MA 430, FOURTH HOMEWORK SET, DUE WEDNESDAY, SEPTEMBER 30TH.

1. ExERCISE

Let A be the formula $((P \wedge Q) \rightarrow(R \leftrightarrow(\neg P \vee Q)))$.
(a) Find a tautologically equivalent formula containing only the connectives \rightarrow and \leftrightarrow.
(b) Find a formula in disjunctive normal form that is tautologically equivalent to A.
(c) Find a formula in conjunctive normal form that is tautologically equivalent to A.

2. Exercise

(a) Show that no matter how parentheses are distributed in

$$
P_{1} \leftrightarrow P_{2} \leftrightarrow P_{3} \leftrightarrow \ldots \leftrightarrow P_{2 n},
$$

the resulting formula is true if and only if an even number of the P_{i} are true.
(b) Show that no matter how parentheses are distributed in

$$
P_{1} \leftrightarrow P_{2} \leftrightarrow P_{3} \leftrightarrow \ldots \leftrightarrow P_{2 n+1}
$$

the resulting formula is true if and only if an odd number of the P_{i} are true.
Conclude that any distribution of parentheses in

$$
P_{1} \leftrightarrow P_{2} \leftrightarrow P_{3} \leftrightarrow \ldots \leftrightarrow P_{n}
$$

lead to logically equivalent formulas.

3. Exercise

Let P and Q be distinct propositional variables and for every two-place logical connective x, let

$$
A_{x}=(P x(Q x P))
$$

and

$$
B_{x}=((P x Q) x \neg(P x Q)) .
$$

A formula is said to be an antilogy if its negation is a tautology.

- Decide which of the above formulas are tautologies or antilogies when

$$
\begin{array}{lll}
x=\vee & x=\wedge & x=\leftrightarrow \\
x=\rightarrow & x=\uparrow & x=\downarrow
\end{array}
$$

