MA 430, SEVENTH HOMEWORK SET, DUE WEDNESDAY, NOVEMBER 4TH.

1. Exercise

Let $L=\{f, g\}$, where f and G are unary and binary function symbols respectively. Consider the following sentences
(1) $A_{1}: \exists x \exists y f g x y=f x$,
(2) $A_{2}: \forall x \forall y f g x y=f x$,
(3) $A_{3}: \exists y \forall x f g x y=f x$,
(4) $A_{4}: \forall x \exists y f g x y=f x$,
(5) $A_{5}: \exists x \forall y f g x y=f x$,
(6) $A_{6}: \forall y \forall x f g x y=f x$.

Consider the four structures whose universe is \mathbb{N}_{+}, where g is interpreted as the $\operatorname{map}(m, n) \mapsto m+n$ and f is interpreted by respectively
a: the constant map with value 103 ,
b: the map which to each integer n associates the remainder after division by 4 ,
c: the map $n \mapsto \min \left(n^{2}+2,19\right)$,
d : the map which to each integer n associates 1 if $n=1$ and the smallest prime divisor of n if $n>1$.
Decide for each of the four cases above, which of the 6 formulas A_{1}, \ldots, A_{6} are true in the structure.

2. Exercise

Let $L=\{P, R\}$, where P and R are unary and binary relation symbols respectively. Consider the following sentences
(1) $B_{1}: \exists x \forall y \exists z((P x \rightarrow R x y) \wedge P y \wedge \neg R y z)$,
(2) $B_{2}: \exists x \exists z((R z x \rightarrow R x z) \rightarrow \forall y R x y)$,
(3) $B_{3}: \forall y(\exists z \forall v R v z \wedge \forall x(R x y \rightarrow \neg R x y))$,
(4) $B_{4}: \exists x \forall y((P y \rightarrow R y x) \wedge(\forall v(P v \rightarrow R v y) \rightarrow R x y))$,
(5) $B_{5}: \forall x \forall y((P x \wedge R x y) \rightarrow((P y \wedge \neg R y x) \rightarrow \exists z(\neg R z x \wedge \neg R y z)))$.

Consider the three L-structures defined by
a: the universe is \mathbb{N}, the interpretation of R is the usual order relation \leqslant, the interpretation of P is the set of even integers,
\mathbf{b} : the universe is $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}), the interpretation of R is the inclusion relation \subseteq, the interpretation of P is the collection of all finite subsets of \mathbb{N},
c: the universe is \mathbb{R}, the interpretation of R is the set of pairs $(a, b) \in \mathbb{R}^{2}$ such that $b=a^{2}$, the interpretation of P is the subset of rational numbers. Decide for each of the three cases above, which of the 5 formulas B_{1}, \ldots, B_{5} are true in the structure.

3. Exercise

Let $L=\{f, g\}$, where f and g are unary function symbols.
(a) Find three sentences A, B, and C such that for every L-structure $\mathcal{M}=$ $\left\langle M, f^{\mathcal{M}}, g^{\mathcal{M}}\right\rangle$, we have

- $\mathcal{M} \equiv A \Leftrightarrow f^{\mathcal{M}}=g^{\mathcal{M}}$ and $f^{\mathcal{M}}$ is a constant map,
- $\mathcal{M} \equiv B \Leftrightarrow \operatorname{Im}\left(f^{\mathcal{M}}\right) \subseteq \operatorname{Im}\left(g^{\mathcal{M}}\right)$,
- $\mathcal{M} \models C \Leftrightarrow \operatorname{Im}\left(f^{\mathcal{M}}\right) \cap \operatorname{Im}\left(g^{\mathcal{M}}\right)$ is a singleton.

Consider the following L-sentences:
(1) $E_{1}: \forall x f x=g x$,
(2) $E_{2}: \forall x \forall y f x=g y$,
(3) $E_{3}: \forall x \exists y f x=g y$,
(4) $E_{4}: \exists x \forall y f x=g y$,
(5) $E_{5}: \exists x \exists y f x=g y$.
(b) Construct structures satisfying each of the following six formulas:

$$
\begin{array}{llr}
E_{1} \wedge \neg E_{2} & E_{2} & \neg E_{1} \wedge E_{3} \\
\neg E_{1} \wedge E_{4} & \neg E_{3} \wedge \neg E_{4} \wedge E_{5} & \neg E_{5}
\end{array}
$$

