
ORDINAL DEFINABLE SUBSETS OF SINGULAR CARDINALS

JAMES CUMMINGS, SY-DAVID FRIEDMAN, MENACHEM MAGIDOR, ASSAF RINOT,
AND DIMA SINAPOVA

Abstract. A remarkable result by Shelah states that if 𝜅 is a singular strong

limit cardinal of uncountable cofinality then there is a subset 𝑥 of 𝜅 such that
HOD𝑥 contains the power set of 𝜅. We develop a version of diagonal extender-

based supercompact Prikry forcing, and use it to show that singular cardinals

of countable cofinality do not in general have this property, and in fact it is
consistent that for some singular strong limit cardinal 𝜅 of countable cofinality

𝜅+ is supercompact in HOD𝑥 for all 𝑥 ⊆ 𝜅.

1. Introduction

It is a familiar phenomenon in the study of singular cardinal combinatorics that
singular cardinals of countable cofinality can behave very differently from those
of uncountable cofinality. For example in the area of cardinal arithmetic we may
contrast Silver’s theorem [11] with the many consistency results producing models
where GCH first fails at a singular cardinal of countable cofinality [2]. The results
in this paper show that there is a similar sharp dichotomy involving questions about
the definability of subsets of a cardinal rather than the size of its powerset.

Shelah [12] proved that if 𝜅 is a singular strong limit cardinal of uncountable
cofinality then there is a subset 𝑥 ⊆ 𝜅 such that 𝑃 (𝜅) ⊆ HOD𝑥. In this paper we
show that the hypothesis is essential, by proving:

Theorem. Suppose that 𝜅 < 𝜆 where cf(𝜅) = 𝜔, 𝜆 is inaccessible and 𝜅 is a limit
of 𝜆-supercompact cardinals. There is a forcing poset Q such that if 𝐺 is Q-generic
then:

∙ The models 𝑉 and 𝑉 [𝐺] have the same bounded subsets of 𝜅.
∙ Every infinite cardinal 𝜇 with 𝜇 ≤ 𝜅 or 𝜇 ≥ 𝜆 is preserved in 𝑉 [𝐺].
∙ 𝜆 = (𝜅+)𝑉 [𝐺].
∙ For every 𝑥 ⊆ 𝜅 with 𝑥 ∈ 𝑉 [𝐺], (𝜅+)HOD𝑥 < 𝜆.

From stronger assumptions we can use Q to obtain a model in which 𝜅 is a
singular strong limit cardinal of cofinality 𝜔, and 𝜅+ is supercompact in HOD𝑥 for
all 𝑥 ⊆ 𝜅.
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Notation. Our notation is mostly standard. We write ℓ(𝑠) for the length of a
sequence 𝑠. When Q is a forcing poset and 𝑞 ∈ Q we write Q ↓ 𝑞 for {𝑟 ∈ Q : 𝑟 ≤ 𝑞},
with the partial ordering inherited from Q.

2. A proof of Shelah’s theorem

For the reader’s benefit we give a short and self-contained proof of the result
by Shelah quoted in the Introduction. Let 𝜅 be a strong limit singular cardinal of
uncountable cofinality 𝜇. Fix a set 𝑥 ⊆ 𝜅 such that 𝐿[𝑥] contains an enumeration
(𝑡𝜂)𝜂<𝜅 of 𝐻𝜅, together with a sequence of ordinals (𝛼𝑖)𝑖<𝜇 which is increasing and
cofinal in 𝜅.

To each set 𝑋 ⊆ 𝜅 we associate a function 𝑓𝑋 : 𝜇→ 𝜅, where 𝑓𝑋(𝑖) = 𝜂 for the
unique 𝜂 such that 𝑋 ∩𝛼𝑖 = 𝑡𝜂. It is easy to see that if 𝑋 ̸= 𝑌 then 𝑓𝑋(𝑖) ̸= 𝑓𝑌 (𝑖)
for all large 𝑖. We now impose a strict partial ordering on 𝑃 (𝜅) by defining 𝑋 C 𝑌
if and only if 𝑓𝑋(𝑖) < 𝑓𝑌 (𝑖) for all large 𝑖; since 𝜇 = cf(𝜇) > 𝜔, the ordering C is
well-founded.

Let𝑅𝛼 be the set of elements of 𝑃 (𝜅) withC-rank 𝛼, and note that if𝑋 and 𝑌 are
distinct elements of 𝑅𝛼 then there are unboundedly many 𝑖 < 𝜇 with 𝑓𝑋(𝑖) > 𝑓𝑌 (𝑖),
since otherwise 𝑓𝑋(𝑖) < 𝑓𝑌 (𝑖) for all large 𝑖 and it would follow that 𝑋 C 𝑌 . We
claim that |𝑅𝛼| ≤ 2𝜇, so that in particular |𝑅𝛼| < 𝜅. Supposing for contradiction
that |𝑅𝛼| > 2𝜇 we fix a sequence (𝑋𝑗)𝑗<(2𝜇)+ of distinct elements of 𝑅𝛼, and then

define a colouring 𝑐 of pairs from (2𝜇)+ by setting 𝑐(𝑗, 𝑗′) = 𝑖 for the least 𝑖 < 𝜇
with 𝑓𝑋𝑗

(𝑖) > 𝑓𝑋𝑗′ (𝑖). By the Erdős-Rado theorem 𝑐 has a homogeneous set of

order type 𝜇+, which is impossible because it would yield an infinite decreasing
sequence of ordinals.

We now define a well-ordering ≺𝛼 of 𝑅𝛼. To do this we let 𝐴𝛼 =
⋃︀
{range(𝑓𝑋) :

𝑋 ∈ 𝑅𝛼}, note that |𝐴𝛼| < 𝜅, and define 𝑔𝛼 to be the order-isomorphism between
𝐴𝛼 and ot(𝐴𝛼). If 𝑋 ∈ 𝑅𝛼 then 𝑔𝛼 ∘𝑓𝑋 ∈ 𝐻𝜅, and we define 𝑋 ≺𝛼 𝑌 if and only if
the index of 𝑔𝛼 ∘ 𝑓𝑋 is less than that of 𝑔𝛼 ∘ 𝑓𝑌 in the enumeration (𝑡𝜂)𝜂<𝜅 of 𝐻𝜅.

Forming the sum of the orderings ≺𝛼 in the natural way, we obtain a well-
ordering ≺ of 𝑃 (𝜅) which is clearly definable from 𝑥. Now every element of 𝑃 (𝜅)
is ordinal definable from 𝑥 as “the 𝜂th element of 𝑃 (𝜅) in the ordering ≺”, so that
𝑃 (𝜅) ⊆ HOD𝑥.

3. The main theorem

3.1. Setup. Let 𝜅 < 𝜆 with 𝜆 strongly inaccessible and 𝜅 = sup𝑛 𝜅𝑛, where
(𝜅𝑛)𝑛<𝜔 is a strictly increasing sequence of 𝜆-supercompact cardinals. Fix 𝑈𝑛 a
𝜅𝑛-complete fine normal ultrafilter on 𝑃𝜅𝑛

𝜆, and for 𝜅 ≤ 𝛼 < 𝜆 let 𝑈𝑛,𝛼 be the
projection of 𝑈𝑛 to 𝑃𝜅𝑛

𝛼 via the map 𝑥 ↦→ 𝑥 ∩ 𝛼.
We need a form of diagonal intersection lemma.

Lemma 1. Let 𝑘 < 𝑙 < 𝜔, let (𝛼𝑖)𝑘≤𝑖<𝑙 be a ≤-increasing sequence of elements of
[𝜅, 𝜆), and let 𝑆 ⊆

∏︀
𝑘≤𝑖<𝑙 𝑃𝜅𝑖

𝛼𝑖 be a set of ⊆-increasing sequences.
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Let 𝑚 ∈ [𝑙, 𝜔), let 𝛼 ∈ [𝛼𝑙−1, 𝜆), and let �⃗� = (𝐴𝑠)𝑠∈𝑆 be an 𝑆-indexed family
with 𝐴𝑠 ∈ 𝑈𝑚,𝛼 for each 𝑠 ∈ 𝑆. Then the following set is in 𝑈𝑚,𝛼:

𝐷 = {𝑥 ∈ 𝑃𝜅𝑚
𝛼 : ∀(𝑥𝑘, . . . , 𝑥𝑙−1) ∈ 𝑆 [𝑥𝑙−1 ⊆ 𝑥 =⇒ 𝑥 ∈ 𝐴(𝑥𝑘,...𝑥𝑙−1)]}.

Proof. Let 𝑗 : 𝑉 → 𝑀 be the ultrapower map computed from 𝑈𝑚. To show that
𝐷 ∈ 𝑈𝑚,𝛼 it suffices to show that 𝑗“𝛼 ∈ 𝑗(𝐷).

Let 𝑡 = (𝑦𝑘, . . . 𝑦𝑙−1) ∈ 𝑗(𝑆) with 𝑦𝑙−1 ⊆ 𝑗“𝛼. Write �⃗� = 𝑗(�⃗�). We need to show
that 𝑗“𝛼 ∈ 𝐵𝑡.

For each 𝑖 with 𝑘 ≤ 𝑖 < 𝑙, 𝑦𝑖 ⊆ 𝑗“𝛼𝑖 and |𝑦𝑖| < 𝜅𝑖 < 𝜅𝑚 = crit(𝑗), so that
𝑦𝑖 = 𝑗“𝑥𝑖 = 𝑗(𝑥𝑖) for some 𝑥𝑖 ∈ 𝑃𝜅𝑖

𝛼𝑖. Write 𝑠 = (𝑥𝑘, . . . 𝑥𝑙−1). Then 𝑡 = 𝑗(𝑠) and
hence 𝑠 ∈ 𝑆. In particular 𝐴𝑠 ∈ 𝑈𝑚,𝛼, and so 𝑗“𝛼 ∈ 𝑗(𝐴𝑠) = 𝐵𝑡. �

In the setting of Lemma 1 we will refer to 𝐷 as the diagonal intersection of �⃗�
and we will write “𝑠 b 𝑥” as shorthand for “𝑠 = (𝑥𝑘, . . . 𝑥𝑙−1) with 𝑥𝑙−1 ⊆ 𝑥”.

With a view to the proof of Lemma 12 below we also need a technical lemma
about measure one sets:

Lemma 2. Let 𝑖 < 𝜔 and let 𝛼𝑖 ≤ 𝛽𝑖 ≤ 𝛽𝑖+1 be ordinals Let 𝐵 ∈ 𝑈𝑖,𝛽𝑖 and let
𝐶 ∈ 𝑈𝑖+1,𝛽𝑖+1 . Let 𝐶 ′ be the set of 𝑦 ∈ 𝐶 such that for every 𝑥 ∈ 𝐵 with 𝑥∩𝛼𝑖 ⊆ 𝑦
there is 𝑥′ ∈ 𝐵 ∩ 𝑃 (𝑦) with 𝑥′ ∩ 𝛼𝑖 = 𝑥 ∩ 𝛼𝑖. Then 𝐶 ′ ∈ 𝑈𝑖+1,𝛽𝑖+1

.

Proof. Let 𝑗 : 𝑉 → 𝑀 be the ultrapower map computed from 𝑈𝑖+1. It suffices to
prove that 𝑗“𝛽𝑖+1 ∈ 𝑗(𝐶 ′).

Since 𝐶 ∈ 𝑈𝑖+1,𝛽𝑖+1 , we have 𝑗“𝛽𝑖+1 ∈ 𝑗(𝐶). Suppose that 𝑋 ∈ 𝑗(𝐵) satisfies
𝑋∩𝑗(𝛼𝑖) ⊆ 𝑗“𝛽𝑖+1; we shall find𝑋 ′ ∈ 𝑗(𝐵∩𝑗“𝛽𝑖+1) such that𝑋 ′∩𝑗(𝛼𝑖) = 𝑋∩𝑗(𝛼𝑖).

Since 𝐵 ∈ 𝑃𝜅𝑖
𝛽𝑖, 𝜅𝑖 < 𝜅𝑖+1 = crit(𝑗) and 𝑋 ∈ 𝑗(𝐵), it follows that 𝑋 ∩ 𝑗(𝛼𝑖) =

𝑗(𝑡) = 𝑗“𝑡 for some 𝑡 ∈ 𝑃𝜅𝑖
𝛼𝑖. By elementarity there is 𝑥′ ∈ 𝐵 such that 𝑥′∩𝛼𝑖 = 𝑡.

Now 𝑗(𝑥′) ∈ 𝑗(𝐵), 𝑗(𝑥′) = 𝑗“𝑥′ ⊆ 𝑗“𝛽𝑖+1, and 𝑗(𝑥′) ∩ 𝑗(𝛼𝑖) = 𝑗(𝑡) = 𝑋 ∩ 𝑗(𝛼𝑖), so
𝑋 ′ = 𝑗(𝑥′) is as required. �

3.2. The poset Q. The poset Q is a diagonal extender-based forcing of the general
type introduced by Gitik and Magidor [4]. For the experts, we note the main
innovations:

∙ The extender used here on level 𝑛 is formed from the approximations 𝑈𝑛,𝛼

to the supercompactness measure 𝑈𝑛, rather than from measures approxi-
mating some short extender.

∙ The supports of the components of Q are quite large. This is necessary
because the proofs below require long diagonalisations, which are only pos-
sible because the coordinates of the extender on level 𝑛 are linearly ordered
and all the measures 𝑈𝑛,𝛼 are normal.

∙ Although the supports of the components are large (potentially much bigger
than the completeness of the relevant measures) we can avoid some of the
complexities of the original extender based forcing [5]. In that context
the projections between measures do not commute everywhere, and this
complicates matters in several respects: in our context when 𝛼 < 𝛼′ the
natural projection from 𝑈𝑛,𝛼′ to 𝑈𝑛,𝛼 is just restriction 𝑥 ↦→ 𝑥 ∩ 𝛼, so that
the measures 𝑈𝑛,𝛼 and the natural projections form a linear Rudin-Keisler
directed system with everywhere commutative projection maps.

The poset Q is designed so that (Lemma 13) every subset 𝑥 of 𝜅 in the generic
extension 𝑉 [𝐺] lies in some intermediate extension by an explicitly described forcing
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poset of size less than 𝜆. This guarantees that 𝜆 is preserved by Q (Lemma 14),

and makes possible the analysis of HOD𝑉 [𝐺]
𝑥 (Lemma 15).

A note on notation: The definitions of the poset Q and its ordering ≤ con-
tain quite a number of clauses. We will write for example “b𝑞” as shorthand for
“Clause b in the definition of 𝑞 ∈ Q” and “6𝑞,𝑟” as shorthand for “Clause 6 in the
definition of 𝑞 ≤ 𝑟”.

Conditions in Q are sequences (𝑞𝑘)𝑘<𝜔 such that for some 𝑚 < 𝜔 we have 𝑞𝑘 = 𝑓𝑞𝑘
for 𝑘 < 𝑚 and 𝑞𝑘 = (𝑎𝑞𝑘, 𝐴

𝑞
𝑘, 𝑓

𝑞
𝑘 ) for 𝑘 ≥ 𝑚, where:

a) 𝑓𝑞𝑘 is a function with dom(𝑓𝑞𝑘 ) ⊆ [𝜅, 𝜆), |dom(𝑓𝑞𝑘 )| < 𝜆, and 𝑓𝑞𝑘 (𝜂) ∈ 𝑃𝜅𝑘
𝜂

for all 𝑘 < 𝜔 and all 𝜂 ∈ dom(𝑓𝑞𝑘 ).
b) For 𝑘 ≥ 𝑚 we have 𝑎𝑞𝑘 ⊆ [𝜅, 𝜆), |𝑎𝑞𝑘| < 𝜆, 𝑎𝑞𝑘 and dom(𝑓𝑞𝑘 ) are disjoint sets

and 𝑎𝑞𝑘 has a maximum element 𝛼𝑞
𝑘.

c) For 𝑘 ≥ 𝑚 we have 𝐴𝑞
𝑘 ∈ 𝑈𝑘,𝛼𝑞

𝑘
.

d) (𝑎𝑞𝑘)𝑚≤𝑘<𝜔 is ⊆-increasing with 𝑘.

We call the integer 𝑚 the length of 𝑞 and write 𝑚 = ℓ(𝑞).

Remark 1. We note that there is very little interaction among the “components”
𝑞𝑘 of the condition 𝑞: it is only d𝑞 that connects entries in 𝑞𝑘 on different levels 𝑘.

Remark 2. Note that by b𝑞 and d𝑞, if ℓ(𝑞) ≤ 𝑘 < 𝑙 then 𝛼𝑞
𝑘 ∈ 𝑎𝑞𝑙 and 𝛼𝑞

𝑘 ≤ 𝛼𝑞
𝑙 .

Given 𝑟 and 𝑞 in Q, 𝑟 ≤ 𝑞 if and only if:

(1) ℓ(𝑟) ≥ ℓ(𝑞).
(2) For all 𝑘, 𝑓𝑟𝑘 ⊇ 𝑓𝑞𝑘 (that is, dom(𝑓𝑟𝑘 ) ⊇ dom(𝑓𝑟𝑘 ) and 𝑓𝑟𝑘 � dom(𝑓𝑞𝑘 ) = 𝑓𝑞𝑘 ).
(3) For 𝑘 with ℓ(𝑞) ≤ 𝑘 < ℓ(𝑟), 𝑎𝑞𝑘 ⊆ dom(𝑓𝑟𝑘 ), 𝑓𝑟𝑘 (𝛼𝑞

𝑘) ∈ 𝐴𝑞
𝑘, and 𝑓𝑟𝑘 (𝜂) =

𝑓𝑟𝑘 (𝛼𝑞
𝑘) ∩ 𝜂 for all 𝜂 ∈ 𝑎𝑞𝑘.

(4) (𝑓𝑟𝑘 (𝛼𝑞
𝑘))ℓ(𝑞)≤𝑘<ℓ(𝑟) is ⊆-increasing.

(5) For 𝑘 ≥ ℓ(𝑟), we have 𝑎𝑞𝑘 ⊆ 𝑎𝑟𝑘, and 𝑥 ∩ 𝛼𝑞
𝑘 ∈ 𝐴𝑞

𝑘 for all 𝑥 ∈ 𝐴𝑟
𝑘.

(6) For 𝑘 ≥ ℓ(𝑟), if ℓ(𝑞) < ℓ(𝑟), then 𝑓𝑟ℓ(𝑟)−1(𝛼𝑞
ℓ(𝑟)−1) ⊆ 𝑥 for all 𝑥 ∈ 𝐴𝑟

𝑘.

Remark 3. Note that if 𝑟 ≤ 𝑞 then 𝛼𝑟
𝑘 ≥ 𝛼𝑞

𝑘 for all 𝑘 ≥ ℓ(𝑟).

Lemma 3. The ordering ≤ on Q is transitive.

Proof. Let 𝑟 ≤ 𝑞 ≤ 𝑝 be conditions in Q. Note that 1𝑟,𝑝, 2𝑟,𝑝 and 5𝑟,𝑝 are immediate.
To verify 3𝑟,𝑝, let ℓ(𝑝) ≤ 𝑘 < ℓ(𝑟) and distinguish two cases:

I ℓ(𝑝) ≤ 𝑘 < ℓ(𝑞): In this case 𝑓𝑟𝑘 (𝛼𝑝
𝑘) = 𝑓𝑞𝑘 (𝛼𝑝

𝑘) by 2𝑟,𝑞 and 𝑓𝑞𝑘 (𝛼𝑝
𝑘) ∈ 𝐴𝑝

𝑘

by 3𝑞,𝑝, so 𝑓𝑟𝑘 (𝛼𝑝
𝑘) ∈ 𝐴𝑝

𝑘. Moreover if 𝜂 ∈ 𝑎𝑝𝑘 then 𝑓𝑞𝑘 (𝜂) = 𝑓𝑞𝑘 (𝛼𝑝
𝑘) ∩ 𝜂

by 3𝑞,𝑝 for 𝑞 ≤ 𝑝. Also 𝑓𝑟𝑘 (𝜂) = 𝑓𝑞𝑘 (𝜂) and 𝑓𝑟𝑘 (𝛼𝑝
𝑘) = 𝑓𝑞𝑘 (𝛼𝑝

𝑘) by 2𝑟,𝑞, so
𝑓𝑟𝑘 (𝜂) = 𝑓𝑟𝑘 (𝛼𝑝

𝑘) ∩ 𝜂.
I ℓ(𝑞) ≤ 𝑘 < ℓ(𝑟): We have 𝛼𝑝

𝑘 ∈ 𝑎𝑞𝑘 by 5𝑞,𝑝, so 𝑓𝑟𝑘 (𝛼𝑝
𝑘) = 𝑓𝑟𝑘 (𝛼𝑞

𝑘) ∩ 𝛼𝑝
𝑘 by

3𝑟,𝑞. Now 𝑓𝑟𝑘 (𝛼𝑞
𝑘) ∈ 𝐴𝑞

𝑘 by 3𝑟,𝑞, and so 𝑓𝑟𝑘 (𝛼𝑞
𝑘) ∩ 𝛼𝑝

𝑘 ∈ 𝐴𝑝
𝑘 by 5𝑞,𝑝, hence

𝑓𝑟𝑘 (𝛼𝑝
𝑘) ∈ 𝐴𝑝

𝑘. Since we will use this information again, we summarise it:

(*) 𝑓𝑟𝑘 (𝛼𝑝
𝑘) = 𝑓𝑟𝑘 (𝛼𝑞

𝑘) ∩ 𝛼𝑝
𝑘 whenever ℓ(𝑞) ≤ 𝑘 < ℓ(𝑟).

Moreover if 𝜂 ∈ 𝑎𝑝𝑘 then 𝜂, 𝛼𝑝
𝑘 ∈ 𝑎𝑞𝑘 by 5𝑞,𝑝, 𝑓𝑟𝑘 (𝜂) = 𝑓𝑟𝑘 (𝛼𝑞

𝑘)∩𝜂 and 𝑓𝑟𝑘 (𝛼𝑝
𝑘) =

𝑓𝑟𝑘 (𝛼𝑞
𝑘) ∩ 𝛼𝑝

𝑘 by 3𝑟,𝑞, so 𝑓𝑟𝑘 (𝜂) = 𝑓𝑟𝑘 (𝛼𝑝
𝑘) ∩ 𝜂.

To verify 4𝑟,𝑝, first note that (𝑓𝑞𝑘 (𝛼𝑝
𝑘))ℓ(𝑝)≤𝑘<ℓ(𝑞) is ⊆-increasing with 𝑘 by 4𝑞,𝑝,

and also that (𝑓𝑟𝑘 (𝛼𝑞
𝑘))ℓ(𝑞)≤𝑘<ℓ(𝑟) is ⊆-increasing by 4𝑟,𝑞. We now distinguish three

cases:
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I For ℓ(𝑝) ≤ 𝑘 < ℓ(𝑞), by 2𝑟,𝑞, we have 𝑓𝑞𝑘 (𝛼𝑝
𝑘) = 𝑓𝑟𝑘 (𝛼𝑝

𝑘) so that the sequence
(𝑓𝑟𝑘 (𝛼𝑝

𝑘))ℓ(𝑝)≤𝑘<ℓ(𝑞) is ⊆-increasing.
I For ℓ(𝑞) ≤ 𝑘0 < 𝑘1 < ℓ(𝑟), we have that 𝑓𝑟𝑘0

(𝛼𝑞
𝑘0

) ⊆ 𝑓𝑟𝑘1
(𝛼𝑞

𝑘1
) and also (by

Remark 2) that 𝛼𝑝
𝑘0

≤ 𝛼𝑝
𝑘1

, so using (*) we get

𝑓𝑞𝑘0
(𝛼𝑝

𝑘0
) = 𝑓𝑟𝑘0

(𝛼𝑞
𝑘0

) ∩ 𝛼𝑝
𝑘0

⊆ 𝑓𝑟𝑘1
(𝛼𝑞

𝑘1
) ∩ 𝛼𝑝

𝑘1
= 𝑓𝑞𝑘1

(𝛼𝑝
𝑘1

).

It follows that (𝑓𝑞𝑘 (𝛼𝑝
𝑘))ℓ(𝑞)≤𝑘<ℓ(𝑟) is ⊆-increasing.

I For ℓ(𝑝) < ℓ(𝑞) < ℓ(𝑟), by 3𝑟,𝑞 we have 𝑓𝑟ℓ(𝑞)(𝛼
𝑞
ℓ(𝑞)) ∈ 𝐴𝑞

ℓ(𝑞), so by 6𝑞,𝑝
we have 𝑓𝑞ℓ(𝑞)−1(𝛼𝑝

ℓ(𝑞)−1) ⊆ 𝑓𝑟ℓ(𝑞)(𝛼
𝑞
ℓ(𝑞)) ∩ 𝛼

𝑝
ℓ(𝑞)−1. By (*) with 𝑘 = ℓ(𝑞) we

have 𝑓𝑟ℓ(𝑞)(𝛼
𝑝
ℓ(𝑞)) = 𝑓𝑟ℓ(𝑞)(𝛼

𝑞
ℓ(𝑞)) ∩ 𝛼

𝑝
ℓ(𝑞), and we also have 𝑓𝑞ℓ(𝑞)−1(𝛼𝑝

ℓ(𝑞)−1) =

𝑓𝑟ℓ(𝑞)−1(𝛼𝑝
ℓ(𝑞)−1) by 2𝑟,𝑞. Since 𝛼𝑝

ℓ(𝑞)−1 ≤ 𝛼𝑝
ℓ(𝑞) by Remark 2, we see that

𝑓𝑟ℓ(𝑞)−1(𝛼𝑝
ℓ(𝑞)−1) = 𝑓𝑞ℓ(𝑞)−1(𝛼𝑝

ℓ(𝑞)−1) ⊆
⊆ 𝑓𝑟ℓ(𝑞)(𝛼

𝑞
ℓ(𝑞)) ∩ 𝛼

𝑝
ℓ(𝑞)−1 ⊆ 𝑓𝑟ℓ(𝑞)(𝛼

𝑞
ℓ(𝑞)) ∩ 𝛼

𝑝
ℓ(𝑞) = 𝑓𝑟ℓ(𝑞)(𝛼

𝑝
ℓ(𝑞)).

We thus conclude that (𝑓𝑟𝑘 (𝛼𝑝
𝑘))ℓ(𝑝)≤𝑘<ℓ(𝑟) is ⊆-increasing.

Finally, to verify 6𝑟,𝑝, suppose that ℓ(𝑝) < ℓ(𝑟) ≤ 𝑘 and let 𝑥 ∈ 𝐴𝑟
𝑘. We

distinguish two cases:

I ℓ(𝑝) < ℓ(𝑞) = ℓ(𝑟). In this case, 𝑥 ∩ 𝛼𝑞
𝑘 ∈ 𝐴𝑞

𝑘 by 5𝑟,𝑞. By 6𝑞,𝑝 and the ob-
servation that 𝛼𝑝

ℓ(𝑟)−1 ≤ 𝛼𝑝
ℓ(𝑟) ≤ 𝛼𝑞

ℓ(𝑟) ≤ 𝛼𝑞
𝑘, 𝑥 ∩ 𝛼𝑝

ℓ(𝑟)−1 ⊇ 𝑓𝑞ℓ(𝑟)−1(𝛼𝑝
ℓ(𝑟)−1).

Finally 𝑓𝑞ℓ(𝑟)−1(𝛼𝑝
ℓ(𝑟)−1) = 𝑓𝑟ℓ(𝑟)−1(𝛼𝑝

ℓ(𝑟)−1) by 2𝑟,𝑞, and so 𝑓𝑟ℓ(𝑟)−1(𝛼𝑝
ℓ(𝑟)−1) ⊆

𝑥 ∩ 𝛼𝑝
ℓ(𝑟)−1.

I ℓ(𝑝) ≤ ℓ(𝑞) < ℓ(𝑟). In this case, by 6𝑟,𝑞, 𝑓𝑟ℓ(𝑟)−1(𝛼𝑞
ℓ(𝑟)−1) ⊆ 𝑥∩𝛼𝑞

ℓ(𝑟)−1. The

ordinals 𝛼𝑝
ℓ(𝑟)−1 and 𝛼𝑞

ℓ(𝑟)−1 lie in 𝑎𝑞ℓ(𝑟)−1 by 5𝑞,𝑝. Now 𝑓𝑟ℓ(𝑟)−1(𝛼𝑝
ℓ(𝑟)−1) =

𝑓𝑟ℓ(𝑟)−1(𝛼𝑞
𝑙ℎ(𝑟)−1) ∩ 𝛼𝑝

ℓ(𝑟)−1 by 3𝑟,𝑞, and so 𝑓𝑟ℓ(𝑟)−1(𝛼𝑝
ℓ(𝑟)−1) ⊆ 𝑥 ∩ 𝛼𝑞

ℓ(𝑟)−1 ∩
𝛼𝑝
ℓ(𝑟)−1 = 𝑥 ∩ 𝛼𝑝

𝑟−1, using the fact that 𝛼𝑞
𝑟−1 ≥ 𝛼𝑝

𝑟−1 by Remark 3.

This completes the proof. �

It is easy to see that for each 𝑚 < 𝜔 and each 𝛼 with 𝜅 ≤ 𝛼 < 𝜆, the set
of conditions 𝑞 with ℓ(𝑞) > 𝑚 is dense, as is the set of 𝑞 with 𝛼 ∈ dom(𝑓𝑞𝑚). It
follows that we may view Q as adding a matrix of sets (𝑧𝑚,𝛼)𝑚<𝜔,𝜅≤𝛼<𝜆 such that
𝑧𝑚,𝛼 ∈ 𝑃𝜅𝑚

𝛼 for all 𝑚 and 𝛼.

Lemma 4. The forcing poset Q collapses all cardinals 𝜇 with 𝜅 < 𝜇 < 𝜆 and
preserves all cardinals 𝜇 with 𝜇 > 𝜆.

Proof. It is easy to see that |Q| = 𝜆, so that Q trivially has 𝜆+-cc and preserves
cardinals greater than 𝜆.

Given 𝜇 with 𝜅 < 𝜇 < 𝜆, we will do a density argument to show that 𝜇 is
collapsed. Let 𝑝 ∈ Q arbitrary, and extend 𝑝 to obtain 𝑞 so that there is 𝛼 ≥ 𝜇
with 𝛼 ∈

⋃︀
ℓ(𝑞)≤𝑘<𝜔 𝑎

𝑞
𝑘. We claim that 𝑞  𝜇 ⊆

⋃︀
𝑚 �̇�𝑚,𝛼; to see this let 𝛽 < 𝜇 be

arbitrary, choose 𝑦 ∈ 𝐴𝑞
𝛼𝑞

ℓ(𝑞)

with 𝛽 ∈ 𝑦, and extend 𝑞 to a condition 𝑟 such that

ℓ(𝑟) = ℓ(𝑞) + 1 and 𝑓𝑟ℓ(𝑞)(𝛼
𝑞
ℓ(𝑞)) = 𝑦, so that 𝛽 ∈ 𝑓𝑟ℓ(𝑞)(𝛼) = 𝑦 ∩ 𝛼. �

The argument that the cardinal 𝜆 and cardinals 𝜇 with 𝜇 ≤ 𝜅 are preserved will
require a deeper analysis of the forcing poset Q, which will be given in subsection
3.4. The intuition is that the 𝜔-sequences (𝑧𝑚,𝛼)𝑚<𝜔 for differing values of 𝛼 are
related, so that no unwanted information can be computed by comparing them.
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3.3. Basic properties of Q. Let us consider a secondary ordering on Q. Let
𝑟 ≤* 𝑞 (𝑟 is a direct extension of 𝑞) if and only if 𝑟 ≤ 𝑞 and ℓ(𝑟) = ℓ(𝑞).

Lemma 5. Let �⃗� = (𝑞𝑖)𝑖<𝜇 be a ≤*-decreasing sequence of conditions where 𝜇 <
𝜅ℓ(𝑞0). Then the sequence �⃗� has a ≤*-lower bound.

Proof. We define a lower bound 𝑟 with ℓ(𝑟) = ℓ(𝑞0) as follows:

I For all 𝑘 < 𝜔, let 𝑓𝑟𝑘 =
⋃︀

𝑖<𝜇 𝑓
𝑞𝑖
𝑘 .

I Choose some ordinal 𝛽 < 𝜆 such that
⋃︀

𝑖<𝜇(𝑎𝑞𝑖𝑘 ∪ dom(𝑓𝑞𝑖𝑘 )) ⊆ 𝛽 for all

𝑘 ≥ ℓ(𝑟), and define 𝑎𝑟𝑘 =
⋃︀

𝑖<𝜇 𝑎
𝑞𝑖
𝑘 ∪ {𝛽} for all such 𝑘, so that 𝛼𝑟

𝑘 = 𝛽.

I For 𝑘 ≥ ℓ(𝑟), set 𝐴𝑟
𝑘 = {𝑥 ∈ 𝑃𝜅𝑘

𝛽 : ∀𝑖 < 𝜇 𝑥 ∩ 𝛼𝑞𝑖
𝑘 ∈ 𝐴𝑞𝑖

𝑘 }.

It is routine to check that 𝑟 is a condition with 𝑟 ≤* 𝑞𝑖 for all 𝑖. Note that
Clauses 3, 4 and 6 from the definition of the ordering ≤ are irrelevant here. �

We will also need a stronger version of ≤*. For 𝑖 < 𝜔, write 𝑟 ≤*
𝑖 𝑞 if and only

if 𝑟 ≤* 𝑞 and in addition (𝑎𝑟𝑘, 𝐴
𝑟
𝑘) = (𝑎𝑞𝑘, 𝐴

𝑞
𝑘) whenever ℓ(𝑞) ≤ 𝑘 < ℓ(𝑞) + 𝑖. Note

that ≤*=≤*
0 and ≤*

𝑖 is transitive for all 𝑖.

Lemma 6 (Fusion). Let (𝑞𝑖)𝑖<𝜔 be a sequence of conditions such that 𝑞𝑖+1 ≤*
𝑖 𝑞𝑖

for all 𝑖 < 𝜔. Then there exists a condition 𝑞∞ such that 𝑞∞ ≤*
𝑖 𝑞𝑖 for all 𝑖.

Proof. Define 𝑞∞ with ℓ(𝑞∞) = ℓ(𝑞0) as follows:

I 𝑓𝑞∞𝑘 =
⋃︀

𝑖<𝜔 𝑓
𝑞𝑖
𝑘 for all 𝑘 < 𝜔;

I (𝑎𝑞∞𝑘 , 𝐴𝑞∞
𝑘 ) = (𝑎

𝑞𝑘+1

𝑘 , 𝐴
𝑞𝑘+1

𝑘 ) for 𝑘 ≥ ℓ(𝑞0).

It is routine to verify that 𝑞∞ is a condition and 𝑞∞ ≤*
𝑖 𝑞𝑖 for all 𝑖. �

Remark 4. Of course Lemma 5 already implies that the decreasing sequence from
Lemma 6 has a ≤*-lower bound, the point here is that 𝑞∞ ≤*

𝑖 𝑞𝑖 rather than just
𝑞∞ ≤* 𝑞𝑖.

Definition 1. For conditions 𝑟 ≤ 𝑞, we let stem(𝑟, 𝑞) denote the finite sequence
(𝑓𝑟𝑖 (𝛼𝑞

𝑖 ))ℓ(𝑞)≤𝑖<ℓ(𝑟).

Note that by 3𝑟,𝑞 and 4𝑟,𝑞, stem(𝑟, 𝑞) ∈
∏︀

ℓ(𝑞)≤𝑖<ℓ(𝑟)𝐴
𝑞
𝑖 , and is ⊆-increasing.

Definition 2. Let 𝑞 be a condition, and let 𝑠 ∈
∏︀

ℓ(𝑞)≤𝑖<𝑙𝐴
𝑞
𝑖 be a ⊆-increasing

sequence for some 𝑙 ∈ (ℓ(𝑞), 𝜔). We define 𝑞 + 𝑠 as the 𝜔-sequence (𝑟𝑘)𝑘<𝜔 such
that:

∙ For 𝑘 < ℓ(𝑞), 𝑟𝑘 = 𝑓𝑞𝑘 .
∙ For ℓ(𝑞) ≤ 𝑘 < 𝑙, 𝑟𝑘 is the function with domain dom(𝑓𝑞𝑘 ) ∪ 𝑎𝑞𝑘 such that
𝑟𝑘(𝜂) = 𝑓𝑞𝑘 (𝜂) for 𝜂 ∈ dom(𝑓𝑞𝑘 ) and 𝑟𝑘(𝜂) = 𝑠𝑘 ∩ 𝜂 for 𝜂 ∈ 𝑎𝑞𝑘.

∙ For 𝑘 ≥ 𝑙, 𝑟𝑘 = (𝑓𝑞𝑘 , 𝑎
𝑞
𝑘, 𝐵𝑘) where 𝐵𝑘 = {𝑥 ∈ 𝐴𝑞

𝑘 : 𝑠𝑙−1 ⊆ 𝑥}.

By convention we also define 𝑞 + ⟨⟩ = 𝑞.

We shall soon establish that 𝑞+𝑠 is a condition, but let us first point out that 𝑞+𝑠
may be obtained by adding in one entry of 𝑠 at a time.

Lemma 7. Let 𝑞 and 𝑠 = (𝑠𝑖)ℓ(𝑞)≤𝑖<𝑙 be as in Definition 2. Let 𝑛 = 𝑙 − ℓ(𝑞).
Define a decreasing sequence of conditions (𝑟𝑖)𝑖≤𝑛 as follows: 𝑟0 = 𝑞, and then
𝑟𝑖+1 = 𝑟𝑖 + ⟨𝑠𝑖⟩ for 𝑖 < 𝑛. Then 𝑟𝑛 = 𝑞 + 𝑠.

Proof. The proof is straightforward by induction on the length of 𝑠. �
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Lemma 8. Let 𝑞 and 𝑠 be as in Definition 2. Then 𝑞 + 𝑠 is a condition extending
𝑞. Moreover 𝑟 ≤* 𝑞 + stem(𝑟, 𝑞) for all 𝑟 ≤ 𝑞.

Proof. By definition ℓ(𝑞 + 𝑠) = ℓ(𝑞) + ℓ(𝑠), so 1𝑞+𝑠,𝑞 holds. Clearly 𝑓𝑞+𝑠
𝑘 ⊇ 𝑓𝑞𝑘 for

all 𝑘, so 2𝑞+𝑠,𝑞 holds.

By construction 𝑓𝑞+𝑠
𝑘 (𝛼𝑞

𝑘) = 𝑠𝑘 for ℓ(𝑞) ≤ 𝑘 < ℓ(𝑞) + ℓ(𝑠), so 𝑓𝑞+𝑠(𝛼𝑞
𝑘) ∈ 𝐴𝑞

𝑘 by

our assumptions on 𝑠. Also by definition 𝑓𝑞+𝑠
𝑘 (𝜂) = 𝑠𝑘 ∩ 𝜂 = 𝑓𝑞+𝑠

𝑘 (𝛼𝑞
𝑘) ∩ 𝜂 for all

such 𝑘, so that 3𝑞+𝑠,𝑞 holds. The sequence (𝑓𝑞+𝑠
𝑘 (𝛼𝑞

𝑘))ℓ(𝑞)≤𝑘<ℓ(𝑞+𝑠) is equal to 𝑠,
which is ⊆-increasing by our assumptions on 𝑠, so 4𝑞+𝑠,𝑞 holds.

We have 𝑎𝑞+𝑠
𝑘 = 𝑎𝑞𝑘 and 𝐴𝑞+𝑠

𝑘 ⊆ 𝐴𝑞
𝑘 for all 𝑘 ≥ ℓ(𝑞 + 𝑠), so 5𝑞+𝑠,𝑞 holds. Finally

we have by definition that 𝐴𝑞+𝑠
𝑘 = {𝑥 ∈ 𝐴𝑞

𝑘 : 𝑠ℓ(𝑞+𝑠)−1 ⊆ 𝑥} for 𝑘 ≥ ℓ(𝑞 + 𝑠), and

𝑓𝑞+𝑠
ℓ(𝑞+𝑠)−1(𝛼𝑞

ℓ(𝑞+𝑠)−1) = 𝑠ℓ(𝑞+𝑠)−1, so 6𝑞+𝑠,𝑞 holds.

Now suppose that 𝑟 ≤ 𝑞 and 𝑠 = stem(𝑟, 𝑞). If ℓ(𝑟) = ℓ(𝑞) then 𝑠 = ⟨⟩ and
𝑟 ≤* 𝑞 = 𝑞+𝑠, so we may as well assume that ℓ(𝑟) > ℓ(𝑞). We have ℓ(𝑟) = ℓ(𝑞+𝑠), so

1𝑟,𝑞+𝑠 holds. By the definition of 𝑞+𝑠 and 3𝑟,𝑞, 𝑓𝑟𝑘 ⊇ 𝑓𝑞+𝑠
𝑘 whenever ℓ(𝑞) ≤ 𝑘 < ℓ(𝑟).

For 𝑘 ≥ ℓ(𝑟), 𝑓𝑞+𝑠
𝑘 = 𝑓𝑞𝑘 and 𝑓𝑟𝑘 ⊇ 𝑓𝑞𝑘 by 2𝑟,𝑞, so 2𝑟,𝑞+𝑠 holds.

Since ℓ(𝑟) = ℓ(𝑞 + 𝑠), 3𝑟,𝑞+𝑠, 4𝑟,𝑞+𝑠 and 6𝑟,𝑞+𝑠 hold vacuously. For 𝑘 ≤ ℓ(𝑞 + 𝑠)

we have 𝑎𝑞+𝑠
𝑘 = 𝑎𝑞𝑘 by definition, and also 𝑎𝑞𝑘 ⊆ 𝑎𝑟𝑘 by 5𝑟,𝑞. Finally for all 𝑘 ≥ ℓ(𝑟) =

ℓ(𝑞 + 𝑠) and all 𝑥 ∈ 𝐴𝑟
𝑘, 𝑥 ∩ 𝛼𝑞+𝑠

𝑘 = 𝑥 ∩ 𝛼𝑞
𝑘 ∈ 𝐴𝑞

𝑘, and additionally 𝑠ℓ(𝑞+𝑠)−1 ⊆
𝑥 ∩ 𝛼𝑞

ℓ(𝑞+𝑠)−1; it follows from the definition that 𝑥 ∩ 𝛼𝑞
ℓ(𝑞+𝑠) ∈ 𝐴𝑞+𝑠

ℓ(𝑞+𝑠). �

Lemma 9. Let 𝑞 ≤*
𝑛 𝑝 and let 𝑟 ≤ 𝑞 with ℓ(𝑟) = ℓ(𝑞) + 𝑛. Then stem(𝑟, 𝑞) =

stem(𝑟, 𝑝), and 𝑞 + stem(𝑟, 𝑞) ≤* 𝑝+ stem(𝑟, 𝑝).

Proof. Let 𝑠 = stem(𝑟, 𝑞), that is 𝑠𝑘 = 𝑓𝑟𝑘 (𝛼𝑞
𝑘) for ℓ(𝑞) ≤ 𝑘 < ℓ(𝑟). Since 𝑞 ≤*

𝑛 𝑝
we have that 𝛼𝑞

𝑘 = 𝛼𝑝
𝑘 for such 𝑘, and so 𝑠𝑘 = 𝑓𝑟𝑘 (𝛼𝑝

𝑘) and hence stem(𝑟, 𝑝) = 𝑠 =
stem(𝑟, 𝑞). If 𝑛 = 0 then 𝑞 = 𝑞 + 𝑠 ≤* 𝑝 = 𝑝+ 𝑠, so we may assume that 𝑛 > 0.

Now ℓ(𝑞 + 𝑠) = ℓ(𝑟) = ℓ(𝑝+ 𝑠), so Clauses 1, 3, 4 and 6 are easily seen to hold.

For 𝑘 < ℓ(𝑝) or 𝑘 ≥ ℓ(𝑟), we have 𝑓𝑞+𝑠
𝑘 = 𝑓𝑞𝑘 ≤ 𝑓𝑝𝑘 = 𝑓𝑝+𝑠

𝑘 by the definitions and

2𝑞,𝑝. For ℓ(𝑝) ≤ 𝑘 < ℓ(𝑟), we have that 𝑓𝑞+𝑠
𝑘 ≤ 𝑓𝑝+𝑠

𝑘 because 𝑓𝑞𝑘 ≤ 𝑓𝑝𝑘 by 2𝑞,𝑝, and

𝑓𝑞+𝑠
𝑘 (𝜂) = 𝑠𝑘 ∩ 𝜂 = 𝑓𝑝+𝑠

𝑘 (𝜂) for every 𝜂 ∈ 𝑎𝑞𝑘 = 𝑎𝑝𝑘.

For 𝑘 ≥ ℓ(𝑟) we have 𝑎𝑝+𝑠
𝑘 = 𝑎𝑝𝑘 ⊆ 𝑎𝑞𝑘 = 𝑎𝑞+𝑠

𝑘 and 𝑥 ∈ 𝐴𝑞
𝑘 =⇒ 𝑥 ∩ 𝛼𝑝

𝑘 ∈ 𝐴𝑝
𝑘

by 5𝑞,𝑝. If 𝑥 ∈ 𝐴𝑞+𝑠
𝑘 then 𝑥 ∈ 𝐴𝑞

𝑘 and 𝑥 ⊇ 𝑠ℓ(𝑟)−1, so 𝑥 ∩ 𝛼𝑝
𝑘 ∈ 𝐴𝑝

𝑘 and also
𝑥 ∩ 𝛼𝑝

𝑘 ⊇ 𝑠ℓ(𝑟)−1 using the fact that 𝛼𝑝
𝑘 ≥ 𝛼𝑝

ℓ(𝑟)−1. �

3.4. Main technical lemma. If 𝜏 is a name for an object in the ground model
and 𝑟 is a condition, then we say that 𝑟 decides 𝜏 if and only if there is 𝑥 ∈ 𝑉 such
that 𝑟  𝜏 = �̌�. We write 𝑟 ‖ 𝜏 for “𝑟 decides 𝜏”.

We now state and prove the key technical lemma about Q.

Lemma 10. Let 𝑝 ∈ Q and let 𝜏 be a name for an element of 𝑉 . Then there is a
direct extension 𝑞 ≤* 𝑝 such that for every 𝑟 ≤ 𝑞 with 𝑟 ‖ 𝜏 , we have 𝑞+stem(𝑟, 𝑞) ‖
𝜏 .

Proof. We will build an 𝜔-sequence of conditions (𝑝𝑛)𝑛<𝜔 such that:

∙ 𝑝0 = 𝑝.
∙ 𝑝𝑛+1 ≤*

𝑛 𝑝𝑛 for all 𝑛.
∙ For every 𝑟 ≤ 𝑝𝑛+1 with ℓ(𝑟) = ℓ(𝑝)+𝑛, if 𝑟 ‖ 𝜏 , then 𝑝𝑛+1+stem(𝑟, 𝑝𝑛+1) ‖
𝜏 .
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Before giving the construction we verify that building (𝑝𝑛)𝑛<𝜔 is sufficient. Ap-
pealing to Lemma 6, we find 𝑝∞ such that 𝑝∞ ≤*

𝑛 𝑝𝑛 for all 𝑛. Let 𝑟 ≤ 𝑝∞
with 𝑟 ‖ 𝜏 and ℓ(𝑟) = ℓ(𝑝) + 𝑛. Then 𝑝∞ ≤*

𝑛 𝑝𝑛+1, and so 𝑝∞ + stem(𝑟, 𝑝∞) ≤*

𝑝𝑛+1+stem(𝑟, 𝑝𝑛+1) by Lemma 9. By construction 𝑝𝑛+1+stem(𝑟, 𝑝𝑛+1) ‖ 𝜏 , and so
𝑝∞ + stem(𝑟, 𝑝∞) ‖ 𝜏 . It follows that 𝑝∞ will serve as a witness to the conclusion.

To begin the construction we set 𝑝0 = 𝑝, and then ask whether there is a direct
extension of 𝑝 which decides 𝜏 , and set 𝑝1 equal to such an extension if one exists,
otherwise 𝑝1 = 𝑝. If there is 𝑟 ≤* 𝑝1 with 𝑟 ‖ 𝜏 then 𝑟 ≤* 𝑝, and 𝑝1 = 𝑝1 +
stem(𝑟, 𝑝1) ‖ 𝜏 .

Suppose now that we have constructed 𝑝𝑛 for some 𝑛 > 0. Let (𝑠𝑛𝑗 )𝑗<𝜇 be an
enumeration of all sequences 𝑠 such that ℓ(𝑠) = 𝑛 and 𝑝𝑛 + 𝑠 is well defined, that

is to say all ⊆-increasing sequences in
∏︀

ℓ(𝑝)≤𝑘<ℓ(𝑝)+𝑛𝐴
𝑝𝑛

𝑘 . Since 𝜆 is inaccessible,

𝜇 < 𝜆.

Note to the reader. The objects 𝑓 𝑗𝑘 , 𝑎𝑗𝑘, 𝛼𝑗
𝑘, 𝐴𝑗

𝑘 built during the construction
also depend on 𝑛, but we have suppressed the index 𝑛 to lighten the notation.

We will construct by recursion for each 𝑗 < 𝜇:

∙ Functions 𝑓 𝑗𝑘 for 𝑘 < 𝜔.

∙ Sets 𝑎𝑗𝑘 and 𝐴𝑗
𝑘 for ℓ(𝑝) + 𝑛 ≤ 𝑘 < 𝜔.

We will maintain the following hypotheses:

∙ 𝑎𝑝𝑛

ℓ(𝑝)+𝑛−1 ⊆ 𝑎0ℓ(𝑝)+𝑛.

∙ For all 𝑘 and all 𝑗 < 𝑗′, 𝑓 𝑗
′

𝑘 ⊇ 𝑓 𝑗𝑘 and 𝑎𝑗𝑘 ⊆ 𝑎𝑗
′

𝑘 .

∙ For all 𝑘 and 𝑗, 𝑎𝑗𝑘 ⊆ [𝜅, 𝜆) with |𝑎𝑗𝑘| < 𝜆.

∙ For all 𝑗, the sequence (𝑎𝑗𝑘)ℓ(𝑝)+𝑛≤𝑘 is ⊆-increasing with 𝑘.

∙ 𝑎𝑗𝑘 has a maximum element 𝛼𝑗
𝑘 and 𝐴𝑗

𝑘 ∈ 𝑈𝑘,𝛼𝑗
𝑘
.

∙ For all 𝑘 with ℓ(𝑝) ≤ 𝑘 < ℓ(𝑝) + 𝑛 and all 𝑗, dom(𝑓 𝑗𝑘) is disjoint from 𝑎𝑝𝑛

𝑘 .

∙ For all 𝑘 with ℓ(𝑝) + 𝑛 ≤ 𝑘 and all 𝑗, dom(𝑓 𝑗𝑘) is disjoint from 𝑎𝑗𝑘.

To begin the construction we set 𝑓0𝑘 = 𝑓𝑝𝑛

𝑘 for all 𝑘, and (𝑎0𝑘, 𝐴
0
𝑘) = (𝑎𝑝𝑛

𝑘 , 𝐴𝑝𝑛

𝑘 )
for 𝑘 ≥ ℓ(𝑝) + 𝑛.

Suppose that we have constructed 𝑓 𝑗𝑘 , 𝑎𝑗𝑘 and 𝐴𝑗
𝑘. We define various auxiliary

conditions in Q:

∙ 𝑝𝑗 is the condition such that 𝑝𝑗𝑘 = 𝑓 𝑗𝑘 for 𝑘 < ℓ(𝑝), 𝑝𝑗𝑘 = (𝑎𝑝𝑛

𝑘 , 𝐴𝑝𝑛

𝑘 , 𝑓 𝑗𝑘) for

ℓ(𝑝) ≤ 𝑘 < ℓ(𝑝) + 𝑛, and 𝑝𝑗𝑘 = (𝑎𝑗𝑘, 𝑃𝜅𝑘
𝛼𝑗
𝑘, 𝑓

𝑗
𝑘) for ℓ(𝑝) + 𝑛 ≤ 𝑘.

∙ 𝑞𝑗 = 𝑝𝑗 + 𝑠𝑛𝑗 .

∙ If there is 𝑟 ≤* 𝑞𝑗 such that 𝑟 ‖ 𝜏 , then 𝑟𝑗 is some such condition 𝑟,
otherwise 𝑟𝑗 = 𝑞𝑗 .

We now define:

I 𝑓 𝑗+1
𝑘 = 𝑓𝑟

𝑗

𝑘 for 𝑘 < ℓ(𝑝) or 𝑘 ≥ ℓ(𝑝) + 𝑛.

I 𝑓 𝑗+1
𝑘 = 𝑓𝑟

𝑗

𝑘 � dom(𝑓𝑟
𝑗

𝑘 ) ∖ 𝑎𝑝𝑛

𝑘 for ℓ(𝑝) ≤ 𝑘 < ℓ(𝑝) + 𝑛.

I (𝑎𝑗+1
𝑘 , 𝐴𝑗+1

𝑘 ) = (𝑎𝑟
𝑗

𝑘 , 𝐴
𝑟𝑗

𝑘 ) for 𝑘 ≥ ℓ(𝑝) + 𝑛.

For 𝑗 limit we proceed roughly as in the proof of Lemma 5, with the important
caveat that we do not aim to make the sets 𝐴𝑗

𝑘 decrease with 𝑗:

I 𝑓 𝑗𝑘 =
⋃︀

𝑖<𝑗 𝑓
𝑖
𝑘 for all 𝑘.

I For 𝑘 ≥ ℓ(𝑝) + 𝑛:
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∙ We choose 𝑎𝑗𝑘 as in the final stage of the proof of Lemma 5, that is to

say we choose some large enough 𝛽𝑗 and set 𝑎𝑗𝑘 =
⋃︀

𝑖<𝑗 𝑎
𝑖
𝑘 ∪ {𝛽𝑗} for

all 𝑘, so that 𝛼𝑗
𝑘 = 𝛽𝑗 .

∙ We set 𝐴𝑗
𝑘 = 𝑃𝜅𝑘

𝛽𝑗 .

After defining 𝑓 𝑗𝑘 , 𝑎𝑗𝑘 and 𝐴𝑗
𝑘 for 𝑗 < 𝜇, we are ready to define 𝑝𝑛+1.

I 𝑓
𝑝𝑛+1

𝑘 =
⋃︀

𝑖<𝜇 𝑓
𝑖
𝑘 for all 𝑘.

I (𝑎
𝑝𝑛+1

𝑘 , 𝐴
𝑝𝑛+1

𝑘 ) = (𝑎𝑝𝑛

𝑘 , 𝐴𝑝𝑛

𝑘 ) for ℓ(𝑝) ≤ 𝑘 < ℓ(𝑝) + 𝑛.
I For 𝑘 ≥ ℓ(𝑝) + 𝑛:

∙ As at the limit stages below 𝜇, we choose some large enough 𝛽* and
set 𝑎

𝑝𝑛+1

𝑘 =
⋃︀

𝑖<𝜇 𝑎
𝑖
𝑘 ∪ {𝛽*}, so that 𝛼

𝑝𝑛+1

𝑘 = 𝛽* for all 𝑘.

∙ We define 𝐴
𝑝𝑛+1

𝑘 by diagonal intersection, as the set of those 𝑥 ∈ 𝑃𝜅𝑘
𝛽*

such that 𝑥 ∩ 𝛼𝑝𝑛

𝑘 ∈ 𝐴𝑝𝑛

𝑘 and, for all 𝑖 < 𝜇 if 𝑠𝑛𝑖 b 𝑥 then 𝑥 ∩ 𝛼𝑖+1
𝑘 ∈

𝐴𝑖+1
𝑘 .

Note that {𝑥 ∈ 𝑃𝜅𝑘
𝛽* : 𝑥 ∩ 𝛼𝑖+1

𝑘 ∈ 𝐴𝑖+1
𝑘 } ∈ 𝑈𝑘,𝛽* , because 𝐴𝑖+1

𝑘 ∈ 𝑈𝑘,𝛼𝑖+1
𝑘

and

this is the projection of 𝑈𝑘,𝛽* under the map 𝑥 ↦→ 𝑥 ∩ 𝛼𝑖+1
𝑘 . So 𝐴

𝑝𝑛+1

𝑘 ∈ 𝑈𝑘,𝛽* by
Lemma 1.

It is routine to verify that 𝑝𝑛+1 is a condition and that 𝑝𝑛+1 ≤*
𝑛 𝑝𝑛. To finish

the proof we must verify that for every 𝑟 ≤ 𝑝𝑛+1 such that ℓ(𝑟) = ℓ(𝑝) + 𝑛 and
𝑟 ‖ 𝜏 , 𝑝𝑛+1 + stem(𝑟, 𝑝𝑛+1) ‖ 𝜏 . Let 𝑠 = stem(𝑟, 𝑝𝑛+1), and pick some 𝑗 < 𝜇 such
that 𝑠 = 𝑠𝑛𝑗 .

We claim that 𝑝𝑛+1 ≤*
𝑛 𝑝

𝑗 . This is a routine verification: note that 𝐴
𝑝𝑗

𝑘 = 𝑃𝜅𝑘
𝛼𝑗
𝑘

for ℓ(𝑝) + 𝑛 ≤ 𝑘, so that there is no problem with Clause 5 for 𝑝𝑛+1 ≤ 𝑝𝑗 .
By Lemma 8 we have 𝑟 ≤* 𝑝𝑛+1+𝑠, and by Lemma 9 we have that stem(𝑟, 𝑝𝑗) = 𝑠

and 𝑝𝑛+1 + 𝑠 ≤* 𝑝𝑗 + 𝑠 = 𝑞𝑗 . So 𝑟 ≤* 𝑞𝑗 and 𝑟 ‖ 𝜏 , hence we chose 𝑟𝑗 ≤* 𝑞𝑗 such

that 𝑟𝑗 ‖ 𝜏 and used 𝑟𝑗 in the definitions of 𝑓 𝑗+1
𝑘 , 𝑎𝑗+1

𝑘 , and 𝐴𝑗+1
𝑘 .

We claim that 𝑝𝑛+1 + 𝑠 ≤ 𝑟𝑗 . The verification is fairly straightforward, the main
point is to check the second part of Clause 5. So let 𝑘 ≥ ℓ(𝑝) + 𝑛, and recall that

by definition 𝐴
𝑝𝑛+1+𝑠
𝑘 is the set of 𝑥 ∈ 𝐴

𝑝𝑛+1

𝑘 such that 𝑠 ⊆ 𝑥. By the construction
of 𝐴

𝑝𝑛+1

𝑘 as a diagonal intersection, for every 𝑥 ∈ 𝐴
𝑝𝑛+1

𝑘 such that 𝑠 b 𝑥 we have

that 𝑥 ∩ 𝛼𝑗+1
𝑘 ∈ 𝐴𝑗+1

𝑘 . Since 𝐴𝑗+1
𝑘 = 𝐴

𝑟𝑗
𝑘 , this is exactly what is needed for Clause

5. �

3.5. Prikry lemma.

Lemma 11 (Prikry lemma). For every condition 𝑝 and every sentence 𝜑 in the
forcing language there is 𝑞 ≤* 𝑝 such that 𝑞 ‖ 𝜑.

Proof. Let 𝜏 name an ordinal which is 0 if 𝜑 is true and 1 if 𝜑 is false. Appealing
to Lemma 10 we find 𝑞0 ≤* 𝑝 which is such that for all 𝑟 ≤ 𝑞0, if 𝑟 decides 𝜑 then
𝑞0 + stem(𝑟, 𝑞) decides 𝜑.

Let 𝑆 be the set of sequences 𝑠 such that 𝑞0 + 𝑠 is well-defined, and for each
𝑠 ∈ 𝑆 define 𝐹 (𝑠) as follows:

𝐹 (𝑠) =

⎧⎪⎨⎪⎩
0, if 𝑞0 + 𝑠  𝜑

1, if 𝑞0 + 𝑠  ¬𝜑
2, otherwise.
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For each 𝑡 ∈ 𝑆 we may find a measure one set 𝐵𝑡 ⊆ 𝐴𝑞0
ℓ(𝑞0)+ℓ(𝑡) and 𝐺(𝑡) such that

𝐹 (𝑡a⟨𝑥⟩) = 𝐺(𝑡) for all 𝑥 ∈ 𝐵𝑡.
Now for each 𝑘 ≥ ℓ(𝑞0), let 𝐶𝑘 be the diagonal intersection of 𝐵𝑡 for all sequences

𝑡 of length 𝑘 − ℓ(𝑞0), that is the set of 𝑥 ∈ 𝐴𝑞0
𝑘 such that 𝑥 ∈ 𝐵𝑡 for all 𝑡 b 𝑥. Let

𝑞1 be obtained from 𝑞0 by replacing 𝐴𝑞0
𝑘 by 𝐶𝑘 for all 𝑘 ≥ ℓ(𝑞0), and note that

𝛼𝑞1
𝑘 = 𝛼𝑞0

𝑘 for all 𝑘 ≥ ℓ(𝑞0) = ℓ(𝑞1). Let 𝑞2 ≤ 𝑞1 be a condition deciding 𝜑 with
ℓ(𝑞2) chosen minimal.

We claim that ℓ(𝑞2) = ℓ(𝑞1), so that 𝑞2 ≤* 𝑝 and we are done. Suppose for a
contradiction that ℓ(𝑞2) > ℓ(𝑞1), and let 𝑠 = stem(𝑞2, 𝑞1). By construction 𝑞1+𝑠 ≤*

𝑞0 + 𝑠 and 𝑞0 + 𝑠 decides 𝜑, so 𝑞1 + 𝑠 decides 𝜑. We will assume that it forces 𝜑;
the argument for the case when 𝑞1 + 𝑠 forces ¬𝜑 is identical.

Let 𝑥 = 𝑠(ℓ(𝑠) − 1) and let 𝑡 = 𝑠 � ℓ(𝑠) − 1, so that 𝑠 = 𝑡a⟨𝑥⟩. By construction
𝑥 ∈ 𝐵𝑡, and so by definition 𝐺(𝑡) = 𝐹 (𝑠) = 1. By Lemma 8 it is easy to see that
every extension of 𝑞1 + 𝑡 is compatible with 𝑞1 + 𝑡a⟨𝑦⟩ for some 𝑦 ∈ 𝐵𝑡, and since
𝐺(𝑡) = 1 we have that 𝑞1 + 𝑡a⟨𝑦⟩  𝜑 for all 𝑦 ∈ 𝐵𝑡, so that 𝑞1 + 𝑡 forces 𝜑. This
contradicts the minimal choice of ℓ(𝑞2). �

Corollary 1. The forcing poset Q adds no bounded subsets of 𝜅.

Proof. Let 𝑝  �̇� ⊆ 𝜇 with 𝜇 < 𝜅, and find 𝑞 ≤ 𝑝 such that ℓ(𝑞) = 𝑘 for some 𝑘 large
enough that 𝜅𝑘 > 𝜇. Appealing to Lemmas 11 and 5 we may build a ≤*-decreasing
sequence (𝑞𝑖)𝑖<𝜇 such that 𝑞0 = 𝑞 and 𝑞𝑖+1 decides whether 𝑖 ∈ �̇� for all 𝑖. By
Lemma 5 again there is a condition 𝑟 such that 𝑟 ≤ 𝑞𝑖 for all 𝑖, and 𝑟  �̇� = 𝑦 for
some 𝑦 ∈ 𝑉 . �

3.6. Projected forcing. Let 𝑘 < 𝜔 and let �⃗� = (𝛼𝑖)𝑘≤𝑖<𝜔 be a ≤-increasing
sequence from [𝜅, 𝜆). We define a forcing poset Q�⃗�. Conditions in Q�⃗� are sequences
(𝑞𝑖)𝑘≤𝑖<𝜔 such that some 𝑙 ≥ 𝑘: 𝑞𝑖 ∈ 𝑃𝜅𝑖

𝛼𝑖 for 𝑖 < 𝑙 and 𝑞𝑖 ∈ 𝑈𝑖,𝛼𝑖
for 𝑖 ≥ 𝑙, and

(𝑞𝑖)𝑘≤𝑖<𝑙 is ⊆-increasing. We say that 𝑙 is the length of 𝑞 and write 𝑙 = ℓ(𝑞). If
𝑟, 𝑞 ∈ Q�⃗� then 𝑟 ≤ 𝑞 if and only if:

∙ ℓ(𝑟) ≥ ℓ(𝑞).
∙ 𝑟𝑖 = 𝑞𝑖 for 𝑘 ≤ 𝑖 < ℓ(𝑞).
∙ 𝑟𝑖 ∈ 𝐴𝑞

𝑖 for ℓ(𝑞) ≤ 𝑖 < ℓ(𝑟).
∙ 𝐴𝑟

𝑖 ⊆ 𝐴𝑞
𝑖 for ℓ(𝑟) ≤ 𝑖 < 𝜔.

We note that Q�⃗� has the 𝜆-cc, because there are fewer than 𝜆 possible “stems”
(𝑞𝑖)𝑘≤𝑖<ℓ(𝑞) and any two conditions with the same stem are compatible. It is also
not hard to prove that Q�⃗� obeys a version of the Prikry Lemma, but we will not need
this (it actually follows from the next lemma). It is useful to note that the generic
object added by Q�⃗� is a ⊆-increasing sequence (𝑧𝑖)𝑘≤𝑖<𝜔 such that 𝑧𝑖 ∈ 𝑃𝜅𝑖

𝛼𝑖.

Lemma 12. Let 𝑞 ∈ Q, and let �⃗� = (𝛼𝑖)ℓ(𝑞)≤𝑖<𝜔 be a ≤-increasing sequence such
that 𝛼𝑖 ∈ 𝑎𝑞𝑖 for all 𝑖. Let 𝜋 : Q ↓ 𝑞 → Q�⃗� be the map defined by:

∙ 𝜋(𝑟)𝑖 = 𝑓𝑟𝑖 (𝛼𝑖) for ℓ(𝑞) ≤ 𝑖 < ℓ(𝑟).
∙ 𝜋(𝑟)𝑖 = {𝑥 ∩ 𝛼𝑖 : 𝑥 ∈ 𝐴𝑟

𝑖 } for 𝑖 ≥ ℓ(𝑟).

Then 𝜋 is order-preserving and has the following property: for every 𝑟 ≤ 𝑞 there is
𝑟* ≤ 𝑟 such that for all 𝑞0 ≤ 𝜋(𝑟*) there is 𝑟′ ≤ 𝑟 with 𝜋(𝑟′) ≤ 𝑞0.

Proof. It is routine to check that 𝜋 is order-preserving. To verify the rest of the
conclusion let 𝑟 ≤ 𝑞. We obtain a condition 𝑟* ≤* 𝑟 by shrinking measure one sets
in 𝑟 as follows:
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∙ ℓ(𝑟*) = ℓ(𝑟).
∙ 𝑓𝑟

*

𝑖 = 𝑓𝑟𝑖 for all 𝑖.

∙ 𝑎𝑟
*

𝑖 = 𝑎𝑟𝑖 for all 𝑖 ≥ ℓ(𝑟).

∙ We define 𝐴𝑟*

𝑘 for 𝑘 ≥ ℓ(𝑟) by recursion on 𝑘, arranging that 𝐴𝑟*

𝑘 ⊆ 𝐴𝑟
𝑘 and

𝐴𝑟*

𝑘 ∈ 𝑈𝑘,𝛼𝑟
𝑘
.

We start by setting 𝐴𝑟*

ℓ(𝑟) = 𝐴𝑟
ℓ(𝑟). For 𝑖 > 0 we set 𝐴𝑟*

ℓ(𝑟)+𝑖 to be the set of 𝑦 ∈
𝐴𝑟

ℓ(𝑟)+𝑖 such that for all 𝑥 ∈ 𝐴𝑟*

ℓ(𝑟)+𝑖−1 with 𝑥∩𝛼𝑖 ⊆ 𝑦∩𝛼𝑖+1 there is 𝑥′ ∈ 𝐴𝑟*

ℓ(𝑟)+𝑖−1

with 𝑥′ ∩ 𝛼𝑖 = 𝑥 ∩ 𝛼𝑖 and 𝑥′ ⊆ 𝑦. By Lemma 2 we have 𝐴𝑟*

ℓ(𝑟)+𝑖 ∈ 𝑈ℓ(𝑟)+𝑖,𝛽𝑖+1
.

Let 𝑞0 ≤ 𝜋(𝑟*), and choose 𝑦𝑘 ∈ 𝐵𝑟*𝑘 such that (𝑞0)𝑘 = 𝑦𝑘 ∩ 𝛼𝑘 for ℓ(𝑟) ≤
𝑘 < ℓ(𝑞0). Using the definition of 𝐵𝑟*

𝑘 we will choose 𝑦′ℓ(𝑞0)−𝑖 for 0 < 𝑖 ≤ ℓ(𝑟) by

induction on 𝑖 as follows: 𝑦′ℓ(𝑞0)−1 = 𝑦ℓ(𝑞0)−1, and 𝑦′ℓ(𝑞0)−(𝑖+1) ∈ 𝐵𝑟*

ℓ(𝑞0)−(𝑖+1) with

𝑦′ℓ(𝑞0)−(𝑖+1) ⊆∈ 𝑦ℓ(𝑞0)−𝑖 and 𝑦′ℓ(𝑞0)−(𝑖+1)∩𝛼ℓ(𝑞0)−(𝑖+1) = 𝑦ℓ(𝑞0)−(𝑖+1)∩𝛼ℓ(𝑞0)−(𝑖+1) =

(𝑞0)ℓ(𝑞0)−(𝑖+1).
Let 𝑡 = (𝑦′𝑘)ℓ(𝑟)≤𝑘<ℓ(𝑞0), and form 𝑟 + 𝑡. By shrinking measure one sets appro-

priately we obtain a condition 𝑟′ ≤ 𝑟 + 𝑡 ≤ 𝑟 such that 𝜋(𝑟′) ≤* 𝑞0. �

The conclusion of Lemma 12 is a weakening of the standard property of being a
projection between forcing posets, and was first isolated by Foreman and Woodin
[1]. The following corollary of Lemma 12 is routine:

Corollary 2. With the same hypotheses as in Lemma 12, if 𝐺 is Q-generic with
𝑞 ∈ 𝐺 then 𝜋[𝐺] generates a Q�⃗�-generic filter. �

Remark 5. It is possible to give an alternative argument for Corollary 2 by first
proving a characterisation of Q�⃗�-generic sequences in the style of Mathias’ theorem
on Prikry forcing [8]. This characterisation, which we will not prove, states that an
increasing sequence (𝑧𝑖)𝑘≤𝑖<𝜔 is generic if and only if for every sequence (𝐴𝑖)𝑘≤𝑖<𝜔

in 𝑉 with 𝐴𝑖 ∈ 𝑈𝑖,𝛼𝑖
for all 𝑖, we have 𝑧𝑖 ∈ 𝐴𝑖 for all large 𝑖. It is straightforward

to verify that the induced filter 𝐺�⃗� corresponds to a sequence (𝑧𝑖)𝑘≤𝑖<𝜔 with this
property.

Lemma 13. Let 𝐺 be Q-generic and let 𝑥 ⊆ 𝜅 with 𝑥 ∈ 𝑉 [𝐺]. Then there exists �⃗�
such that 𝑥 ∈ 𝑉 [𝐺�⃗�].

Proof. Note that by Corollary 1 we have 𝑥 ∩ 𝜅𝑛 ∈ 𝑉 for all 𝑛 < 𝜔. Let 𝑝 ∈ Q and
let 𝜏𝑛 be a name for 𝑥 ∩ 𝜅𝑛. Appealing to Lemmas 10 and 5 we may find 𝑞 ≤* 𝑝
such that for all 𝑟 ≤ 𝑞, if 𝑟 decides 𝜏𝑛 then then 𝑞 + stem(𝑟, 𝑞) decides 𝜏𝑛. Now let
�⃗� = (𝛼𝑞

𝑘)ℓ(𝑞)≤𝑘<𝜔. It is routine to verify that 𝑞 forces that 𝑥 can be computed from
𝐺�⃗�. Explicitly, if 𝑞 ∈ 𝐺 and (𝑧𝑖)𝑘≤𝑖<𝜔 is the generic sequence added by 𝐺�⃗� then
𝛽 ∈ 𝑥 ⇐⇒ ∃𝑘 ≥ 𝑘 𝑞 + (𝑧𝑖)𝑘≤𝑖<�̄�  𝛽 ∈ �̇�. �

Lemma 14. Let 𝐺 be Q-generic, then 𝜆 = (𝜅+)𝑉 [𝐺].

Proof. Suppose for a contradiction that 𝜆 is not a cardinal in 𝑉 [𝐺]. By Lemma 4,
cardinals 𝜇 with 𝜅 < 𝜇 < 𝜆 are all collapsed in 𝑉 [𝐺], so that if 𝜆 is also collapsed
then there is a set 𝑥 ⊆ 𝜅 in 𝑉 [𝐺] coding a well-ordering of 𝜅 with order type 𝜆. By
Lemma 13 𝑥 ∈ 𝑉 [𝐺�⃗�] for some �⃗�, which gives an immediate contradiction since Q�⃗�

is 𝜆-cc. �
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3.7. Definability. Let 𝐺 be Q-generic. The last step in the proof of our main
result is to analyse the class of sets HOD𝑥 where 𝑥 ⊆ 𝜅 with 𝑥 ∈ 𝑉 [𝐺]. This will
require a rather technical result which appears below as Lemma 16. In order to
motivate the statement of Lemma 16, we will state a lemma which contains the
necessary information about HOD𝑥 and prove it modulo one missing fact, which
will then be provided by Lemma 16.

Lemma 15. Let 𝑥 ⊆ 𝜅 with 𝑥 ∈ 𝑉 [𝐺], then there exists �⃗� such that (HOD𝑥)𝑉 [𝐺] ⊆
𝑉 [𝐺�⃗�]. In particular (𝜅+)(HOD𝑥)

𝑉 [𝐺]

< 𝜅+.

Proof of Lemma 15, Part One. By Lemma 13 find 𝑞 ∈ 𝐺, �⃗� with 𝛼𝑘 ∈ 𝑎𝑞𝑘 for all

𝑘 and �̇� a Q�⃗�-name such that 𝑖𝐺�⃗�
(�̇�) = 𝑥. Since HOD𝑉 [𝐺]

𝑥 is a model of ZFC, to

show that HOD𝑉 [𝐺]
𝑥 ⊆ 𝑉 [𝐺�⃗�] it will be sufficient to show that every set of ordinals

𝑦 ∈ HOD𝑉 [𝐺]
𝑥 lies in 𝑉 [𝐺�⃗�].

Let 𝑦 be such a set and fix a definition of 𝑦 from 𝑥 and some ordinal parameter
𝛿, say

𝑌 = {𝛾 : 𝑉 [𝐺] |= 𝜓(𝛾, 𝛿, 𝑥)}.
In order to define 𝑦 in 𝑉 [𝐺�⃗�], we define an auxiliary set 𝐻 ⊆ Q. Let 𝑘 = ℓ(𝑞) and
let (𝑧𝑖)𝑘≤𝑖<𝜔 be the generic sequence corresponding to the filter 𝐺�⃗�. We define 𝐻
to be the set of conditions 𝑟 ∈ Q such that 𝑟 ≤ 𝑞, and for every 𝑘 ≥ 𝑘 there exists
𝑟1 ≤ 𝑟 such that 𝑓𝑟1𝑖 (𝛼𝑖) = 𝑧𝑖 for 𝑘 ≤ 𝑖 < 𝑘. Clearly 𝐺 ⊆ 𝐻 and 𝐻 ∈ 𝑉 [𝐺�⃗�].

We claim that 𝑌 = {𝛾 : ∃𝑟 ∈ 𝐻 𝑟  𝜓(𝛾, 𝛿, �̇�)}. If 𝑌 is the set defined on the
right hand side of this equation then clearly 𝑌 ⊆ 𝑌 and 𝑌 ∈ 𝑉 [𝐺𝛼], so we need
only show that 𝑌 ⊆ 𝑌 . Suppose for a contradiction that this is not the case, fix
𝛾 ∈ 𝑌 ∖ 𝑌 , and then choose conditions 𝑟 ∈ 𝐻 and 𝑠 ∈ 𝐺 such that 𝑟  𝜓(𝛾, 𝛿, �̇�)
and 𝑠  ¬𝜓(𝛾, 𝛿, �̇�).

We may extend 𝑠 to find 𝑠* ≤ 𝑠, 𝑞 such that 𝑠* ∈ 𝐺 and ℓ(𝑠*) ≥ ℓ(𝑟), and then use
the fact that 𝑟 ∈ 𝐻 to find 𝑟* ≤ 𝑟 (not necessarily lying in𝐻) such that ℓ(𝑟*) = ℓ(𝑠*)
and 𝑓𝑟

*

𝑖 (𝛼𝑖) = 𝑧𝑖 = 𝑓𝑠
*

𝑖 (𝛼𝑖) for all 𝑖 with ℓ(𝑞) = 𝑘 ≤ 𝑖 < ℓ(𝑟*) = ℓ(𝑠*). At this
point we will be done if we can show that 𝑟* and 𝑠* can not force contradictory
information about 𝜓(𝛾, 𝛿, �̇�), and this is exactly the point of Lemma 16. Accordingly
we interrupt the proof of Lemma 15 to state and prove Lemma 16.

Lemma 16. Let 𝑞 ∈ Q, and let �⃗� = (𝛼𝑖)ℓ(𝑞)≤𝑖<𝜔 be a ≤-increasing sequence such
that 𝛼𝑖 ∈ 𝑎𝑞𝑖 for all 𝑖. Let 𝑟* and 𝑠* be conditions such that 𝑟*, 𝑠* ≤ 𝑞, ℓ(𝑟*) = ℓ(𝑠*),

and 𝑓𝑟
*

𝑘 (𝛼𝑞
𝑘) = 𝑓𝑠

*

𝑘 (𝛼𝑞
𝑘) for ℓ(𝑞) ≤ 𝑘 < ℓ(𝑟*). Then there exist conditions 𝑟′ ≤* 𝑟*

and 𝑠′ ≤* 𝑠* and 𝜌 : Q ↓ 𝑟′ → Q ↓ 𝑠′ such that:

∙ 𝜌 is an isomorphism.
∙ If 𝐺0 is Q-generic with 𝑟′ ∈ 𝐺0, and 𝐺1 is the Q-generic filter generated
by 𝜌[𝐺0 ∩Q ↓ 𝑟′], then 𝐺0,�⃗� = 𝐺1,�⃗�.

Proof. We choose direct extensions 𝑟′ ≤* 𝑟 and 𝑠′ ≤* 𝑠 such that:

∘ dom(𝑓𝑟
′

𝑘 ) = dom(𝑓𝑠
′

𝑘 ) for 𝑘 < ℓ(𝑟).

∘ dom(𝑓𝑟
′

𝑘 ) ∪ 𝑎𝑟′𝑘 = dom(𝑓𝑠
′

𝑘 ) ∪ 𝑎𝑠′𝑘 , 𝛼𝑟′

𝑘 = 𝛼𝑠′

𝑘 , 𝐴𝑟′

𝑘 = 𝐴𝑠′

𝑘 for 𝑘 ≥ ℓ(𝑟).

To help readability let 𝛽𝑘 be the common value of 𝛼𝑟′

𝑘 and 𝛼𝑠′

𝑘 , let 𝐵𝑘 be the

common value of 𝐴𝑟′

𝑘 and 𝐴𝑠′

𝑘 , and let 𝑑𝑘 be the common value of dom(𝑓𝑟
′

𝑘 ) and

dom(𝑓𝑠
′

𝑘 ) for 𝑘 < ℓ(𝑟) and the common value of dom(𝑓𝑟
′

𝑘 ) ∪ 𝑎𝑟′𝑘 and dom(𝑓𝑠
′

𝑘 ) ∪ 𝑎𝑠′𝑘
for ℓ(𝑟) ≤ 𝑘.
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We will now define maps 𝜌 : Q ↓ 𝑟′ → Q ↓ 𝑠′ and 𝜎 : Q ↓ 𝑠′ → Q ↓ 𝑟′ with
𝜌(𝑟′) = 𝑠′, and argue that they are order-preserving and mutually inverse. The
reader may find the following slogan useful: “𝜌 alters 𝑟′′𝑘 on 𝑑𝑘 to make it look like
the 𝑘-level of an extension 𝑠′′ of 𝑠′ with stem(𝑠′′, 𝑠′) = stem(𝑟′′, 𝑟′)”.

Let 𝑟′′ ≤ 𝑟′. We define 𝜌(𝑟′′) to be the condition 𝑠′′ such that:

I For 𝑘 < ℓ(𝑟′), dom(𝑓𝑠
′′

𝑘 ) = dom(𝑓𝑟
′′

𝑘 ), 𝑓𝑠
′′

𝑘 � dom(𝑓𝑠
′

𝑘 ) = 𝑓𝑠
′

𝑘 , 𝑓𝑠
′′

𝑘 �
dom(𝑓𝑟

′′

𝑘 ) ∖ dom(𝑓𝑠
′

𝑘 ) = 𝑓𝑟
′′

𝑘 � dom(𝑓𝑟
′′

𝑘 ) ∖ dom(𝑓𝑠
′

𝑘 ).

I For ℓ(𝑟′) ≤ 𝑘 < ℓ(𝑟′′), dom(𝑓𝑠
′′

𝑘 ) = dom(𝑓𝑟
′′

𝑘 ), 𝑓𝑠
′′

𝑘 � dom(𝑓𝑠
′

𝑘 ) = 𝑓𝑠
′

𝑘 ,

𝑓𝑠
′′

𝑘 (𝜂) = 𝑓𝑟
′′

𝑘 (𝛽𝑘)∩𝜂 for 𝜂 ∈ 𝑎𝑠
′

𝑘 , 𝑓𝑠
′′

𝑘 � dom(𝑓𝑟
′′

𝑘 )∖𝑑𝑘 = 𝑓𝑟
′′

𝑘 � dom(𝑓𝑟
′′

𝑘 )∖𝑑𝑘.
I For ℓ(𝑟′′) ≤ 𝑘:

∙ dom(𝑓𝑠
′′

𝑘 ) = dom(𝑓𝑠
′

𝑘 ) ∪ (dom(𝑓𝑟
′′

𝑘 ) ∖ 𝑑𝑘), 𝑓𝑠
′′

𝑘 � dom(𝑓𝑠
′

𝑘 ) = 𝑓𝑠
′

𝑘 and

𝑓𝑠
′′

𝑘 � (dom(𝑓𝑟
′′

𝑘 ) ∖ 𝑑𝑘) = 𝑓𝑟
′′
� (dom(𝑓𝑟

′′

𝑘 ) ∖ 𝑑𝑘).

∙ 𝑎𝑠
′′

𝑘 = 𝑎𝑠
′

𝑘 ∪ (𝑎𝑟
′′

𝑘 ∖ 𝑑𝑘).

∙ 𝐴𝑠′′

𝑘 = 𝐴𝑟′′

𝑘 .

𝜎(𝑠′′) for 𝑠′′ ≤ 𝑠′ is defined in an exactly similar way with the roles of 𝑟′, 𝑟′′ and
𝑠′, 𝑠′′ reversed. Note in particular that:

∙ For ℓ(𝑟′) ≤ 𝑘 < ℓ(𝑟′′), 𝛽𝑘 = 𝛼𝑟′

𝑘 = 𝛼𝑠′

𝑘 ∈ 𝑎𝑟
′

𝑘 ∩𝑎𝑠′𝑘 , and 𝑓
𝛼(𝑟′′)
𝑘 (𝛽𝑘) = 𝑓𝑟

′′

𝑘 (𝛽𝑘).
∙ The definitions of 𝜌 and 𝜎 are “level by level” in the sense that 𝜌(𝑟′′)𝑘 (resp
𝜎(𝑠′′)𝑘) depends only on 𝑟′′𝑘 (resp 𝑠′′𝑘).

∙ On each level 𝑘 of 𝑟′′ (resp 𝑠′′) 𝜌 (resp 𝜎) only alters 𝑎𝑟
′′

𝑘 and 𝑓𝑟
′′

𝑘 (resp 𝑎𝑠
′′

𝑘

and 𝑓𝑠
′′

𝑘 ) inside the set 𝑑𝑘.

It is very easy to verify that 𝜌(𝑟′) = 𝑠′. We claim that 𝜌 and 𝜎 are order-
preserving, by symmetry we only need verify this for 𝜌. From Lemmas 8 and 7 we
see that it is enough to verify that 𝜌 is order-preserving for extensions of the form
𝑟′′ + ⟨𝑥⟩ ≤ 𝑟′′ and 𝑟′′′ ≤* 𝑟′′.

Claim 16.1. Let 𝑟′′ ≤ 𝑟′ and let 𝑥 be such that 𝑟′′ + ⟨𝑥⟩ is defined. then 𝜌(𝑟′′)+ ⟨𝑥⟩
is well-defined and 𝜌(𝑟′′ + ⟨𝑥⟩) = 𝜌(𝑟′′) + ⟨𝑥⟩.

Proof. We note that 𝐴
𝜌(𝑟′′)
𝑘 = 𝐴𝑟′′

𝑘 for all 𝑘 ≥ ℓ(𝑟′′), so that 𝜌(𝑟′′) + ⟨𝑥⟩ is well-
defined. Now we do a case analysis:

I 𝑘 < ℓ(𝑟′): 𝑓
𝜌(𝑟′′)
𝑘 is obtained by altering the values of 𝑓𝑟

′′

𝑘 on dom(𝑓𝑠
′

𝑘 ) to

agree with 𝑓𝑠
′

𝑘 , and by definition 𝑓
𝜌(𝑟′′)+⟨𝑥⟩
𝑘 = 𝑓

𝜌(𝑟′′)
𝑘 . Also 𝑓

𝑟′′+⟨𝑥⟩
𝑘 = 𝑓𝑟

′′

𝑘

and then 𝑓
𝜌(𝑟′′+⟨𝑥⟩)
𝑘 is obtained by altering its values on dom(𝑓𝑠

′

𝑘 ) to agree

with 𝑓𝑠
′

𝑘 , so easily 𝑓
𝜌(𝑟′′+⟨𝑥⟩)
𝑘 = 𝑓

𝜌(𝑟′′)+⟨𝑥⟩
𝑘 .

I ℓ(𝑟′) ≤ 𝑘 < ℓ(𝑟′′): Note that 𝑑𝑘 ⊆ dom(𝑓𝑟
′′

𝑘 ). By definition, 𝑓
𝜌(𝑟′′)
𝑘 is

obtained by altering the values of 𝑓𝑟
′′

𝑘 on 𝑑𝑘, so as to agree with 𝑓𝑠
′

𝑘

on dom(𝑓𝑠
′

𝑘 ) and to agree with 𝜂 ↦→ 𝑓𝑟
′′

𝑘 (𝛽𝑘) ∩ 𝜂 on 𝑎𝑠
′

𝑘 . By definition

𝑓
𝜌(𝑟′′)+⟨𝑥⟩
𝑘 = 𝑓

𝜌(𝑟′′)
𝑘 . Also 𝑓

𝑟′′+⟨𝑥⟩
𝑘 = 𝑓𝑟

′′

𝑘 , and 𝑓
𝜌(𝑟′′+⟨𝑥⟩)
𝑘 is obtained from it

by the scheme of alteration described above, so 𝑓
𝜌(𝑟′′+⟨𝑥⟩)
𝑘 = 𝑓

𝜌(𝑟′′)+⟨𝑥⟩
𝑘 .

I 𝑘 = ℓ(𝑟′′): This is the most complicated case. Start by recalling that

𝑑𝑘 = dom(𝑓𝑟
′

𝑘 ) ∪ 𝑎𝑟′𝑘 = dom(𝑓𝑠
′

𝑘 ) ∪ 𝑎𝑠′𝑘 ⊆ dom(𝑓𝑟
′′

𝑘 ) ∪ 𝑎𝑟′′𝑘 = dom(𝑓
𝑟′′+⟨𝑥⟩
𝑘 ),

and also that 𝑟′′ ≤ 𝑟′.
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By definition 𝑓𝑟
′′+⟨𝑥⟩(𝜂) = 𝑓𝑟

′′

𝑘 (𝜂) for 𝜂 ∈ dom(𝑓𝑟
′′

𝑘 ) and 𝑓𝑟
′′+⟨𝑥⟩(𝜂) =

𝑥 ∩ 𝜂 for 𝜂 ∈ dom(𝑎𝑟
′′

𝑘 ). When we alter values to obtain 𝑓
𝜌(𝑟′′+⟨𝑥⟩)
𝑘 , we

obtain:
∙ 𝑓𝜌(𝑟

′′+⟨𝑥⟩)(𝜂) = 𝑓𝑟
′′

𝑘 (𝜂) for 𝜂 ∈ dom(𝑓𝑟
′′

𝑘 ) ∖ 𝑑𝑘.

∙ 𝑓𝜌(𝑟
′′+⟨𝑥⟩)(𝜂) = 𝑥 ∩ 𝜂 for 𝜂 ∈ 𝑎𝑟

′′

𝑘 ∖ 𝑑𝑘.

∙ 𝑓𝜌(𝑟
′′+⟨𝑥⟩)(𝜂) = 𝑓𝑠

′

𝑘 (𝜂) for 𝜂 ∈ dom(𝑓𝑠
′

𝑘 ).

∙ 𝑓𝜌(𝑟
′′+⟨𝑥⟩)(𝜂) = 𝑓

𝑟′′+⟨𝑥⟩
𝑘 (𝛽𝑘) ∩ 𝜂 for 𝜂 ∈ 𝑎𝑠

′

𝑘 .
In the last of these cases we note that 𝑟′′ ≤ 𝑟′ and ℓ(𝑟′′) = 𝑘, so that

𝛽𝑘 = 𝛼𝑟′

𝑘 ∈ 𝑎𝑟
′′

𝑘 and so 𝑓
𝑟′′+⟨𝑥⟩
𝑘 (𝛽𝑘) = 𝑥∩𝛽𝑘. It follows that 𝑓𝜌(𝑟

′′+⟨𝑥⟩)(𝜂) =

𝑥 ∩ 𝜂 for 𝜂 ∈ 𝑎𝑠
′

𝑘 , so we conclude that:

∙ 𝑓𝜌(𝑟
′′+⟨𝑥⟩)(𝜂) = 𝑓𝑟

′′

𝑘 (𝜂) for 𝜂 ∈ dom(𝑓𝑟
′′

𝑘 ) ∖ 𝑑𝑘.

∙ 𝑓𝜌(𝑟
′′+⟨𝑥⟩)(𝜂) = 𝑥 ∩ 𝜂 for 𝜂 ∈ 𝑎𝑠

′

𝑘 ∪ (𝑎𝑟
′′

𝑘 ∖ 𝑑𝑘).

∙ 𝑓𝜌(𝑟
′′+⟨𝑥⟩)(𝜂) = 𝑓𝑠

′

𝑘 (𝜂) for 𝜂 ∈ dom(𝑓𝑠
′

𝑘 ).

By definition again we have 𝑎
𝜌(𝑟′′)
𝑘 = 𝑎𝑠

′

𝑘 ∪ (𝑎𝑟
′′

𝑘 ∖ 𝑑𝑘), dom(𝑓
𝜌(𝑟′′)
𝑘 ) =

dom(𝑓𝑠
′

𝑘 ) ∪ (dom(𝑓𝑟
′′

𝑘 ) ∖ 𝑑𝑘) and:

∙ 𝑓
𝜌(𝑟′′)
𝑘 (𝜂) = 𝑓𝑟

′′

𝑘 (𝜂) for 𝜂 ∈ dom(𝑓𝑟
′′

𝑘 ) ∖ 𝑑𝑘.

∙ 𝑓
𝜌(𝑟′′)
𝑘 (𝜂) = 𝑓𝑠

′

𝑘 (𝜂) for 𝜂 ∈ dom(𝑓𝑠
′

𝑘 ) ∖ 𝑑𝑘.

Since 𝑓
𝜌(𝑟′′)+⟨𝑥⟩
𝑘 ⊇ 𝑓

𝜌(𝑟′′)
𝑘 and 𝑓

𝜌(𝑟′′)+⟨𝑥⟩
𝑘 (𝜂) = 𝑥 ∩ 𝜂 for 𝜂 ∈ 𝑎

𝜌(𝑟′′)
𝑘 , we see

that 𝑓
𝜌(𝑟′′+⟨𝑥⟩)
𝑘 = 𝑓

𝜌(𝑟′′)+⟨𝑥⟩
𝑘 .

I 𝑘 > ℓ(𝑟′′): By definition 𝑎
𝑟′′+⟨𝑥⟩
𝑘 = 𝑎𝑟

′′

𝑘 and 𝑓
𝑟′′+⟨𝑥⟩
𝑘 = 𝑓𝑟

′′

𝑘 , so that by the

definition of the operation 𝜌 we have 𝑎
𝜌(𝑟′′+⟨𝑥⟩)
𝑘 = 𝑎

𝜌(𝑟′′)
𝑘 and 𝑓

𝜌(𝑟′′+⟨𝑥⟩)
𝑘 =

𝑓
𝜌(𝑟′′)
𝑘 . Also 𝑎

𝜌(𝑟′′)+⟨𝑥⟩
𝑘 = 𝑎

𝜌(𝑟′′)
𝑘 and 𝑓

𝜌(𝑟′′)+⟨𝑥⟩
𝑘 = 𝑓

𝜌(𝑟′′)
𝑘 , from which it

follows that 𝑎
𝜌(𝑟′′)+⟨𝑥⟩
𝑘 = 𝑎

𝜌(𝑟′′+⟨𝑥⟩)
𝑘 and 𝑓

𝜌(𝑟′′)+⟨𝑥⟩
𝑘 = 𝑓

𝜌(𝑟′′+⟨𝑥⟩)
𝑘 . We also

have

𝐴
𝜌(𝑟′′+⟨𝑥⟩)
𝑘 = 𝐴

𝑟′′+⟨𝑥⟩
𝑘 = {𝑦 ∈ 𝐴𝑟′′

𝑘 : 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝐴
𝜌(𝑟′′)
𝑘 : 𝑥 ⊆ 𝑦} = 𝐴

𝜌(𝑟′′)+⟨𝑥⟩
𝑘 .

�

Claim 16.2. Let 𝑟′′′ ≤* 𝑟′′ ≤ 𝑟′, then 𝜌(𝑟′′′) ≤* 𝜌(𝑟′′).

Proof. For 𝑘 < ℓ(𝑟′′) we have 𝑑𝑘 ⊆ dom(𝑓𝑟
′′

𝑘 ) ⊆ 𝑓𝑟
′′′

𝑘 , while for 𝑘 ≥ 𝑙ℎ(𝑟′′) we have

𝑑𝑘 ⊆ dom(𝑓𝑟
′′

𝑘 )∪ 𝑎𝑟′′𝑘 ⊆ dom(𝑓𝑟
′′′

𝑘 )∪ 𝑎𝑟′′′𝑘 . The definition of 𝜌(𝑟′′)𝑘 involves altering

the values of 𝑓𝑟
′′

𝑘 (for 𝑘 < ℓ(𝑟′′)) or 𝑓𝑟
′′

𝑘 and 𝑎𝑟
′′

𝑘 (for 𝑘 ≥ ℓ(𝑟′′)) in a uniform manner

inside 𝑑𝑘, using only the values of 𝑓𝑟
′

𝑘 and (for 𝑙ℎ(𝑟′) ≤ 𝑘 < ℓ(𝑟′′)) the values of

𝑓𝑟
′′

𝑘 (𝛼𝑟′

𝑘 ), and similarly for 𝜌(𝑟′′′). Since 𝑓𝑟
′′

𝑘 (𝛼𝑟′

𝑘 ) = 𝑓𝑟
′′′

𝑘 (𝛼𝑟′

𝑘 ), it is now routine to
verify that 𝜌(𝑟′′′) ≤ 𝜌(𝑟′′). �

Claim 16.3. 𝜌 and 𝜎 are mutually inverse.

Proof. Let 𝜌(𝑟′′) = 𝑠′′. To verify that 𝜎(𝑠′′) = 𝑟′′, the key points are that 𝑟′′ ≤ 𝑟′

and that for 𝑙ℎ(𝑟′) ≤ 𝑘 < ℓ(𝑟′′) we have 𝑓𝑠
′′

𝑘 (𝛽𝑘) = 𝑓𝑟
′′

𝑘 (𝛽𝑘). It follows that for such

values of 𝑘 and for all 𝜂 ∈ dom(𝑓𝑟
′

𝑘 )∩𝑎𝑠′𝑘 we have 𝑓
𝜎(𝑠′′)
𝑘 (𝜂) = 𝑓𝑠

′′

𝑘 (𝛽𝑘)∩𝜂 = 𝑓𝑟
′′

𝑘 (𝛽𝑘)∩
𝜂 = 𝑓𝑟

′′

𝑘 (𝜂), which is the only difficult step in the proof that 𝜎(𝑠′′) = 𝑟′′. �

Claim 16.4. If 𝐺0 is Q-generic with 𝑟′ ∈ 𝐺0, and 𝐺1 is the Q-generic filter
generated by 𝜌[𝐺0 ∩Q ↓ 𝑟′], then 𝐺0,�⃗� = 𝐺1,�⃗�.
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Proof. Let 𝑟′′ ≤ 𝑟′ and recall that 𝑟′, 𝑠′ ≤ 𝑞. we claim that 𝑓
𝜌(𝑟′′)
𝑘 (𝛼𝑘) = 𝑓𝑟

′′

𝑘 (𝛼𝑘)
for all 𝑘 with ℓ(𝑞) ≤ 𝑘 < ℓ(𝑟′′).

I If 𝑘 < ℓ(𝑟′) then 𝑓
𝜌(𝑟′′)
𝑘 (𝛼𝑘) = 𝑓𝑠

′

𝑘 (𝛼𝑘) = 𝑓𝑟
′

𝑘 (𝛼𝑘) = 𝑓𝑟
′′

𝑘 (𝛼𝑘).

I If ℓ(𝑟′) ≤ 𝑘 < ℓ(𝑟′′) then since 𝛼𝑘 ∈ 𝑎𝑞𝑘 ⊆ 𝑎𝑠
′

𝑘 and 𝑟′′ ≤ 𝑟′, we have

𝑓
𝜌(𝑟′′)
𝑘 (𝛼𝑘) = 𝑓𝑟

′′

𝑘 (𝛽𝑘) ∩ 𝛼𝑘 = 𝑓𝑟
′

𝑘 (𝛼𝑘). �

This concludes the proof of Lemma 16. �

We are now ready to complete the proof of Lemma 15.

Proof of Lemma 15, Part Two. Recall that we need to derive a contradiction from
the assumption that there are 𝑟* and 𝑠* satisfying the hypotheses of Lemma 16
such that 𝑟*  𝜓(𝛾, 𝛿, �̇�) and 𝑠*  ¬𝜓(𝛾, 𝛿, �̇�), where (crucially) �̇� is a Q�⃗�-name.

Let us force with Q below 𝑟* to obtain a generic object 𝐺0 containing 𝑟*, and
then use 𝜌 to obtain a generic object 𝐺1 such that 𝐺1 contains 𝑠*. Since 𝜌 ∈ 𝑉 ,
𝑉 [𝐺0] = 𝑉 [𝐺1] and since 𝐺0,�⃗� = 𝐺1,�⃗�, 𝑖𝐺0(�̇�) = 𝑖𝐺1(�̇�) = 𝑦 say. This is an
immediate contradiction. �

Combining the results we have obtained, we have proved the Main Theorem.

Theorem. Suppose that 𝜅 < 𝜆 where cf(𝜅) = 𝜔, 𝜆 is inaccessible and 𝜅 is a limit
of 𝜆-supercompact cardinals. There is a forcing poset Q such that if 𝐺 is Q-generic
then:

∙ The models 𝑉 and 𝑉 [𝐺] have the same bounded subsets of 𝜅.
∙ Every infinite cardinal 𝜇 with 𝜇 ≤ 𝜅 or 𝜇 ≥ 𝜆 is preserved in 𝑉 [𝐺].
∙ 𝜆 = (𝜅+)𝑉 [𝐺].
∙ For every 𝑥 ⊆ 𝜅 with 𝑥 ∈ 𝑉 [𝐺], (𝜅+)HOD𝑥 < 𝜆.

As we mentioned in the Introduction, we can strengthen the conclusion of the
Main Theorem. We start with (𝜅𝑛)𝑛<𝜔 and 𝜆 as before, but we now assume that
the cardinals 𝜅𝑛 and 𝜆 are supercompact. By doing a suitable preparatory class
forcing we may assume in addition that for every set-generic extension 𝑊 of 𝑉 ,
𝑉 ⊆ HOD𝑊 . The idea of the preparation, which is essentially due to McAloon
[9], is that we will make the 𝜅𝑛 and 𝜆 Laver-indestructible, and then do 𝜆-directed
closed forcing above 𝜆 to arrange that every set of ordinals is coded unboundedly
often into the values of the continuum function.

We claim that if 𝐺 is Q-generic then in 𝑉 [𝐺] we have that 𝜆 is supercompact in

HOD𝑥 for all 𝑥 ⊆ 𝜅. To see this find �⃗� as before such that HOD𝑉 [𝐺]
𝑥 ⊆ 𝑉 [𝐺�⃗�], so

that we have a chain of inclusions

𝑉 ⊆ HOD𝑉 [𝐺] ⊆ HOD𝑉 [𝐺]
𝑥 ⊆ 𝑉 [𝐺�⃗�].

By the Intermediate Models Theorem the model HOD𝑉 [𝐺]
𝑥 is a set-generic extension

of 𝑉 via some complete Boolean subalgebra B of r. o.(Q�⃗�). Since |B| < 𝜆, it follows

by the Levy-Solovay theorem that 𝜆 is supercompact in HOD𝑉 [𝐺]
𝑥 .

Remark 6. Gitik [3] informed us that the same effect should be possible using Me-
rimovich’s supercompact extender-based forcing [10]. This weakens the hypotheses
of the Main Theorem to one supercompact cardinal with an inaccessible cardinal
above it. The details then appeared in [6].



16 J. CUMMINGS, S.-D. FRIEDMAN, M. MAGIDOR, A. RINOT, AND D. SINAPOVA

Remark 7. Woodin [13] pointed out that it should also be possible to prove the Main
Theorem using methods of Kafkoulis [7]. The idea is to start with a supercompact
cardinal with an inaccessible cardinal above, construct a choiceless “Solovay-like”
model 𝑉 * generated by subsets of 𝜅 arising in initial segments of a supercompact
Prikry extension, and then force over 𝑉 * to restore choice.
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