
Chapter 2

Limits of Sequences

Calculus Student: lim
n→∞

sn = 0 means the sn are getting closer and closer to zero but

never gets there.

Instructor: ARGHHHHH!

Exercise 2.1 Think of a better response for the instructor. In particular, provide a

counterexample: find a sequence of numbers that ’are getting closer and closer to

zero’ but aren’t really getting close at all. What about the ’never gets there’ part?

Should it be necessary that sequence values are never equal to its limit?

2.1 Definition and examples

We are going to discuss what it means for a sequence to converge in three stages:

First, we define what it means for a sequence to converge to zero

Then we define what it means for sequence to converge to an arbitrary real number.

Finally, we discuss the various ways a sequence may diverge (not converge).

In between we will apply what we learn to further our understanding of real numbers

and to develop tools that are useful for proving the important theorems of Calculus.

Recall that a sequence is a function whose domain is Z+ or Z≥. A sequence is most

usually denoted with subscript notation rather than standard function notation, that

is we write sn rather than s(n). See Section 0.3.2 for more about definitions and

notations used in describing sequences.
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Figure 2.1: sn =
1

n
.
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2.1.1 Sequences converging to zero.

Definition We say that the sequence sn converges to 0 whenever the following hold:

For all ε > 0, there exists a real number, N, such that

n > N =⇒ |sn| < ε.

Notation To state that sn converges to 0 we write lim
n→∞

sn = 0 or sn → 0.

Example 2.1 lim
n→∞

1

n
= 0. See the graph in Figure 2.1.

Proof. Given any ε > 0, use Archimedes Principle, Theorem 1.51, to find an N, such

that 1
N
< ε. Note that, if n > N, then 1

n
< 1

N
(Exercise 1.10 d). Now, if n > N, we

have

|sn| =
1

n
<

1

N
< ε.

In short:

n > N =⇒ |sn| < ε,

so we have shown that lim
n→∞

1

n
= 0.

Example 2.2 If sn = 0, for all n, then lim
n→∞

sn = 0

Proof. Given any ε > 0, let N be any number. Then we have

n > N =⇒ |sn| = 0 < ε,

because that’s true for any n.
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Figure 2.2: Some values approach 0, but others don’t.
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Example 2.3 Why isn’t the following a good definition?

” lim
n→∞

sn = 0 means

For all ε > 0, there exists a positive integer, N, such that |sN | < ε.”

The problem is we want the sequence to get arbitrarily close to zero and to stay close.

Consider the sequence:

sn =

{
1
n
, if n is odd

0.3, otherwise.

For any ε there is always an odd n with sn less than ε but there there are also many

even n’s with values far from zero. The ’n > N’example is an important part of the

definition. See the graph in Figure 2.2.

Exercise 2.2 Prove that lim
n→∞

3

n
= 0

Exercise 2.3 Prove that lim
n→∞

1

n2
= 0

Exercise 2.4 Prove that lim
n→∞

(−1)n

n
= 0 See Figure 2.3.

Exercise 2.5 Prove that lim
n→∞

1

n(n − 1)
= 0.

It is good to understand examples when the definition of converging to zero does

not apply, as in the following example.

Example 2.4 Prove that the sequence, sn =
n + 1

n + 2
does not converge to 0.

Proof. We must show that there exists a positive real number, ε, such that for all real

numbers, N, it’s possible to have n > N and |sn| > ε. ε = 0.5 will do. We can see

that
n + 1

n + 2
= 1−

1

n + 2
> 1−

1

2
≥

1

2
.

So, in fact, any n > N works for any N to give that |sn| > ε.
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Figure 2.3: Picking N for smaller and smaller ε for the sequence sn = (−1)n
n
.
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The above are good exercises but problems like these will be easier to prove – that

is, no epsilons nor multiple quantifiers will be needed – once we have some theorems.

For example:

Exercise 2.6 Use the following theorem to provide another proof of Exercise 2.4.

Theorem 2.1 For any real-valued sequence, sn:

sn → 0 ⇐⇒ |sn| → 0 ⇐⇒ −sn → 0

Proof. Every implications follows because |sn| = ||sn|| = | − sn|

Theorem 2.2 If lim
n→∞

an = 0, then the sequence, an, is bounded. That is, there exists

a real number, M > 0 such that |an| < M for all n.

Proof. Since an → 0, there exists N ∈ R+ such that n > N =⇒ |an| < 1. Here we

use the definition of converging to 0 with ε = 1. (NOTE: We could use any positive

number in place of 1.) Let B be a bound for the finite set {an : n ≤ N}. This set

is bounded by Theorem 1.41. Let M = max{B, 1} Hence any an is bounded by M

because it is either in the finite set (n ≤ N ) and bounded by B or it is bounded by 1,

because n > N.

Theorem 2.3 ALGEBRAIC PROPERTIES OF LIMITS 1

Given three sequences, lim
n→∞

an = 0, lim
n→∞

bn = 0 and a real number, c, then:

1. lim
n→∞

an + bn = 0

2. lim
n→∞

c · an = 0.

3. lim
n→∞

an · bn = 0.

Proof. 1. Let ε > 0 be given. Because the sequences converge to 0, we can find

N1 such that

n > N1 =⇒ |an| <
ε

2

and we can find N2 such that

n > N2 =⇒ |bn| <
ε

2

Note that |an + bn| ≤ |an|+ |bn| by the THE TRIANGLE INEQUALITY, Theorem 1.2.4.

Let N = max{N1, N2}, so that any n > N is larger than both N1 and N2. Then

n > N =⇒ |an + bn| <
ε

2
+
ε

2
= ε.
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so we have shown that lim
n→∞

an + bn = 0 NOTE: The method of finding the

common N from two others is often shortcut with the following words: Find N

sufficiently large so that both |an| < ε
2

and |bn| < ε
2
. It is assumed the reader

understands the process.

2. If c = 0, then c · an = 0 for all n and converges to 0. So assume c 6= 0. Let

ε > 0 be given. Because an → 0, we can find N such that

n > N =⇒ |an| <
ε

|c |

Note that |c · an| = |c | · |an| < |c | · e|c| = ε. So we have shown that c · an → 0.

3. HINT: Make use of the fact that an is bounded and mimic the previous proof.

Exercise 2.7 Prove the following theorem:

Theorem 2.4 If cn is bounded and an → 0, then cn · an → 0

The following theorem is the first in a series of ’squeeze’ theorems, among the most

useful tools we have at our disposal.

Theorem 2.5 SQUEEZE THEOREM If an → 0 and bn → 0 and an ≤ cn ≤ bn, for all n ∈ Z+,
then lim

n→∞
cn = 0.

Proof. Given ε > 0, let N be large enough so that whenever n > N, then both |bn| < ε

and |an| < ε. Now, for any n > N, if cn > 0, we have |cn| ≤ |bn| < ε. or if cn < 0,

then |cn| = −cn ≤ −an = |an| < ε. So, for all n > N we have |cn| < ε. We have shown

that cn → 0.

True or False 10

Which of the following statements are true? If false, modify the hypothesis to make

a true statement. In either case, prove the true statement.

a) lim
n→∞

n2 + n

n3
→ 0

b) For all r ∈ R, lim
n→∞

1

n + r
→ 0.

c) For any integer, m, lim
n→∞

1

nm
= 0

d) For r ∈ R, r n → 0.
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Exercise 2.8 One way to modify the last True or False, part d), is given in the following

theorem. Use BERNOULLI’S INEQUALITY Theorem 1.27 to prove the theorem.

Theorem 2.6 If 0 ≤ r < 1, then r n → 0

Proof. EFS

2.1.2 Sequences that converge to arbitrary limit

Definition We say that sn converges whenever there exists a real number, s, such

that |s − sn| → 0. In this case, we say that sn converges to s, and write

lim
n→∞

sn = s or sn → s

Example 2.5 lim
n→∞

n + 1

n + 2
= 1, because 1−

n + 1

n + 2
= 1− (1−

1

n + 2
) =

1

n + 2
→ 0, as

shown in True or False.

Exercise 2.9 Show that sn → 0 means the same thing for both definitions: converging

to 0 and converging to an arbitrary limit that happens to be 0.

Theorem 2.7 UNIQUENESS OF LIMIT If an → a and an → b, then a = b.

Proof. Use the triangle inequality to see that 0 ≤ |a − b| = |a − an + an − b| ≤
|a − an| + |an − b|. Apply THE SQUEEZE THEOREM (Theorem 2.5.): the left-most term

is the constant sequence, 0, the right-most term is the sum of two sequences that

converge to 0, so also converges to 0, by ALGEBRAIC PROPERTIES OF LIMITS, Theorem

2.3. Hence the middle term (which is a constant sequence) also converges to 0. So

|a − b| = 0 =⇒ a = b.

Exercise 2.10 Prove: If an = c , for all n, then lim
n→∞

an = c

Theorem 2.8 If lim
n→∞

an = a, then the sequence, an, is bounded.

Proof. EFS Consider using Theorem 2.2.

Theorem 2.9 If lim
n→∞

an = a and if an 6= 0 and a 6= 0, then the sequence, an, is

bounded away from 0. That is, there exists a positive number B, such that |an| > B,

for all n.

Proof. (Draw a numberline picture to help see this proof.)To find such a bound, B,

first note that there is N > 0 such that |an − a| < | a2 | for all positive integers n > N.

(Using ε = | a
2
| in the definition of limit.) For those n,

|an| ≥ |a| − |an − a| > |a| − |
a

2
| = |

a

2
|.
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Now let B = min {|an| : n ≤ N}. This set has a minimum value because it is a finite

set. (Theorem 1.41) Of course, B > 0 because none of the an = 0. Finally, let

B = min {B, | a
2
|}. So |an| > B, for all n.

Theorem 2.10 ALGEBRAIC PROPERTIES OF LIMITS 2

Given two sequences, lim
n→∞

an = a and lim
n→∞

bn = b, then:

1. lim
n→∞

an + bn = a + b

2. lim
n→∞

an · bn = a · b

3. If an, a 6= 0, then lim
n→∞

1

an
=

1

a

Proofs. For all the proofs make use of all the theorems we have about sequences that

converge to zero.

1. EFS

2. HINT: Use this trick |an · bn− a · b| = |an · bn− an · b+ an · b− a · b|, the triangle

inequality and the boundedness of a converging sequence.

3. Theorem 2.9 applies to this sequence, let B be that positive number such that

|an| > B, for all n. Consider the inequality

0 < |
1

an
−

1

a
| =
|a − an|
|an · a|

<
|an − a|
B · |a|

Since |an − a| → 0, we can apply ALGEBRAIC PROPERTIES OF LIMITS 1,Theorem 2.3

and THE SQUEEZE THEOREM, Theorem 2.5, to conclude that |
1

an
−

1

a
| → 0 and

hence |
1

an
→

1

a
|.

LIMITS OF RATIOS An important concern of calculus is what happens to the ratio of two

limits when both the numerator and denominator converge to 0. If the denominator

converges to zero, but the numerator is bounded away from zero, then the ratio will

be unbounded and not converge. See more in Section 2.1.5.

Exercise 2.11 Give examples of two sequences, an → 0 and bn → 0, such that

a.
an
bn
→ 0
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b.
an
bn
→ c , where c is a positive real number.

c.
an
bn

does not converge.

Theorem 2.11 ORDER PROPERTIES OF LIMITS

For real sequences, an, bn, cn and real numbers, a and c.

1. If an > c for all n ∈ Z+ and an → a, then a ≥ c

2. If an ≤ c ≤ bn for all n and |an − bn| → 0, then an → c and bn → c.

3. THE SQUEEZE THEOREM If an → c and bn → c and an ≤ cn ≤ bn for all n ∈ Z+,

then cn → c

Proof. Confirm each statement and explain how it proves the corresponding part of

the theorem. Drawing a numberline picture of the situation may help.

1. Suppose c − a > 0, find N such that n > N =⇒ |a − an| < c − a.

2. For all n, 0 ≤ |an − c | ≤ |bn − an|

3. 0 ≤ |c − cn| ≤ |c − an|+ |an − cn| ≤ |c − an|+ |an − bn|

Exercise 2.12 Counterexample for Theorem 2.11 2. Find two sequences an and bn such

that |an − bn| → 0, but neither sequence converges. Is it possible that one sequence

could converge but the other does not?

Theorem 2.12 THE TAILEND THEOREM If an → a and if bn = an+m for some fixed,

positive integer m, then

bn → a.

( A tailend of a sequence is a special case of a subsequence, see Section 2.1.4.)

Proof. EFS

Exercise 2.13 Prove: If an → c and bn → c , then |an − bn| → 0

Exercise 2.14 Conjecture what the limit might be and prove your result.

sn =
3n2 + 2n + 1

n2 + 1

Exercise 2.15 Prove that, if c 6= 0, then

lim
n→∞

a · n + b

c · n + d
=
a

c
.
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Exercise 2.16 Prove: If an → a, bn → b, and an < bn for all n, then a ≤ b.

Exercise 2.17 Prove: If S is a bounded set, then there exists a sequence of points,

sn ∈ S such that sn → supS.

Exercise 2.18 Prove: If an → a then a2n → a2

Monotone sequences

Definition We say a sequence is monotone whenever it is an increasing sequence or

a decreasing sequence.

Theorem 2.13 MONOTONE CONVERGENCE THEOREM Every bounded, monotone sequence

converges to a real number.

Proof. Let sn be a bounded, increasing sequence. Let s = sup{sn} which exists

because sn is bounded above. We claim that sn → s. Given ε > 0, use Theorem 1.46

to find x = sN ∈ {sn} such that s − ε < sN. Now if n > N, we know sn > sN because

the sequence is increasing, so

|sn − s| = s − sn < s − sN < ε.

We conclude that sn → s.

If tn is a bounded, decreasing sequence, then sn = −tn is bounded and increasing.

Since sn → s, for some s, we known that tn = −s.

Best Nested Interval Theorem

Theorem 2.14 BEST NESTED INTERVAL THEOREM There exists one and only one real num-

ber, x, in the intersection of a sequence of non-empty, closed, nested intervals if the

lengths of the intervals converge to 0. Furthermore, the sequence of right endpoints

and the sequence of left endpoints both converge to x.

Proof. Denote the intervals by [an, bn]. Because they are nested we know that an is

increasing and bn is decreasing so, by MONOTONE CONVERGENCE THEOREM, there are real

numbers a and b such that an → a and bn → b. Let c be any real number in the

intersection of all the intervals. Then an ≤ c ≤ bn and since |bn − an| → 0 we have

by the ORDER PROPERTIES OF LIMITS (Theorem 2.11 2.), c = a = b.
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Rational Approximations to Real Numbers

We have not yet shown that there are real numbers other than rational numbers.

However, if there is one, the following method indicates that you can approximate it

by rational numbers; that is, there is a sequence of rational numbers that converge it.

The method of bisection used here is a well-used tool of analysis.

Example 2.6 Let r be any non-rational real number. Find a sequence of rational

numbers that converge to r.

Using the method of bisection. There are other ways to show the existence of such a

sequence. The advantage to this method is that it gives a way to construct approxi-

mations of the given real number.

First, find rational numbers a0 and b0 such that a0 < r < b0. By Theorem 1.60,

they can be consecutive integers, so |b0 − a0| = 1. Recursively define a sequence

of non-empty, closed, nested intervals [an, bn] such that each interval contains r and

|bn−an| = 1
2n
. We already have the base case, [a0, b0]. Assume [an, bn] has been defined

as required. Let m be the midpoint of [an, bn]. Since m is a rational number(why?),

m 6= r, so there are two cases to consider:

1. If m < r, let an+1 = m and bn+1 = bn.

2. If r < m, let an+1 = an and bn+1 = m.

In either case r ∈ [an+1, bn+1] and [an+1, bn+1] ⊂ [an, bn]. The length of this interval is

half the length of the previous interval = 1
2
· 1
2n

= 1
2n+1

, so the lengths of the intervals

converge to 0. So we have the intervals as required and they satisfy the BEST NESTED

INTERVAL THEOREM (Theorem 2.14). That theorem tells us that both an and bn converge

to the unique number that is in all the intervals. But r is in all the intervals. So both

an → r and bn → r. Either sequence will do to prove the theorem.

2.1.3 Application: Existence of square roots

The proof given here of the existence of square roots is by construction. There are

other ways to prove the existence of square roots – the advantage to this method is

that it gives a way to calculate approximations to
√

2.

Example 2.7 There exists a unique positive real number, s, such that s2 = 2.

Proof by bisection. We will show that there is a nested sequence of closed intervals,

In = [an, bn], such that an
2 ≤ 2 ≤ bn2 and |bn − an| = 1

2n
. By the BEST NESTED INTERVAL

THEOREM, there is a unique number, s, in all of the intervals. We will show that s2 = 2
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using a squeeze argument.

We define the intervals inductively: Base case: Let a0 = 1 and b0 = 2, so

a0
2 = 1 ≤ 2 ≤ 4 = b0

2, and |b0 − a0| = 1 =
1

20
.

Assume an and bn have been defined as desired, that is

an
2 ≤ 2 ≤ bn2, and |bn − an| =

1

2n
.

Proceed inductively to define the next interval, In+1 = [an+1, bn+1]. Let m be the

midpoint of the interval [an, bn]. We know that m2 6= 2 because we know the square

root can not be a rational number. (Why do we claim m is rational?) So there are

only two cases to consider:

1. If m2 < 2, let an+1 = m and bn+1 = bn.

2. If 2 < m2, let an+1 = an and bn+1 = m.

Since m is the midpoint of the previous interval the length of In+1 is half the length

of In, so |bn+1 − an+1| = 1
2
· 1
2n

= 1
2n+1

Let s be the unique number in all the intervals, [an, bn]. We know an → s and bn → s.

So we also know that a2n → s2, b2n → s2. (See Exercise 2.18) Now consider the image,

under the squaring function of all those intervals. The intervals [a2n, b
2
n] are closed,

non-empty (a2n < b2n because an < bn); and nested (a2n is increasing because an is

increasing, and b2n is decreasing because bn is decreasing). These all follow because

the function x → x2 is increasing on positive numbers, see Exercise 1.12. Furthermore,

|b2n − a2n| → 0. The BEST NESTED INTERVAL THEOREM applies and we conclude there is a

unique real number in all the intervals and that the endpoints converge to that number.

2 is in all the intervals and an → s2, so s2 = 2, by uniqueness of limits.

To see why there is only one positive solution to the equation x2 = 2, we will use

Theorem 1.10, THERE ARE NO ZERO DIVISORS. Let
√

2 be the positive solution found above.

Note, through the distributive law and some simplification, that

(x −
√

2)(x +
√

2) = x2 + x
√

2− x
√

2− (
√

2)2 = x2 − 2

Now suppose x2 = 2, then

x2 − 2 = 0 by subtracting 2

(x −
√

2)(x +
√

2) = 0 as seen in the note

We conclude by Theorem 1.10 that x =
√

2 or x = −
√

2 are the only two solutions

to x2 = 2. Only
√

2 is positive.

Theorem 2.15 For all A > 0, there exists a unique positive real number, s, such that

s2 = A.

Proof. HINT: What in the proof for Example 2.7 depends on the choice A = 2?

Definition We use the symbol
√
A to denote the unique number such that (

√
A)2 = A.
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Figure 2.4: sn =

√
5n + 3√
n + 10
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Now that we know that every positive number has a unique positive square root we

are free to use square roots in our other work.

Exercise 2.19 Conjecture what the limit might be and prove your result.

sn =

√
5n + 3√
n + 10

Exercise 2.20 Use Theorem 2.13 to show that lim
n→∞

1√
n

= 0.

2.1.4 Subsequences

Definition We call sequence, snk , whose values are a subset of the values of sn, a

subsequence of sn, whenever the sequence nk is strictly increasing. (We will assume

that k is indexed on Z≥, i.e. n0 is the first value.)

Example 2.8 If nk = 2k , then the subsequence is every other element, starting at 0,

of the sequence.

Exercise 2.21 Prove: If snk is a subsequence of sn, then nk ≥ k. Note that this is true

for any increasing sequence of positive integers nk .

Exercise 2.22 Show how a ’tailend’ of a sequence, as discussed in Theorem 2.12, is a

subsequence of that sequence.

Theorem 2.16 If sn → s, then any subsequence of sn also converges to s.

Proof. Let snk be a subsequence of sn. Given ε > 0, find N so that n > N =⇒
|sn − s| < ε. Such N exists because sn → s. Now consider the subsequence: If k > N,

then nk > N (by Exercise 2.21), so |snk − s| < ε.

Example 2.9 The sequence is Exercise 2.23 has many subsequences, each of which

converges to one of five different numbers. For example, s5k+2 → sin 4π
5
.
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2.1.5 Divergent Sequences

Definition A sequence is said to diverge if there is no real number L such that the

sequence converges to L.

To show that a sequence, sn, converges we would first conjecture a possible limit,

L, and then prove sn → L. To show that the sequence does not converge is perhaps

harder because we have to show it doesn’t converge for all possible values L. And we

would need to prove the negation of the statement, sn → L, for all values of L. Here

are both statements:

sn → L, means

For all ε > 0, there exists N > 0, such that

n > N =⇒ |sn − L| < ε.

sn 6→ L, means

There exists an ε > 0, such that for all N > 0

there is an n > N with |sn − L| ≥ ε.

Fortunately there is an easier way to show that a sequence diverges by observing

subsequence behavior, using Theorem 2.16.

Example 2.10 The sequence,

sn =

{
1, n, odd

−1, n, even

diverges, i.e. does not converge to any real number L.

Proof. The subsequence given by nk = 2k + 1 is a constant sequence: snk = 1 for all

k. This subsequence converges to 1. The subsequence given by nk = 2k converges

to −1. If the sequence converged, both subsequences would have to converge to the

same number, by Theorem 2.16. So the sequence does not converge.

Exercise 2.23 Υ Explain why the following sequence, sn = sin(2πn)
5
, diverges. The

graph of this sequence is shown in Figure 2.5.

Example 2.11 AnotherΥexample of a divergent sequence is sn = sin(n). That this

sequence does not converge seems a correct conclusion considering the graph, shown

in Figure 2.6. Proving that goes beyond the scope of our present discussion.

Another way a sequence may fail to converge is if it is unbounded. We consider

separately the case when the limit appears to be infinite as in the sequence, sn = n.
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Figure 2.5: sn = sin(2πn
5

).
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Figure 2.6: sn = sin(n).
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Definition We say that sn diverges to infinity and we write, lim
n→∞

sn = +∞, whenever,

for all M > 0, there exists N > 0 such that

n > N =⇒ sn ≥ M.

Example 2.12 lim
n→∞

n2 = +∞: If M is any positive real number, let N = M. Then, if

n > N, we have that n2 > n > N = M or simply that n2 > M. (EFS: Explain the

step n2 > n)

Exercise 2.24 Give a sequence that is unbounded but does not diverge to +∞

Theorem 2.17 If sn → +∞, then any subsequence of sn also diverges to +∞.

Proof. EFS

Exercise 2.25 Prove the following theorem.

Theorem 2.18 ALGEBRAIC PROPERTIES OF DIVERGENT LIMITS

1. an → +∞ and bn → b or bn → +∞ =⇒ (an + bn)→ +∞.

2. an → +∞ and bn → b > 0 or bn → +∞ =⇒ (an · bn)→ +∞.

3. an 6= 0, an → +∞ =⇒
1

an
→ 0
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4. If an > 0 for all n, then an → 0 =⇒ 1
an
→ +∞

Exercise 2.26 Prove the following theorem.

Theorem 2.19 If r > 1, then r n → +∞

Proof.

Exercise 2.27 LIMITS OF RATIOS Give examples of two sequences, an → +∞ and bn →
+∞, such that

a.
an
bn
→ +∞

b.
an
bn
→ 0

c.
an
bn
→ c , where c is a positive real number.

Exercise 2.28 Provide a definition and theorems about diverging to −∞

a. What would it mean for the limit of a sequence to be −∞?

b. If it is not part of your definition prove: lim
n→∞

sn = −∞ ⇐⇒ lim
n→∞
−sn = +∞?

c. If it is not part of your definition prove: If lim
n→∞

sn = −∞ then,

for all M < 0, there exists N > 0 such that

n > N =⇒ sn ≤ M.

d. Give an example of a sequence that diverges to −∞ and prove that it does.

e. State and prove statements of ALGEBRAIC PROPERTIES OF DIVERGENT LIMITS for se-

quences that diverge to −∞

f. If sn → −∞, then any subsequence of sn also diverges to −∞.

Exercise 2.29 Give a sequence sn → 0 where
1

sn
does not diverge +∞ and does not

diverge to −∞.

Theorem 2.20 If p is a polynomial that is not constant, then either

lim
n→∞

p(n) = +∞ or lim
n→∞

p(n) = −∞

Proof. HINT: Use induction on the degree of the polynomial.
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2.2 Limits and Sets

2.2.1 Limit Points and Boundary Points

We have already seen that there is a sequence in a set S that converges to inf S and

another that converges to supS. In this section, we investigate other characteristics of

sets and points that would guarantee the existence of a sequence of elements within

the set that converge to the point.

Definition We say the a point, p, is a limit point of a set, S, whenever every open

interval about p contains an infinite number of points in S. In particular, it contains

a point in S that is not equal to p.

NOTE: The point p need not be in S.

Definition We say the a point, p, is a limit point of a sequence, sn, whenever every

open interval about p contains an infinite number of sn.

Example 2.13 The limit points of the image of sn may be different than the limit points

of sn. Consider sn = (−1)n. The image of sn is {,−1, 1}, a set that has no limit points.

However, both −1 and 1 are limit points of the sequence because they each appear

an infinite number of times in the sequence.

Theorem 2.21 A real number p is a limit point of a set S, if and only if there exists

sequence of points in S \ {p} that converge to p.

Proof. =⇒ Suppose p is a limit point of S. For each n ∈ Z+, let

sn ∈ S ∩ (p −
1

n
, p +

1

n
) \ {p}.

Such a point exists because p is a limit point. We claim that sn → p. For we know,

for all n,

0 < |p − sn| <
1

n

From the squeeze theorem, we conclude that |p − sn| → 0 or sn → p.

⇐=Let sn ∈ S \ {p} converge to p. Let (a, b) be an open interval containing p.

Consider any positive ε < min(b−p, p−a), so that p ∈ (p−e, p+ε) ⊂ (a, b). By the

convergences of sn, there exists N such that n > N =⇒ |p − sn| < ε. These sn’s are

an infinite number of values of the sequences that are in (a, b)\{p}. If there were only

a finite number of numbers from S in this sequence, we would have a subsequence of

sn that converges to some other number which cannot happen. So the sn for n > N

are an infinite number of points in (a, b), as required to show that p is a limit point

of the set S.
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Theorem 2.22 A real number s is a limit point of a sequence sn if and only if there

exists a subsequence of sn that converge to s.

Proof. EFS

Definition We say the a point, p, is an boundary point of a set, S, whenever every

open interval containing p contains points in both S and R \ S.

Example 2.14 Every point in a finite set is a boundary point of the set. Every point in

a finite set is a boundary point of the complement of set.

True or False 11

Which of the following statements are true? If false, modify the statement to be true.

Explain.

a) The endpoints of an interval are boundary points of the interval.

b) Every point in an interval is a boundary point of the interval.

c) Every point of an interval is a limit point of the interval.

d) The inf S is a limit point of S.

e) The inf S is a boundary point of S.

f) The maximum value of a S is a boundary point of S.

Example 2.15 Give an example of each of the following and explain.

a) A set and a point that is a boundary point but not a limit point of the set.

b) A set and a point that is a limit point but not a boundary point.

c) A set and a point that is neither a limit point nor a boundary point of the set.

d) A set and a point that is both a boundary point and a limit point of the set.

2.2.2 Open and Closed Sets

Definition We say a set is open whenever it contains none of its boundary points.

Definition We say a set is closed whenever it contains all of its boundary points.

Example 2.16 Open intervals are open sets because the only boundary points of an

interval are the endpoints and neither are contained in the open interval.



2.2. LIMITS AND SETS 61

Example 2.17 Closed intervals are closed sets be because the only boundary points of

an interval are the endpoints and both are contained in the closed interval.

Theorem 2.23 The following are equivalent

1. S is an open set

2. Every s ∈ S is contained in an open interval that is completely contained in S.

3. R \ S is closed.

Proof.

Theorem 2.24 The following are equivalent

1. S is an closed set

2. S contains all of its limit points.

3. R \ S is open.

Proof.

Exercise 2.30 Is R open or closed? Is ∅ open or closed?

Exercise 2.31 {x : x2 ≤ 57} is a closed set.

True or False 12

Which of the following statements are true? If false, modify the statement to be true.

Explain.

a) An open set never contains a maximum.

b) A closed set always contains a maximum.

Theorem 2.25 Union and Intersection properties

1. The intersection of a collection of closed sets is closed.

2. The union of a collection of open sets is open.

3. The intersection of a finite collection of open sets is open.

4. The union of a finite collection of closed sets is closed.

Proof. HINTS:

1. Use the ’contains all limit points’ criteria for closed sets.

2. Use the ’there is an open interval about any point’ criteria for open sets.
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2.2.3 Optional – Connected sets

Suppose that there were no real number, s, such that s2 = 56. Consider the two sets

U = {s : s2 < 56} and V = {s : s2 > 56}. Then an interval like [7, 8] could be

divided into two distinct parts by the disjoint sets, U and V. There would be a ’hole’

in the numberline. This leads to the definition of connected that says a connected set

cannot be covered by two distinct open sets. That intervals are connected is a way

of understanding the completeness axiom and investigating sets that may have more

complicated structure than intervals.

Definition We say a set, S, is connected if it is not contained in the union of two

disjoint non-empty, open sets.

Example 2.18 Finite sets are not connected

Here we present another nice application of the Nested Interval Theorem.

Theorem 2.26 A connected set is a, possibly infinite, interval.

Proof. Hint: this will be easiest to handle using the criteria for intervals investigated

in Section 1.3.6. Let C be a connected subset of R. Suppose a, b ∈ C and a < b.

Suppose there is an x such that a < x < b. If x 6∈ C, then let U = (−∞, x) and

V = (x,∞). U and V are open intervals and together they cover C if x is not in C.

This contradicts that C is connected. So we conclude x ∈ C. WE have shown that C

satisfies the condition 1.1 that defines an interval. So C is an interval.

The more interesting part is that every interval is connected.

Theorem 2.27 Any interval is connected.

Proof. Again, we will use the criteria 1.1. Let I be an interval and assume it is not

connected. Let U and V be two disjoint open sets such that I ∈ U ∪ V. Since both

R \ U and R \ V are closed this means that I is also covered by two distinct closed

sets. We will use this and the fact that closed sets contain all of their limit points

later in the proof.

Since neither U nor V are empty, pick u0 ∈ U and v0 ∈ V and assume, without loss

of generality, that u0 < v0. Define inductively a sequence of closed, nested intervals,

[un, vn] with un ∈ I ∩ U and vn ∈ I ∩ V and length, |vn − un| = |v0−u0|
2n

. The base

case, [u0, v0], satisfies the conditions. Assume [un, vn] has been defined. Let m be the

midpoint of the interval [un, vn]. So,

u0 < m < v0

Now un, vn ∈ I and so m ∈ I by 1.1. There are two cases:
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1. If m ∈ U, let un+1 = m and vn+1 = vn.

2. If m ∈ V, let un+1 = un and vn+1 = m.

In either case, then un+1 ∈ I ∩ U and vn+1 ∈ I ∩ V. and [un+1, vn+1] ⊂ [un, vn]. So we

have a closed interval of the required form. Since m is the midpoint, we known that

|vn+1 − un+1| =
1

2
|vn − un| =

1

2
·
v0 − u0

2n
=
v0 − u0

2n+1

These intervals are nested, closed and non-empty so we can applied the Best Nested

Interval Theorem to say there is a point, x ∈ [un, vn], for all n, and that un → x and

vn → x. Since x is in all the intervals, it is between two points of I and so is in I.

Now x is a limit point of R \ U, a closed set, so it must be in R \ U. That is, x is

not in U. But x is also a limit point of R \ V , another closed set, so x is not in V . x

is in neither V nor U, but it is a point in I so U and V cannot cover the interval as

originally supposed. Therefore, the interval is connected.

2.3 The Bolzano-Weierstrass Theorem and Cauchy

Sequences

Theorem 2.28 THE BOLZANO-WEIERSTRASS THEOREM Every bounded sequence has a con-

verging subsequence.

Outline of proof: Name the sequence s and let M be a bound for the sequence. That

is, for all n, |sn| < M. We will construct, using a bisection method, a sequence of non-

empty, closed nested intervals whose lengths converge to 0 and a subsequence of s,

such that k th element of the subsequence is contained in the k th interval. Necessarily,

this subsequence converges to the common point of the intervals. More precisely,

we define inductively a sequence of non-empty, closed, nested intervals, [uk , vk ], such

that each interval contains an infinite number of sequence values and such that each

interval is half the length of the previous interval. Along the way, we define the required

subsequence, snk ∈ [uk , vk ].

The base case is u0 = −M and v0 = M]. Since all sequence points are in this interval,

pick one, sn0. Assume [uk , vk ] has been defined. Let m be the midpoint of the interval

[uk , vk ]. There are two cases. They are not mutually exclusive, so pick the first if both

are true.

1. If there is an infinite number of sn ∈ [m, vk ] let uk+1 = m and vk+1 = vk .

2. If there is an infinite number of sn ∈ [uk , m] let uk+1 = uk and vk+1 = m.
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In either case, then [uk+1, vk+1] contains an infinite number of sn and hence will contain

one whose index value, nk+1 is greater than nk . (There are only a finite number

with index value less than nk .) So, inductively, we have the required sequence of

intervals. We also have constructed a subsequence, snk . We know there is a unique

common point, s, of all the intervals, [uk , vk ] and that uk → s and vk → s. Because

uk ≤ snk ≤ vk , we conclude by the squeeze theorem that snk → s. We have constructed

a converging subsequence for the sequence.

Note on Bolzano-Weirstrass: The limit point, s, is by no means unique as we have

seen sequences may have even an infinite number of limit points. The proof is also not

deterministic in the sense that it does not really help us to construct a limit point. This

is because it offers no procedure for determining which interval contains an infinite

number of points. Still, it helps to know that a convergent subsequence exists. The

theorem is also useful for understanding the following condition that guarantees that

a sequence converges without explicitly finding the limit.

Definition We say that the sequence sn is Cauchy whenever the following hold:

For all ε > 0, there exists a real number, N, such that

n, m > N =⇒ |sn − sm| < ε.

Example 2.19 The sequence an = n is not Cauchy because |an − an+1| = 1.

Example 2.20 The sequence, bn = 1
n

is Cauchy because for all positive integers, m > n,

we have

|
1

n
−

1

m
| =
|m − n|
mn

<
m

mn
=

1

n

The following two lemmas provide all the tools needed to prove our main theorem,

2.31.

Lemma 2.29 A Cauchy sequence is bounded.

Proof. HINT: Mimic the proof of Theorem 2.2.

Lemma 2.30 If any subsequence of a Cauchy sequence converges, then the sequence

itself converges.

Proof. HINT: Consider: |sn − s| ≤ |sn − snk | + |snk − s|. The first term can be made

small by the Cauchy criteria and second because the subsequence converges to s.

Theorem 2.31 A sequence converges if and only if it is a Cauchy sequence
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Outline of proof: =⇒ We will show that if there is a sequence, sn → s, then the

sequence is Cauchy. So, let ε > 0 be given. By convergence of sn find N so that

n > N =⇒ |sn − s| < ε
2
. Then we have,

|sn − sm| ≤ |sn − s|+ |s − sm| <
ε

2
+
ε

2
= ε.

So the sequence is Cauchy.

⇐= By Lemma 2.29 the sequence is bounded. By THE BOLZANO-WEIERSTRASS THEO-

REM the sequence has a converging subsequence. By Lemma 2.30 the sequence also

converges.

The following theorem generalizes the nested interval theorem to closed sets.

Theorem 2.32 The countable intersection of nested, non-empty bounded closed sets

is not empty.

Proof. Let Cn be the closed sets. Since the sets are nested there is a common bounded

for all of them. since each is non-empty pick sn ∈ Cn. This sequence is bounded so

there is a subsequence that converges to some real number s. This point is a limit

point for the intersection. Since the intersection is closed s is contained in it.

2.4 Series and Power series

Series are special kinds of sequences where one keeps a running sum of a sequence,

an to create a new sequence, sn:

Definition The number

sn =

n∑
k=0

ak = a0 + a1 + a2 + · · ·+ an−1 + an

is called the nth partial sum of the generating sequence, an. If the sequence, sn,

converges to a point, s, we say the the series converges to s and we write

s =

∞∑
k=0

ak

Definition A power series is a special kind of series where the generating sequence is

of the form an = cn · r n. If the cn’s are constant, cn = c we call it a geometric series.

Theorem 2.33 ALGEBRAIC PROPERTIES OF SERIES If s =

∞∑
k=0

ak and t =

∞∑
k=0

bk , then
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1. s + t =

∞∑
k=0

(ak + bk).

2. If c ∈ R, then c · s =

∞∑
k=0

c · ak .

Exercise 2.32 Give examples of each of the following:

a. A series that diverges to +∞.

b. A series whose partial sums oscillate between positive and negative numbers.

Exercise 2.33 If an ≥ 0 for all n, then sn =

n∑
k=0

ak is an increasing sequence.

Exercise 2.34 If s =

∞∑
k=0

ak and t =

∞∑
k=0

bk , write a possible formula for the terms of

a series that might be s · t. Prove that your series converges and is equal to s · t.

Exercise 2.35 Show that

∞∑
k=0

1

k
diverges.

2.4.1 Convergence of Geometric series

Lemma 2.34 For all r 6= 1,
n∑
k=0

r k =
1− r n+1

1− r

Proof.

Let sn =

n∑
k=0

r k then we see that

r · sn =

n∑
k=0

r k+1 distributive law across sums

=

n+1∑
k=1

r k adjusting indices

sn − r · sn = 1− r n+1 the two sums have the same terms except

for the first in sn(r 0 = 1) and last in r · sn(r n+1).

Solving for sn gives the result.
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Theorem 2.35 If 0 ≤ |r | < 1, then
∞∑
k=0

r k =
1

1− r

Proof. EFS

2.4.2 Decimals

Definition A decimal representation looks like a0.a1a2a3 · · · an · · · , where a0 is an

integer and an are integers between 0 and 9, inclusively. It represents the number

which is given by the power series where r = 1
10

. We write

a0.a1a2a3 · · · an · · · = a0 + a1 · (
1

10
)1 + a2 · (

1

10
)2 + a3 · (

1

10
)3 + · · · =

∞∑
n=0

an · (
1

10
)n

Exercise 2.36 Prove: 0.999999... = 1.

Theorem 2.36 Every decimal representation is a convergent power series and hence

every decimal representation is a real number.

Proof. The partial sums are bounded by a0+

n∑
k=1

9 · (
1

10
)k < a0+ 1. The partial sums

are increasing. Every bounded increasing sequence converges by MONOTONE CONVER-

GENCE THEOREM 2.13.

As well, every real number has a decimal representation that converges to it, more

precisely

Theorem 2.37 Given any r ∈ R, there exists a sequence of integers an, where 0 ≤
ak ≤ 10 for all k ≥ 1 such that

∞∑
n=0

an · (
1

10
)n = r

Proof. Use Theorem 1.59. and THE BEST NESTED INTERVAL THEOREM.

Notice that nothing is said about the representation of a real number being unique.

In fact any rational number that has a representation that ends with an infinite string

of 0’s has another representation that ends in a string of 9′s. And vice versa.

Exercise 2.37 What changes must be made to the procedure used to find the decimal

representation of a real number, as described in the proof of Theorem 2.37, to produce

a ending string of 0’s instead of 9’s?

Exercise 2.38 Make a flowchart of theorems and connective arguments that take us

from the Completeness Axiom to the representation of real numbers as decimals.
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2.4.3 B-ary representation of numbers in [0, 1]

There is really nothing special about the choice of 10 for representing real numbers

as power series. If instead, we picked 2 we would get binary representation which is of

course of great value in computer science. If you follow the procedure for this choice

of base, you’ll notice the procedure for finding the representation of a real number uses

the bisection method. Octal representation, base 8, and hexidecimal representation,

base 16, are also extensively used in computer science. In the next chapter, we will

have occasion to use tertiary, or base 3, expansions.

Right now, we restate the theorems about decimal representation using a generic base

B, where B is any positive integer greater than 1. We call these B-ary representations.

Exercise 2.39 Pick a single digit number for B to use to complete all the exercises and

proofs in this section.

Definition A B-ary representation looks like a0.a1a2a3 · · · an · · · , where a0 is an integer

and an are integers between 0 and B − 1, inclusively. It represents the number which

is given by the power series where r = 1
B

. We write

a0.a1a2a3 · · · an · · · = a0 + a1 · (
1

B
)1 + a2 · (

1

B
)2 + a3 · (

1

B
)3 + · · · =

∞∑
n=0

an · (
1

B
)n

Exercise 2.40 If a is the symbol that represents the B − 1, prove: 0.aaaaaaa... = 1.

Theorem 2.38 Every B-ary representation is a convergent power series and hence

every B-ary representation is a real number.

Proof. The partial sums are bounded by a0+

n∑
k=1

(B − 1) · (
1

B
)k < a0+ 1. The partial

sums are increasing. Every bounded increasing sequence converges.

As well, every real number has a B-ary representation that converges to it, more

precisely

Theorem 2.39 Given any r ∈ R, there exists a sequence of integers an, where 0 ≤
ak ≤ B for all k ≥ 1 such that

∞∑
n=0

an · (
1

B
)n = r

Proof. Use Theorem 1.59. and THE BEST NESTED INTERVAL THEOREM.
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Notice that nothing is said about the representation of a real number being unique.

In fact any rational number that has a representation that ends with an infinite string

of 0’s has another representation that ends in a string of a’s. And vice versa. (a is

still the symbol for B − 1.)

Exercise 2.41 What changes must be made to the procedure used to find the B-ary

representation of a real number, as described in the proof of Theorem 2.39, to produce

a ending string of 0’s instead of a’s?


