MA 430, THIRD HOMEWORK SET, DUE WEDNESDAY, SEPTEMBER 23RD.

1. Exercise

For a subset $A \subseteq \mathbb{N}$, we let $[A]^{2}=\left\{(n, m) \in \mathbb{N}^{2} \mid n, m \in A \& n<m\right\}$. We can think of $[A]^{2}$ as being the set of 2-element subsets of A. Recall the infinite version of Ramsey's theorem:

Theorem 1. Suppose $c:[\mathbb{N}]^{2} \rightarrow\{0,1\}$ is a colouring. Then there is an infinite subset $A \subseteq \mathbb{N}$ such that $[A]^{2}$ is monochromatic, i.e., such that $\left.c\right|_{[A]^{2}}$ is constant.

Use the Compactness Theorem for propositional logic to show the following finite version of Ramsey's Theorem:

Theorem 2. For any $k \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that if

$$
c:[\{1,2, \ldots, n\}]^{2} \rightarrow\{0,1\}
$$

is a colouring, there is a k-element subset $A \subseteq\{1,2, \ldots, n\}$ such that $[A]^{2}$ is monochromatic.

2. Exercise

Suppose L is a propositional language and \mathcal{A} and \mathcal{B} are sets of L-formulas. We write

$$
\models \bigwedge \mathcal{A} \leftrightarrow \bigvee \mathcal{B}
$$

if whenever v is a valuation of L satisfying \mathcal{A}, then there is some $B \in \mathcal{B}$ such that $v(B)=T$ and whenever v is a valuation satisfying some $B \in \mathcal{B}$ then v satisfies \mathcal{A}.

Show that if

$$
\models \bigwedge \mathcal{A} \leftrightarrow \bigvee \mathcal{B}
$$

then there are finite subsets $\mathcal{A}_{0} \subseteq \mathcal{A}$ and $\mathcal{B}_{0} \subseteq \mathcal{B}$ such that

$$
\models \bigwedge \mathcal{A}_{0} \leftrightarrow \bigvee \mathcal{B}_{0}
$$

Hint: Consider the following set of formulas

$$
\mathcal{C}=\{A, \neg B \mid A \in \mathcal{A}, B \in \mathcal{B}\} .
$$

