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Three Notions of Classification
Consider your favorite class of mathematical struc-

tures, be it groups, modules, measure-preserving

transformations, C∗-algebras, Lie groups, smooth

manifolds, or something completely different.

With some probability, the classification prob-

lem for these objects, that is, the problem of

determining the structures up to some relevant

notion of isomorphism, is, or has been, one of

the central problems of the corresponding field of

study.

Of course, inasmuch as mathematical theories

stem from attempts to model or organize physical

or other phenomena, the classification problem

might not be the primordial challenge. But once the

basic theorems of a theory have been worked out,

there is often an internal motivation to categorize

its different models.

For example, the definition of a Banach space

as a complete normed vector space is motivated

by the study of function spaces as the poten-

tial solution sets to various differential equations

modeling physical phenomena. But, as is known

to all of us, the common aspects of the individ-

ual problems often simplify through abstraction,

whence the concept of an abstract Banach space.

And therefore having an isomorphic classification

of Banach spaces would certainly be helpful when

dealing with more concrete problems involving

these spaces.
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Without doubt, one the most gratifying exam-
ples of classification is that of finite simple groups.

In this case, we have a catalogue or explicit listing

of all isomorphism types of finite simple groups,
something we certainly cannot hope for in all

other classes of mathematical objects. So with

finite simple groups as our paragon, an optimal
classification of some class A of mathematical

structures up to a corresponding notion of iso-
morphism would seem to be an explicit listing

of all isomorphism types of A-structures, plus

perhaps some reasonable algorithm or proce-
dure for deciding the isomorphism type of each

A-structure.

In order to better understand what we mean
by an isomorphic classification, we must first

make the distinction between the isomorphism

types and the concrete instances or realizations of
these. It is the latter that we wish to classify. For

example, by a classification of finitely generated
groups, we understand some abstract procedure

that given two presentations of finitely generated

groups decides whether these are presentations
of the same group up to isomorphism, i.e., if

they are instances of the same isomorphism type.

From our perspective, the isomorphism types
themselves are abstract platonic objects that can

be grasped and concretely manipulated only in

special instances, namely, when the isomorphism
relation is “smooth” and thus the types correspond

to points in a sufficiently nice topological space
(we shall come back to this later).

With this in mind, we can, with some amount of

simplification, distinguish at least three notions
of classification:

– An explicit listing of all isomorphism types

of elements of A.
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– A classification of the objects of A via an
assignment of complete invariants.

– A determination of the “irreducible” or
“prime” A-objects.

Assigning to every object X ∈ A a complete
invariant from another class of mathematical ob-
jects B would ideally mean a function φ : A → B
such that two A-objects X and Y are isomorphic
if and only if φ(X) = φ(Y). However, this holds
only if we consider the B-objects as isomorphism
types. Thus, to avoid presupposing that we already
understand the isomorphism types of B-objects,
we see that the right formulation is rather that
φ : A→ B should be isomorphism invariant, i.e.,

X ≅ Y ⇒ φ(X) ≅ φ(Y),

and complete, i.e.,

φ(X) ≅ φ(Y) ⇒ X ≅ Y.

Prominent examples of classification by com-
plete invariants include the Elliot classification
of approximately finite-dimensional C∗-algebras
via their dimension groups and the Ornstein
classification of Bernoulli shifts by their entropy.

The third type of classification sometimes can
lead to complete classification results, provided
that any A-object can be uniquely represented
in terms of its irreducible or prime components.
But, oftentimes, one can hope only to isolate the
irreducible parts without an actual reconstruction
of the full object from these. We shall return to
this later in the article in connection with Banach
spaces.

Parametrizations and Standard Borel
Spaces
When parametrizing a class of mathematical ob-
jects, we choose a particular method of presenting
these and then regard the totality of such presen-
tations. For example, the finitely generated groups
can be parametrized by infinite tuples

G =〈a1, a2, . . . , an
∣∣ w1 = 1, w2 = 1, . . .〉,

wherea1, . . . , an is a distinguishedsetofgenerators
and wi = wi(a1, . . . , an) are group words in these
generators listed in some canonical way. An only
slightly different way of presenting such G would
be as quotients of the free groupF∞ on the alphabet
a1, a2, . . . by normal subgroups N ⊴ F∞ such that
an ∈ N for all but finitely many n. So, the set G
of these special normal subgroups of F∞ can be
seen as a parametrization of the class of finitely
generated groups. The space G is called the space
of finitely generated groups and has some very
interesting properties making it a particularly
well-behaved model. In particular, if Autf (F∞)
denotes the group of automorphisms φ of F∞
such that φ(an) = an for all but finitely many
n, then Autf (F∞) is countable. Also, if N,M ∈
G, then the two groups F∞/N and F∞/M are

isomorphic if and only if for some φ ∈ Autf (F∞)
we haveφ[N] =M . In other words, the relation of
isomorphism between quotient groups F∞/N for
N ∈ G is induced by the countable group Autf (F∞)
acting on G (C. Champetier (2000)).

A convenient framework for dealing with clas-
sification problems is that of Polish and standard
Borel spaces.

Definition 1. A topological space (X, τ) is said to
be Polish if it is separable and its topology can be
given by a complete metric on X .

A measurable space (X,B), i.e., a set X
equipped with a σ -algebra of subsets B, is
said to be standard Borel if there is a Polish
topology τ on X with respect to which B is the
class of Borel sets.

In the latter case, the sets in B are called the
Borel sets of X .

For example, the space G of finitely generated
groups can be made into a standard Borel space
by equipping it with the σ -algebra generated by
sets of the form

{N ∈ G
∣∣ g ∈ N},

where g varies over elements of F∞.
Another example, which will figure prominently

here, is that of separable Banach spaces. By
the Banach–Mazur theorem, any separable Ba-
nach space embeds linearly isometrically into the
space C([0,1]) of continuous functions on [0,1].
Thus one way of parametrizing separable Banach
spaces is as the set SB of closed linear subspaces
of C([0,1]). Of course, there are other equally
natural parametrizations, for example, any sep-
arable Banach space X is linearly isometric to a
quotient of ℓ1 by a closed linear subspace Y ⊆ ℓ1,
and hence we can use the set SB(ℓ1) of closed
linear subspaces Y of ℓ1 as another parametriza-
tion. In order to make these sets into standard
Borel spaces, we equip them with the Effros Borel
structure, which is the σ -algebra generated by the
sets of the form

{X ∈ SB
∣∣ X ∩U ≠∅},

respectively

{X ∈ SB(ℓ1)
∣∣ X ∩U ≠∅},

where U runs over the open subsets of C([0,1]),
respectively of ℓ1. However, it is a fact that
these two models are equivalent in the follow-
ing precise sense: There is a Borel isomorphism
φ : SB → SB(ℓ1), i.e., an isomorphism of mea-
surable spaces, such that any X ∈ SB is linearly
isometric to ℓ1/φ(X). This is just one instance
of the empirical fact that different, but natural,
parametrizations of the same class of mathe-
matical objects are equivalent. So it is not too
important which specific parametrization one is
working with, though, of course, certain compu-
tations might be more easily performed in one
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Figure 1. Projections.

model than in another. Therefore, we can think of

G and SB as the standard Borel spaces of finitely

generated groups, respectively separable Banach

spaces, even though G and SB themselves are of

a very different nature from groups or Banach

spaces.

There are admittedly limitations to the classes

of mathematical objects that admit standard

Borel parametrizations. For, as the underlying

Polish topology of a standard Borel space is

Hausdorff and admits a countable basis for its

topology, any standard Borel space has cardinality

at most 2ℵ0 . In fact, by a result of K. Kura-

towski, all uncountable standard Borel spaces

are isomorphic to R equipped with its alge-

bra of Borel sets. So we cannot model classes

having too many objects. The ones that do ad-

mit standard Borel parametrizations are mostly

either classes of countable algebraic and com-

binatorial objects (groups, rings, graphs, . . . )
or separable topological and analytical objects

(algebraic subvarieties of Cn, compact smooth

manifolds, measure-preserving transformations,

complete separable metric spaces, . . . ).
Once we have constructed our standard Borel

space (X,B), we can go on to the isomorphism

relation itself. For example, in the case of G, we

see that the relevant notion of isomorphism is

not that of isomorphism ≅ between N,M ∈ G, but

rather isomorphism between the quotients F∞/N
and F∞/M . So let

NEM ⇔ F∞/N ≅ F∞/M.

Then E is an equivalence relation on G induced

by an action of the countable group Autf (F∞)
and hence has countable classes. Moreover, E

is a Borel subset of the standard Borel space

G × G. However, in general, the corresponding

isomorphism relation might not be Borel, though

most often it is analytic.

Definition 2. Let (Y,B) be a standard Borel space.

A subset A ⊆ Y is said to be analytic if there is a

standard Borel space (Z,C) and a Borel subset B

of (Y ×Z,B⊗ C) such that

y ∈ A ⇔ ∃z ∈ Z (y, z) ∈ B.

In other words, a set is analytic if it is the
projection of a Borel set (see Figure 1).

A very useful way of thinking of Borel and ana-
lytic sets, which is now known as the Kuratowski–
Tarski algorithm, is in terms of the quantifier
complexity of their definitions. Thus Borel sets are
those that can be inductively defined from open
sets in the underlying Polish topology by using
only quantifiers over countable sets, while analytic
sets are those that can be defined using quantifiers
over countable sets and a single positive instance
of an existential quantifier over a standard Borel
space.

As an example, recall that two Banach spaces
X and Y are said to be isomorphic if there is
a bounded, bijective, linear operator T : X → Y
(whereby T is a linear homeomorphism). Let F

denote the relation of isomorphism between ele-
ments of SB. We can construct a standard Borel
space Z of isomorphisms T : X → Y between
closed linear subspaces of C([0,1]) such that the
set

B ={(T , X, Y) ∈ Z× SB× SB
∣∣

T is an isomorphism between X and Y}

is Borel. So as

XFY ⇔ ∃T ∈ Z (T , X, Y) ∈ B,

we see that F is analytic as a subset of SB× SB.
While it is easy to see that any Borel set is

analytic, not every analytic set is Borel. For exam-
ple, the relation F above is not Borel (B. Bossard
(1993)).

We now have the necessary framework to for-
mulate the abstract concept of classification by
complete invariants.

Definition 3. Let E and F be analytic equivalence
relations on standard Borel spaces X and Y, re-
spectively. We say that E is Borel reducible to F,
in symbols E àB F, if there is a Borel measurable
function φ : X → Y such that for all x, x′ ∈ X ,

xEx′ ⇔ φ(x)Fφ(x′).

When

E àB F àB E,

E and F are said to be Borel bireducible, E ∼B F, and
when

F 6àB E àB F,

we write E <B F.

The partial preorder àB of Borel reducibility
between analytic equivalence relations should be
understood as a relative measure of complexity,
so that if E àB F, E is simpler than F.

In particular, a Borel reductionφ of the relation
E of isomorphism defined on G to the relation
F of isomorphism on SB can be seen as a Borel
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assignment of separable Banach spaces to finitely

generated groups as complete isomorphism in-

variants. While, as we shall see, there is such a

reduction, there is no reduction the other way,

i.e., E <B F. So in terms of complexity, the isomor-

phism relation between separable Banach spaces

is strictly more complex than that of isomorphism

between finitely generated groups. And there is

no way of using the latter as complete invariants

(at least in a Borel manner) for isomorphism of

separable Banach spaces.

The requirement that the reduction be Borel

corresponds to a requirement that the assignment

of invariants be somehow explicit. In particular,

one sees that there are both 2ℵ0 finitely generated

groups and 2ℵ0 separable Banach spaces up to

isomorphism, so, by simple cardinality considera-

tions, one easily gets non-Borel reductions in both

directions. However, as assignments of invariants

these are of little practical use, and indeed only

one of the reductions can be made Borel.

Analytic Equivalence Relations
The notion of Borel reducibility was introduced in-

dependently by H. Friedman–L. Stanley (1989) and

L. A. Harrington–A. S. Kechris–A. Louveau (1990) as

a distillation of ideas originating in model theory

and operator algebras. Since its inception, many

prominent classification problems have been con-

sidered in this light in order to determine their

relative complexity with respect to the Borel re-

ducibility ordering. For example, in ergodic theory,

two of the grand successes have been the classifi-

cation by P. R. Halmos and J. von Neumann (1942)

of the measure-preserving automorphisms with

discrete spectrum and D. S. Ornstein’s classifica-

tion of Bernoulli shifts by Kolmogorov and Sinai’s

notion of entropy (1970).

Though certainly the deeper of the two, Orn-

stein’s theorem is actually easier to understand, so

letusconsider thisfirst. Supposep1, . . . , pn are pos-

itive real numbers such that
∑n
i=1 pi = 1 and give

the set {1, . . . , n} the distribution ~p = (p1, . . . , pn),
which makes it into a probability space. We then

equip Ω = {1, . . . , n}Z with the product proba-

bility measure and define a measure-preserving

automorphism S of Ω as the bilateral shift

S(. . . , x−2, x−1, ẋ0, x1, x2, . . .)

= (. . . , x−1, x0, ẋ1, x2, x3, . . .).

The system (Ω, S) is called a Bernoulli shift, and

its entropy is defined to be the real number

h(Ω, S) = −
n∑

i=1

pi logpi .

We say that two Bernoulli shifts (Ω, S) and (Ω′, S′)
given by distributions ~p = (p1, . . . , pn) and ~q =
(q1, . . . , qm) are measurably conjugate if there is

an isomorphism of measure spaces, T : Ω → Ω′,
such that

S = T−1 ◦ S′ ◦ T.

A. N. Kolmogorov and Ya. G. Sinai showed that

entropy is an invariant for Bernoulli shifts, i.e.,

that measurably conjugate Bernoulli shifts have

the same entropy. On the other hand, that entropy

is a complete invariant was discoveredby Ornstein,

who showed that two Bernoulli shifts (Ω, S) and

(Ω′, S′)with the same entropy, h(Ω, S) = h(Ω′, S′),
are measurably conjugate. Moreover, it is easy to

see that the entropy function φ defined on the

standard Borel space of Bernoulli shifts is Borel

and so φ is a Borel reduction of conjugacy of

Bernoulli shifts to the equivalence relation =R of

equality on the set of real numbers.

We say that an analytic equivalence relation E

on a standard Borel spaceX is smooth if E is Borel

reducible to the relation =R, i.e., if there is a Borel

function φ : X → R such that

xEy ⇔ φ(x) = φ(y).

What makes the smooth equivalence relations

particularly tangible is that, in this case, the

quotient space, X/E, is Borel isomorphic with

an analytic set, and hence the E-classes can be

identified with points in a standard Borel space.

For nonsmooth E, on the other hand, the spaceX/E
has no reasonable measurable structure. So the

smooth equivalence relations, such as conjugacy

of Bernoulli shifts, are especially simple and, in

the literature on operator algebras, are usually

singled out as those that are classifiable. However,

we shall avoid that terminology here, as some

archetypical examples of classification are in fact

of nonsmooth isomorphism relations.

An example of this is the Halmos–von Neumann

theorem. A measure-preserving automorphism

T of [0,1] has discrete spectrum if there is an

orthonormal basis of eigenvectors for the associ-

ated unitary operator UT on L2([0,1]) defined by

UT (f ) = f ◦T . The Halmos–von Neumann theorem

states that two discrete spectrum transforma-

tions are measurably conjugate if they have the

same spectrum. So, in other words, the spec-

trum, which is a countable subset1 of S1 = {z ∈
C
∣∣ |z| = 1}, is a complete invariant for conjugacy

of discrete spectrum measure-preserving auto-

morphisms. However, there is no canonical way of

enumerating a countable subset of S1 (the reader

is invited to try to construct such an enumeration

of an arbitrary countable subset of R and see why

this fails). In fact, being able to uniformly choose

an enumeration of each countable subset of S1

relies essentially on a weak version of the Axiom

of Choice. So it is impossible for this choice to

1In fact, a countable subgroup.
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be Borel. The best we can do is let Eset be the
equivalence relation on (S1)N defined by

(xn)Eset(yn) ⇔ {x1, x2, x3, . . .}={y1, y2, y3, . . .},

i.e., (xn)and (yn)are Eset-equivalent if they enumer-
ate the same set. Then Eset is a Borel equivalence
relation and is actually Borel bireducible with con-
jugacy of discrete spectrum measure-preserving
automorphisms. However, =R<B Eset and so Eset is
nonsmooth.

As we see from the above examples, it is useful
to have a catalogue of various more combina-
torial examples of analytic equivalence relations
with which we can compare concrete classification
problems. For example, Eset is much easier to han-
dle directly than conjugacy of discrete spectrum
measure-preserving automorphisms. One such

combinatorial example that has long been con-
sidered in the literature on operator algebras is
the relation E0 of eventual agreement of infinite
binary sequences, i.e., for (xn), (yn) ∈ {0,1}N, we
set

(xn)E0(yn) ⇔ ∃N ∀n á N xn = yn.

While it is easy to Borel reduce =R to E0, a simple
measure-theoretic argument shows that there is no
reduction in the other direction: First let µ be the
product probability measure on {0,1}N given by

the distribution ( 1

2
, 1

2
) on {0,1}. By Kolmogorov’s

zero-one law, any Borel subset of {0,1}N that
depends only on the tail of its elements, i.e., which
is E0-invariant, must either have µ-measure 0 or 1.
So suppose toward a contradiction that

φ : {0,1}N → R

is a Borel function such that

(xn)E0(yn) ⇔ φ
(
(xn)

)
= φ

(
(yn)

)
.

Then if {In} is a listing of all open intervals
of R with rational endpoints, we see that each
φ−1(In) ⊆ {0,1}N only depends on the tail of
its elements and hence has µ-measure 0 or 1.
Letting A be the intersection of all φ−1(In) and
{0,1}N \φ−1(In) of measure 1,

A =
[ ⋂

µ(φ−1(In))=1

φ−1(In)
]
\
[ ⋃

µ(φ−1(In))=0

φ−1(In)
]
,

we have µ(A) = 1, while φ must be constant on
A. But, as any E0-class is countable and hence
of measure 0, there are (xn), (yn) ∈ A that are
E0-inequivalent, while φ

(
(xn)

)
= φ

(
(yn)

)
. This

contradicts the assumptions on φ, and so E0 is
nonsmooth.

Other examples are the relation E1 defined on
RN in a similar fashion by

(xn)E1(yn) ⇔ ∃N ∀n á N xn = yn,

and the relation Eℓ∞ also defined on RN by

(xn)Eℓ∞(yn) ⇔ ∃K ∀n |xn − yn| à K.

•

•

•

• •

•

•

••

•

=N

=R

E0

E1 E∞

Eset

ES∞

Eℓ∞

Emax

Egrp

Figure 2. Significant examples of analytic
equivalence relations under Borel reducibility.

As =R, we can of course also define =N, which

is the equality relation on N. The relationship

between these and other equivalence relations

is most easily visualized in a diagram with the

simplest relations at the bottom (see Figure 2).

The remainder of the relations in Figure 2

have more complex descriptions, namely, E∞ is

the orbit equivalence relation induced by the shift

action of F2 on the space {0,1}F2 of subsets

of F2, and ES∞ is the àB-maximum isomorphism

relation between countable algebraic structures,

which can, e.g., be realized as the isomorphism

relation between countable groups. Similarly, Egrp

is the equivalence relationàB -maximum among all

orbit equivalence relations induced by an action

of a Polish topological group, while Emax is the

analytic equivalence relation maximum in the

Borel reducibility ordering.

Other examples of classification problems, or

more precisely isomorphism relations, Borel bire-

ducible with the relations of Figure 2 are the iso-

morphism relation between torsion-free Abelian

groups of rank 1, which is bireducible with E0;

Lipschitz isomorphism of compact metric spaces,

which is bireducible with Eℓ∞ ; and isometry of sepa-

rable, complete metric spaces, which is bireducible

with Egrp . If one instead considers finitely generated

algebraic structures, the complexity of the corre-

sponding isomorphism relation decreases and will

be Borel reducible to E∞. For example, isomorphism

of finitely generated groups is bireducible with E∞.

Dichotomy Theorems for Borel
Reducibility
The continuum hypothesis, as proposed by G. Can-

tor, is the statement that every infinite subset of

the real line is in bijective correspondence with

either N or R. In the first attempt at proving the

hypothesis, Cantor showed that any closed subset
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of R is either countable or contains a homeo-
morphic copy of the Cantor space 2N, which is
itself of cardinality equal to that of the continuum.
Somewhat later, P. S. Alexandrov and F. Hausdorff
(1915) independently extended this result to in-
clude all Borel subsets of R, and again this was
extended by M. Y. Souslin (1917) to the class of
analytic subsets of R. However, after this, further
development stalled for some time, due to the
failure to prove a similar result even for sets
that are complements of analytic sets, called co-
analytic sets. Similarly, other regularity properties
that had been established for analytic sets, such as
Lebesgue measurability, could not be verified for
more complex projective sets, i.e., those defined
from the Borel sets by iterated complementations
and projections.

N. Lusin (1925) made serious, but fruitless,
attempts at deciding whether any uncountable
coanalytic set is of the power of the continuum
and showed enormous prescience by declaring

Les efforts que j’ai faits pour
résoudre cette question m’ont
conduit à ce résultat tout
inattendu: il existe une famille
admettant une application sur
le continu d’ensembles effectifs
telle qu’on ne sait pas et l’on
ne saura jamais si un ensem-
ble quelconque de cette famille
(supposé non dénombrable) a la
puissance du continu, s’il est ou non
de troisième catégorie, ni même s’il
est mesurable.

That is, “one does not know and one will never
know [of the uncountable projective sets] whether
or not they are all of the power of the continuum.”

His bold contention was corroborated by
K. Gödel’s development of the constructible uni-
verse L (1938), a model of set theory in which the
continuum hypothesis holds true, but in which
there are non-Lebesgue measurable projective sets
and so-called thin coanalytic sets, i.e., uncountable
coanalytic sets not containing a homeomorphic
copy of 2N. With P. J. Cohen’s introduction of the
method of forcing (1963), it was realized that one
can construct thin coanalytic sets of size ℵ1 in
models of set theory where |R| > ℵ1 and so even
coanalytic sets can be counterexamples to the

continuum hypothesis.2

In line with the feeling that the continuum
hypothesis should hold for explicitly defined sets
in analysis, R. L. Vaught conjectured (1961) that
any first-order theory T in a countable language
has either at most countably many countable non-
isomorphic models or, alternatively, a continuum

2For a thorough discussion of the current research on

this, one can consult W. H. Woodin’s article in this journal

[12].

of such. The conjecture remains open now after
close to fifty years, but the strongest partial result
was proved by M. Morley (1970), who showed that
any first-order theory T in a countable language
has either at most ℵ1 countable nonisomorphic
models or a continuum of these. Morley’s theorem
can be formulated in a stronger way once we
notice that the set of models of T with underlying
domainN can be made into a standard Borel space
MT on which the relation of isomorphism ≅ is an
analytic equivalence relation. The theorem then
states that either there are only ℵ1 ≅-classes on
MT or there is an uncountable Borel set A ⊆ MT of
pairwise nonisomorphic models (and hence con-
tinuum many by the theorem of Alexandrov and
Hausdorff).

In view of Vaught’s conjecture and Souslin’s
result for analytic sets, it is natural to ask simply
if for any analytic equivalence relation E on a
standard Borel space X there are either countably
many E-classes or an uncountable Borel set A ⊆ X
of E-inequivalent points. However, this is easily
seen to be false by considering the following
example: Let X = {0,1}Q be the space of all
subsets of Q and define an analytic equivalence
relation E on X by setting

xEy ⇔ <↾x and <↾y are isomorphic

well orderings, or neither <↾x nor <↾y

is well ordered.

Then E has ℵ1 equivalence classes: a class corre-
sponding to the subsets of Q of order type ξ for
every countable ordinal ξ < ℵ1, and a single class
corresponding to the non-well-ordered subsets of
Q. Thus, if the continuum is larger than ℵ1, E

cannot satisfy the stated conjecture, but, in fact, it
can be shown that independently from any extra
set theoretical assumptions, there cannot be an
uncountable Borel set A ⊆ X of E-inequivalent
points.

Instead, in a technical tour de force involving
a large arsenal of modern set theory, J. H. Sil-
ver proved the optimal conclusion for coanalytic
equivalence relations.

Theorem 4 (J. H. Silver (1980)). Let E be a coana-
lytic equivalence relation on a standard Borel space
X . Then exactly one of the following holds:

– there are at most countably many E-classes,
– there is an uncountable Borel set A ⊆ X of

E-inequivalent points.

Using Silver’s dichotomy one can recuperate
the result of Souslin: ifA ⊆ R is an infinite analytic
set, define a coanalytic equivalence relation E on
R by setting

xEy ⇔ x, y ∉ A or x = y.

Then |X/E| = |A|, and if there is an uncountable
Borel set of E-inequivalent points, A contains an
uncountable Borel set.
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Unfortunately, coanalytic equivalence relations
very rarely come up, unless they are actually Borel,
while analytic equivalence relations abound and
hence are the more important object of study.
Deducing from Silver’s dichotomy, J. P. Burgess
showed that the above example is as bad as it can
get.

Theorem 5 (J. P. Burgess (1978)). Let E be an ana-
lytic equivalence relation on a standard Borel space
X . Then exactly one of the following holds:

– there are at most ℵ1 E-classes,
– there is an uncountable Borel set A ⊆ X of

E-inequivalent points.

Silver’s proof, which used substantial parts of
modern set theory, was soon simplified by L. A.
Harrington, who found a proof based on effec-
tive considerations, i.e., ultimately computability
theory on the integers. Subsequently a number of
dichotomies for various structures were proved
using variations of this technique, but the theory
would soon advance with deepening connections
to other branches of mathematics.

Theorem 6 (L. A. Harrington, A. S. Kechris, A. Lou-
veau (1990)). Let E be a Borel equivalence relation
on a standard Borel space X . Then exactly one of
the following holds:

– E is smooth, i.e., E àB =R,
– E0 àB E.

This dichotomy extends previous work by
J. G. Glimm (1961) and E. G. Effros (1965) on
the representation theory of C∗-algebras. In his
work on a conjecture of G. W. Mackey, Glimm
originally proved the above dichotomy for or-
bit equivalence relations induced by the action
of a second countable, locally compact group,
and Effros subsequently generalized this to Fσ
equivalence relations induced by actions of Polish
topological groups.

The dichotomies of Silver and Harrington,
Kechris and Louveau explain the linearity of
the lower part of Figure 2. Indeed, for Borel
equivalence relations E, either E is Borel reducible
to =N, E is Borel bireducible with =R, or E0 Borel
reduces to E. For general analytic equivalence
relations, this picture breaks down.

A number of other dichotomies for Borel equiv-
alence relations are now known, most notably
a dichotomy stating that E1 is minimal (but not
minimum) above E0 among Borel equivalence rela-
tions (Kechris and Louveau (1997)). Even though
the statements of these results involve nothing
more than Borel sets and Borel measurable func-
tions on standard Borel spaces, until recently
the only known proofs of these results involved
computability theory on the integers. However,
recent proofs due to B. D. Miller (2009) have
completely removed the need for such effective
considerations.

Banach Spaces and Gowers’s Classification
Program

The two main classification problems for Banach

spaces are arguably those of isomorphism and

isometry. While the problem of isometrically

distinguishing two Banach spaces is somewhat

tangible, mainly due to a number of quantitative

invariants at hand, e.g., moduli of smoothness and

convexity, there are fewer general techniques for

distinguishing the isomorphic structure of Banach

spaces. One successful subcase is the isomor-

phic classification by A. A. Miljutin (1966) and

C. Bessega and A. Pełczyński (1960) of the C(K)
spaces, for K compact metrizable, in terms of

the cardinality and Cantor–Bendixon rank of K.

However, with respect to isomorphic classification

by complete invariants, there has otherwise only

been limited progress. Though it has long been

suspected that a complete classification of sep-

arable Banach spaces up to isomorphism would

be too complicated to be of any practical value,

the evidence was mostly circumstantial. However,

based on work by S. A. Argyros and P. Dodos

(2006) on amalgamations of analytic sets of Ba-

nach spaces, we now know the exact complexity

of isomorphism.

Theorem 7 (V. Ferenczi, A. Louveau, C. Rosendal

(2009)). The relation of isomorphism between

separable Banach spaces is maximum in the Borel

reducibility ordering, i.e., is Borel bireducible with

Emax .

By contrast, isometry is of substantially lower

complexity, namely, J. Melleray (2007) showed that

it is bireducible with the equivalence relation Egrp

from Figure 2.

Partially motivated by the inherent complexity

of the isomorphic structure of Banach spaces,

W. T. Gowers (2002) proposed an alternative clas-

sification program by instead determining the

irreducible components from which other spaces

are built up. Now, as the finite-dimensional Banach

spaces are fully determined up to isomorphism

by their dimension, we should concentrate on the

infinite-dimensional building blocks. So to avoid

endless repetition, henceforth all Banach spaces

will be assumed to be separable and infinite-

dimensional. Concretely, Gowers proposed that

one should determine a list (Ci)i∈I of isomor-

phism invariant classes of Banach spaces such

that

(1) if a space X belongs to a class Ci, then so

do all of its subspaces,

(2) the classes are disjoint for obvious rea-

sons,

(3) any space X has a subspace Y ⊆ X
belonging to some class Ci ,
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(4) knowing that a space X belongs to some

class Ci should yield substantial knowl-
edge about its structure and about the
operators that may be defined on it.

Gowers’s classification program can be thought
of as a prototypical example of the third type of
classification, but it has one distinguishing feature,

namely, it makes no promise that we should be
able to reconstruct a space X from those of its
subspaces belonging to the various classes Ci .
This is in contrast with, for example, the theory
of unitary representations, where one seeks to

write representations as direct integrals of their
irreducible subrepresentations.

Another feature that sets it apart from the first
two types of classification is that embedding, i.e.,

isomorphism with a subspace, rather than isomor-
phism, is the focal point (we shall write X ⊑ Y to
denote that X embeds into Y ). Thus, for example,
properties (1) and (2) together imply that spaces
X and Y belonging to different classes are totally

incomparable. Here X and Y are incomparable if
neither X ⊑ Y nor Y ⊑ X and are totally incompa-
rable if there is no other space Z such that both
Z ⊑ X and Z ⊑ Y .

For many years (long before Gowers formulated

his program), it was conjectured that any Banach
space contains a copy of some ℓp or c0, whereby
if Cp and C0 denote the set of subspaces of

ℓp, respectively of c0, then (Cp)p∈{0}∪[1,∞[ would

provide a list, as above. This was refuted by
B. S.Tsirelson (1974),whoconstructeda space,now
known as the Tsirelson space, not containing any
ℓp or c0. Nevertheless, Tsirelson’s space in many
ways resembled the classical sequence spaces c0

and ℓp, and it was not clear just how far the
structure of a space could diverge from these.

Schauder Bases
In order to manipulate the subspaces of a Ba-
nach space, we need a way of representing these

efficiently, namely via bases. A sequence (en)
∞
n=1

of vectors in a Banach space X is said to be a
Schauder basis for X if any vector x ∈ X can be
uniquely represented as a norm convergent series

x =
∞∑

n=1

anen,

where the an are scalars. So, for example, if en
denotes the sequence

(0,0, . . . ,0,1,0,0 . . .),

where the 1 occurs in the nth place, then (en)
∞
n=1

is a Schauder basis for the space

ℓ1 = {(a1, a2, a3, . . .) ∈ R
N
∣∣

∞∑

i=1

|ai| < ∞}

of absolutely summable sequences (and similarly
for c0 and ℓp, 1 à p < ∞). For the combinatorial

analysis of bases, however, another equivalent
formulation is more useful: a sequence (en)

∞
n=1 of

nonzero vectors is a Schauder basis for X if its
linear span is dense in X and there is a constant
K such that

(∗) ‖
k∑

n=1

anen‖ à K‖
∞∑

n=1

anen‖,

whenever an are scalars and k ∈ N.
Obviously, as in linear algebra, it can be ex-

tremely useful to represent a Banach space via
a basis, as, for example, operators then can be
written as matrices with respect to this basis.
However, P. Enflo (1973) showed that not every
Banach space has a Schauder basis. Actually, En-
flo did more by constructing a space X without
Grothendieck’s approximation property, i.e., such
that the identity operator on X cannot be approx-
imated uniformly on compact sets by finite rank
operators. Nevertheless, a classical result due to
S. Banach states that any space has a subspace
with a Schauder basis.

A distinguishing feature of the bases of c0 and
ℓp is that not only do we have uniformly bounded
projections onto initial segments of the basis
as in (∗), but we also have uniformly bounded
projections onto any subset. That is, for some
constant K (actually K = 1 works for c0 and ℓp)
and all sets A ⊆ N, we have

‖
∑

n∈A

anen‖ à K‖
∑

n∈N

anen‖,

for all scalars an. Bases satisfying this stronger
property are said to be unconditional. Now if X
is a Banach space with an unconditional basis
(en), then X has a multitude of complemented
subspaces. For if A ⊆ N, then the closed linear
span [en]n∈A of the subsequence (en)n∈A will be
the image of the bounded projection PA on X
defined by

PA(
∑

n∈N

anen) =
∑

n∈A

anen,

and hence is complemented by the subspace
[en]n∉A.

The existence of a Schauder basis allows us
to largely replace the analytical theory of Banach
spaces with combinatorics in vector spaces. To
set this up, suppose X is a Banach space with a
Schauder basis (en) and let E denote the set of
finitely supported vectors

E = {
k∑

n=1

anen
∣∣ an ∈ R & k ∈ N}.

Then E is a countable-dimensional normed vector
space with basis (en). A block sequence of (ei) is
an infinite sequence (yi) of nonzero vectors in E
such that

max support(yn) < min support(yn+1)

for all n ∈ N (see Figure 3).
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Figure 3. A block basis (yn) of (en).

Any such block sequence will be a Schauder
basis for its closed linear span [yi], which is
an infinite-dimensional subspace of X called a
block subspace. Also, a classical result implies
that, modulo a small isomorphic perturbation,
any subspace of X contains a block sequence and
hence, up to embeddability, the block sequences
of (en) parametrize the closed subspaces of X.

These considerations allow us to replace the
notions of Banach space theory with combinatorial
properties of block sequences in the normed
vector space E. The goal of Gowers’s classification
program is then to isolate mutually exclusive and
hereditary classes (Ci)i∈I of block subspaces, such
that any Schauder basis (en) has a block subspace
Y = [yn] belonging to some Ci. Of course, the
import of such a classification largely depends on
how informative membership in the classes Ci is
and on the “logical gap” or conceptual distance
between them. For example, no information is
gained by splitting into the classes

C1 = {reflexive spaces}

and

C2 = {spaces without reflexive subspaces}.

Ramsey Theory for Block Sequences
If one attempts to apply Ramsey theoretical meth-
ods to Banach spaces, it is natural to first review
the classical Ramsey theory for integers to look for
principles that might transfer to the new context.
So for anyn = 1,2, . . . ,∞ and infinite subsetA ⊆ N,
we let [A]n denote the set of all strictly increasing
n-tuples of numbers in A. Then whenever

c : [N]n → {green,blue}

is a coloring with two colors, we can ask if
there is an infinite subset A ⊆ N such that [A]n is
monochromatic. In other words, is there an infinite
set A ⊆ N such that all increasing n-tuples from A
get the same color?

In the case n = 1, c is really just a coloring
of the natural numbers themselves, so of course
there is such a monochromatic subset A (this
is just the Dirichlet or pigeonhole principle). For
1 < n < ∞, though any such coloring c still
admits a monochromatic set [A]n, this is certainly
less trivial and is just the statement of the infinite

version of Ramsey’s theorem (from which the usual

finite version follows by a simple compactness

argument).

On the other hand, when coloring infinite

increasing sequences of natural numbers new

phenomena occur, and one has to restrict the

allowable colorings. However, a result due to

F. Galvin and K. Prikry (1973) states that if the

coloring c is a Borel function, where [N]∞ has the

topology induced from NN, then one can still find

a monochromatic set [A]∞.

Now, when transferring these concepts to Ba-

nach spaces, our base set N should be replaced

with the unit sphere of a Banach space X (recall

that all spaces are assumed infinite-dimensional),

the infinite subsets of N with unit spheres of

subspaces Y ⊆ X and the natural numbers with

vectors of norm 1 in X. So if

c : SX → [0,1]

is a Lipschitz function defined on the unit sphere

of a Banach space X and ǫ > 0, does there exist a

subspace Y ⊆ X such that

diam(c[SY ]) < ǫ ?

Well, at least for one space we do have such a

result.

Theorem 8 (W. T. Gowers (1992)). Suppose

c : Sc0 → [0,1]

is a Lipschitz function and ǫ > 0. Then there is a

subspace Y ⊆ c0 such that

diam(c[SY ]) < ǫ.

Unfortunately, for the classification of Banach

spaces, c0 is essentially the only space for which

this holds.

Theorem 9 (E. Odell, Th. Schlumprecht (1994)).

Suppose X is a Banach space not containing an

isomorphic copy of c0 as a subspace. Then there

is a subspace Y ⊆ X and a Lipschitz function

c : SY → [0,1]

such that for any subspace Z ⊆ Y , we have

c[SZ] = [0,1].

So even the simplest of the Ramsey principles

for N, i.e., the Dirichlet principle, has no direct

analogue for Banach spaces. However, Gowers

overcame this predicament by taking a more dy-

namical perspective that led to a general Ramsey

principle for Banach spaces. We now introduce

such a principle in the context of pure vector

spaces.

Suppose E is a countable-dimensionalQ-vector

space with basis (en)
∞
n=1. We let B be the set of
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all block sequences3 of the basis (en) and equip B
with a separable, complete metric d given by

d((xn), (yn)) = 2−min(m | xm≠ym).

So with the d-topology B is a Polish space.
We consider a pair of infinite games between two

players I and II that will produce block sequences of
(en). The Gowers gameGX below a block subspace
X ⊆ E is played by letting I and II alternate in
choosing, respectively, block subspacesYi ⊆ X and
nonzero vectors xi ∈ Yi subject to the constraint
that

max support(xn) < min support(xn+1).

Diagrammatically:

I Y0 Y1 Y2 Y3 . . .
II x0 x1 x2 x3 . . .

The infinite asymptotic game FX below the block
subspace X ⊆ E is defined as the Gowers game,
except that we now additionally demand that the
block subspaces Yi ⊆ X played by I should have
finite codimension inX. In both games, the outcome
of an infinite run of the game is defined to be the
infinite block sequence (xi)

∞
i=0 produced by player

II.
In both GX and FX , II is thus the only player

that is directly contributing to the outcome of the
game, while player I only indirectly influences the
play of II by determining in which block subspaces
II has to choose her vectors. Clearly, I has greater
powers in Gowers’s game GX than in the infinite
asymptotic gameFX , since inGX he is not restricted
to choosing subspaces of finite codimension in X.

Definition 10. A subset A ⊆ B is said to be strate-
gically Ramsey4 if there is a block subspace X ⊆
E such that one of the following two properties
holds

– II has a strategy in GX to play in A,
– I has a strategy in FX to play in ∼A.

We note that this is stronger than requiring that
the games GX and FX to play in A are determined.
For, in general, it is much stronger for I to have
a strategy in FX to play in ∼A than to have a
strategy in GX to play in ∼A. On the other hand,
the notion of strategically Ramsey does involve
passing to a block subspace X ⊆ E and so is really
both a Ramsey theoretical and a game theoretical
concept.

The basic fact about strategically Ramsey sets
is then

Theorem 11. Analytic sets are strategically Ram-
sey.

3We import the relevant concepts from Schauder bases

wholesale.
4The actual definition of strategically Ramsey that one

needs is slightly more complicated and involves quantifi-

cation over block spaces and finite block sequences.

This principle can be further strengthened in
the context of Banach spaces. For suppose X
is a Banach space with a Schauder basis (en),
B ⊆ (SX)N, and let E be the Q-vector subspace of
X with basis (en). Assume that for some block
subspace Y ⊆ E, player I has a strategy in the
infinite asymptotic game FY to play in B. Then for
any sequence ∆ = (δn) of positive real numbers
there is a further block subspace Z ⊆ Y such that
any block sequence in SZ belongs to

B∆ = {(zn)
∣∣ ∃(vn) ∈ B ∀n ‖vn − zn‖ < δn}.

From this follows

Theorem 12 (W. T. Gowers (2002)). Suppose X is a
Banach space with a basis (en) and A is an analytic
set of block sequences. Assume moreover that for
any ∆ and any block subspace Y ⊆ X there is a
block sequence in SY not belonging to (∼A)∆. Then
there is a block subspace Y ⊆ X such that II has a
strategy in GY to play in A.

So, up to small perturbations, if an analytic set
of normalized block sequences cannot be avoided
by passing to a block subspace, then, for some
block subspace Y , II has a strategy in GY to play
into this set.

Dichotomies for Banach Spaces
Up till the beginning of the 1990s, perhaps the
major unsolved problem of Banach space theory
was the unconditional basic sequence problem, i.e.,
the question of whether any Banach space contains
a subspace with an unconditional basis and thus
to some extent resembling the classical sequence
spaces ℓp and c0. This was solved negatively by
Gowers and B. Maurey (1993) by the construction
of a so-called hereditarily indecomposable space,
i.e., a space in which no two infinite-dimensional
subspaces form a direct sum and so admitting no
nontrivial projections.

The construction of the Gowers-Maurey space
spurred significant activity, most notably the re-
cent construction by Argyros and R. G. Haydon
(2009) of a Banach space on which every opera-
tor is of the form λI + K, where K is a compact
operator. But, surprisingly, despite the extreme
intricacy of its construction, any counterexam-
ple to the unconditional basic sequence problem
must resemble the Gowers-Maurey space. This was
proved by Gowers as the first application of his
Ramsey theorem of the preceding section.

Theorem 13 (Gowers’s first dichotomy (1996)).
Any Banach space contains either a hereditarily
indecomposable subspace or a subspace having an
unconditional Schauder basis.

Since being hereditarily indecomposable or
having an unconditional basis are hereditary prop-
erties, i.e., are inherited by block subspaces, and
are contradictory, this provides an initial step in
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Figure 4. Minimality and quasi-minimality.

Gowers’s classification program by splitting into
two classes of spaces, namely the hereditarily in-
decomposable and those with unconditional basis.
However, this division can be further refined by
another application of the Ramsey theorem. First,
a space X is said to be minimal in case it embeds
into all of its subspaces, and X is quasi-minimal
if whenever Y,Z ⊑ X there is some V such that
V ⊑ Y, Z , i.e.,X has no pair of totally incomparable
subspaces (see Figure 4).

Theorem 14 (Gowers’s second dichotomy (1996)).
Any Banach space contains either a quasi-minimal
subspace or a subspace with an unconditional basis
such that disjointly supported block subspaces are
totally incomparable.

In other words, the hereditary failure to quasi-
minimality can be explicitly witnessed on a sub-
space with an unconditional basis. Moreover, this
latter property can be conveniently reformulated
as follows. Suppose X is a space with a Schauder
basis (en). Saying that disjointly supported block
subspaces are totally incomparable is just requir-
ing that whenever Y = [yn] is a block subspace,
In = support(yn) and T : Y → X is an isomorphic
embedding, then

lim inf
n→∞

‖PInT‖ > 0

(recall that PIn denotes the projection of X onto
the subspace [ei]i∈In ). So any isomorphic copy of Y
inside of X has essential support on the sequence
of finite-dimensional subspaces [ei]i∈In .

Since Gowers’s two dichotomies are logically
dependent, putting them together only gives us a
decomposition into three classes: hereditarily in-
decomposable, quasi-minimal with unconditional
basis, and spaces with an unconditional basis such
that disjointly supported subspaces are totally in-
comparable. However, it is natural to look for a
dichotomy distinguishing the minimal spaces (a
property characteristic of the classical sequence
spaces ℓp and c0) among the more general quasi-
minimal spaces. For this, a Banach space X with a
basis (en) is said to be tight if whenever Y = [yn]
is a block subspace, there are finite sets

I0 < I1 < I2 < · · · ⊆ N

such that any isomorphic embedding T : Y → X
satisfies

lim inf
n→∞

‖PInT‖ > 0.

Thus, for example, the spaces occurring above are
seen to be tight by using the support of the vectors
yn. Tight spaces are easily seen to have no minimal
subspaces.

Theorem 15 (V. Ferenczi, C. Rosendal (2009)). Any
Banach space contains either a tight or a minimal
subspace.

Of course, the bare existence of the finite sets In
can be somewhat unsatisfactory, and in concrete
cases one would like to know how these are
computed from the block subspace Y = [yn]. And,
indeed, there are other dichotomies for weakened
types of minimality in terms of the choice of sets In
(involving constants of embeddability by the range
of vectors, or, as in Gowers’s second dichotomy,
by their support).

The dichotomies obtained hitherto give a pretty
detailed picture of the nonclassical Banach spaces,
i.e., those not containing minimal subspaces, but
our knowledge of the minimal spaces is still
very far from being complete. In particular, one
would like to have a truly informative dichotomy
detecting the presence of c0 or ℓp inside a Banach

space. There are such dichotomies for ℓ1 or c0 due
to H. P. Rosenthal (1974) and (1994), but none as
informative exist for ℓp, p ≠ 1.

On a somewhat different note, the following
question still remains open.

Question 16. Let X be a Banach space. What is the
number of nonisomorphic subspaces of X?

Since Hilbert space ℓ2 is outright isometric to
its subspaces, any space isomorphic to ℓ2 is ho-
mogeneous, i.e., isomorphic to all of its subspaces.
That the converse holds, i.e., that any homoge-
neous space is isomorphic to Hilbert space, is a
consequence of Gowers’s first dichotomy together
with a result of R. Komorowski and N. Tomczak-
Jaegermann (1995). But this leaves a huge gap of
possible cardinalities for the number of noniso-
morphic subspaces of a Banach space. Since it can
be shown with the aid of tightness that any space
without minimal subspaces contains a continuum
of nonisomorphic subspaces, the main problem
lies in understanding the minimal spaces. A per-
haps optimistic guess is that any Banach space into
which ℓ2 does not embed contains a continuum of
nonisomorphic subspaces.
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