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Abstract. ISP cannot hold at the first or second successor of a singular strong

limit of countable cofinality; on the other hand, we force a failure of “strong SCH”

across a cardinal where ITP holds. We also show that ITP does not imply that there

are stationary many internally unbounded models.

§1. Introduction and Background. The tree property at κ holds if
every tree of height κ with levels of size less than κ has a cofinal branch.
For an inaccessible cardinal, the tree property is equivalent to weak com-
pactness. On the other hand, the tree property can consistently hold at
successor cardinals. Mitchell [6] showed that starting from a weakly com-
pact cardinal, there is a generic extension in which the tree property holds
at ℵ2. Silver showed that the large cardinal hypothesis is necessary. Thus,
the tree property captures the combinatorial essence of weakly compact
cardinals.

In his thesis (also see [15]), Weißisolated strengthenings of the tree
property, which in turn can be viewed as capturing the combinatorics of
strongly compact and supercompact cardinals.

Definition 1.1. Let κ ≤ λ be cardinals. We say that 〈da | a ∈ Pκ(λ)〉
is a Pκ(λ)-list if each da ⊂ a. A Pκ(λ)-list 〈da | a ∈ Pκ(λ)〉 is thin if for
club many c ∈ Pκ(λ), |{da ∩ c | c ⊂ a}| < κ.

For example, note that if κ is inaccessible, every Pκ(λ)-list is thin.

Definition 1.2. Suppose 〈da | a ∈ Pκ(λ)〉 is a Pκ(λ)-list and b ⊂ λ.
Then,

• b is a cofinal branch if {a | da = b ∩ a} is unbounded in Pκ(λ),
• b is an ineffable branch if {a | da = b ∩ a} is stationary in Pκ(λ).

TP(κ, λ) holds if every thin Pκ(λ)-list has a cofinal branch. Note that
TP(κ, κ) is equivalent to the tree property at κ. We say that κ has the
strong tree property if for all λ > κ, TP(κ, λ) holds.

The super tree property at κ, ITP(κ), holds if for all λ > κ, every thin
Pκ(λ)-list has an ineffable branch.
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The following is originally due to Jech and Magidor; but for an explicit
proof with the above terminology, see Weiß’s thesis.

Fact 1.3. Suppose that κ is an inaccessible cardinal. Then κ is strongly
compact if and only if the strong tree property at κ holds; and κ is super-
compact if and only if ITP(κ) holds.

Like in the case of the tree property, starting from a strongly compact
(or supercompact) cardinal and forcing with the Mitchell poset, one can
obtain the strong tree property at ω2 (or ITP(ω2), respectively). More-
over, Spencer Unger [11] and Laura Fontanella [2] independently showed
that in the Cummings-Foreman models [1], ITP holds at ℵn for all n > 1.

An old project in set theory is to obtain the tree property at every regu-
lar cardinal greater than ω1. The larger motivation is to obtain via forcing
models of set theory with as much compactness as can consistently exist in
the universe. The construction of such models would require large cardi-
nals and many violations of the singular cardinals hypothesis (SCH). An
even more ambitious question is whether we can obtain either the strong
tree property or ITP at all, or at least many, successive regular cardi-
nals above ω1. The results in this paper are motivated by the following
question:

Question 1.4. Does ITP(κ) imply SCH above κ?

The motivation is two-fold. On one hand is Solovay’s theorem that
SCH holds above a strongly compact cardinal. On the other hand, by a
theorem of Specker [9], obtaining ITP at the double successor of a singular
strong limit cardinal requires violating SCH.

Viale and Weiß[14] have also asked whether a further strengthening of
ITP called ISP implies SCH. This is related to Viale’s theorem that PFA
implies SCH.

Definition 1.5. A list 〈da | a ∈ Pκ(λ)〉 is slender if for all sufficiently
large θ, for club many M ∈ Pκ(Hθ), for all b ∈M∩Pℵ1(λ), dM∩λ∩b ∈M .
ISP(κ) holds if for every λ ≥ κ, every slender Pκ(λ) list has an ineffable
branch.

We have that ISP implies ITP. Viale and Weißshowed that PFA implies
ISP(ℵ2). A useful characterization from [14] of ISP uses guessing models:

Definition 1.6. Let M ≺ Hθ. M is an ℵ1-guessing model if whenever
z ∈M and a ⊆ z, if a is ℵ1-approximated by M in the sense that

{a ∩ x | x ∈ Pℵ1(z) ∩M} ⊆M,

then a is M -guessed, i.e., for some b ∈M , b ∩ z = a ∩ z.

Theorem 1.7 ([14]). ISP(κ) holds if and only if for all sufficiently large
θ, there are stationary many ℵ1-guessing models in Pκ(Hθ).
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Viale also showed [13] that ISP(ℵ2) together with stationary many inter-
nally unbounded models imply that SCH holds; here we sayM is internally
unbounded if the countable sets in M are ⊆-unbounded in Pℵ1(M).

This leads to the following questions:

1. At what other small cardinals can ISP hold?
2. Does ISP(κ) imply SCH above κ?
3. Is ISP or ITP consistent with the set of internally unbounded models

being non-stationary?

In this paper we show that ISP cannot hold at the first or second succes-
sor of a singular strong limit of countable cofinality; on the other hand,
we force a failure of “strong SCH” across a cardinal where ITP holds.
We also show that ITP(κ) does not imply that there are stationary many
internally unbounded models in Pκ(Hθ).

§2. Failure of ISP at first and second successor.

Theorem 2.1. Let κ < µ be cardinals with 2ℵ0 < κ, cf κ = ω, µ regular,
and κω ≥ µ. Then ISP(µ) fails.

Corollary 2.2. If κ is strong limit and cf(κ) = ω, then ISP(κ+) and
ISP(κ++) both fail.

Proof. For the second claim, suppose ISP(κ++) holds; this implies the

tree property at κ++, and by a result of Specker, we must have (κ+)<κ
+ ≥

κ++. Since (κ+)<κ
+

= 2κ, we have 2κ ≥ κ++, but this contradicts the
theorem with µ = κ++. a

Proof of Theorem 2.1. Letting κ, µ be as in the theorem, we show
ISP(µ) must fail. Suppose not. By Theorem 1.7, ISP(µ) implies there is
some M ≺ Hθ with |M | < µ, µ ∈M , κ+ 1 ⊆M , and M ∩ µ an ordinal,
such that M is ℵ1-guessing.

So suppose x ⊂ κ is countable. For each countable y ∈ M , we have
y ∩ x ∈M , since 2ℵ0 < κ ⊆M . So x is ℵ1-approximated, and since M is
ℵ1-guessing, we have x ∈M . Thus Pℵ1(κ) ⊆M . But |Pℵ1(κ)| = κω ≥ µ,
contradicting |M | < µ. a

§3. A failure of strong SCH across a cardinal where ITP holds.
The general strategy of obtaining tree properties at successor cardinals is
by starting with some large cardinal embedding j in the ground model,
and forcing in such a way that the embedding j can be extended to V [G].
The embedding is used to define a branch in V [j(G)], and usually the
hardest part of the argument is pulling this branch back to V [G]. This
amounts to proving an approximation property of the quotient poset.

Definition 3.1. Let P ∈ V be a poset. We say a set of ordinals a ∈
V [G] is λ-approximated if for all x ∈ V with |x|V < λ, x ∩ a ∈ V .
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P has the λ-approximation property if every λ-approximated set of or-
dinals a ∈ V [P] belongs to V .
P has the thin λ-approximation property if whenever a ∈ V [P] is λ-

approximated, and furthermore |{x ∈ V | p  x = ȧ for some p ∈ P}|V <
λ, then a ∈ V .

We say strong SCH holds if for all singular cardinals κ, if 2cf κ < κ, then
2κ = κ+.

Theorem 3.2. Let κ < λ be supercompact cardinals. Then there is a
poset R so that if G is generic for R, then the following holds in V [G]:

• ITP(λ).
• κ++ = λ.
• 2κ = λ+ω+2.

In particular, strong SCH fails at κ+ω.

Proof. By forcing with the Laver preparation if necessary, we may as-
sume that in V , the supercompactness of κ is indestructible by κ-directed
closed forcing.

We will have R = M ∗ Ṗ, where M is Mitchell’s poset to force κ++ = λ
and TP(λ), modified to first blow up 2κ to λ+ω+2; in particular, conditions
are (a, f), where:

• a ∈ A := Add(κ, λ+ω+2);
• dom(f) ⊂ λ \ κ+, |dom(f)| < κ+ and for all α ∈ dom(f), A�α
f(α) ∈ ˙Add(κ+, 1).

M is ordered by letting (a′, f ′) ≤ (a, f) iff a′ ≤ a and for all α ∈ dom(f) ⊂
dom(f ′), a′ � α  f ′(α) ≤ f(α).

We have in the extension by M that 2κ = λ+ω+2 and κ++ = λ. Also M
is the projection of a poset A × Q, where as above A = Add(κ, λ+ω+2),
and Q is κ+-directed closed. Note that M is κ-directed closed. It follows
that κ remains measurable (indeed, fully supercompact) in V [M]. So let

Ṗ be an M-name for Prikry forcing to singularize κ using any normal
measure in the extension by M.

Now by standard arguments, forcing with Ṗ in V [M] preserves cardinals
and singularizes κ to cofinality ω, and adds no bounded subsets of κ. So
κ is strong limit of cofinality ω, and so κω = 2κ = (λ+ω)ω = λ+ω+2.

It only remains to show that ITP(λ) holds. Let µ ≥ λ+ω+2 be a cardinal.
Working in V , let j : V → M be an elementary embedding witnessing
µ-supercompactness of λ. Fix an M-generic filter G over V . Note j(M) is
j(κ)-directed closed in M ; since Mµ ⊆M , the poset j(M) is µ+-directed
closed in V . Then j[G] is a directed subset of j(M) of size λ+ω+2 ≤ µ,
so that there is a condition p ∈ j(R) with p ≤ j(q) for all q ∈ G. Let G∗

be j(M)-generic over M with p ∈ G∗. By standard arguments and small



ITP, ISP AND SCH 5

abuse of notation we can extend j to a µ-supercompactness embedding
j : V [G]→M [G∗].

In V [G] let U be the normal measure on κ used to define P. Then, j(P)
is Prikry forcing singularizing κ with respect to the measure j(U). Here
j(U) extends U , and conditions in j(P) have the same stems as conditions
in P, but there are more measure one sets. Now let H∗ be j(P)-generic
over V [G∗]. Then by characterization of genericity the Prikry sequence
added by H∗ induces a P-generic, call it H, over V [G].

Let d ∈ V [G][H] be a thin Pλ(µ)-list. j(d) is then a thin Pj(λ)(j(µ))-list.
We define

B = j−1[j(d)(j[µ])].

Claim 3.3. B is an ineffable branch through d.

Proof of Claim. We need to show that the set

{x ∈ Pλ(µ) | d(x) = B ∩ x}
is stationary. So suppose C ⊆ Pλ(µ) is club; say F : µ<ω → µ is a
function in V [G] whose set of closure points is contained in C. Then j[µ]
is a closure point of j(F ), and so j[µ] ∈ j(C). We want that Pλ(µ) ∩ C
is nonempty in V [G]. But this is immediate by elementarity and the fact
that j[µ] ∈ Pj(λ)(j(µ)) in M [G∗]. a

Claim 3.4. B is λ-approximated by V [G], that is, x∩B ∈ V [G] when-

ever x ∈ (Pλ(µ))V [G].

Proof. Let x ∈ (Pλ(µ))V [G]. Then |Levx(d)| < λ by thinness of d,
and since crit(j) = λ we have j(Levx(d)) = j[Levx(d)]. Since j(d)j[µ] ∩
j(x) ∈ j(Levx(d)) = Levj(x)(j(d)), there must be z ⊂ x in V [G] such that
j(z) = j(d)j[µ]. Then z = B ∩ x ∈ V [G], as needed. a

Clearly B ∈ V [G∗][H∗]; we need B ∈ V [G][H], that is, B is not added
by forcing with the quotient j(R)/R.

Sinapova and Unger [12] show that forcings of this type have the λ-
approximation property. For completeness, below we outline the argu-
ment.

Lemma 3.5. N := j(R)/G ∗H has the λ-approximation property.

Proof. Suppose that τ : µ → 2 in the extension by N, such that for
all x ∈ V [G][H]∩Pλ(µ), τ � x ∈ V [G][H]. Suppose for contradiction that
τ is not in V [G][H]. We will denote conditions in N by (p, f, ṙ), where
p ∈ j(A), f ∈ j(Q), r is forced to be in j(P)/P. For a Prikry condition r
(in P or j(P)), we use the notation r = (s(r), A(r)).

Note that j(Q) is κ+-closed in V [G].

Claim 3.6. There is a condition (p, f, ṙ) ∈ N, such that for each x ∈
Pλ(µ) and function σ : x → 2 in V [G][H], and for every (p′, f ′, ṙ′) ≤N
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(p, f, ṙ), if f ′ ≤j(Q) f and (p′, f ′, ṙ′)  τ̇ � x = σ, then (p, f ′, ṙ)  τ̇ � x =
σ.

Proof. Otherwise, in V [G], let r̄ ∈ R force the negation of the conclu-

sion. Then whenever r̄  (p, f, ṙ) ∈ Ṅ, densely often below r̄, there are
conditions r̄′ ∈ P, such that there are p0, p1 ∈ j(A), f∗ ≤j(Q) f, j(M)/G-
names for elements in j(P), ṙ0, ṙ1, x ∈ V [G][H] ∩ Pλ(µ), and P-names
σ0, σ1 such that

• for i ∈ {0, 1}, r̄′  (pi, f
∗, ṙi) ≤N (p, f, ṙ),

• for i ∈ {0, 1}, r̄′  “(pi, f
∗, ṙi) N τ̇ � x = σi”

• σ0, σ1 are forced to be distinct.

By induction construct piα, σ
i
α, σα, fα, ṙ

i
α, r̄α and ẋα for α < κ+, i ∈ 2,

such that 〈fα | α < κ+〉 is ≤j(Q)-decreasing, and for each α, i, r̄α ∈ P
forces that:

• 〈ẋα | β < α〉 is a ⊂- increasing sequence of elements in V [G][Ḣ] ∩
Pλ(µ).
• (piα, fα, ṙ

i
α) ∈ N, (piα, fα, ṙ

i
α)  τ̇ � supβ<α ẋβ = σα,

• (piα, fα, ṙ
i
α)  τ̇ � xα = σiα, where σ0

α 6= σ1
α, and

• (piα, fα) decides s(ṙiα) and s(r̄α) extends it.

Since there are only κ many possible stems and A × A has the κ+-
c.c., there are β < β′ < κ+, such that s(r̄β) = s(r̄β′), and for i ∈ 2,
s(ṙiβ) = s(ṙiβ′), and piβ is compatible with piβ′ . Then for i ∈ 2, let pi be

the weakest lower bound for piβ and piβ′ and let ṙi be a name for a common

extension of ṙiβ and ṙiβ′ with the same stem.
The following sufficient condition for forcing conditions into the quotient

appears in [1].

Lemma 3.7. Working in V [G], let r̄ ∈ P, m ∈ j(M)/G and let ṙ be a
j(M)/G-name for a condition in j(P) such that

1. m decides the value of s(ṙ),
2. s(r̄) extends s(ṙ) and
3. m forces that points in s(r̄) above s(ṙ) are in A(ṙ).

Then there is a direct extension of r̄ which forces (m, ṙ) ∈ j(R)/(G ∗H).

Now by Lemma 3.7, there is a direct extension r of r̄β and r̄β′ which
forces that each (pi, fβ′ , ṙi) is in N. Force with R below r to get a contra-
diction. a

Work in V [G]. Let r∗ ∈ P force that (p, f, ṙ) is as in Claim 3.6. Us-
ing the claim, inductively construct splitting sequences 〈〈fs, αhs 〉 | s ∈
2<κ, h is a stem〉, such that:

1. if s′ ⊃ s, then fs′ ≤j(Q) fs,

2. for all s ∈ 2<κ, stems h, and i ∈ 2, there is some Prikry condition
with stem h forcing that (p, fs_i, ṙ)  τ̇(αhs ) = i.
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Note in particular that if s ⊥ t, then fs, ft are forced to be incompatible;
otherwise we would have a Prikry condition, say with some stem h, forcing
compatibility; taking a strong enough direct extension contradicts (2).

Let a∗ = {αhs | h a stem, s ∈ 2<κ}; note |a∗| < λ.
Still working in V [G], note that j(M)/G is forced to add an Add(κ, 1)-

generic set; let ġ a name for this. Then in the extension by Add(κ, 1),
〈fġ�η | η < κ〉 is forced to be ≤j(Q)-decreasing.

We claim there is an element f∗ of j(Q) that is forced to be a lower
bound of 〈fġ�η | η < κ〉. This is done by, for each γ that can be forced in
Add(κ, 1) to belong to some dom(fġ�η), defining a name for a lower bound
of 〈fġ�η(γ)〉η<κ. By the κ+-c.c. of Add(κ, 1), we may cover the union of
possible domains

{γ < λ | γ ∈ dom(fġ�η) for some p ∈ Add(κ, 1) and η < κ}
by a set Y in V [G] with |Y | = κ. We define f∗ so that for all γ ∈ Y ,
f∗(γ) is a A � γ-name such that if p ∈ Add(κ, 1) forces γ ∈ dom(fġ�η)
for any η, then p forces f∗(γ) to be a lower bound for 〈fġ�η(γ) | η < κ〉.
Finally, (p, f∗, ṙ) may be forced into the quotient N.

Now working in V [G][H], by the fact that τ is λ-approximated, we
can (using Claim 3.6 to extend f∗, if necessary) assume (p, f∗, ṙ) decides
τ̇ � a∗; say τ � a∗ = σ. Let h be the stem of a Prikry condition below r∗

forcing this to hold over V [G].
Define g : κ → 2 by inductively letting g(η) = σ(αhg�η). We have g

is unique such that f∗ ≤ fg�η for all η; by construction, g is Add(κ, 1)-
generic over V [G]. But g ∈ V [G][H] was added by forcing with P, a
contradiction. a
This completes the proof of Theorem 3.2. a

Note by Theorem 2.1, ISP(λ) must fail in this model. This is related to
the following remark on the extent of approximation in j(R)/R.

Proposition 3.8. j(R)/R does not have the ℵ1-approximation prop-
erty.

Proof. Let x be any subset of κ in V [j(R)]. For any countable a ⊆ κ
in V [R], we trivially have a ∩ x ∈ V [R], since no reals are added by the
quotient j(R)/R. So any subset of κ added by the quotient is a witness
to the failure of ℵ1-approximation. a

The above models also yields:

Corollary 3.9. From a supercompact, we can force ITP at the double
successor of a singular strong limit cardinal.

§4. Extender based forcing and ITP. In this section we describe
another model where ITP at the double successor of a singular strong limit.
We use it to show that it is consistent to have ITP at the double successor
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of a singular together with the set of internally unbounded models being
nonstationary. This is a partial result towards showing that ITP does not
imply SCH.

Theorem 4.1. Suppose that 〈κn | n < ω〉 are strong cardinals, κ =
supn κn and λ is a supercompact cardinal above κ. Then there is a forcing
extension in which |

∏
n κn| = λ = κ++ and ITP holds at λ.

We take P to be the long extender forcing from Section 2 of [4]. This
is almost the same poset from Section 2 of Gitik’s Handbook chapter
[3] with one modification: the Cohen parts of conditions are allowed to
be Prikry names. For completeness, we briefly describe the poset. Let
En = 〈En,α | α < λ〉 be an extender on κn of length λ. We have that
Lemmas 2.1-2.4 from section 2 of [3] hold.

As in [3], define Qn1 to be the poset of partial functions f : λ ⇀ κn,
with |f | ≤ κ (equivalently, Add(κ+, λ)). Also, for α < λ, the Prikry
forcing at α refers to the diagonal forcing with respect to the measures
〈En,α | n < ω〉 to add a sequence 〈ρn | n < ω〉 in

∏
n κn.

The extender based forcing from [3] adds an unbounded F ⊂ λ (in the
notation below, ap :=

⋃
n≥lh(p) a

p
n and let F =

⋃
p∈G,n≥lh(p) a

p
n) and for

every α ∈ F , ω-sequences tα ∈
∏
n κn (in the notation below tα(n) =

fpn(α) for some (equivalently all) p ∈ G, such that α ∈ dom(fpn)). Each
such tα is generic for the the Prikry forcing at α. In particular, below a
condition forcing that α ∈ Ḟ , P projects to this forcing, and we denote
the projection map by πα.

Conditions are of the form p = 〈pn | n < ω〉, where for n < lh(p),
pn = fn ∈ Qn1, and n ≥ lh(p), pn = (an, An, fn), such that:

• for n ≥ lh(p), an ∈ [λ]<κn , An ∈ En,max(an), an ⊂ an+1, fn is a
Prikry name for a condition in Qn0 with domain disjoint from an.
• for n ≥ lh(p), for α ∈ an, for m < n fm � λ \ (α + 1) is forced to be

a condition in Qm1 by the Prikry forcing at α.

We also require that 〈dom(fn) | n < ω〉 ∈ V and 〈fn(α) | n < ω〉 ∈ V
whenever α ∈ dom(fn) for all large n.

For p as above, we use the notation pn = fpn for n < lh(p) and pn =
(apn, A

p
n, f

p
n) for n ≥ lh(p).

The order q ≤ p is as in [3] with the natural modification corresponding
to the last item of the definition: if α ∈ aqn, then πα(q) forces that f qn �
λ \ (α+ 1) is stronger than fpn � λ \ (α+ 1)

Remark 4.2. The last item in the definition above is the difference be-
tween P and the usual long extender based forcing. The point of this
modification is to collapse cardinals between κ+ and λ. More formally,
we can define the fpn’s to be functions from finite sequences (i.e. Prikry
stems) from

∏
max(n,lh(p))≤i<lh(p)+k A

p
i , so that each fn(~ν) ∈ Qn0. A simi-

lar construction was first done in Assaf Sharon’s thesis, Chapter IV, [7],
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and is also described in [8]. Then, given P-generic filter G, for any α ∈ F ,
{fpn0(tα � k) | p ∈ G, k > ω} will collapse α to κ+.

We say that q is a direct extension of p, q ≤∗ p, if q ≤ p and they have
the same length. We say that q is an n-step extension of p if q ≤ p and
lh(q) = lh(p) + n. Also, as usual, given p and ~ν ∈

∏
lh(p)≤i<lh(p)+nA

p
i , we

write p_~ν to denote the weakest n-step extension of p obtained from ~ν.
I.e. if r ≤ p is with length at least lh(p) +n and for lh(p) ≤ i < lh(p) +n,
f ri (max(api )) = νi, then r ≤ p_~ν.
P has the Prikry property, and more generally:

Lemma 4.3 (Prikry lemma). Suppose that D is a dense open set and
p is a condition. Then there is q ≤∗ p and n, such that every n-step
extension of p is in D.

For the proof, see [3]. When the dense set above is of the form {r | r ‖ φ}
for some formula φ, then n = 0. In particular there is a direct extension
of p deciding φ. Then, since ≤∗ restricted to conditions of length n is κn-
closed, the forcing does not add bounded subsets of κ and preserves κ+.
It also has the λ-chain condition. Forcing with this poset adds λ-many
Prikry sequences

∏
n κn, making κω = λ = κ++ (see [3], [4]). In [4], it is

also shown that in the generic extension by P, λ has the tree property.
Here we show that ITPλ holds.

Let G be P-generic. Suppose that for some θ ≥ λ, in V [G], 〈dx | x ∈
Pλ(θ)〉 is a thin Pλ(θ)-list. I.e. each dx ⊂ x and for club many c ∈ Pλ(θ),
|{dx ∩ c | c ⊂ x}| < λ.

Let j : V → M be a θ-supercompact embedding with critical point
λ. By standard arguments, we have that j(P) projects to P. So, we can
extend j to j : V [G]→M∗. Then d := j−1[j(d)j[θ]] is an ineffable branch
in the extension by j(P) for the list.

We have to show that d cannot have been added by j(P)/G, i.e. that
this poset has the thin λ-approximation property.

Work in V . Let π : j(P) → P be the projection. Fix a j(P)-name for

this branch ḋ, so that 1j(P)  “∀x ∈ Pλ(θ)ḋ ∩ x ∈ V [ĠP]”. Note that
for every x ∈ Pλ(θ), in V [G], there is y ∈ Pλ(θ) in V , such that x ⊂ y.
That is by the λ chain condition of P. So we can restrict our attention to
elements of PVλ (θ).

Below we will say that a condition p ∈ j(P) decides a value for ḋ ∩ x
(or simply decides ḋ ∩ x), if for some P-name a, p j(P) ḋ ∩ x = aĠ.

Lemma 4.4. For any x ∈ Pλ(θ) and p ∈ j(P), there is q ≤∗ p and n,

such that every n-step extension decides a value for ḋ ∩ x. Moreover, for
any k ≥ lh(p), we can obtain q as above so that for all lh(p) ≤ i ≤ k,
aqi = api .
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Proof. We apply the Prikry lemma for j(P) to the dense set D =

{q | (∃ P-name a)(q  ḋ ∩ x = aĠ} to obtain q. The statement in the
‘moreover’ follows by the proof of the Prikry lemma. See for example
section 2 of [4]. a

Lemma 4.5. There is n̄ < ω and a condition p′ ∈ j(P), such that for
all p ≤∗ p′, there is x ∈ Pλ(θ), such that for all y ∈ Pλ(θ) with x ⊂ y,
there is q ≤∗ p, such that each n̄-step extension of q decides a value for
ḋ ∩ y.

Proof. Suppose otherwise. Then inductively build a ≤∗-decreasing
sequence 〈pn | n < ω〉, an increasing 〈kn | n < ω〉 and a ⊂-increasing
sequence 〈yn | n < ω〉 in Pλ(θ), such that for all n, there is no q ≤∗ pn,

such that every kn-step extension of q decides a value for ḋ∩ yn. Now let
y = ∪nyn and p ≤∗ pn for all n. Let q ≤∗ p and k < ω be such that every
k-step extension of q decides a value for ḋ ∩ y.

Pick n, such that k ≤ kn. But then any kn-step extension of q decides
a value for ḋ ∩ yn. Contradiction. a

Remark 4.6. In the above lemma, for any k < ω, we can get such a q,
so that the aqi = api for all lh(q) ≤ i ≤ k

Fix n̄ and p′ as in the conclusion of the lemma. From now on work below
p′. The following lemma is an adaptation of Lemma 2.7 of Gitik’s paper
[4].

Lemma 4.7. Let p ∈ j(P) and 2κk < δ < κk+1, where k ≥ n̄ + lh(p).
Then there is x ∈ Pλ(θ), q̄ ∈ P and a sequence 〈pξ | ξ < δ〉 of direct
extensions of p, such that:

1. For all lh(p) ≤ i ≤ k, for all ξ, a
pξ
i = api , A

pξ
i = Api ;

2. q̄ = π(pξ) for all ξ.

3. every n̄-step extension of pξ decides ḋ ∩ x;
4. for ξ 6= ξ′, if r, r′ are two n̄-step extensions of pξ and pξ′, respectively,

then q forces that the values decided by r and r′ are different.

Proof. This is a modification of lemma 2.7 in [4], so we only focus on
the main points.

Using the above lemma, construct 〈qξ,Mξ | ξ ≤ δ〉 such that:

1. 〈qξ | ξ ≤ δ〉 is ≤∗-decreasing sequence in j(P), such that for all

lh(p) ≤ i ≤ k, for all ξ, a
qξ
i = api , A

qξ
i = Api ;

2. 〈Mi | ξ ≤ δ〉 is a ∈-increasing continuous chain of elementary sub-
models, such that Mκk

0 ⊂M0 and for each ξ, Mκk
ξ+1 ⊂Mξ+1;

3. for all ξ, qξ ∈Mξ+1;
4. for all ξ, yξ := Mξ ∩θ and each n̄-step extension of qξ decides a value

of ḋ ∩ yξ;
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To obtain A
qξ
i = Api for every ξ < δ, we use that 2κk < δ and pass

through an unbounded subset of δ if necessary.
Set q := qδ, y := yδ =

⋃
ξ<δ yξ.

Let Xξ be the set of all values of ḋ ∩ yξ decided by an n̄-step extension
of qξ. I.e. Xξ is a set of P-names and is of size at most κlh(p)+n̄−1 < δ.
Denote X := Xδ. For t ∈ X, we identify t ∩ yξ with the P-name a, such
that P a = t ∩ yξ. For simplicity of notation, we identify elements in
Xξ as equal or distinct whenever π(qξ) forces them to be so. Similarly if
π(qξ) forces s = s′ for some s ∈ Xξ, we will identify s with s′ and simply
write s′ ∈ Xξ.

We have the following:

1. (Coherence) If t ∈ X, then for all ξ < δ, t ∩ yξ ∈ Xξ.
2. (Splitting) If t, s are incompatible elements of X, then there is ξ < δ,

such that t ∩ yξ 6= s ∩ yξ.

Using that δ is greater than the possible instances of splitting, we fix
some ξ̄ < δ, after which there is no more splitting. I.e., for distinct t, s in
X, there ξ < ξ̄ with t ∩ yξ 6= s ∩ yξ.

Claim 4.8. For all ξ < δ, for all r̄ ≤ π(qξ), there is z ∈ Mξ+1 with
yξ ⊂ z ⊂ yξ+1 and r ≤ qξ, such that π(r) ≤ r̄ and r decides a value

for ḋ ∩ z incompatible with every value in Xξ+1. More precisely, setting

r  ḋ ∩ z = s, we have that for all t ∈ Xξ+1, t ∩ z 6= s.

Proof. By elementarity of the models and since we have assumed that
the branch is new. Namely, if we suppose otherwise, we get that Mξ+1 |=
qξ forces that the branch is in V [ĠP]. a

Let ξ < δ. Apply the above claim inductively to all n̄-step extensions
q_ξ ~ν of qξ. Then we get r~νξ ≤∗ q_ξ ~ν that decides ḋ ∩ yξ in a way that is
incompatible will all the values in Xξ+1.

As in the proof of the Prikry lemma, diagonalize r~νξ for each such ~ν

to obtain a condition rξ ≤∗ qξ, with a
rξ
i = a

qξ
i = api for i ≤ k, such

that every n̄-step extension of rξ is stronger that some r~νξ . By passing
to an unbounded subset of δ, we may assume that for all ξ and i ≤ k,
A
rξ
i = A

qξ
i = Api .

Also, doing this by induction on ξ < δ, we can shrink the qξ’s and then
the rξ’s, so that for each ξ < δ, π(q) = π(rξ). Finally, let pξ ≤∗ rξ, so

that π(pξ) = π(q), for i ≤ k, a
pξ
i = a

rξ
i , and pξ decides a value of ḋ ∩ y.

Then 〈pξ | ξ < δ〉, π(q) and y are as desired.
a

Let 〈δn | n < ω〉 be a cofinal sequence of measurable cardinals in κ, such
that 2κn < δn < κn+1 for each n.For each n, let Un be a measure on δn.
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Build a ⊂-increasing sequence 〈xn | n < ω〉 in Pλ(θ), a ≤∗-decreasing
sequence of conditions 〈qn | n < ω〉 in P, and 〈pσ | σ ∈

∏
n≤k Yn, k < ω〉

in j(P), where each Yn ∈ Un, such that:

1. For all n, for all lh(p) ≤ i ≤ n, aqni = a
qn+1

i ;
2. For all σ, π(pσ) = q|σ|;
3. If σ′ extends σ, then pσ′ ≤∗ pσ;
4. For all n, for all σ ∈

∏
m<n Ym and ξ ∈ Yn, for all lh(p) ≤ i ≤ n,

apσi = a
pσ_ξ

i and Apσi = A
pσ_ξ

i ;

5. All n̄-stem extensions of each pσ decide ḋ ∩ x|σ|;
6. If σ1 and σ2 are incompatible, then any two n̄-step extensions of pσ1

and pσ2 decide incompatible values for ḋ∩x|σ1| and ḋ∩x|σ2| (as forced
by q|σ1∩σ2|).

We do this by induction on |σ|. For simplicity, all conditions will have
length 0.

First let 〈pξ | ξ < δ0〉, x0, q0 be given by the above lemma applied to
δ0. Then for each ξ < δ0, inductively apply Lemma 4.7 to pξ, δ1 to obtain
sequences 〈p′ξ,η | η < δ1〉, qξ, and xξ. Let x1 = ∪ξxξ. Then let p′′ξ,η ≤∗ p′ξ,η
be such that a

p′′ξ,η
i = a

p′ξ,η
i for i = 0, 1.

By induction we arrange that 〈qξ | ξ < δ〉 are decreasing, except the
first two measure one sets. Also, by construction we have that for i = 0, 1,

a
p′′ξ,η
i are constant for all 〈ξ, η〉.
Next we use the measurability of δ1 to fix the measure one sets in the

first two coordinates, in order to be able to define q1.

For each ξ < δ0, consider the map φξ : η 7→ 〈A
p′′ξ,η
0 , A

p′′ξ,η
1 〉. Since 2κ1 <

δ1, let Bξ ∈ U1 be such φξ is constant on Bξ, say with value 〈Aξ0, A
ξ
1〉. Let

B1 =
⋂
ξ<δ0

Bξ ∈ U1, and let A1 =
⋂
ξ<δ0

Aξ1. For the latter we use that

δ0 < κ1. Now consider the map ξ 7→ Aξ0. Since 2κ0 < δ0, fix B0 ∈ U0,on
which this map is constant, say with value A0.

Then, for ξ ∈ B0, η ∈ B1, let p〈ξ,η〉 be obtained from p′′ξ,η, so that

π(p〈ξ,η〉) is cconstant. (in particular, each A
p〈ξ,η〉
1 = A1). Then we can

define q1 = π(p〈ξ,η〉) for any (equivalently all) 〈ξ, η〉 ∈ B0 ×B1.
Continue in the same way for the rest of the construction. At the end

each Yn will be the intersection of countably many measure one sets in
Un.

Let q be a lower bound for the qn’s. Let G be P generic containing q
and work in V [G]. For each f ∈

∏
n Yn, let pf ≤∗ pf�n for all n. Let

c ⊃ ∪nxn in Pλ(θ) be such that |{dx ∩ c | c ⊂ x}| < λ. Now let rf be
an n̄-step extension of pf , of the form p_f ~ν, where each νi ∈ Yi. Then

rf  ḋ ∩ c = xf for some xf .
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By the construction, if f 6= g, then xf 6= xg. But there are λ-many

such f ’s in V [G] and only < λ possibilities of ḋ ∩ c. Contradiction.
This concludes the proof of Theorem 4.1.

Work in V [G] where G is P generic. For every p ∈ P, denote ap :=⋃
n≥lh(p) a

p
n and let F =

⋃
p∈G a

p. For every α ∈ F , define tα(n) = fpn(α)

for some (equivalently all) p ∈ G, such that α ∈ dom(fpn).

Lemma 4.9. In V [G], there are club many non ℵ1-internally unbounded
models of size less than λ = κ++.

Proof. Let N ≺ (HV [G](θ), 〈tα | α ∈ F 〉...) be of size less than κ++.
Since N has size less than κ++ and |F | = λ = κ++, we can find λ many
α ∈ F such that tα 6∈ N . Note that a countable set c ∈ N can cover at
most 2ω many countable a ∈ HV [G]. So N is not internally unbounded.

a
We can now state the main result of this section:

Theorem 4.10. It is consistent to have ITP(λ), for λ the double suc-
cessor of a singular strong limit cardinal, together with club many non
ℵ1-internally unbounded models of size less than λ.

§5. Down to ℵω+2. In this section we modify the construction from
the previous section to obtain the results for λ = ℵω+2 and prove the
following theorem.

Theorem 5.1. Suppose that 〈κn | n < ω〉 are strong cardinals with
limit κ and λ is super compact cardinal above κ. Then there is a forcing
extension where κ = ℵω, λ = ℵω+2 and we have ITP(ℵω+2), together with
club many non ℵ1-internally unbounded models of size less than ℵω+2.

We will use short extender forcing with interleaved collapses from sec-
tion 3 of [4]. And just as in [4], first we have to prepare the ground model
as follows. Fix measurable cardinals 〈δn | n < ω〉, such that for each n,
2κn < δn < κn+1 and normal measures Un on each δn. Force with the full
support iteration of Levy collapses Col(κ+n+4

n , < δn), and call the result-
ing model V . Then in V each Un will give rise to a precipitous ideal In,
such that forcing with its positive sets is κ+n+4

n -strategically closed. We
will use this in place of measurability.

Let P be the poset defined in Definition 3.1 in Section 3 of [4].
We list some of the key properties of P:

1. (P,≤,≤∗) has the Prikry property. In particular, for any p and
dense open set D, there is n < ω and q ≤∗ p, such that every n-step
extension of p is in D. As a corollary, for all p, φ, there is q ≤∗ p
deciding φ.
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2. From the above it follows that no bounded subsets of κ are added
and also that κ+ is preserved.

3. There is a suborder→ on P, such that (P,≤) projects to (P,→), and
(P,→) has the λ-chain condition.

4. Forcing with (P,→) makes λ = κ++ = 2κ = ℵω+2.

For proofs of the above, see Section 4 of [5] and also [10]. A theorem in [4]
is that the tree property holds in this extension at ℵω+2. Here we show
the case for ITP.

Lemma 5.2. j(P;≤)/(P;≤) has the thin λ-approximation property.

Proof. We run the same argument as in the previous section. By the
Prikry property we still have Lemma 4.5. We will use the same notation
as in [4], Definition 3.1: for a condition p = 〈pn | n < ω〉, we denote
pn = (ρn, h<n, h>n, fn) for n < lh(p) and pn = (an, An, S<n, h>n, fn) for
n ≥ lh(p).

Then we claim that Lemma 4.7 holds for δ = κ+k+5
k . To prove the

lemma, we construct the ≤∗-decreasing sequence 〈qξ | ξ < δ〉 in j(P)
as before, so that in addition to the requirements listed in the proof of
Lemma 4.7, we also have:

• for all i < lh(p), for all ξ, h
qξ
<i = hp<i,

• for all lh(p) ≤ i ≤ k, for all ξ, S
qξ
i = Spi ,

• for all i < k, for all ξ, h
qξ
>i = hp>i,

• 〈hqξ>k | ξ < δ〉 is decreasing.

We can do the first three items by passing to an unbounded subset of
δ if necessary. For the last, we use that the closure is κ+k+8

k > δ. Also,
since δ < κk+1 for coordinates i > k, we have enough closure to make sure
the sequence is decreasing. Also, since now we are using short extenders,
for i < k, here we maintain dom(a

pξ
i ) = dom(api ). The rest of the lemma

goes as before.
Then in the last section, we construct 〈xn, qn | n < ω〉 in Pλ(θ) and
〈pσ | σ ∈

∏
n≤k Yn, k < ω〉 in j(P), where each Yn ∈ Un with the additional

properties that:

• for all n, for all i ≤ n, dom(aqni ) = dom(a
qn+1

i ),
• for all n, for all σ ∈

∏
m<n Ym and ξ ∈ Yn,

– for all i ≤ n, dom(apσi ) = dom(a
pσ_ξ

i ), Spσi = S
pσ_ξ

i ,

– for all i < n, hpσ>i = h
pσ_ξ

>i .

The Un’s are no longer normal, but all we need is their closure properties
to fix the components of the conditions where we do not have sufficient
closure. The rest of the argument is the same as in the previous section.

a
Now suppose that 〈dx | x ∈ Pλ(θ)〉 is a Pλ(θ)-list in V [P;→]. Let

j : V → M be a θ-supercompact embedding with critical point λ. As in
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the last section, lift j to obtain an ineffable branch d for this list with d ∈
V [j(P;→)]. In particular, d ∈ V [j(P;≤)], and so by the approximation
property, we have that d ∈ V [P;≤]. Note that any condition in P can also
be viewed as a condition in j(P).

Now let G be (P;→)-generic. We have to show that d ∈ V [G]. Con-

sider the quotient (P;≤)/G and let ḋ ∈ V [G] be a (P;≤)/G-name for the
branch. For two conditions p, q ∈ (P;≤)/G if p and q decide contradic-

tory information about ḋ, then clearly p ⊥(P;≤) q, but also p ⊥j(P;→) q,
since the branch is in the extension by j(P;→). But since the projection
j(P) → P is the identity on conditions in P, that means that p ⊥(P;→) q,
which is a contradiction with p, q ∈ G.

It follows that there is no splitting, and so the branch is in V [G].
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