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Abstract. We prove that the isomorphism relation for separable C∗-algebras, the rela-

tions of complete and n-isometry for operator spaces, and the relations of unital n-order
isomorphisms of operator systems, are Borel reducible to the orbit equivalence relation
of a Polish group action on a standard Borel space.

1. Introduction

The problem of classifying a collection of objects up to some notion of isomorphism
can usually be couched as the study of an analytic equivalence relation on a standard
Borel space parametrizing the objects in question. Such relations admit a notion of
comparison, Borel reducibility, which allows one to assign a degree of complexity to the
classification problem. If X and Y are standard Borel spaces admitting equivalence
relations E and F respectively then we say that E is Borel reducible to F , written
E ≤B F , if there is a Borel map Θ : X → Y such that

xEy ⇐⇒ Θ(x)FΘ(y).

In other words, Θ carries equivalence classes to equivalence classes injectively. We view
E as being “less complicated” than F . There are some particularly prominent degrees
of complexity in this theory which serve as benchmarks for classification problems
in general. For instance, a relation E is classifiable by countable structures (CCS) if
it is Borel reducible to the isomorphism relation for countable graphs. Classification
problems in functional analysis (our interest here) tend not to be CCS, but may
nevertheless be “not too complicated” in that they are Borel reducible to the orbit
equivalence relation of a Borel action of a Polish group on a standard Borel space;
this property is known as being below a group action.

The connections between Borel reducibility and operator algebras have received
considerable attention lately. Using Hjorth’s theory of turbulence developed in [10],
it has been shown that several classes of operator algebras are not CCS. This applies
to von Neumann factors of every type [18], ITPFI2 factors [19], simple unital nuclear
C∗-algebras [7], and the spaces of irreducible representations of non-type I C∗-algebras
[4,13]. On the other hand, Elliott’s K-theoretic classification of AF algebras together
with the Borel computability of K-theory [6] show that AF algebras are CCS (see,
e.g., [2, 3]).

We are interested in classifying separable C∗-algebras, operator spaces, and op-
erator systems. The classification problem for nuclear simple separable C∗-algebras
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was studied in [7], where the isomorphism relation was shown to be below a group
action. Establishing this upper bound was rather involved; it required Borel versions
of Kirchberg’s O2 embedding and absorption theorems. It of course invited the ques-
tion of whether isomorphism of all separable C∗-algebras is below a group action.
Here we give a surprisingly simple proof of the following result.

Theorem 1.1. Each of the following equivalence relations is below a group action:
(1) The isomorphism relation for separable C∗-algebras.
(2) Complete isometry, as well as n-isometry for any n, of separable operator spaces.
(3) Complete isometry, as well as n-isometry for any n, of separable operator systems.
(4) Unital complete order isomorphism, as well as unital n-order isomorphism for

any n, of separable unital operator systems.

Part (1) of course improves on one of the main results of [7]. Parts (2–4) give a partial
answer to a question raised by Ed Effros during the January 2012 meeting “Set theory
and C*-algebras” at the American Institute of Mathematics. Theorem 1.1 follows from
a more general result proved in Section 2. We show that Iso(U), the isometry group
of the Urysohn metric space (U, δ), plays a role for the isometry relation of what
we term Polish structures in a countable signature (see [1, 5]) analogous to the role
played by the Polish group S∞ of all permutations of N for the isomorphism relation
of countable structures.

2. Polish structures

The main ingredients for proving Theorem 1.1 are the notion of a Polish structure,
which we introduce now, and Theorem 2.2 below.

Definition 2.1. Let L = (l1, . . .) be a finite or infinite sequence in N. A Polish
L-structure1 is a triple

X = (X, dX, (FX

n )),

where (X, dX) is a separable complete metric space, called the domain, and FX

n ⊆ X ln

is closed in the product topology. We think of FX

n as a relation on X and call ln the
arity of FX

n . The sequence L is called the signature or arity sequence of the structure
X. (Below we will suppress the superscript X whenever possible.)

Two Polish structures X and Y with the same signature L are said to be isometri-
cally isomorphic if there is an isometric bijection h : X → Y such that for all n and
(x1, . . . , xln) ∈ X ln we have

(x1, . . . , xln) ∈ FX

n ⇐⇒ (h(x1), . . . , h(xln)) ∈ FY

n .

Let (Y, d) be a metric space, let L = (l1, . . .) be given, and define M(L, Y, d) ⊆
(F (Y ) \ {∅}) × ∏

n F (Y ln) by

M(L, Y, d) = {(X, (Fn)) : Fn ⊆ X ln}.
This set is Borel (by [12, 12.11]), and to each X = (X, (Fn)) ∈M(L, Y, d) we have the
Polish L-structure (X, d�X, (Fn)), which we also denote by X. For X,Y ∈M(L, Y, d),
write X �M(L,Y,d)

Y if X and Y are isomorphic Polish L-structures.

1We consciously avoid the term “metric structure” since this is already used for a slightly different
notion in continuous logic.
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A metric structure as defined in [1] can also involve predicates, i.e., certain contin-
uous functions f from Xn for some n into [0, 1]. For our purposes, there is no need to
extend the definition to accommodate such predicates since such a function is coded
by the closed sets {x̄ ∈ Xn : f(x̄) ≥ q} for q ∈ Q.

When (Y, d) is the Urysohn metric space U, we will usually write M(L) rather than
M(L,U, δ). This is motivated by the fact that every separable metric space can be
isometrically embedded into U, and so every Polish L-structure is isomorphic to some
X ∈ M(L). Thus, M(L) provides a parametrization of all Polish L-structures as a
standard Borel space. It is not hard to see that that this moreover is a good standard
Borel parametrization in the sense of [7].

The group Iso(U) acts diagonally on U
li for each i, and so it acts naturally on

M(L) by σ · (X, (Fn)) = (σ ·X, (σ · Fn)). This induces the orbit equivalence relation

X ≡M(L) Y ⇐⇒ (∃σ ∈ Iso(U)) σ · X = Y.
The following theorem may be viewed as an elaboration of the results in [9, Section 2].
However, the explicit Borel computation of embeddings done in Lemma 2.3 below will
be needed not just to prove the theorem, but also several times later.

Theorem 2.2. We have �M(L) ≤B ≡M(L), and so �M(L) is below a group action.

To prove this, we first need a uniformly Borel version of the injective universality
and homogeneity of U. For a countable set A, define

MA = {d ∈ R
A×A : d is a metric on A}.

This is easily seen to form a Gδ subset of R
A×A, when MA is Polish in the subspace

topology. When A = N we let M = MN.

Lemma 2.3. There are Borel functions ϑn : M → U, n ∈ Z, such that for all
d, d′ ∈ M:
(1) the set {ϑn(d) : n ∈ Z} is dense in U;
(2) δ(ϑn(d), ϑm(d)) = d(n,m) for all n,m ∈ N;
(3) any isometric bijection σ : {ϑn(d) : n ∈ N} → {ϑn(d′) : n ∈ N} extends to an

isometric automorphism of U.

Proof. We adapt the Katetov construction of the Urysohn metric space; see [9, 11].
Fix an enumeration (An)n∈N of all finite non-empty subsets of Z, and let ∗ be a point
not in Z. For d ∈ M, call a metric ρ ∈ MZ a Katetov extension of d if ρ � N = d, and
for all n ∈ N, all ε > 0, and every metric d̃ on An ∪ {∗} satisfying

(1) ρ(x, y) = d̃(x, y) for all x, y ∈ An, and
(2) d̃(x, ∗) ∈ Q+ for all x ∈ An

there is some i ∈ Z \ N such that |ρ(i, x) − d̃(∗, x)| < ε for all x ∈ An. It follows
directly from the definition that the set

U = {(d, ρ) ∈ M×MZ : ρ is a Katetov extension of d}
is a Gδ. The group Sym(Z \ N) of all permutations of Z \ N acts naturally on MZ,
and the sections Ud = {ρ : (d, ρ) ∈ U} are invariant under this action. The Katetov
property guarantees that the Sym(Z \ N)-orbits in Ud are dense in Ud. It follows
from Theorem A (see appendix) that there is a Borel map ψ : M → MZ such that
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(d, ψ(d)) ∈ U for all d ∈ M. A standard approximate intertwining/back-and-forth
argument shows that for any (d, ρ) ∈ U , the completion of (Z, ρ) is isometrically
isomorphic to (U, δ), and a Borel coding of this argument analogous to [7, Theorem
7.6] shows that there are Borel maps ϑn : M → U, n ∈ Z, satisfying (1) and (2) above.
Finally, another approximate intertwining/back-and-forth argument can be used to
establish (3); further details may be found in [9]. �

Proof of Theorem 2.2. We will define a Borel function M(L) →M(L) : X �→ X
′ such

that X �M(L)
Y if and only if X

′ ≡M(L)
Y

′, and X �M(L)
X

′. For X,Y ∈ M(L) with
domains X and Y finite, the homogeneity of U immediately gives that X �M(L)

Y if
and only if X ≡M(L)

Y, so here we may simply take X = X
′.

For the case when X has infinite domain, recall that by the Kuratowski–Ryll-
Nardzewski theorem we may find Borel functions ψk

n : F (Uk) → U
k such that {ψk

n(F ) :
n ∈ N} is dense in F whenever F �= ∅. From the ψk

n we can define a sequence of Borel
functions ψ̃n : F (U) → U such that whenever X = (X, (Fk)) ∈ M(L) and X is
infinite, the sequence ψ̃n(X) gives an injective enumeration of a dense subset of X
and for all k, ψlk

n (Fk) ⊆ {ψ̃n(X) : n ∈ ω}lk . Define an element of dX ∈ M by
dX(n,m) = δ(ψ̃n(X), ψ̃m(x)), and set γn(X) = ϑn(dX), n ∈ Z, where the ϑn are
provided by Lemma 2.3. Then the γn are Borel, and if we define X

′ = (X ′, F ′
n) by

setting

X ′ = cl({γn(X) : n ∈ N})
and

F ′
n =cl({(γi1(X), . . . , γiln

(X)) :

(∃(ij)) (ψ̃i1(X), . . . , ψ̃iln
(X)) ∈ Fn}),

then X
′ �M(L)

X. That the map X �→ X
′ is Borel follows from the Kuratowski–Ryll-

Nardzewski theorem, and that X �M(L)
Y precisely when X

′ ≡M(L)
Y

′ is immediate
from Lemma 2.3.(3). �

3. Proof of Theorem 1.1

3.1. C*-algebras. A C*-algebra A can be cast as a Polish structure with domain A
as follows: we have the relations F0 = {0} ⊆ A, F+, F· ⊆ A3, which are the graphs of
the functions (a, b) �→ a+ b and (a, b) �→ ab, respectively, F∗ ⊆ A2 which is the graph
of the map a �→ a∗, and for each q ∈ Q(i) = Q + iQ the relations

Fq = {(a, b) ∈ A2 : b = qa}.
The signature is LC∗ = (1, 3, 3, 2, 2, . . .). It is easy to check directly that the set MC∗ ⊆
M(LC∗) which corresponds to C*-algebras is Borel. (See also Lemma 3.1 below, where
a more general statement is proven.) Let �MC∗ denote the isomorphism relation in
MC∗ . It can easily be shown that MC∗ provides a standard Borel parametrization of
the class of separable C*-algebras, in the sense of [7, Definition 2.1]). Clearly, �MC∗

is the restriction of �M(LC∗ ) to MC∗ , and so by Theorem 2.2 above �MC∗ is below a
group action.

To finish the proof of Theorem 1.1.(1) we need only show that the parametrization
MC∗ is weakly equivalent to the parametrizations given in [7], in the sense of [7,
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Definition 2.1]. For this, recall from [7, Section 2.4] that Ξ̂ is the space of countable
normed Q(i)-∗-algebras with domain N which satisfy the C*-axiom. For each ξ ∈
Ξ̂, let C∗(ξ) denote the C*-algebra obtained from completing ξ and extending the
operations. Let ϑn : M → U be as in Lemma 2.3. To each ξ ∈ Ξ̂ we have the associated
dξ ∈ M defined by dξ(n,m) = ‖n −m‖ξ, and the map ξ �→ dξ is clearly Borel. It is
then straightforward to define X

ξ = (Xξ, F ξ
0 , F

ξ
+, F

ξ
· , F

ξ
∗ , (F ξ

q )q∈Q(i)) ∈ MC∗ directly
from dξ and the ϑn so that X

ξ is isomorphic to C∗(ξ), setting F ξ
0 = {ϑ0ξ

(dξ)},
F ξ

+ = {(ϑn(dξ), ϑm(dξ), ϑk(dξ)) : n+ξ m = k},
and defining F ξ

· , F ξ
∗ , (F ξ

q )q∈Q(i) analogously. The map ξ �→ X
ξ is then Borel by the

Kuratowski–Ryll-Nardzewski theorem.
For the converse direction, recall from [7, Section 2.4] that Ξ ⊆ R

N consists of all
real sequences η such that for some C*-algebra A and some y = (yn)n∈N which is dense
in A, we have that ηn = ‖pn(y)‖A, where (pn)n∈N enumerates the non-commutative
Q(i)-∗-polynomials. Let fn : F (U) \ {∅} → U, n ∈ N, be Borel functions provided
by the Kuratowski–Ryll-Nardzewski theorem such that {fn(X) : n ∈ N} is a dense
subset of X, for all X ∈ F (U) \ {∅}. For X ∈ MC∗ , set ηX

n = δ(pn((fn(X)n∈N), 0X)
where FX

0 = {0X}, and pn((fn(X)) is the evaluation of pn at y = (fn(X)) in the
C*-algebra coded by X. It is easily seen that X �→ ηX is Borel and X and ηX encode
isomorphic C*-algebras.

3.2. Banach spaces and Banach algebras. A separable (real or complex) Banach
space E can be cast as a Polish structure (E,F0, F+, (Fq)q∈K), where K = Q or
K = Q(i), in the signature LB = (1, 3, 2, 2, . . .) in analogy with the above parametri-
zation of C*-algebras (omitting multiplication and involution). The subset MB(U) of
M(LB,U) corresponding to Banach spaces is easily seen to be Borel, too. By an argu-
ment similar to that in Section 3.1, one sees that this parametrization is equivalent to
the standard parametrization of Banach spaces as closed subspaces of C([0, 1]) (see,
e.g., [8] or [14]).

In a similar vein, letting LBA = (1, 3, 3, 2, 2, . . .) (which happens to coincide with
LC∗), we can parametrize separable Banach algebras, as well as separable involutive
Banach algebras, by appropriate Borel subsets of M(LBA).

In all cases, Theorem 2.2 implies that the isometric isomorphism relation is below
a group action.

3.3. Operator spaces and operator systems. To handle operator spaces and
operator systems we use a framework slightly more general than that of Polish struc-
tures. Formally, this could be handled by introducing multi-sorted Polish structures,
though here we make do with an ad hoc approach.

For metric spaces (X, dX) and (Y, dY ), let UC(X,Y ) denote the set of uniformly
continuous functions f : X → Y . Identifying each f ∈ UC(X,Y ) with graph(f) ⊆
X × Y , it is easily checked that UC(X,Y ) forms a Borel subset of F (X × Y ).

Let Un, n ∈ N, be a sequence of disjoint copies of the Urysohn metric space, with
U1 = U. Identify Mn(U) with U

n2
, and give this the supremum metric. We define OS

to be the set of sequences E = (En, fn)n∈N such that:
(1) (En, fn) ∈MB(Un) × UC(Mn(U),Un);
(2) fn(Mn(E1)) = dom(En);
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(3) fn �Mn(E1) is linear;
(4) for all A,B ∈Mn(C) and all X ∈Mn(E1) we have

‖fn(AXB)‖En ≤ ‖A‖‖fn(X)‖En‖B‖;
(5) for all m,n ∈ N and all X ∈Mn(E1), Y ∈Mm(E1),

‖X ⊕ Y ‖En+m = max{‖X‖En , ‖Y ‖Em‖}.
Once again, OS forms a Borel set. Each E ∈ OS codes an L∞-matrix-normed space,
whence by Ruan’s theorem (e.g., [15, Theorem 13.4]), OS parametrizes the class of
separable operator spaces. Defining E �OS

F if and only if E and F are completely
isometrically isomorphic, one checks that �OS is analytic, and so OS provides a good
standard Borel parametrization of separable operator spaces. Also, write E �OS

n F if
and only E and F are n-isometric.

The group Iso(U) × Iso(Un) acts in a Borel way on UC(Mn(U),Un) by

((σ, τ) · f)(xij) = τ(f(σ−1(xij)).

Thus we obtain a Borel action of
∏

n Iso(Un) on OS by

(σn) · (En, fn) = (σn · En, (σ1, σn) · fn),

and we write E ≡OS
F if and only there is (σn) such that (σn) ·E = F. Arguing as we

did in the proof of Theorem 2.2, we obtain that �OS≤B≡OS, which proves that �OS

is below a group action.
If we only consider the action of

∏
j≤n Iso(Un) on OS, and denote by ≡OS

n the
induced orbit equivalence relation, the argument from Theorem 2.2 gives that �OS

n

≤B ≡OS

n , thus showing �OS

n is below a group action. This establishes Theorem 1.1.(2).

Theorem 1.1.(3) follows immediately from (2) after a standard parametrization
of operator systems is obtained by adding the adjoint operation to the structures
parametrized by OS.

By adding a constant for the unit of a unital operator system to the language one
sees that the relation of unital complete isometry between operator systems is below
a group action. It remains to prove that n-order isomorphism of operator systems is
below a group action. The case that n ≥ 2 is a consequence of the fact that unital
maps between operator systems that are n-positive for n ≥ 2 are necessarily �n/2�-
contractive (this easily follows from the proof of the case that n = 2 given in [15,
Proposition 3.2]). Aside from this, the assertion follows directly from Theorem 2.2.
Indeed, a Polish structure coding an operator system S consists of (S,+, ‖ · ‖) and
for each 2 ≤ k ∈ N the closed subset Pk(S) of Sk2

consisting of all positive elements
of Mk(S). By the above, a unital n-order isomorphism between two unital operator
systems S and S′ is implemented by an isometry that sends Pk(S) onto Pk(S′) for all
k ≤ n and the case n ≥ 2 of Theorem 1.1 (4) follows.

Let us now prove the case n = 1 of Theorem 1.1 (4), and at the same time give an
alternative proof of the general case. Recall that the numerical radius of an operator
X is defined by

|||X||| = sup{|s(X)| : s is a state}
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and that |||X||| ≤ ‖X‖ ≤ 2|||X||| (see, e.g., [16, Proposition 3.2.25]). By an argument
similar to the above, it will suffice to prove that a linear map is a unital order iso-
morphism if and only if it is a linear unital isometry in this norm. If φ : S → T is a
unital positive map and s : T → C is a state, then s ◦ φ : S → C is a state. Therefore,
|||φ(X)||| ≤ |||X|||. Thus, if φ has a positive inverse then it is a ||| · |||-isometry. The
conclusion now follows by the arguments used above.

Note that one can prove (2) and (3) of Theorem 1.1 by using a proof similar to
the proof of (4) and the remark about adding predicates made after the definition of
a Polish structure.

We do not know whether either of the relations non-unital n-order isomorphism or
non-unital complete order isomorphism of operator systems is below a group action.

3.4. A remark about models of the logic for metric structures. The isomor-
phism relation for countable structures, in the sense of [10], is given by a continuous
S∞-action. The group Iso(U) plays an analogous role for separable models of logic for
metric structures. Such models consist of an underlying Polish space X, countably
many functions fn : Xn → X, and countably many functions gn : Xn → R (relations).
(Assuming there are infinitely many functions and that the nth function has Xn as
its domain is clearly not a loss of generality.) These functions are required to have a
prescribed modulus of uniform continuity (see [1]), but we shall ignore this since it is
not important for our present purposes. To a fixed model X = (X, fn, gn : n ∈ N),
associate a Polish structure X = (X, (Fn)n∈N) where Fn, n ∈ N, enumerate the graphs
of the fn, as well as all the sets {x̄ ∈ Xn : gn(x) ≥ qn} where (qn)n∈N is a fixed enu-
meration of the rationals. This map is Borel (between the appropriate spaces) and X
is isomorphic to Y if and only if X � Y. Also, the map that sends an element of M
to a metric structure is Borel.

The following statement is proved by a straightforward recursion analogous to the
case of classical logic.

Lemma 3.1. If T is a theory in a countable language in the logic of metric structures
then the set of all X ∈ M that encode a model of T is Borel.

Combining this with Theorem 2.2, we obtain:

Theorem 3.2. If T is a theory of the logic of metric structures in a separable lan-
guage, then the isometry relation of models of T is Borel reducible to an orbit equiv-
alence relation of Iso(U).

4. Concluding remarks

(1) Aaron Tikuisis has pointed out that the above approach, using Polish structures,
also can be used to provide a new proof that the isomorphism relation for von Neu-
mann algebras with separable predual is below a group action. Previously, in [18], it
was shown that isomorphism of separably acting von Neumann algebras is below an
action of the unitary group of l2, using a completely different line of argument. It is at
present not known if the latter provides a sharper upper bound on complexity than
the former.
(2) In [7] it was proved that separable unital AI algebras are not CCS, and that their
isomorphism relation is below an action of Aut(O2). However, we do not at present



1078 ELLIOTT ET AL.

know if the complexity of the classification problem increases as one passes from
nuclear to exact C*-algebras, or from exact to arbitrary C*-algebras. In particular,
we do not know the answer to:2

Question 4.1. Is the isomorphism relation for separable C*-algebras strictly more
complicated, as measured by ≤B, than that of nuclear separable C*-algebras?

We may also ask if the upper bound on complexity provided by Theorem 1.1.(1) is
actually optimal. By [9], the Borel actions of Iso(U) realize the maximal complexity
of equivalence relations induced by Polish group actions.

Question 4.2. Is the isomorphism relation for separable C*-algebras maximal among
equivalence relations induced by a Polish group action?
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Appendix

We prove the generalization of the homogeneous selection principle, [7, Lemmas 6.2
and 6.3], which is used to prove Lemma 2.3 above. For a subset A ⊆ X × Y of
a Cartesian product and x ∈ X, define Ax = {y ∈ Y : (x, y) ∈ A}. A function
f : projX(A) → Y is a uniformization of A if (x, f(x)) ∈ A for all x ∈ projX(A).

Theorem A. Let X,Y be Polish spaces, dY a complete compatible metric on Y , and
let A ⊆ X × Y be a Gδ set.

(1) If for some (any) sequence (yn)n∈N dense in Y the set

R = {(x, n, ε) ∈ X × N × Q+ : (∃y ∈ Ax)dY (y, yn) < ε}
is Borel, then projX(A) is Borel and A admits a Borel uniformization.

(2) If G is a Polish group acting continuously on Y by Borel automorphisms such that
Ax is G-invariant for all x ∈ X, and every G-orbit of a point y ∈ Ax is dense in
Ax, then R as defined in (1) is Borel, and so A admits a Borel uniformization.

Proof. We may assume that dY is bounded by 1
2 . Clearly projX(A) = {x ∈ X :

(∃n)(x, n, 1) ∈ R}, and so this set is Borel. To construct the uniformization, fix open
sets Un ⊆ X × Y such that

⋂
n∈N

Un = A, and fix an enumeration (qn)n∈N of Q+.
Let B(y, ε) denote the open dY -ball of radius ε around y ∈ Y . We recursively define

2A negative answer to Question 4.1 and a positive answer to Question 4.2 have been given in [17].
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Borel maps x �→ ni(x) ∈ N and x �→ εi(x) ∈ Q+, i ∈ N, on projX(A), satisfying:
(1) ni(x) = 0, ε0(x) = 1;
(2) εi(x) ≤ 1

2i ;
(3) B(yni(x), εi(x)) ⊆ (Ui)x;
(4) (x, ni(x), εi(x)) ∈ R;
(5) B(yni+1(x), εi+1) ⊆ B(yni(x), εi(x)).
If this can be done then f(x) = limi→∞ yni(x) is the desired Borel uniformization.
Suppose that ni(x) and εi(x) have been defined for i ≤ k. Set

z ∈ B(ynk(x), εk(x)) ∩Ax

and let 0 < δ ≤ 2k+1 be such that 2δ + dY (z, ynk(x)) < εk(x) and B(z, 2δ) ⊆ Uk+1.
If d(yn, z) < δ, then B(yn, δ) ⊆ B(ynk(x), εk(x)), B(yn, δ) ∩ Ax �= ∅, and B(yn, δ) ⊆
Uk+1. This shows that (1)–(5) above can be satisfied, and so we can define nk+1(x) and
εk+1(x) = qn, where nk+1(x) and n are least possible satisfying (1)–(5) above. Since
each of the requirements (1)–(5) is Borel, the maps x �→ nk+1(x) and x �→ εk+1(x)
are Borel, as required.

It is clear from the definition that R is analytic. Since

R = {(x, n, ε) : (∀y ∈ Ax)(∃g ∈ G0)d(g · y, yn) < ε}
for a countable dense G0 ⊆ G it is also coanalytic, whence R is Borel. �
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