
i=1 ∼ (yi)

∞
i=1.

(6) For all normalised block bases (xn)∞n=1, if kn ∈ supp xn for all n,

then (ekn)∞n=1 ∼ (xn)∞n=1.

Moreover, if the above properties hold, then they do so uniformly, e.g., in

(4) there is a constant C such that for all normalised block bases (xn)∞n=1,

we have (xn)∞n=1 ∼C (xn+1)∞n=1.

An unconditional basis satisfying the above equivalent conditions will

be said to have the shift property. This is a natural weakening of perfect

homogeneity, i.e., that all normalised block bases are equivalent, which was

shown to be just a reformulation of being equivalent to the standard unit

vector basis of c0 or `p, 1 6 p < ∞, by M. Zippin [12]. Let us also note

that the shift property is stronger than what is called the block property in

[6], which is the requirement that every block sequence is equivalent with

some subsequence of the basis. Finally, we remark that the shift property is

obviously hereditary, that is, any normalised block basis of an unconditional

basis with the shift property will itself have the shift property.

Moreover, while the canonical bases of both Tsirelson’s space and its dual

have the shift property, only one of them contains a minimal subspace, i.e.,

an infinite-dimensional subspace that embeds into all of its further infinite-

dimensional subspaces. On the other hand, recall that a space E is locally

minimal [3] if there is a constant K such that for all finite-dimensional

F ⊆ E and infinite-dimensional X ⊆ E, F vK X, i.e., F embeds with

constant K into X. As was pointed out in [3] (Proposition 6.7), the proof
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of Theorem 14 in [2] essentially shows that any locally minimal space with

a basis having the shift property is minimal.

The goal of the present paper is not to study the shift property per

se, but rather to characterise the separable reflexive spaces that embed

into a Banach space having a Schauder basis with the shift property. This

will require some rather sophisticated techniques developed by E. Odell

and T. Schlumprecht in a series of papers (see, e.g., [5, 8]) and that we

shall summarise and slightly develop here. As a first application of their

techniques, they characterised in [8] the separable reflexive Banach spaces

embedding into an `p-sum of finite-dimensional spaces for 1 < p < ∞ and

their result was further improved in [10] to the following statement.

Theorem 1.2 (see [8, 10]). Let E be a separable reflexive Banach space

such that any normalised weakly null tree T in E has a branch (xi)
∞
i=1 ∈ [T ]

equivalent with all its subsequences. Then E embeds into an `p-sum, 1 <

p <∞, of finite-dimensional spaces.

The result we shall obtain here has a weaker, though similar sounding

hypothesis, but its conclusion is perhaps more satisfactory, since it provides

a basis rather than a finite-dimensional decomposition.

Theorem 1.3. Let E be a separable reflexive Banach space such that any

normalised weakly null tree T in E has a branch (xi)
∞
i=1 ∈ [T ] satisfying

(x2i−1)∞i=1 ∼ (x2i)
∞
i=1. Then E embeds into a reflexive space having an un-

conditional basis with the shift property.

If the reader is not familiar with the techniques of Odell and Schlumprecht,

this should not be a hindrance to understanding the present construction,

as we shall take certain of their technical results as black boxes that are

directly applicable in our situation.

Without further introduction, let us commence the technical part of the

paper by proving Theorem 1.1 for the record and the convenience of the

reader.

Proof. The implication (1)⇒(2) follows directly from Lemma 9.4.1 in [1], so

we shall not repeat the proof here.

(2)⇒(3): Suppose (2) holds and (xn)∞n=1 and (yn)∞n=1 are normalised block

sequences satisfying

x1 < y1 < x2 < y2 < . . . .

Assume that an are scalars such that
∑∞

n=1 anxn converges and choose sn >

0 converging to 0 such that also
∑∞

n=1
an

sn
xn converges. To do this, one just
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chooses k1 < k2 < . . . such that for all n,m > kp,
∥∥∑m

i=n ai

∥∥ < 1
4p and set

si = 2−p for all kp 6 i < kp+1. Put wn = xn + snyn and find w∗n ∈ X∗ such

that supp w∗n ⊆ supp wn and

Pz =
∞∑

n=1

w∗n(z)wn

defines a bounded projection onto [wn]∞n=1, whence sup‖w∗n‖ <∞. Then

P
( ∞∑

n=1

an

sn

xn

)
=
∞∑

n=1

an

sn

P (xn) =
∞∑

n=1

an

sn

w∗n(xn)wn =
∞∑

n=1

an

sn

w∗n(xn)(xn+snyn)

and so the last series is norm convergent. By unconditionality, it follows

that the series
∑∞

n=1 anw
∗
n(xn)yn is norm convergent too. Thus, as

w∗n(xn) = w∗n(wn)− w∗n(snyn) = 1− snw
∗
n(yn) −→

n→∞
1,

using unconditionality again, we find that also
∑∞

n=1 anyn is norm conver-

gent. A symmetric argument shows that if
∑∞

n=1 anyn converges, then so

does
∑∞

n=1 anxn, whence (xn)∞n=1 and (yn)∞n=1 are equivalent.

(3)⇒(4): Assume that (3) holds and that (xn)∞n=1 is a normalised block

sequence. Then using (3)

(x2n−1)∞n=1 ∼ (x2n)∞n=1 ∼ (x2n+1)∞n=1.

By unconditionality, it follows that the sequence (xn)∞n=1, which is the dis-

joint union of the sequences (x2n−1)∞n=1 and (x2n)∞n=1, is equivalent to the se-

quence (xn+1)∞n=1, which itself is the disjoint union of the sequences (x2n)∞n=1

and (x2n+1)∞n=1.

(4)⇒(5): If (xi)
∞
i=1 and (yi)

∞
i=1 are normalised block sequences such that

max(supp xi ∪ supp yi) < min(supp xi+1 ∪ supp yi+1),

then both x1, y2, x3, y4, . . . and x2, y3, x4, y5, . . . are normalised block se-

quences, whence (x2i−1)∞i=1 ∼ (y2i)
∞
i=1 and (x2i)

∞
i=1 ∼ (y2i+1)∞i=1. By un-

conditionality, it follows that (xi)
∞
i=1 ∼ (yi+1)∞i=1 ∼ (yi)

∞
i=1.

(5)⇒(6): Trivial.

(6)⇒(1): If (6) holds, then it does so uniformly, that is, there is a constant

C such that (xn)∞n=1 ∼C (ekn)∞n=1 whenever (xn)∞n=1 is a normalised block

basis and kn ∈ supp xn. This can easily be seen, as otherwise one would be

able to piece together finite bits of sequences with worse and worse constants

of equivalence to get a counter-example to (6). Let also Ku be the constant

of unconditionality of (en)∞n=1.

Suppose (xn)∞n=1 is a normalised block sequence and let I1 < I2 < I3 < . . .

be a partition of N into successive finite intervals such that supp xn ⊆ In.
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Find also functionals x∗n ∈ X∗ of norm 6 Ku such that supp x∗n ⊆ supp xn

and x∗n(xn) = 1. We claim that

P (z) =
∞∑

n=1

x∗n(z)xn

defines a projection of norm 6 K2
uC

2 from X onto [xn]∞n=1. To see this,

suppose z ∈ X and write z =
∑∞

n=1 anzn, where the zn are normalised

block vectors such that supp zn ⊆ In. Modulo perturbing xn and zn ever

so slightly to get supp xn = In = supp zn and picking kn ∈ In, we see

that (xn)∞n=1 ∼C (ekn)∞n=1 ∼C (zn)∞n=1. So
∑∞

n=1 anxn converges and, by

unconditionality, so does
∑∞

n=1 x
∗
n(zn)anxn =

∑∞
n=1 x

∗
n(z)xn. Therefore, P

is defined and satisfies∥∥P (z)
∥∥ =

∥∥ ∞∑
n=1

x∗n(z)xn

∥∥ =
∥∥ ∞∑

n=1

x∗n(zn)anxn

∥∥
6 K2

u

∥∥ ∞∑
n=1

anxn

∥∥ 6 K2
uC

2
∥∥ ∞∑

n=1

anzn

∥∥ = K2
uC

2‖z‖,

proving the estimate on the norm. �

Finally, let us also remark that unconditionality is already implied by

conditions (2), (4), (5) and (6) of Theorem 1.1. E.g., if a normalised basis

(en)∞n=1 satisfies (4) and (θn)∞n=1 ∈ {−1, 1}∞, then

(e1, θ1e2, θ1θ2e3, θ1θ2θ3e4, . . .) ∼ (θ1e2, θ1θ2e3, θ1θ2θ3e4, θ1θ2θ3θ4e5, . . .),

and therefore, multiplying both sides with (θ1, θ1θ2, θ1θ2θ3, θ1θ2θ3θ4, . . .), we

have

(θ1e1, θ2e2, θ3e3, θ4e4, . . .) ∼ (e2, e3, e4, e5, . . .) ∼ (e1, e2, e3, e4, . . .).

Since (θn)∞n=1 ∈ {−1, 1}∞ is arbitrary, this shows that (en)∞n=1 is uncondi-

tional.

Before continuing with the proof of Theorem 1.3, let us note that, while

Theorem 1.3 characterises reflexive spaces embeddable into a space with a

basis having the shift property, we do not know of any significant charac-

terisation of the spaces containing a basic sequence with the shift property.

Using W. T. Gowers’ block Ramsey theorem from [4] and Lemma 6.4 of [3],

we can conclude that if X is a Banach space with a Schauder basis (en)∞n=1,

then X contains a normalised block sequence (yn)∞n=1 that either is uncon-

ditional and has the shift property or such that there is a non-empty tree T

consisting of finite normalised block sequences of (yn)∞n=1 with the following

property:
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(a) if (z1, . . . , zm) ∈ T and Z is a block subspace of [yn]∞n=1, then there

is z ∈ Z such that (z1, . . . , zm, z) ∈ T , and

(b) if (z1, z2, z3, . . .) is an infinite branch of T , then (z2n−1)∞n=1 6∼ (z2n)∞n=1.

However, it is not clear what can be concluded from the existence of such a

tree T and one would like to draw stronger or more informative consequences

from this.

Problem 1.4. Formulate and prove a dichotomy that characterises the Ba-

nach spaces containing a unconditional basis sequence with the shift prop-

erty.

2. Subspaces of spaces with an F.D.D.

We fix in the following Banach spaces E ⊆ F and an F.D.D. (Fi)
∞
i=1 of

F . For each interval I ⊆ N, we let I(x) denote the canonical projection of

x ∈ F onto the subspace
∑

i∈I Fi and shall also sometimes write [
∑

i∈I Fi](x)

for I(x) if there is any chance of confusion. So, if K denotes the constant

of the decomposition (Fi)
∞
i=1, then ‖I‖ 6 2K for any interval I ⊆ N.

Fixing notation, if A is a set, we let A∞ denote the set of all infinite

sequences (ai)
∞
i=1 of elements of A and let A<∞ denote the set of all finite

sequences (a1, . . . , an) of elements of A, including the empty sequence ∅. A

tree on A is a subset T ⊆ A<∞ closed under initial segments, i.e., such that

(a1, . . . , an) ∈ T implies that (a1, . . . , am) ∈ T for all m 6 n. When T is a

tree on A, we let [T ] denote the set of all infinite branches of T , i.e., the set

of all sequences (ai)
∞
i=1 such that (a1, . . . , an) ∈ T for all n.

To simplify notation, if ∆ = (δi)
∞
i=1 is a decreasing sequence of real

numbers δi > 0 tending to 0, we will denote this simply by ∆↘ 0. Similarly,

if M = (mi)
∞
i=1 is a strictly increasing sequence of natural numbers, we shall

denote this by M ↗∞.

If B ⊆ S∞E is a set of normalised sequences in E, we let

B∆ =
{

(xi)
∞
i=1 ∈ S∞E

∣∣ ∃(yi)
∞
i=1 ∈ B ∀i ‖xi − yi‖ < δi

}
and

Int∆(B) =
{

(xi)
∞
i=1 ∈ S∞E

∣∣ ∀(yi)
∞
i=1 ∈ S∞E

(
∀i ‖xi−yi‖ < δi → (yi)

∞
i=1 ∈ B

)}
,

and note that Int∆(B) = ∼ (∼ B)∆, where the complement is taken with

respect to S∞E .

Definition 2.1. Given ∆↘ 0, a normalised sequence (xi)
∞
i=1 ∈ S∞E is said

to be a ∆-block sequence if there are non-empty intervals Ii ⊆ N such that

I1 < I2 < I3 < . . .
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and for every i,

‖Ii(xi)− xi‖ < δi.

Moreover, if M ↗ ∞, we say that (xi)
∞
i=1 is M-separated if the witnesses

Ii ⊆ N can be chosen such that

m1 < I1 & ∀i ∃j Ii < mj < mj+1 < Ii+1.

We let bbE,∆(Fi) denote the set of ∆-block sequences in E and let

bbE,∆,M(Fi) denote the set of M -separated ∆-block sequences in E.

We notice that if K is the constant of the decomposition (Fi)
∞
i=1 and

(xi)
∞
i=1 and (yi)

∞
i=1 are normalised sequences such that ‖xi − yi‖ < δi for

all i, then if (xi)
∞
i=1 is a ∆-block sequence, (yi)

∞
i=1 is a 4K∆-block sequence

(with the same sequence of witnesses I1 < I2 < . . .).

Also, since ∆ ↘ 0 is a decreasing sequence, the sets bbE,∆(Fi) and

bbE,∆,M(Fi) are closed under taking subsequences, that is, if (xi)
∞
i=1 ∈

bbE,∆,M(Fi), as witnessed by a sequence (Ii)
∞
i=1, and A ⊆ N, then (Ii)i∈A

witnesses that (xi)i∈A ∈ bbE,∆,M(Fi). Lemma 2.3 below essentially improves

this to closure under taking normalised block sequences.

Lemma 2.2. Suppose E is a subspace of a space F with an F.D.D. (Fi)
∞
i=1.

Let B ⊆ S∞E be a set of sequences invariant under equivalence. Then there

is a ∆↘ 0 such that

B∆ ∩ bbE,∆(Fi) ⊆ Int∆(B).

Proof. Pick a ∆↘ 0 depending on the constant of the decomposition (Fi)
∞
i=1

such that if (yi)
∞
i=1 is a normalised block sequence in F and (vi)

∞
i=1 is a

sequence in F satisfying ‖vi − yi‖ < 5δi for all i, then (vi)
∞
i=1 ∼ (yi)

∞
i=1.

Assume also that δi <
1
2

for every i.

Now, suppose (xi)
∞
i=1 ∈ B∆ ∩ bbE,∆(Fi) and let (ui)

∞
i=1 be a normalised

sequence in E such that ‖xi−ui‖ < δi for all i. We must show that (ui)
∞
i=1 ∈

B, which will imply that (xi)
∞
i=1 ∈ Int∆(B).

By assumption on (xi)
∞
i=1, we can find (zi)

∞
i=1 ∈ B and intervals I1 <

I1 < . . . such that ‖xi − zi‖ < δi and ‖Ii(xi) − xi‖ < δi for all i. Letting

yi = Ii(xi)
‖Ii(xi)‖ , we see that (yi)

∞
i=1 is a normalised block sequence in F and a

simple calculation using δi <
1
2

gives ‖xi− yi‖ < 4δi, whence ‖ui− yi‖ < 5δi

and ‖zi − yi‖ < 5δi. It follows that (ui)
∞
i=1 ∼ (yi)

∞
i=1 ∼ (zi)

∞
i=1 ∈ B and so

also (ui)
∞
i=1 ∈ B. �

Lemma 2.3. Suppose E is a subspace of a space F with an F.D.D. (Fi)
∞
i=1

and Θ = (θ)∞i=1 ↘ 0. Then there is Γ = (γ)∞i=1 ↘ 0 such that for any M ↗ 0

and (xi)
∞
i=1 ∈ bbE,Γ,M(Fi),
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(1) (xi)
∞
i=1 is a normalised basic sequence, and

(2) any normalised block sequence (zi)
∞
i=1 of (xi)

∞
i=1 belongs to bbE,Θ,M(Fi).

Proof. Let K be the constant of the decomposition (Fi)
∞
i=1. As in the proof

of Lemma 2.2, there is some Λ = (λ)∞i=1 ↘ 0 such that if (xi)
∞
i=1 ∈ bbE,Λ(Fi),

as witnessed by a sequence of intervals (Ii)
∞
i=1, then

(xi)
∞
i=1 ∼2

( Iixi

‖Iixi‖

)∞
i=1
.

Let now Γ ↘ 0 be chosen such that 12K2
∑∞

i=m γi < θm and γm < λm for

all m.

Now suppose (xi)
∞
i=1 ∈ bbE,Γ,M(Fi) for some M ↗ ∞, as witnessed by

a sequence of intervals (Ii)
∞
i=1. Then (xi)

∞
i=1 ∈ bbE,Λ(Fi) and hence is 2-

equivalent to the normalised block basis
(

Iixi

‖Iixi‖

)∞
i=1

, whence (xi)
∞
i=1 is itself

a basic sequence.

Suppose also that z =
∑m

i=n aixi is a block vector. We claim that if we

let J = [min In,max Im], then

‖Jz − z‖ < θn‖z‖,

which is enough to obtain condition (2). To see this, notice first that for

i = n, . . .m,

‖Jxi − xi‖ =
∥∥[1,min In − 1](xi) + [max Im + 1,∞[(xi)

∥∥
=
∥∥[1,min In − 1](xi − Iixi) + [max Im + 1,∞[(xi − Iixi)

∥∥
6
∥∥[1,min In − 1](xi − Iixi)

∥∥+
∥∥[max Im + 1,∞[(xi − Iixi)

∥∥
6K‖xi − Iixi‖+ 2K‖xi − Iixi‖

<3Kγi.

Since
∥∥PIi

∥∥ 6 2K and (xi)
∞
i=1 is 2-equivalent to

(
Iixi

‖Iixi‖

)∞
i=1

, we have

sup
n6i6m

|ai| = sup
n6i6m

∥∥ai
Iixi

‖Iixi‖
∥∥ 6 2K

∥∥ m∑
i=n

ai
Iixi

‖Iixi‖
∥∥ 6 4K

∥∥ m∑
i=n

aixi

∥∥,
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and therefore∥∥J(
m∑

i=n

aixi)− (
m∑

i=n

aixi)
∥∥ =

∥∥ m∑
i=n

ai(Jxi − xi)
∥∥

6
m∑

i=n

|ai| ‖Jxi − xi‖

< sup
n6i6m

|ai| ·
m∑

i=n

3Kγi

612K2
∥∥ m∑

i=n

aixi

∥∥ m∑
i=n

γi

6θn‖
m∑

i=n

aixi‖,

which shows that ‖Jz − z‖ < θn‖z‖. �

Definition 2.4. Given ∆↘ 0, a ∆-block tree T is a non-empty tree on SE

such that for all (x1, . . . , xn) ∈ T the set

{y ∈ SE

∣∣ (x1, . . . , xn, y) ∈ T}

can be written as {yi}∞i=0, where for each i there is an interval Ii ⊆ N
satisfying

• ‖Iiyi − yi‖ < δn+1,

• min Ii−→
i→∞
∞.

Now, an easy inductive construction shows that any ∆-block tree T

contains a subtree T ′ ⊆ T such that any infinite branch in T ′ is a ∆-block

sequence, i.e., [T ′] ⊆ bbE,∆(Fi). So, without loss of generality, we can always

assume that any ∆-block tree satisfies this additional hypothesis.

We recall the following result from [10], which is proved using infinite-

dimensional Ramsey theory. A similar statement for closed sets was proved

earlier by Odell and Schlumprecht in [8].

Theorem 2.5. Let B ⊆ S∞E be a coanalytic set. Then the following are

equivalent.

(1) ∃∆↘ 0 ∃M ↗∞ bbE,∆,M(Fi) ⊆ Int∆(B),

(2) ∃∆↘ 0 such that any ∆-block tree has a branch in Int∆(B).

Definition 2.6. A weakly null tree is a tree T on SE such that, for any

(x1, . . . , xn) ∈ T , the set

{y ∈ SE

∣∣ (x1, . . . , xn, y) ∈ T}

can be written as {yi}∞i=1 for some weakly null sequence (yi)
∞
i=1.
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We recall also a statement from [10] that sums up some of the elements

of the construction of Odell and Schluprecht from [8] that we shall use in

the following.

Proposition 2.7. Let E be a separable reflexive Banach space. Then there

is a reflexive Banach space F ⊇ E having an F.D.D. (Fi)
∞
i=1 and a constant

c > 1 such that whenever ∆↘ 0 and T is a ∆-block tree in SE with respect

to (Fi)
∞
i=1, there is a weakly null tree S in SE such that

[S] ⊆ [T ]∆c & [T ] ⊆ [S]∆c.

We can now assemble the above results into the following general lemma.

Main Lemma 2.8. Suppose E is a separable reflexive Banach space and

B ⊆ S∞E is a coanalytic set, invariant under equivalence, such that any

weakly null tree on SE has a branch in B. Then there are Γ ↘ 0, M ↗ ∞
and a reflexive space F ⊇ E with an F.D.D. (Fi)

∞
i=1 such that any element

of bbE,Γ,M(Fi) is a basic sequence all of whose normalised block sequences

belong to B.

Proof. Pick first, by Proposition 2.7, a space F containing E with a shrink-

ing F.D.D. (Fi)
∞
i=1 and a constant c > 1 such that, for any ∆ ↘ 0 and

∆-block tree T in E, there is a weakly null tree S in E with

(2.1) [S] ⊆ [T ]∆c & [T ] ⊆ [S]∆c.

Choose also, by Lemma 2.2, some ∆↘ 0 such that

B∆c ∩ bbE,∆c(Fi) ⊆ Int∆c(B).

We claim that any ∆-block tree has a branch in Int∆(B). To see this,

suppose T is a ∆-block tree and assume without loss of generality that

[T ] ⊆ bbE,∆(Fi) ⊆ bbE,∆c(Fi). Pick also a weakly null tree S satisfying

(2.1). Then, as [S] ∩ B 6= ∅, also

∅ 6= [T ] ∩ B∆c ⊆ [T ] ∩ bbE,∆c(Fi) ∩ B∆c ⊆ [T ] ∩ Int∆c(B) ⊆ [T ] ∩ Int∆(B),

showing that T has a branch in Int∆(B).

Applying Theorem 2.5, we find some Θ ↘ 0 and M ↗ ∞ such that

bbE,Θ,M(Fi) ⊆ IntΘ(B) ⊆ B and, applying Lemma 2.3, the statement fol-

lows. �

3. Killing the overlap

We are now ready for the proof of our main result, which is an application

of Lemma 2.8 and a delicate renormalisation procedure designated by killing
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the overlap that proceeds exactly by eliminating the overlap between two

distinct overlapping blockings of the F.D.D. (Fi)
∞
i=1.

The next proposition is Corollary 4.4 in [8], except that condition (5) is

not listed in the statement of the corollary. However, it can easily be gotten

from the proof, provided that one chooses, in the notation of the paper,

εi < δi.

Proposition 3.1. Suppose F is a reflexive space with an F.D.D. (Hi)
∞
i=1,

E ⊆ F is a subspace and Σ = (σi)
∞
i=1 ↘ 0. Then there are integers 0 =

a0 < a1 < . . . such that for all x ∈ SE there are a sequence (xi)
∞
i=1 in E, a

subset D ⊆ N and numbers ai−1 < bi 6 ai, b0 = 0, satisfying the following

five conditions.

(1) x =
∑∞

i=1 xi,

(2) ∀i /∈ D ‖xi‖ < σi,

(3) ∀i ∈ D
∥∥[Hbi−1+1 ⊕ . . .⊕Hbi−1]xi − xi

∥∥ < σi‖xi‖,
(4) ∀i

∥∥[Hbi−1+1 ⊕ . . .⊕Hbi−1]x− xi

∥∥ < σi,

(5) ∀i ‖Hbi
x‖ < σi.

Combining Lemma 2.8 and Proposition 3.1, we are now in a position to

prove our main result, Theorem 1.3.

Theorem 3.2. Suppose that E is a separable reflexive Banach space such

that any weakly null tree in E has a branch (xi)
∞
i=1 satisfying (x2i−1)∞i=1 ∼

(x2i)
∞
i=1. Then E embeds into a reflexive space with an unconditional Schauder

basis having the shift property.

Proof. Applying Lemma 2.8 to the set

B =
{

(xi)
∞
i=1 ∈ S∞E

∣∣ (x2i−1)∞i=1 ∼ (x2i)
∞
i=1

}
,

we find Γ ↘ 0, M ↗ ∞ and a reflexive space F ⊇ E with an F.D.D.

(Fi)
∞
i=1 such that any element of bbE,Γ,M(Fi) is a basic sequence all of whose

normalised block sequences (yi)
∞
i=1 satisfy (y2i−1)∞i=1 ∼ (y2i)

∞
i=1.

We claim that there is a constant C > 1 such that (y2i−1)∞i=1 ∼C (y2i)
∞
i=1

for any such normalised block basis (yi)
∞
i=1. For if not, then, by concate-

nating finite bits of sequences, we would be able to produce some (ui)
∞
i=1 ∈

bbE,Γ,M(Fi) and a normalised block sequence (yi)
∞
i=1 of (ui)

∞
i=1 failing (y2i−1)∞i=1 ∼

(y2i)
∞
i=1, which is impossible.

Since it suffices to prove the conclusion of the theorem for a cofinite-

dimensional subspace of E, by considering the cofinite-dimensional sub-

spaces Fm1+1⊕Fm1+2⊕Fm1+3⊕ . . . and E ∩
(
Fm1+1⊕Fm1+2⊕Fm1+3⊕ . . .

)
of respectively F and E, we can, without loss of generality, assume that
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m1 = 0 and thus not worry about the initial offset by m1 in the definition

of M -separation (cf. Definition 2.1).

Pick (ui)
∞
i=1 ∈ bbE,Γ,M(Fi). Then, for any choice of signs εi ∈ {−1, 1},

also (εiui)
∞
i=1 ∈ bbE,Γ,M(Fi) and hence (ε2i−1u2i−1)∞i=1 ∼ (ε2iu2i)

∞
i=1. It follows

that (u2i−1)∞i=1 is a basic sequence, equivalent to (ε2iu2i)
∞
i=1 for any choice of

signs εi ∈ {−1, 1}, and thus must be unconditional.

Now [u2i−1]∞i=1 can be equivalently renormed so that (u2i−1)∞i=1 is 1-

unconditional and, by a result of A. Pe lczyński [9], this renorming extends

to an equivalent renorming of F . So, without loss of generality, we shall

assume that (u2i−1)∞i=1 is 1-unconditional and has the shift property with

some constant C. Moreover, as E is reflexive, it follows by a theorem of

R. C. James (Theorem 3.2.13 in [1]) that (u2i−1)∞i=1 is both shrinking and

boundedly complete.

We let vi = u2i+1, whence (vi)
∞
i=1 is the subsequence of (u2i−1)∞i=1 omitting

the first term. Choose also σi < γ2i−1 such that
∑∞

i=1 σi <
1

24KC2 , , where

K denotes the constant of the decomposition (Fi)
∞
i=1.

Since (ui)
∞
i=1 is an M -separated Γ-block sequence, N can be partitioned

into successive finite intervals

L1 < I1 < R1 < L2 < I2 < R2 < L3 < I3 < R3 < . . .

such that

(a) ‖Ii(vi)− vi‖ < γ2i+1,

(b) for every i > 1 there is a j such that [mj,mj+1] ⊆ Li

(c) and for every i there is a j such that [mj,mj+1] ⊆ Ri.

Moreover, for

Hi =
∑

j∈Li∪Ii∪Ri

Fj,

let (ai)
∞
i=0 be given as in Proposition 3.1 and set

Ai = Hai−1+1 ⊕ . . .⊕Hai
.

We define a new norm ||| · ||| on span(
⋃∞

i=1 Ai) by setting

|||y||| =
∥∥∥ ∞∑

i=1

‖Aiy‖vai

∥∥∥.
Since (vi)

∞
i=1 is 1-unconditional and the scalar ‖Aiy‖ is real, ||| · ||| is indeed a

norm and we can therefore consider the completion V = span|||·|||
(⋃∞

i=1Ai

)
.

Moreover, we claim that the mapping

T : x ∈ E 7→
∞∑
i=1

Aix ∈ V
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is a well-defined isomorphic embedding of E into V .

To see this, suppose x ∈ SE is fixed and let (xi)
∞
i=1, (bi)

∞
i=0 and D ⊆ N

be given as in Proposition 3.1. Let also

Bi = Hbi−1+1 ⊕ . . .⊕Hbi−1.

Then the decomposition F = F1 ⊕ F2 ⊕ F3 ⊕ . . . blocks as

F =A1 ⊕ A2 ⊕ A3 ⊕ . . .

=B1 ⊕Hb1 ⊕B2 ⊕Hb2 ⊕B3 ⊕Hb3 ⊕ . . . ,
where, moreover,

Ai ⊆ Bi ⊕Hbi
⊕Bi+1

and, letting A0 be the trivial space {0},

Bi ⊆ Ai−1 ⊕ Ai.

It follows that with respect to the ordering of the original decomposition

(Fi)
∞
i=1, we have

(3.1) B1 < Lb1 < Ib1 < Rb1 < B2 < Lb2 < Ib2 < Rb2 < B3 < . . . .

Now, by condition (4) of Proposition 3.1,∣∣‖Bix‖ − ‖xi‖
∣∣ 6 ‖Bix− xi‖ < σi,

and so, using condition (5) of Proposition 3.1, we have

‖Aix‖ 62K
∥∥[Bi ⊕Hbi

⊕Bi+1]x
∥∥

62K
(
‖Bix‖+ ‖Hbi

x‖+ ‖Bi+1x‖
)

<2K
(
‖xi‖+ ‖xi+1‖+ 3σi

)
.

Note also that

‖xi‖ 6 ‖Bix‖+ σi 6 2K‖Ai−1x‖+ 2K‖Aix‖+ σi,

and, by condition (3) of Proposition 3.1, for any i ∈ D, we have∥∥Bixi − xi

∥∥ < σi‖xi‖ < γ2i−1‖xi‖.

List now D increasingly as D = {d1, d2, d3, . . .} and note that, as 2i <

2bdi
+ 1,

‖Ibdi
(vbdi

)− vbdi
‖ < γ2bdi

+1 6 γ2i.

Therefore, by the ordering (2) above, we see that( xd1

‖xd1‖
, vbd1

,
xd2

‖xd2‖
, vbd2

,
xd3

‖xd3‖
, vbd3

,
xd4

‖xd4‖
, . . .

)
is an M -separated Γ-block sequence, as witnessed by the sequence of interval

projections

Bd1 , Ibd1
, Bd2 , Ibd2

, B3, Ibd3
, B4, . . . ,
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and hence
(

xi

‖xi‖

)
i∈D
∼C

(
vbi

)
i∈D

. Furthermore, as (vi)
∞
i=1 has the shift prop-

erty with constant C and b1 6 a1 < b2 6 a2 < . . ., we have

(3.2) (vbi+1
)∞i=1 ∼C (vbi

)∞i=1 ∼C (vai
)∞i=1 ∼C (vai+1

)∞i=1

and therefore
(

xi

‖xi‖

)
i∈D
∼C2

(
vai

)
i∈D

. Since now
∑∞

i=1 xi converges and∑
i/∈D‖xi‖ <

∑
i/∈D σi <∞, it follows that also

∑∞
i=1‖xi‖vai

and
∑∞

i=1‖xi+1‖vai

converge. Since ‖Aix‖ 6 2K
(
‖xi‖ + ‖xi+1‖ + 3σi

)
and (vi)

∞
i=1 is uncondi-

tional, we finally see that the sum
∑∞

i=1‖Aix‖vai
converges and hence that

Tx =
∑∞

i=1Aix ∈ V is well-defined.

By the same mode of reasoning, one verifies the following sequence of

inequalities.

‖x‖ =
∥∥ ∞∑

i=1

xi

∥∥
6
∥∥∥∑

i∈D

‖xi‖
xi

‖xi‖

∥∥∥+
∥∥∑

i/∈D

xi

∥∥
6C
∥∥∥∑

i∈D

‖xi‖vbi

∥∥∥+
∑
i/∈D

‖xi‖

6C2
∥∥∥ ∞∑

i=1

‖xi‖vai

∥∥∥+
∑
i/∈D

σi

6C2
∥∥∥ ∞∑

i=1

(
2K‖Ai−1x‖+ 2K‖Aix‖+ σi

)
vai

∥∥∥+
1

4

62KC2
∥∥ ∞∑

i=1

‖Ai−1x‖vai

∥∥+ 2KC2
∥∥ ∞∑

i=1

‖Aix‖vai

∥∥+ C2

∞∑
i=1

σi +
1

4

62KC2(C + 1)
∥∥ ∞∑

i=1

‖Aix‖vai

∥∥+
1

2

64KC3|||Tx|||+ 1

2
.

Thus, as ‖x‖ − 1
2

= 1
2
‖x‖, we have ‖x‖ 6 8KC3|||Tx|||. A similar argument

shows that |||Tx||| 6 5KC3‖x‖, whereby T is an isomorphic embedding of E

into V .

We shall now show how to embed V into a space with a basis having the

shift property, which will finish the proof of the theorem. First, to simplify

notation, we let wi = vai
. Fix also ki > 1 such that Ai embeds with constant

2 into Zi = `ki
∞. Then V clearly embeds with constant 2 into Z =

∑∞
i=1 Zi

equipped with the norm

|||y|||′ =
∥∥∥ ∞∑

i=1

‖Ziy‖wi

∥∥∥.
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Moreover, since (wi)
∞
i=1 = (vai

)∞i=1 is both shrinking and boundedly com-

plete, Z is reflexive. To conclude the proof of the theorem, it thus suffices

to apply the following lemma. �

Lemma 3.3. Suppose that (wi)
∞
i=1 is a 1-unconditional basis with the shift

property and Zi = `ki
∞ for every i. Then Z =

∑∞
i=1 Zi equipped with the

norm

|||y|||′ =
∥∥∥ ∞∑

i=1

‖Ziy‖wi

∥∥∥
admits an unconditional basis with the shift property.

Proof. For each i, we let (ei
1, e

i
2, . . . , e

i
ki

) be the standard unit vector basis

for `ki
∞. Then

(fi)
∞
i=1 = (e1

1, e
1
2, . . . , e

1
k1
, e2

1, e
2
2, . . . , e

2
k2
, . . .)

is a 1-unconditional basis for Z, which we claim has the shift property. To

see this, suppose (yi)
∞
i=1 is a normalised block sequence of (fi)

∞
i=1 and set

ri = min supp yi. We need to show that (yi)
∞
i=1 ∼ (fri

)∞i=1.

For this, we let

i ∈ A⇔ ∃j yi ∈ Zj

and note that for all j there are at most two distinct i /∈ A such that

Zjyi 6= 0. We can therefore split ∼ A into two sets B and D such that

for all j there is at most one i from each of B and D such that Zjyi 6= 0.

By unconditionality of (fi)
∞
i=1, to see that (yi)

∞
i=1 ∼ (fri

)∞i=1, it is enough to

show that (yi)i∈A ∼ (fri
)i∈A, (yi)i∈B ∼ (fri

)i∈B and (yi)i∈D ∼ (fri
)i∈D. Since

the cases B and D are similar, let us just do A and B.

For each i ∈ B, let ni and mi be respectively the minimal and maximal j

such that Zjyi 6= 0, whence yi = Zni
yi + . . .+Zmi

yi and ni < mi < nj < mj

for i < j in B. In particular, this means that if

zi =

mi∑
j=ni

‖Zjyi‖wj,

then (zi)i∈B is a block sequence of (wi)
∞
i=1 and

‖zi‖ =
∥∥ mi∑

j=ni

‖Zjyi‖wj

∥∥ = |||yi|||′ = 1.
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As (wi)
∞
i=1 has the shift property, this means that (zi)i∈B ∼ (wni

)i∈B ∼
(fri

)i∈B. On the other hand, if (λi)
∞
i=1 ∈ c00, then∣∣∣∣∣∣∑

i∈B

λiyi

∣∣∣∣∣∣′ =∥∥∥∑
i∈B

mi∑
j=ni

‖Zjλiyi‖wj

∥∥∥
=
∥∥∥∑

i∈B

|λi|
mi∑

j=ni

‖Zjyi‖wj

∥∥∥
=
∥∥∥∑

i∈B

|λi|zi

∥∥∥.
Since (zi)i∈B is unconditional, it follows that (yi)i∈B ∼ (zi)i∈B ∼ (fri

)i∈B.

We now partition A into finite sets aj by setting

i ∈ aj ⇔ yi ∈ Zj.

Then for all (λi)
∞
i=1 ∈ c00∣∣∣∣∣∣∑

i∈A

λiyi

∣∣∣∣∣∣′ =∥∥∥ ∞∑
j=1

∥∥∑
i∈aj

λiyi

∥∥wj

∥∥∥
=
∥∥∥ ∞∑

j=1

(
sup
i∈aj

|λi|
)
wj

∥∥∥
=
∥∥∥ ∞∑

j=1

∥∥∑
i∈aj

λifri

∥∥wj

∥∥∥
=
∣∣∣∣∣∣∑

i∈A

λifri

∣∣∣∣∣∣′.
So (yi)i∈A ∼ (fri

)i∈A, which finishes the proof. �
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